
Online Calibrated and Conformal Prediction
Improves Bayesian Optimization

Shachi Deshpande Charles Marx Volodymyr Kuleshov
Cornell Tech and Cornell University Stanford University Cornell Tech and Cornell University

Abstract

Accurate uncertainty estimates are important
in sequential model-based decision-making
tasks such as Bayesian optimization. However,
these estimates can be imperfect if the data
violates assumptions made by the model
(e.g., Gaussianity). This paper studies
which uncertainties are needed in model-based
decision-making and in Bayesian optimization,
and argues that uncertainties can benefit from
calibration—i.e., an 80% predictive interval
should contain the true outcome 80% of the
time. Maintaining calibration, however, can
be challenging when the data is non-stationary
and depends on our actions. We propose
using simple algorithms based on online
learning to provably maintain calibration on
non-i.i.d. data, and we show how to integrate
these algorithms in Bayesian optimization
with minimal overhead. Empirically, we
find that calibrated Bayesian optimization
converges to better optima in fewer steps,
and we demonstrate improved performance
on standard benchmark functions and
hyperparameter optimization tasks.

1 INTRODUCTION

Bayesian optimization has emerged as a powerful tool
for optimizing objective functions that are initially
unknown and that are learned via evaluation queries
(Thornton et al., 2013; Shahriari et al., 2016; Bergstra
et al., 2011). In practice, querying such objectives
can be expensive: for example, in hyperparameter
optimization (Snoek et al., 2012), queries may involve
training a machine learning model from scratch.

Proceedings of the 27th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2024,
Valencia, Spain. PMLR: Volume 238. Copyright 2024 by
the author(s).

Bayesian optimization aims to minimize the number of
objective function queries by relying on a probabilistic
model to guide search (Frazier, 2018). However,
probabilistic models are not always accurate and may
be overconfident, which slows down optimization and
may yield suboptimal local optima (Guo et al., 2017).

This paper aims to improve the performance of
algorithms for online sequential decision-making under
uncertainty, particularly Bayesian optimization. We
start by examining which uncertainties are needed in
model based decision-making and argue that ideal
uncertainties should be calibrated (Gneiting and
Raftery, 2007; Kuleshov et al., 2018). Intuitively,
calibration means that an 80% confidence interval
should contain the true outcome 80% of the time.
Calibration helps balance exploration and exploitation,
estimate the expected value of the objective, and reach
the optimum in fewer steps (Malik et al., 2019).

Enforcing calibration in sequential tasks is challenging
because the data is non-stationary (it is determined by
our actions). We introduce simple algorithms based
on online learning (Shalev-Shwartz et al., 2012) that
provably yield calibrated uncertainties, even on data
chosen by an adversary. Moreover, our methods can
be added to any Bayesian optimization algorithm with
minimal modifications and with minimal computational
and implementation overhead. Empirically, we show
that our techniques improve Bayesian optimization
and yield faster convergence to higher quality optima
across a range of standard benchmark functions and
hyperparameter optimization tasks.

Contributions In summary, this work makes
the following contributions: (1) we study which
uncertainties are needed in online sequential
decision-making and and provide a formal analysis
of the benefits of calibrated uncertainties; (2) we
introduce simple algorithms than enforce calibration
on non-stationary data and that can be added within
any existing Bayesian optimization algorithm with
minimal computational and implementation overhead;
(3) we demonstrate that our methods accelerate
optimization on tasks such as hyperparameter search.

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

2 BACKGROUND

2.1 Calibrated & Conformal Prediction

Traditionally, predictive uncertainty in statistics is
evaluated using proper scoring rules (Gneiting and
Raftery, 2007). Proper scoring rules measure precisely
two characteristics of a forecast: calibration and
sharpness (Murphy and Winkler, 1987). Intuitively,
calibration means that a 90% confidence interval
contains the outcome about 90% of the time. Sharpness
means that confidence intervals should be tight.
Maximally tight and calibrated confidence intervals
are Bayes optimal.

Calibration. Formally, suppose we have a model
M : X → P(R) that outputs a probabilistic forecast
Qx ∈ P(R) of a target variable y ∈ R given an input
x ∈ X . In this paper, we will assume that Qx is
represented by a quantile function. When the target
y ∈ R is continuous, calibration is often defined as
P (Y ≤ QX(p)) = p, ∀p ∈ [0, 1] (Kuleshov et al., 2018).
In an online setting, this definition becomes

∑T
t=1 I{yt ≤ Qt(p)}

T
→ p for all p ∈ [0, 1] (1)

as T → ∞, where I is the indicator function and Qt =
M(xt) is the forecast at time t.

Calibrated Prediction Out of the box, most models
M are not calibrated. Post-hoc calibration and
conformal prediction yield calibrated forecasts by
adjusting predicted probabilities Q from M on a held
out dataset (Shafer and Vovk, 2007; Kuleshov et al.,
2018; Vovk et al., 2020).

For training a recalibrator over our probabilistic model,
we compute the CDF Ft at each data-point yt using
the formulation Ft = [M(xt)](yt). This can be used
to estimate the the empirical fraction of data-points
below each quantile. Algorithm 1 based on based on
Kuleshov et al. (2018) outlines this procedure.

Algorithm 1: Calibration of Probabilistic Model
Input: Dataset of probabilistic forecasts and
outcomes {[M(xt)](yt), yt}Nt=1

1. Form recalibration set D = {[Ft, P̂ (Ft)}Nt=1 where
Ft = [M(xt)](yt) and
P̂ (p) = |{yt|[Ft ≤ p, t = 1, .., N}|/N .

2. Train recalibrator model R on dataset D.

2.2 Bayesian Optimization

Uncertainty estimation plays an important role in
sequential decision-making, where we observe a
sequence of inputs xt ∈ X for t = 1, 2, ..., T and choose
actions at ∈ A, after which nature reveals outcomes yt.
In such settings, an accurate probabilistic model of yt
given xt is useful for choosing at.

Bayesian optimization is a sequential decision-making
process that seeks to find a global minimum x⋆ ∈
argminx∈X f(x) of an unknown black-box objective
function f : X → R over an input space X ⊆
RD. Please note that f can be deterministic
or non-deterministic. Computing f(x) is usually
computationally expensive; furthermore we may not
have access to the values of f or its gradient. A
classical application area of Bayesian optimization is
hyperparameter search, where x ∈ X are choices of
hyperparameters, and f(x) is the resulting performance
of a machine learning model.

At each step t, Bayesian optimization forms a
probabilistic model Mt : X → P(R) of f ; the output
of Mt(x) is a probability distribution over the value
of f(x). We use uncertainty estimates from this
probabilistic model to pick xt and we update Mt.

Algorithm 2: Bayesian Optimization
Initialize model M0 with data D0 = {xt, yt}Nt=1;
for t = 1, 2, ..., T do

xt = argmaxx∈X Acquisition(x,Mt−1);
yt = f(xt);
Dt = Dt−1 ∪ {(xt, yt)};
Construct model Mt on data D;

end

Above, Acquisition(x,M) is an acquisition function;
common examples include expected improvement,
probability of improvement, and upper counfidence
bounds (UCB) (Frazier, 2018).

3 UNCERTAINTY IN BAYESIAN
OPTIMIZATION

3.1 Which Uncertainties Are Needed in
Online Decision-Making?

Online sequential decision-making tasks such as
Bayesian optimization benefit from an accurate
probabilistic model to determine which actions to
choose. However, because data is limited and because
of the need to make modeling assumptions, most
predictive models are not optimal. This raises the
question: which aspects of a predictive model are
important for a downstream decision-making task?

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

This paper argues that the calibration-sharpness
tradeoff has important implications on downstream
performance. In particular, we argue that among
models that attain a given proper loss, it is better
to achieve good levels of calibration.

Why is Calibration Useful? A key challenge
faced by decision-making algorithms is balancing
exploration—e.g., learning the shape of the unknown
function f in Bayesian optimization—against
exploitation—e.g., selecting points x at which f
takes small values. Exploration-exploitation decisions
are often made using a probabilistic model. In
regions that are unexplored, the confidence interval
around the value of f(x) should be large to promote
exploration. Calibration helps mitigate over-confidence
and promotes accurate confidence intervals that
encourage exploration.

Another benefit of calibrated models is the accurate
computation of expected values of future outcomes.
Since an expectation is a sum weighted by probabilities
of future events, aligning predicted and empirical
probabilities is crucial. Accurate estimates of
expected utility yield improved planning performance
in model-based algorithms (Malik et al., 2019).

3.2 Formal Analysis

Notation. Consider a setting where we sequentially
minimize a loss function ℓ : Y × A × X → R+ over a
set of outcomes Y , actions A, and features X . The loss
ℓ(y, a, x) quantifies the error of an action a ∈ A in a
state x ∈ X given outcome y ∈ Y.

Bayesian decision-making theory provides a principled
approach for selecting actions in the above scenario. We
rely on a predictive model M of y and select decisions
that minimize the expected loss:

a(x) = argmin
a

Ey∼M(x)[ℓ(y, a, x)] (2)

ℓ(x) = min
a

Ey∼M(x)[ℓ(y, a, x)]. (3)

Here, a(x) is the action that minimizes the expected
loss under M . If M were a perfect predictive model,
the above decision-making strategy would be optimal.
In practice, inaccurate models can yield imperfect
decisions. We argue below that in some cases,
calibration is a weaker condition that helps accurately
estimate the value of a loss function.

Specifically, we provide a concentration inequality on
estimates of the loss that generalizes results by Zhao
et al. (2020) in the i.i.d. setting. Our result holds for
losses ℓ(y, a, x) that are monotonically non-increasing
or non-decreasing in y. Note that common acquisition

functions used in Bayesian optimization yield ℓ that
satisfy this condition.

Theorem 1. Let M be a quantile calibrated model as
in (1) and let ℓ(y, a, x) be a monotonic loss. Then for
any sequence (xt, yt)

T
t=1 and r > 1, we have:

lim
T→∞

1

T

T∑
t=1

I [ℓ(yt, a(xt), xt) ≥ rℓ(xt))] ≤ 1/r (4)

Note that this statement represents an extension of
Markov’s inequality. See Appendix F for a proof.

4 ALGORITHMS FOR ONLINE
CALIBRATION

Enforcing calibration in an online decision-making
setting is challenging because the data distribution is
non-stationary (it is influenced by the agent’s decisions).
Note that the objective itself is stationary and fixed;
however, the distribution of the data at each timestep
depends on the output of the algorithm at previous
timesteps, hence is non-IID (see Appendix D.5). We
address the issue of non-stationary data distribution by
introducing new algorithms based on online learning
(Shalev-Shwartz et al., 2012). Online learning provides
methods that provably produce accurate predictors on
any stream of datapoints, including data chosen by an
adversary.

4.1 Online Recalibration

Setup At each time step t = 1, 2, ..., T we observe
features xt ∈ X . A predictive model produces a forecast
Qt : [0, 1] → R based on xt that takes the form of a
quantile function. We assume that Qt is invertible
and use the convention that Qt(p) = ∞ for p > 1 and
Qt(p) = −∞ for p < 0. As an example, a Gaussian
process model (Rasmussen and Williams, 2005) used
for Bayesian optimization outputs forecasts Qt given
by the quantile function of a Gaussian distribution.

Initially, the forecasts Qt may be miscalibrated; we seek
to compose Qt with a recalibrator Rt : [0, 1] → [0, 1]
such that Qt ◦ Rt is calibrated as in (1). After we
choose Qt ◦ Rt, nature reveals a label yt ∈ R; we use
ot(yt, p) = I{yt ≤ Qt(p)} to denote the indicator of the
outcome that yt falls below the p-th quantile. Our goal
can be equivalently defined as choosing Rt such that,

1

T

T∑
t=1

ot(yt, Rt(p)) → p as T → ∞ ∀p ∈ [0, 1]. (5)

Algorithms Our strategy will be to construct
Rt by optimizing for calibration on historical data.

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Specifically, we choose Rt such that

Rt(p) ∈ argmin
q

[
ψ(q) +

t−1∑
s=1

ℓsp(ys, q)

]
, (6)

where ℓsp : R× [0, 1] → R+ is a loss function (possibly
varying in time s) that quantifies miscalibration and
ψ(y) : R → R+ is a regularizer. Note that the loss
function ℓsp is internal to the recalibrator. We refer
to the dataset used to define Rt (i.e., the dataset over
which we compute the argmin) as the calibration
set; it consists of forecasts Qs and outcomes ys, and is
denoted as

Ct = {(Qs, ys) | s = 1, 2, ..., t− 1}. (7)

Normally Ct consists of data from all timesteps s < t;
we will discuss additional ways of constructing Ct below.

Equation 6 establishes a close connection to online
optimization: it implements a classical online learning
algorithm called follow the regularized leader (FTLR)
(Shalev-Shwartz et al., 2012). Below, we will adopt ℓsp
that are derived from the pinball loss—a generalization
of the L1 loss motivated by conditional quantile
estimation.

4.2 Recalibration via Online Optimization

Consider first the simpler problem of finding a qt ∈ [0, 1]
such that Qt(qt) is an estimate of the p-th conditional
quantile, i.e., 1

T

∑T
t=1 ot(yt, qt)− p→ 0 as T → ∞.

Quantile Pinball Loss We propose to optimize
a modification of the pinball loss which we call the
quantile pinball loss (QPL), defined as

ℓtp(yt, q) = (q −Q−1
t (yt))(ot(yt, q)− p). (8)

Note that ℓtp is convex: its graph is V-shaped with the
slopes of the two lines defining the V being p and 1− p;
when p = 0.5, this essentially yields the L1 loss. The
offline minimizer of the pinball loss yields a consistent
estimator for the p-th quantile of the data in a batch
setting (Koenker and Bassett Jr, 1978); here, we derive
the same property in the online setting.
Lemma 1. The quantile pinball loss serves as a
quantile estimator, in that argminq

∑t
s=1 ℓsp(ys, q)

over a dataset (ys)
T
s=1 yields a p-th quantile of the

dataset.

Please refer to Appendix G for a complete proof and
discussion of QPL.

Optimization Our proposed algorithm optimizes
the QPL using a classical online learning algorithm
called online gradient descent (OGD). This algorithm

may be defined as optimizing (6) for a specific
choice of loss function (thus it is an instance of the
follow-the-regularized leader framework). Specifically,
we define qt at each step as

qt ∈ argmin
q

[
1

2η
q2 +

t−1∑
s=1

ℓsp(q)

]
, (9)

where ℓtp(q) is the linearization of the QPL at q = qt,
defined as

ℓtp(q) = (q − qt)(ot(yt, qt)− p).

Here, we have dropped an additive constant from the
linearization since this term does not involve q and
therefore has no effect on the minimization problem
in Equation (9). Computing qt can be as simple as
a convex optimization problem over a scalar in [0, 1]
(solvable using e.g., binary search).

The linearization ℓtp(q) approximates ℓtp(yt, q)
everywhere by the supporting hyperplane given by
a subgradient at q = qt. Since ψ(q) = 1

2η q
2, we can

also set the derivative of the objective in (9) to zero
and show that qt =

∑t−1
s=1 ηgs for gs ∈ ∂qℓsp(qs), where

∂qℓsp(qs) is the subgradient at the points qs for s < t.
This derivation shows that our proposed algorithm is
equivalent to online subgradient descent (OSD) on q
(Hazan et al., 2016), and reveals the ties between our
approach and online learning.

Quantile Calibration Online learning algorithms
such as OSD and FTRL guarantee vanishing regret on
any sequence of (xt, yt). Here, we also show that these
algorithms yield quantile calibration. Interestingly, our
proof does not directly rely on regret minimization.
Theorem 2. For any sequence (Qt, yt, qt)

T
t=1, where

qt satisfies (9) with η > 0 and p ∈ [0, 1], we have∣∣∣∣∣ 1T
T∑

t=1

ot(yt, qt)− p

∣∣∣∣∣ ≤ 1 + η

ηT
. (10)

Proof (Sketch). We can show that for any T , −η ≤
qT ≤ 1+ η. Observe also from (8) that the subgradient
gt ∈ ∂ℓt(qt) can be written as (ot(yt, qt)) − p). Since
qT+1 =

∑T−1
t=1 ηgt, and qT+1 ∈ [−η, 1 + η], we get the

desired result by substituting in the previous expression
for gt and dividing both sides by ηT .

See Appendix G for the full proof. Our result is
reminiscent of adaptive conformal inference (Gibbs
and Candes, 2021). However, key differences include:
(1) our approach draws novel connections to online
learning; (2) our results naturally generalize to full
quantile recalibration; (3) our results hold as η → ∞.

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

Quantile Function Recalibration We may now
define a full recalibrator Rt pointwise as

Rt(p) = inf argmin
q

[
1

2η
q2 +

t−1∑
s=1

ℓ̄sp(yt, q)

]
, (11)

where ℓ̄sp is defined as in (9); the inf is used to break
ties if the argmin is a set. It is easy to show that
Rt(p) is a monotone function in p, hence does not
suffer from the crossing quantiles problem. It is easy
to compute Rt(p) at any t, p by solving (11), and we
can also approximate Rt via a linear interpolation at a
number quantiles. The correctness result below follows
from Theorem 2 and the properties of the quantile
pinball loss; see Appendix G for the proof.

Theorem 3. For any sequence (Qt, yt)
T
t=1 and η > 0,

each Rt is a monotone function, and for all p ∈ [0, 1],∣∣∣∣∣ 1T
T∑

t=1

I{yt ≤ Qt(Rt(p))} − p

∣∣∣∣∣ ≤ 1 + η

ηT
.

5 CALIBRATED BAYESIAN
OPTIMIZATION

Next, we apply our online calibration algorithms to a
sequential decision-making task: Bayesian optimization.
Algorithm 3 outlines our proposed procedure. At each
step t, we compose the Bayesian optimization model
Mt (which we can assume without loss of generality
as being represented by a quantile function) with a
recalibrator Rt. We define Rt as in (11); we denote the
resulting subroutine as Calibrate(Mt,Dt).

Algorithm 3: Calibrated Bayesian Optimization
Initialize model M0 with data D0 = {xt, yt}Nt=1;
R0 = Calibrate(M0,D0);
for t = 1, 2, ..., T do

xt = argmaxx∈X Acquisition(x,Mt−1 ◦Rt−1);
yt = f(xt);
Dt = Dt−1 ∪ {(xt, yt)};
Construct model Mt on data D;
Rt = Calibrate(Mt,Dt);

end

Practical Considerations. We also propose an
additional heuristic for constructing the calibration
set Ct (Algorithm 4). Our heuristic is motivated by the
fact that Bayesian optimization is typically run for a
short number of steps T and offers further performance
gains (see Section 6.1).

Specifically, Algorithm 4 builds a recalibration dataset
Drecal via cross-validation on D. At each step of

Algorithm 4: Calibrate

Input: Model M , Dataset D = {xt, yt}Nt=0 ;
Initialize recalibration dataset C = ∅ ;
S = CreateSplits(D) ;
For each (Dtrain,Dtest) in S:

1. Train base model M on dataset Dtrain ;
2. Create calibration set C′ from Dtest ;
3. C = C ∪ C′ ;

Return recalibrator R obtained via (11) on C;

cross-validation, we train M on the training folds and
compute forecasts on the test folds, thus generating a
calibration dataset (7) using Dtest. The union of all the
forecasts on the test folds produces the final calibration
dataset on which the recalibrator is trained. In our
experiments, we used leave-one-out cross-validation
within CreateSplits. Formally, given a dataset
D = {xt, yt}Nt=1, CreateSplits(D) produces N splits
of the form {(D \ {xi, yi}, {xi, yi}) | i = 1, 2, ..., N}.

Understanding Acquisition Functions Next, we
discuss how calibration is useful in combination with
various acquisition functions. The probability of
improvement can be written as 1− F (f(xnew) + ϵ),
where F is the CDF predicted by the model. In a
calibrated model, this predicted probability in the long
run matches the empirical probability of observing
an improvement. The expected improvement can
be defined as E[max(f(xold)− f(xnew), 0)]. Theorem
1 suggests that this expectation is easier to evaluate
under a calibrated model. Upper confidence bounds
are µ(x) + α · σ(x) for Gaussians and Qx(α) for general
Q, i.e., the α-th quantile. Recalibration ensures that
Qx(α) is truly the α-th quantile (it is above the true
y a fraction α of the time). Appendix C discusses
acquisition functions further.

6 EXPERIMENTS

We perform experiments on several benchmark
objective functions that are standard in the Bayesian
optimization literature, as well as on a number of
hyperparameter optimization tasks.

Setup. We use the Gaussian Process (GP) as our
base model in the following experiments. However,
our method can be applied to any probabilistic model
underlying Bayesian optimization in general (Snoek
et al., 2015), (Springenberg et al., 2016). See
Appendix A for additional implementation details.
Analysis of Calibration. We assess the calibration
of the original probabilistic model underlying Bayesian
optimization using calibration scores as defined by

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

(a) Uncalibrated (b) Calibrated

Figure 1: Comparison of Uncalibrated and Calibrated
Bayesian Optimization on the Forrester Function
(Green) Using the UCB Acquisition Function (Blue).

Kuleshov et al. (2018). Thus, cal(F1, y1, .., Fn, yn) =∑m
j=1(pj − p̂j)

2, where 0 ≤ p1 < p2 < .. < pm ≤ 1 are
m confidence levels we use to compute the calibration
score. p̂j is estimated as p̂j = |{yt|[Ft ≤ pj , t =
1, .., N}|/N. The calibration scores are computed on
a test dataset {Ft, yt}Tt=0. This test dataset is
constructed by setting Ft = Fxnext(ynext) and yt = ynext
at every step t before updating model M in Algorithm 3.
In our experiments, we average the calibration score at
every step of Bayesian optimization over 5 repetitions
of the experiment for each benchmark function.

6.1 Benchmark Optimization Tasks

We visualize runs of calibrated and plain Bayesian
optimization on a simple 1D task — the Forrester
function in Figure 1. We use the Upper Confidence
Bound (UCB) as our acquisition function. Both
functions start at the same three points, which miss
the global optimum in [0.6, 0.9]. The base GP is
overconfident, gets stuck at a local minimum near 0.2,
and never explores the optimal region. However, the
calibrated method learns that its confidence intervals
are too narrow and expands them. This leads it to
quickly identify the global optimum in [0.6, 0.9]. Please
refer to Appendix E for additional plots.

In Figure 2(a), we compare calibrated and uncalibrated
Bayesian optimization on the Forrester function.
In Figure 2(b) and Figure 2(c), we compare the
performance of calibrated method against uncalibrated
method under EI acquisition function on the 2D Ackley
function and 10D Alpine function (Surjanovic and
Bingham). In Appendix A.4, we also run the 10D
Alpine function for a greater number of steps (100) and
continue to see that the calibrated method produces a
lower minima. In Figure 3, we compare the performance
of our method on the Sixhump Camel function while
varying the acquisition function. In all these examples,
the calibrated method finds the global minimum before
the uncalibrated method on average.

Comparison Against Additional Baselines. In

Figure 4, we see that our calibrated method compares
favorably against the modern conformal Bayesian
optimization (Stanton et al., 2023) and Adaptive
UCB for Bayesian optimization with unknown kernel
hyperparameters (Berkenkamp et al., 2019). Please
refer to Appendix A.2 for additional results.

In Table 1, we compare our method against baselines
including input and output warping (Snoek et al., 2014;
Snelson et al., 2004), Box-Cox and log-transforms on
the output (Rios and Tobar, 2018) and an ensemble of
Gaussian processes (Lakshminarayanan et al., 2016).
Metrics used to perform this evaluation include the
minimum value m of the objective function achieved
by Bayesian optimization, fraction f of experimental
repetitions where the baseline performs worse than
our method and normalized area under the Bayesian
optimization curve a. We show the error bars in braces
for the minimum value m. Although f is not amenable
to the same error bar computation, we can estimate the
variance using analytical formula for Bernoulli(p) as
p(1− p). Also, the error bars on reported AUC values
are < 0.02. Please refer to Appendix A.1 for detailed
definition of these metrics.

In Table 1, we see that warping methods occasionally
improve over the uncalibrated method, often worsen
it, and recalibration is almost always more effective
than warping. Both uncertainty estimation methods
(ensembling and calibration) improve performance
relative to the uncalibrated method, with calibration
yielding the bigger improvement.

Additional Optimization Tasks. In Table 2, we
evaluate our method on seven benchmark optimization
tasks (Surjanovic and Bingham) from the Bayesian
optimization literature. We fixed the choice of
hyperparameters in the calibration algorithm (3
randomly chosen initialization points, Matern kernel,
PI acquisition, time-series splits and 25 BO steps).
Similar to Table 1, the error bars on reported AUC
values are < 0.02 and f is not amenable to error bar
calculation.

On some functions (e.g., Dropwave, Beal), the
calibrated and uncalibrated methods perform similarly.
The Cross-in-Tray function has multiple sharp edges,
possibly making it harder for the GP to model and
worsening the performance of our method. On the
McCormick function, the uncalibrated method makes
more progress in the initial stages, but the calibrated
method finds the minimum earlier.

Sensitivity Analysis. We perform a sensitivity
analysis of our method over six of its hyper-parameters
(e.g., kernel types, acquisition functions) for the
Forrester function. See Table 4 in Appendix A.3 for
the full experimental results. Our results indicate good

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

(a) Forrester (b) Ackley (2D) (c) Alpine (10D)

Figure 2: Comparison of Bayesian Optimization in Benchmark Functions. In the top plots, we see that calibrated
method reduces calibration error. The bottom plots show that on an average, the calibrated method identifies
the minimum using less iterations.

(a) UCB (b) EI (c) PI

Figure 3: Comparison of Calibrated and Uncalibrated Bayesian Optimization on Six-hump-camel Function (2D)
for Various Acquisition Functions. The top plots show that the calibrated method reduces calibration error. In
the bottom plots, we see that the calibrated method identifies the minimum using fewer iterations.

robustness across hyper-parameters; we also show slight
improvements from our cross-validation heuristic.

6.2 Hyperparameter Optimization Tasks

Online LDA In the Online LDA algorithm (Hoffman
et al., 2010), we have three hyperparameters: τ0 and
κ which control the learning rate and minibatch size
s (Appendix A.5). The objective function runs the
Online LDA algorithm with these hyperparameters
to convergence on the training set and outputs test
set perplexity. We run this experiment on the 20
Newsgroups dataset. In Figure 5(a), we see that
the calibrated method achieves a configuration of
hyperparameters giving lower average perplexity. The
error bars around the averaged runs are intersecting
significantly due to variation across experiment

repetitions. Hence, we add a separate plot showing
the average improvement over time, defined as the
difference between the best minimum found by the
uncalibrated method and the best minimum found by
the calibrated method. We observe that it is positive
most of the time.

Image Classification We define a Convolutional
Neural Network (CNN) for image classification with
6 tunable hyperparameters: batch size, learning rate,
filter size, etc. (see Appendix A.6). Our objective
function trains the CNN and returns the classification
error on test dataset. We run our experiments on
CIFAR10 (Krizhevsky, 2009) and SVHN datasets
(Netzer et al., 2011). On the CIFAR10 dataset (Figure
5(b)), we see that the calibrated method achieves a
lower classification error on an average at the end of

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Figure 4: Comparison of Calibrated Bayesian Optimization with Additional Baselines. The calibrated method
outperforms the modern Bayesian optimization baseline (Stanton et al., 2023) and Adaptive UCB for Bayesian
optimization with unknown kernel hyperparameters (Berkenkamp et al., 2019). The acquisition function used
here is UCB.

Table 1: Comparison of Calibrated Bayesian Optimization Against Baselines.

Objective Method Minimum Found Fraction of Runs Where Area Under the Curve
Function (↓) Calibrated Beats Baseline (↑) (↓)

Forrester (1D) Uncalibrated method -0.986 (0.001) 0.8 0.9866
Input warping -0.889 (0.000) 1 1.0000
Output warping -6.021 (0.000) 0.0 0.2409
Boxcox transformation of output -4.806 (0.780) 0.4 0.4911
Log transformation of output -0.986 (0.000) 1 0.9865
Bagged ensemble of 5 GPs -3.891(1.098) 0.8 0.8382
Calibrated Method (Ours) -4.983 (0.894) 1 0.8187

Ackley (2D) Uncalibrated method 12.359 (2.439) 0.8 0.7815
Input warping 14.061 (1.312) 0.8 0.8125
Output warping 10.459 (3.365) 0.6 0.7257
Boxcox transformation of output 14.421 (1.423) 0.8 0.9015
Log transformation of output 8.330 (0.849) 0.8 0.6524
Bagged ensemble of 5 GPs 6.011 (2.544) 0.6 0.6013
Calibrated Method (Ours) 5.998 (2.314) 1 0.5516

Alpine (10D) Uncalibrated method 15.506 (1.275) 0.6 0.6527
Input warping 15.697 (1.740) 0.8 0.6492
Output warping 13.531 (2.127) 0.6 0.5857
Boxcox transformation of output 15.715 (0.603) 0.8 0.6253
Log transformation of output 20.996 (1.661) 0.8 0.7931
Bagged ensemble of 5 GPs 16.677 (1.699) 0.8 0.7334
Calibrated Method (Ours) 12.537 (0.909) 1 0.6423

(a) Online LDA (b) CIFAR10 (c) SVHN

Figure 5: Hyperparameter Optimization Experiments. Top: The average improvement made by the calibrated
method over the uncalibrated method. Bottom: The best minimum found by each method per iteration.

50 iterations of Bayesian optimization. The calibrated method also achieves this minimum using about 50%

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

Table 2: Evaluating Calibrated Bayesian Optimization on Additional Tasks. Calibration strictly improves
performance on four benchmarks and performance is similar on two tasks. Lower performance on Cross-in-Tray
could be attributed to the presence of multiple sharp edges and corners that are hard to model via a GP.

Optimization % Runs Where Area Under the Curve, Area Under the Curve,
benchmark Calibrated is Best (↑) Calibrated (↓) Uncalibrated (↓)

Cosines 0.8 0.2973 0.3395
Beale 0.6 0.0929 0.0930
Mccormick 0.8 0.1335 0.1297
Powers 0.8 0.2083 0.2325
Cross-in-Tray 0.2 0.2494 0.2217
Ackley 0.8 0.3617 0.4314
Dropwave 0.6 0.0455 0.0452

less number of steps.

7 DISCUSSION & RELATED WORK

Bayesian optimization is commonly used for optimizing
black-box objective functions in applications like
robotics (Calandra et al., 2016), reinforcement
learning (Brochu et al., 2010), hyperparameter
optimization (Bergstra et al., 2011), recommender
systems (Vanchinathan et al., 2014), automatic
machine learning, (Thornton et al., 2013) and materials
design (Frazier and Wang, 2015). The choices like
acquisition function (Snoek et al., 2012), kernel function
(Duvenaud et al., 2013) and transformation of input
spaces (Snoek et al., 2014) are important in making sure
that the optimization works efficiently. Calibration in
online sequential decision making and iterative design
tasks has also been explored for prediction sets from a
conformal prediction perspective (Fannjiang et al., 2022;
Stanton et al., 2023). While existing works approach a
similar problem, they address distribution mismatch
via techniques based on importance sampling, while
our paper develops techniques based on online learning.

Calibrated Uncertainties Platt scaling (Platt,
1999) and isotonic regression (Niculescu-Mizil and
Caruana, 2005) are popular ways for calibrating
uncertainties. This concept can be extended to
regression calibration (Kuleshov et al., 2018),
distribution calibration (Song et al., 2019), online
learning (Kuleshov and Ermon, 2017b), and structured
prediction (Kuleshov and Liang, 2015). Accurate
uncertainty representation has been studied
for applications like model-based reinforcement
learning (Malik et al., 2019), semi-supervised learning
(Kuleshov and Ermon, 2017a), neural networks (Guo
et al., 2017) and natural language processing models
(Nguyen and O’Connor, 2015).

Limitations There are still some tasks such as SVHN
image classification where calibration does not improve
performance. Studying the properties of objective

functions where calibrated Bayesian optimization
produces lower benefits can be useful in identifying
directions for further improvements in the algorithm.

Conclusion The accuracy of uncertainty envelopes is
important for balancing exploration and exploitation in
Bayesian optimization. We show that we can calibrate
the probabilistic model without additional function
evaluations. Our approach improves the performance of
Bayesian optimization in standard benchmark functions
and hyperparameter optimization tasks.

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

References

The GPyOpt authors. Gpyopt: A bayesian
optimization framework in python. http://github.
com/SheffieldML/GPyOpt, 2016.

James Bergstra, Rémi Bardenet, Yoshua
Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24.
Curran Associates, Inc., 2011. URL https:
//proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Felix Berkenkamp, Angela P. Schoellig, and Andreas
Krause. No-regret bayesian optimization with
unknown hyperparameters, 2019.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A
tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling
and hierarchical reinforcement learning, 2010.

R. Calandra, A. Seyfarth, and J Peters. Bayesian
optimization for learning gaits under uncertainty.
Ann Math Artif Intell, page 5–23, 2016. URL https:
//doi.org/10.1007/s10472-015-9463-9.

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, and Zoubin Ghahramani.
Structure discovery in nonparametric regression
through compositional kernel search, 2013.

Clara Fannjiang, Stephen Bates, Anastasios N.
Angelopoulos, Jennifer Listgarten, and Michael I.
Jordan. Conformal prediction for the design problem.
CoRR, abs/2202.03613, 2022. URL https://arxiv.
org/abs/2202.03613.

Peter I. Frazier. A tutorial on bayesian optimization,
2018.

Peter I. Frazier and Jialei Wang. Bayesian optimization
for materials design. Springer Series in Materials
Science, page 45–75, Dec 2015. ISSN 2196-2812.
doi: 10.1007/978-3-319-23871-5_3. URL http://
dx.doi.org/10.1007/978-3-319-23871-5_3.

Isaac Gibbs and Emmanuel Candes. Adaptive
conformal inference under distribution shift.
Advances in Neural Information Processing Systems,
34:1660–1672, 2021.

Tilmann Gneiting and Adrian E Raftery.
Strictly proper scoring rules, prediction,
and estimation. Journal of the American
Statistical Association, 102(477):359–378,
2007. doi: 10.1198/016214506000001437. URL
https://doi.org/10.1198/016214506000001437.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. On calibration of modern neural
networks, 2017.

Elad Hazan et al. Introduction to online convex
optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

Matthew Hoffman, Francis Bach, and David Blei.
Online learning for latent dirichlet allocation.
In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems, volume 23.
Curran Associates, Inc., 2010. URL https:
//proceedings.neurips.cc/paper/2010/file/
71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf.

Roger Koenker and Gilbert Bassett Jr. Regression
quantiles. Econometrica: journal of the Econometric
Society, pages 33–50, 1978.

Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

Volodymyr Kuleshov and Stefano Ermon. Deep hybrid
models: bridging discriminative and generative
approaches. In Uncertainty in Artificial Intelligence,
2017a.

Volodymyr Kuleshov and Stefano Ermon. Estimating
uncertainty online against an adversary. In AAAI,
pages 2110–2116, 2017b.

Volodymyr Kuleshov and Percy S Liang.
Calibrated structured prediction. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28.
Curran Associates, Inc., 2015. URL https:
//proceedings.neurips.cc/paper/2015/file/
52d2752b150f9c35ccb6869cbf074e48-Paper.pdf.

Volodymyr Kuleshov, Nathan Fenner, and Stefano
Ermon. Accurate uncertainties for deep learning
using calibrated regression, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles, 2016.
URL https://arxiv.org/abs/1612.01474.

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny
Nemer, Harlan Seymour, and Stefano Ermon.
Calibrated model-based deep reinforcement learning,
2019.

Allan H Murphy and Robert L Winkler. A general
framework for forecast verification. Monthly weather
review, 115(7):1330–1338, 1987.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised
feature learning. In NIPS Workshop on

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1007/s10472-015-9463-9
https://doi.org/10.1007/s10472-015-9463-9
https://arxiv.org/abs/2202.03613
https://arxiv.org/abs/2202.03613
http://dx.doi.org/10.1007/978-3-319-23871-5_3
http://dx.doi.org/10.1007/978-3-319-23871-5_3
https://doi.org/10.1198/016214506000001437
https://proceedings.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/52d2752b150f9c35ccb6869cbf074e48-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/52d2752b150f9c35ccb6869cbf074e48-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/52d2752b150f9c35ccb6869cbf074e48-Paper.pdf
https://arxiv.org/abs/1612.01474

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

Deep Learning and Unsupervised Feature Learning
2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Khanh Nguyen and Brendan O’Connor. Posterior
calibration and exploratory analysis for natural
language processing models, 2015.

Alexandru Niculescu-Mizil and Rich Caruana.
Predicting good probabilities with supervised
learning. In Proceedings of the 22nd International
Conference on Machine Learning, ICML ’05,
page 625–632, New York, NY, USA, 2005.
Association for Computing Machinery. ISBN
1595931805. doi: 10.1145/1102351.1102430. URL
https://doi.org/10.1145/1102351.1102430.

Christopher Paciorek and Mark Schervish.
Nonstationary covariance functions for gaussian
process regression. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural
Information Processing Systems, volume 16.
MIT Press, 2003. URL https://proceedings.
neurips.cc/paper_files/paper/2003/file/
326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf.

John C. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In ADVANCES IN LARGE MARGIN
CLASSIFIERS, pages 61–74. MIT Press, 1999.

Carl Edward Rasmussen and Christopher K. I.
Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The
MIT Press, 2005. ISBN 026218253X.

Gonzalo Rios and Felipe Tobar. Learning non-gaussian
time series using the box-cox gaussian process. pages
1–8, 07 2018. doi: 10.1109/IJCNN.2018.8489648.

Glenn Shafer and Vladimir Vovk. A tutorial on
conformal prediction. 2007. doi: 10.48550/ARXIV.
0706.3188. URL https://arxiv.org/abs/0706.
3188.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P.
Adams, and Nando de Freitas. Taking the human
out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2016. doi:
10.1109/JPROC.2015.2494218.

Shai Shalev-Shwartz et al. Online learning and online
convex optimization. Foundations and Trends® in
Machine Learning, 4(2):107–194, 2012.

Edward Snelson, Zoubin Ghahramani, and Carl
Rasmussen. Warped gaussian processes. In
S. Thrun, L. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems,
volume 16. MIT Press, 2004. URL https:
//proceedings.neurips.cc/paper/2003/file/
6b5754d737784b51ec5075c0dc437bf0-Paper.pdf.

Jasper Snoek, Hugo Larochelle, and Ryan P.
Adams. Practical bayesian optimization of machine
learning algorithms. In Proceedings of the 25th
International Conference on Neural Information
Processing Systems - Volume 2, NIPS’12, page
2951–2959, Red Hook, NY, USA, 2012. Curran
Associates Inc.

Jasper Snoek, Kevin Swersky, Richard S. Zemel,
and Ryan P. Adams. Input warping for bayesian
optimization of non-stationary functions, 2014.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros,
Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable
bayesian optimization using deep neural networks.
In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine
Learning Research, pages 2171–2180, Lille, France,
07–09 Jul 2015. PMLR. URL http://proceedings.
mlr.press/v37/snoek15.html.

Hao Song, Tom Diethe, Meelis Kull, and Peter Flach.
Distribution calibration for regression, 2019.

Jost Tobias Springenberg, Aaron Klein, Stefan
Falkner, and Frank Hutter. Bayesian optimization
with robust bayesian neural networks. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https:
//proceedings.neurips.cc/paper/2016/file/
a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf.

Samuel Stanton, Wesley Maddox, and Andrew Gordon
Wilson. Bayesian optimization with conformal
prediction sets. In International Conference on
Artificial Intelligence and Statistics, pages 959–986.
PMLR, 2023.

S. Surjanovic and D. Bingham. Virtual library of
simulation experiments: Test functions and datasets.
Retrieved October 8, 2022, from http://www.sfu.
ca/~ssurjano.

Chris Thornton, Frank Hutter, Holger H. Hoos,
and Kevin Leyton-Brown. Auto-weka: Combined
selection and hyperparameter optimization of
classification algorithms, 2013.

Hastagiri P. Vanchinathan, I. Nikolic, F. D. Bona,
and Andreas Krause. Explore-exploit in top-n
recommender systems via gaussian processes. In
RecSys ’14, 2014.

Vladimir Vovk, Ivan Petej, Paolo Toccaceli,
Alexander Gammerman, Ernst Ahlberg, and
Lars Carlsson. Conformal calibrators. In Alexander
Gammerman, Vladimir Vovk, Zhiyuan Luo,
Evgueni N. Smirnov, Giovanni Cherubin, and Marco

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://doi.org/10.1145/1102351.1102430
https://proceedings.neurips.cc/paper_files/paper/2003/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://proceedings.neurips.cc/paper/2003/file/6b5754d737784b51ec5075c0dc437bf0-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/6b5754d737784b51ec5075c0dc437bf0-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/6b5754d737784b51ec5075c0dc437bf0-Paper.pdf
http://proceedings.mlr.press/v37/snoek15.html
http://proceedings.mlr.press/v37/snoek15.html
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Christini, editors, Conformal and Probabilistic
Prediction and Applications, COPA 2020, 9-11
September 2020, Virtual Event, Verona, Italy,
volume 128 of Proceedings of Machine Learning
Research, pages 84–99. PMLR, 2020. URL http:
//proceedings.mlr.press/v128/vovk20a.html.

Shengjia Zhao, Tengyu Ma, and Stefano Ermon.
Individual calibration with randomized forecasting,
2020. URL https://arxiv.org/abs/2006.10288.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical
setting, assumptions, algorithm, and/or
model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results
(either in the supplemental material or as a
URL). [No]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if
applicable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or
offensive content. [Not Applicable]

http://proceedings.mlr.press/v128/vovk20a.html
http://proceedings.mlr.press/v128/vovk20a.html
https://arxiv.org/abs/2006.10288

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to
participants and screenshots. [Not
Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to
participants and the total amount spent on
participant compensation. [Not Applicable]

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Online Calibrated Uncertainty Estimation for Bayesian Optimization
(Supplementary Material)

A ADDITIONAL DETAILS ON EXPERIMENTS

We implement our method on top of the GPyOpt library (authors, 2016) (BSD 3 Clause License) in Python.
The output values of objective function are normalized before training the base GP model. The GP uses Radial
Basis Function (RBF) kernel. For the experiments on hyperparameter optimization tasks, we used Expected
Improvement as acquisition function. We use 5 randomly chosen data-points to initialize the base GP. The
experiments are repeated 5 times and the results are averaged over these 5 runs.

Table 3: Comparison of Calibrated Bayesian Optimization Against Baselines. We see that the calibrated method
compares favorably against Input warping ((Snoek et al., 2014)), Output warping (tanh as in (Snelson et al.,
2004)), Boxcox and Log transformation of output ((Rios and Tobar, 2018)), and Bagged ensemble of 5 GPs
((Lakshminarayanan et al., 2016)).

Objective Method Minimum Found Fraction of Runs Where Area Under the Curve
Function (↓) Calibrated Beats Baseline (↑) (↓)

Forrester (1D) Calibrated Method -4.983 (0.894) 1 0.8187
Uncalibrated method -0.986 (0.001) 0.8 0.9866
Input warping -0.889 (0.000) 1 1.0000
Output warping -6.021 (0.000) 0.0 0.2409
Boxcox transformation of output -4.806 (0.780) 0.4 0.4911
Log transformation of output -0.986 (0.000) 1 0.9865
Bagged ensemble of 5 GPs -3.891(1.098) 0.8 0.8382

Ackley (2D) Calibrated Method 5.998 (2.314) 1 0.5516
Uncalibrated method 12.359 (2.439) 0.8 0.7815
Input warping 14.061 (1.312) 0.8 0.8125
Output warping 10.459 (3.365) 0.6 0.7257
Boxcox transformation of output 14.421 (1.423) 0.8 0.9015
Log transformation of output 8.330 (0.849) 0.8 0.6524
Bagged ensemble of 5 GPs 6.011 (2.544) 0.6 0.6013

Cosines (2D) Calibrated Method -1.5983 (0.0006) 1 0.2969
Uncalibrated method -1.5974 (0.00102) 0.8 0.3441
Input warping -1.3054 (0.0347) 1.0 0.9534
Output warping -1.5994 (0.0001) 0.8 0.4730
Boxcox transformation of output -1.5306 (0.0590) 0.8 0.5969
Log transformation of output -1.5992 (0.0003) 0.8 0.3642
Bagged ensemble of 5 GPs -1.5989 (0.0003) 0.4 0.3179

Alpine (10D) Calibrated Method 12.537 (0.909) 1 0.6423
Uncalibrated method 15.506 (1.275) 0.6 0.6527
Input warping 15.697 (1.740) 0.8 0.6492
Output warping 13.531 (2.127) 0.6 0.5857
Boxcox transformation of output 15.715 (0.603) 0.8 0.6253
Log transformation of output 20.996 (1.661) 0.8 0.7931
Bagged ensemble of 5 GPs 16.677 (1.699) 0.8 0.7334

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

A.1 Evaluation Metrics

We define the following metrics to compare calibrated Bayesian optimization with uncalibrated method and other
baselines.

1. Minimum value m of the objective function achieved by Bayesian optimization. Lower values of m are better.

2. Fraction f of experimental repetitions where the baseline performs worse than our method. A baseline
performs worse than our method if it does not find a lower minimum, if it finds the same minimum in a
larger number of steps, or if its optimization curve is entirely above that of the calibrated method. Higher
values of f are better.

3. Normalized area under the optimization curve a. For each method, we compute the area under its optimization
curve (i.e., its optimum as a function of the number of optimization steps; see Figure 2) and normalize it
relative to the area of the rectangle formed by upper and lower bounds along the x, y axes (hence max a is
one). Smaller values of a indicate that the method reaches the minimum faster, hence are better.

A.2 Comparing Against Additional Baselines

Our method outperformed the modern conformal baseline (Stanton et al., 2023) that applies conformal prediction
for calibrated uncertainties in Bayesian optimization. We also outperform the Adaptive UCB (Berkenkamp et al.,
2019) method (that adjusts the UCB interval adaptively) on two tasks and are within the margin of error on the
third.

We produce additional results with several other baselines in Table 3.

A.3 Sensitivity Analysis

We produce additional results on sensitivity analysis in Table 4.

A.4 Increasing the number of optimization steps

On the most challenging benchmark function (Alpine 10D), we ran
our method for 100 steps and we observed results consistent
with 25 steps . We see an improvement in the minima found
at the 100-th step from 12.75 to 11.43. Note that on non-synthetic
hyperparameter optimization tasks, we ran for >50 steps and observed
that the methods plateaued.

A.5 Online LDA

We use the grid of parameters mentioned in Table 5 as the input domain while running Bayesian optimization.
We run this algorithm on the 20 Newsgroups dataset which contains 20,000 news documents partitioned evenly
across 20 different newsgroups. We train the algorithm on 11,000 randomly chosen documents. A test-dataset of
2200 articles is used to assess the perplexity.

A.6 Image Classification Using Neural Networks

We provide the range of hyperparameters considered while performing Bayesian optimization to determine their
optimal configuration with reference to the image classification experiments in Table 6.

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Table 4: Sensitivity Analysis of Calibrated Bayesian Optimization (Algorithm 3 and 4) for the Forrester Function.

Hyper-Parameter Modification % Runs Where Area Under the Curve, Area Under the Curve,
Calibrated is Best (↑) Calibrated (↓) Uncalibrated (↓)

Kernel of Base Model M Matern 0.8 0.2811 0.3454
Linear 1.0 0.5221 1.0000
RBF 0.4 0.2366 0.2922
Periodic 0.6 0.2586 0.3305

Number of Time-series N-1 0.8 0.2811 0.3454
splits in CreateSplits N-2 0.8 0.2768 0.3454

N-3 0.8 0.2653 0.3454
N-4 0.6 0.2643 0.3454

Recalibrator Model R GP 0.8 0.2810 0.3454
MLP 0.8 0.2785 0.3454

Number of Data Points 3 0.8 0.2810 0.3454
for Initializing Base Model 4 0.8 0.0557 0.0614

7 0.4 0.0719 0.0736
10 0.4 0.0825 0.0817

Initialization Design Random 0.8 0.0557 0.0614
(Base model initialized Sobol 0.6 0.0415 0.0414
with 4 data points) Latin 0.2 0.2358 0.2181

Acquisition function LCB 1.0 1.0000 1.0000
(Linear kernel) EI 1.0 0.5221 1.0000

PI 0.8 0.6920 1.0000

Table 5: Hyperparameters for Online LDA

Name of HP Bounds Type of domain

Minibatch size [1, 128] Discrete (log-scale)
κ [0.5, 1] Continuous (step-size=0.1)
τ0 [1, 32] Discrete (log-scale)

Table 6: Hyperparameters for CNN (CIFAR10 and SVHN classification)

Name of HP Bounds Type of domain

Batch size [32, 512] Discrete (step size 32)
Learning rate [0.0000001, 0.1] Continuous (log-scale)
Learning rate decay [0.0000001, 0.001] Continuous (log-scale)
L2 regularization [0.0000001, 0.001] Continuous (log-scale)
Outchannels in fc layer [256, 512] Discrete (step size=16)
Outchannels in conv layer [128, 256] Discrete (step size=16)

B CALIBRATION OF PROBABILISTIC MODEL

For training a recalibrator over our probabilistic model, we compute the CDF Ft at each data-point yt using the
formulation Ft = [M(xt)](yt). This can be used to estimate the the empirical fraction of data-points below each
quantile. Algorithm 5 based on based on Kuleshov et al. (2018) outlines this procedure.

C EXAMINING AQUISITION FUNCTIONS

We analyze the role of calibration in common acquisition functions used in Bayesian optimization.

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

Algorithm 5: Calibration of Probabilistic Model
Input: Dataset of probabilistic forecasts and outcomes {[M(xt)](yt), yt}Nt=1

1. Form recalibration set D = {[Ft, P̂ (Ft)}Nt=1 where Ft = [M(xt)](yt) and
P̂ (p) = |{yt|[Ft ≤ p, t = 1, .., N}|/N .

2. Train recalibrator model R on dataset D.

Probability of Improvement. The probability of improvement is given by P (f(x) ≥ (f(x+) + ϵ), where ϵ > 0
and x+ is the previous best point. Note that this corresponds to 1− Fx(f(x

+) + ϵ), where Fx is the CDF at x
that is predicted by the model. In a quantile-calibrated model, these probabilities on average correspond to the
empirical probability of observing an improvement event. This leads to acquisition function values that more
accurately reflect the value of exploring specific regions. Furthermore, if the model is calibrated, we keep working
with calibrated values throughout the optimization process, as x+ changes.

Expected Improvement. The expected improvement can be defined as E[max(f(x)− f(x+), 0)]. This
corresponds to computing the expected value of the random variable R = max(Y − c, 0), where Y is the random
variable that we are trying to model by M, and c ∈ R is a constant. If we have a calibrated distribution over Y ,
it is easy to derive from it a calibrated distribution over R. By Proposition ??, we can estimate E[R] under the
calibrated model, just as we can estimate the probability of improvement in expectation.

Upper Confidence Bounds. The UCB acquisition function for a Gaussian process is defined as µ(x) + γ · σ(x)
at point x. For non-Gaussian models, this naturally generalizes to a quantile F−1

x (α) of the predicted distribution
F . In this context, recalibration adjusts confidence intervals such that α ∈ [0, 1] corresponds to an interval that is
above the true y a fraction α of the time. This makes it easier to select a hyper-parameter α. Moreover, as α or
γ are typically annealed, calibration induces a better and smoother annealing schedule.

D ADDITIONAL DISCUSSION

A key conceptual contribution of our work is a new angle for reasoning about uncertainty in the context of
sequential decision-making. There exist many known decompositions of uncertainty, e.g. epistemic vs. aleatoric.
Our work argues for using a different decomposition of uncertainty that is rarely used: calibration + sharpness.

This decomposition is interesting because the calibration property can be easily enforced in practice; at the same
time this property greatly improves sequential decision-making for reasons we explain in the paper, and enforcing
it results in significant practical benefits. This fact is currently underappreciated; our work contributes to a body
of literature (see e.g., Malik et al. (2019)) that helps popularize the idea of reasoning about uncertainty through
the lens of calibration and sharpness, and can lead to significant practical improvements in uncertainty-aware
algorithms that adopt our angle.

From a methodological perspective, our work resolves challenges in applying calibration in the context of Bayesian
optimization. We introduce recalibration mechanisms based on leave-one-out cross-validation with a temporal
ordering and we design specific classes of Gaussian recalibrators that are compatible with GP outputs and
acquisition function inputs. We discovered that more naive applications of calibration fail, and our methods are
non-trivial. Finally, we show empirically that our ideas have significant practical benefits.

D.1 On the Computational Cost of Calibrated Bayesian Optimization

Calibration increases the computational cost of Bayesian optimization (since we fit multiple GP models, and not
just one). However, in most applications, we expect that the cost of fitting GPs will be negligible compared to
the cost of evaluating the objective function at a datapoint. For example, in hyper-parameter optimization, the
cost of training a new neural network with a new set of hyper-parameters vastly exceeds the cost of fitting a GP.
Hence, calibrated and uncalibrated methods are in practice comparable in terms of their computational costs,
and training multiple GPs does not limit the applicability of our method.

In terms of time complexity, the increase in computational costs to run Algorithm 4 after each standard Bayesian

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

optimization step in Algorithm 3 depends linearly on the number of cross-validation splits (|S|) and the time
complexity to train the model M. The time complexity also depends on an additive term consisting of dataset
size N multiplied with the inference time complexity of model M. This additive term comes from running step
2 in Algorithm 4 cumulatively on all the Dtest sets. An additive term also corresponds to time-complexity to
train recalibrator R in the end. The increase in overall space complexity depends linearly on the number of
cross-validation splits |S| and the size of dataset N together with an additive term to store the trained recalibrator
R. In our experiments, the model M is itself a Gaussian Process, but other models can be also be used to
perform calibrated Bayesian optimization.

The experiments with real world hyperparameter optimization tasks were run on a GPU cluster since training
the neural network and Online LDA models with a chosen set of hyperparameters incurs a high computational
cost. However, all other experiments that compute blackbox objective function with analytic formulas could be
performed on a laptop with 2.8GHz quad-core Intel i7 processor.

D.2 On Epistemic vs. Aleatoric Uncertainties

Our method calibrates both epistemic and aleatoric uncertainties equally well. The concept of calibration is
complementary and orthogonal to the concept of epistemic vs. aleatoric uncertainty. Our method takes any
probabilistic prediction P(y) over y (regardless of whether uncertainties P(y) are epistemic or aleatoric) and
recalibrates it, resulting in improved performance.

Specifically, let M(x) be a probabilistic model that outputs a probabilistic forecast P (y) over the target y. The
M(x) may model purely aleatoric uncertainties (e.g., M is a neural network with a softmax or Gaussian output
layer) or epistemic uncertainties (e.g., M is a GP). In either case, P (y) is just a distribution for which we can
assess calibration. Our method improves calibration equally well regardless of the type of M(x) that generated
P (y). Improved calibration in turn increases optimization performance of both Bayesian and non-Bayesian base
models M(x). For more details, please consider the analysis of Bayesian and non-Bayesian methods by Kuleshov
et al. (2018) (our work extends their recalibration technique and inherits its properties).

(a) Uncalibrated Bayesian optimization produces overconfident intervals and the global minimum is not explored

(b) Calibrated Bayesian optimization produces wider confidence intervals at Step 12 and finds the global optimum

Figure 6: Selected steps of uncalibrated and calibrated Bayesian optimization on the Forrester function (green)
using the UCB acquisition function (blue). The global minimum lies near 0.8; however, after sampling 3 initial
points at random, the model is constant in [0.6, 0.9], while the true function has a large dip. Since confidence
intervals in [0.6, 0.9] are fairly narrow in the uncalibrated method, and the optimization algorithm never explores
it, the global minimum is missed by a large margin. In the calibrated method however, the recalibrator learns
after iteration 12 that the model is overconfident, expanding its confidence intervals. This leads the calibrated
model to explore in [0.6, 0.9] and find the global minimum.

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

D.3 On Sensitivity With Respect to the Gaussian Assumption

The effects of the Gaussian assumption can be seen in Table 4. These additional tasks cover benchmark functions
which are closer (e.g. cosines) and farther (e.g. cross-in-tray) from Gaussian assumptions. We do observe lower
performance of both calibrated and uncalibrated Bayesian optimization methods on non-Gaussian tasks. This
suggests an opportunity to improve Bayesian optimization by leveraging non-Gaussian models as a replacement
for the classical GP approach.

D.4 On Sensitivity With Respect to Higher Dimensions

In the paper, we have results for the Alpine function in 10 dimensions and the hyperparameter optimization
tasks have 3-6 input dimensions each. Thus, we observe the benefits of calibration in higher dimensions as well.
However, we did observe that in higher dimensions the improvement offered by calibration starts to become
gradually less pronounced, which may be attributed to the curse of dimensionality (the difficulty of estimating
densities in high dimensions).

D.5 Non-stationarity in Bayesian Optimization and Calibration Literature

The notion of non-stationarity of outcome function in Bayesian optimization is different from non-stationarity of
data distribution in calibration literature.

A stationary objective function in the context of Bayesian optimization refers to unchanging characteristics
smoothness of the function with changing inputs (Paciorek and Schervish, 2003).

For example, when modelled using a Gaussian Process (GP) regression, stationarity of the modelled function
refers to the property of translation invariance of covariance between two outputs (Snoek et al., 2014). The
properties of a GP regression are determined by the mean function m : X → R and covariance function or kernel
K : X ×X → R. Given a set of data-points D = {xt, yt}Tt=1 such that X = {xt}Tt=1 and y = {yt}Tt=1, the mean µ
and covariance Σ as modelled by the GP can be expressed as

µ(x,D) = m(X) +K(X, x)T (K(X,X)−1)(y −m(X))

Σ(x, x′,D) = K(x, x′)−K(X, x)T (K(X,X)−1)K(X, x′)

Here, an example of stationary kernel is the popular 5/2 Matern kernel

K52(x, x
′) = k

(
1 +

√
5r2 + 5r2

3

)
exp(−

√
5r2), where r =

∑D
d=1(xd − x′d)

2 for D-dimensional input. We can see
that this kernel is invariant to translations in input space. If the smoothness of true output function varies with
input (i.e., non-stationary function), then a stationary kernel in GP regression may not be adequate to model the
function.

A non-stationary data-distribution in calibration, on the other hand, refers to the determination of next data-point
dependent on previous data-points. The data-points chosen sequentially in Bayesian optimization are not
independent of each other, thus producing a non-stationary data-distribution.

E ANALYSING CALIBRATION FOR FORRESTER FUNCTION

In Figure 6, we see a visual comparison of optimization performed by calibrated method against the uncalibrated
method.

F Monotonic Loss Bound

We have shown that a calibrated model can be used to estimate expectations on average. Here, we complement
these results with additional concentration inequalities which show that estimates of the calibrated loss do not
exceed the true loss by too much. Note that this statement represents an extension of the Markov inequality.

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Theorem 1. Let M be a quantile calibrated model as in (1) and let ℓ(y, a, x) be a monotonic loss. Then for any
sequence (xt, yt)

T
t=1 and r > 1, we have:

lim
T→∞

1

T

T∑
t=1

I [ℓ(yt, a(xt), xt) ≥ rℓ(xt))] ≤ 1/r (4)

Proof. Recall that M(x) is a distribution over Y, with a density px, a quantile function Qx, and a cdf Fx. Note
that for any x and s ∈ (0, 1) and y′ ≤ F−1

x (1− s) we have:

ℓ(x) =

∫
ℓ(y, a(x), x)px(y)dy

≥
∫
y≥y′

ℓ(y, a(x), x)px(y)dy

≥ ℓ(y′, a(x), x)

∫
y≥y′

px(y)dy

≥ sℓ(y′, a(x), x)

The above logic implies that whenever ℓ(x) ≤ sℓ(y, a, x), we have y ≥ F−1
x (1− s) or Fx(y) ≥ (1− s). Thus, we

have for all t,

I{ℓ(xt) ≤ sℓ(yt, at, xt)} ≤ I{Fxt
(yt) ≥ (1− s)}.

Therefore, we can write

1

T

T∑
t=1

I{ℓ(xt) ≤ sℓ(yt, at, xt)} ≤ 1

T

T∑
t=1

I{Fxt
(yt) ≥ (1− s)} = s+ o(T),

where the last equality follows because M is calibrated. Therefore, the claim holds in the limit as T → ∞ for
r = 1/s. The argument is similar if ℓ is monotonically non-increasing. In that case, we can show that whenever
y′ > F−1

x (s), we have ℓ(x) ≥ sℓ(x, y′, a(x)). Thus, whenever ℓ(x) ≤ sℓ(y, a, x), we have y ≤ F−1
x (s) or Fx(y) ≤ s.

Because, Fx is calibrated, we again have that

1

T

T∑
t=1

I{ℓ(xt) ≤ sℓ(yt, at, xt)} ≤
T∑

t=1

I{Fxt
(yt) < s} = s+ o(T),

and the claim holds with r = 1/s.

Note that this implies the same result for a distribution calibrated model, since distribution calibration implies
quantile calibration.

G Algorithms for Online Calibration

Here, we introduce algorithms that enforce calibration in an online setting. This task is challenging because the
data distribution is the result of a sequential decision-making task. This distribution is therefore non-stationary:
it is determined by our actions.

Setup At each time step t = 1, 2, ... we observe a stream of datapoints comprised of features xt ∈ Rd. After xt
is revealed, a base uncalibrated model (e.g., a Bayesian optimization model) produces a forecast; we represent
this forecast via a quantile function Qt : [0, 1] → R that targets a label yt ∈ R. We assume that labels yt are
bounded with |yt| < B, where B > 0. We also assume that Qt is strictly increasing and differentiable. Below, we
may sometimes use the notation Q(p) for p /∈ [0, 1]; in such cases, we use the convention that Q(p) = −∞ for
p < 0 and Q(p) = ∞ for p > 1.

The model Qt may produce miscalibrated outputs; we seek to compose Qt with a recalibrator Rt : [0, 1] → [0, 1]
such that Qt ◦Rt is calibrated. After we choose Qt ◦Rt, nature reveals a label yt ∈ R. Our goal is to select Rt

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

such that online quantile calibration (1) holds. Specifically, we use ot(yt, p) = I{yt ≤ Qt(p)} as an indicator of
the binary outcome that yt falls below the p-th quantile. Our goal is to choose Rt such that for all p > 0

1

T

T∑
t=1

ot(yt, Rt(p))− p→ 0 as T → ∞. (12)

Crucially, we want (12) to hold on any sequence of (Qt, xt, yt).

Optimization Problem Our algorithms construct Rt via an optimization problem. Specifically, we will
consider Rt of the form

Rt(p) = argmin
q

[
ψ(q)−

t−1∑
s=1

ℓp(ys, q)

]
,

where ℓp : R× [0, 1] → R+ is a loss function that we will define and ψ(y) : R → R+ is a regularizer (possibly equal
to zero everywhere). We choose the loss ℓp such that minimizing the average ℓp over the previously observed
data yields an estimate of the p-th conditional quantile. More specifically, we seek to define ℓp such that the
probability p is remapped to a probability q for which the event {yt ≤ Qt(q)} is observed a fraction p of the time.
Examples of suitable losses ℓp include the pinball loss—a generalization of the L1 loss motivated by conditional
quantile estimation that we define below—as well as the weighted misclassification loss, which yields an algorithm
analogous to that of (Kuleshov et al., 2018).

We establish that Rt obtained via the above construction yields calibrated forecasts through online optimization,
a set of techniques that can provably minimize a loss function on distribution-free (possibly adversarial) data. We
start by defining our algorithm for one quantile; then we use it to define a complete recalibrator Rt.

G.0.1 Recalibrating One Quantile

First, consider the simpler problem of finding a qt ∈ [0, 1] such that Qt(qt) is an estimate of the p-th conditional
quantile, i.e., 1

T

∑T
t=1 ot(yt, qt)− p→ 0 as T → ∞.

The Pinball Loss Our strategy for computing qt relies on online optimization. Specifically, we define a loss
ℓ(y, y′) and an update rule for qt such that

∑T
t=1 ℓ(yt, Qt(qt)) is minimized. Our loss will be inspired by the

pinball loss. Given a target quantile p, the pinball loss ℓp defined as

ℓp(yt, y) = (yt − y) · p · I{yt > y}+ (y − yt) · (1− p) · I{yt ≤ y}
= (y − yt)(ot(yt, y)− p).

Observe that ℓp is convex: its graph is V-shaped with the slopes of the two lines defining the V being p and 1− p.
When p = 0.5, the pinball loss coincides with the L1 loss (up to a multiplicative scaling factor). The pinball loss
ℓp is interesting because the minimizer of ℓp over a set of datapoints yt yields a consistent estimator for the p-th
quantile of this set of datapoints.

Our algorithm optimizes a modification of the pinball loss which we call the quantile pinball loss (QPL) and
which is defined as

ℓtp(yt, q) = (Q−1
t (yt)− q) · p · I{yt > Qt(q)}+ (q −Q−1

t (yt)) · (1− p) · I{yt ≤ Qt(q)}
= (q −Q−1

t (yt))(ot(yt, q)− p).

Note that the QPL still has the same V-shape as the original quantile loss, with each part of the V having a slope
of p and (1− p). We can also show that the QPL features the same attractive property as the pinball loss in that
it serves as a quantile estimator.

Lemma 2. The quantile pinball loss serves as a quantile estimator, in that argminq
∑t

s=1 ℓsp(ys, q) over a dataset
(ys)

T
s=1 yields a p-th quantile of the dataset.

Online Calibrated and Conformal Prediction Improves Bayesian Optimization

Proof. Note that the QPL is convex, as it is the weighted sum of two convex functions, (q −Q−1
t (yt))+ and (q)+.

We minimize the QPL by setting its derivative to zero, giving:

0 =
d

dq

t∑
s=1

ℓsp(ys, q)

=
d

dq

t∑
s=1

(q −Q−1
t (yt))(ot(yt, q)− p)

=

t∑
s=1

(ot(yt, q)− p)

Thus, the minimum is achieved by a q in the p-th quantile of (ys)Ts=1.

Regularized Online Gradient Descent We consider the online optimization problem where at each step
we choose a prediction qt for the p-th quantile. Nature then reveals yt and we incur the quantile pinball loss
ℓp(yt, qt). We optimize this problem via regularized online gradient descent (OGD). Recall that OGD is an
online optimization method for optimizing a sequence of functions. Note that OGD on the QPL is equivalent to
Follow-The-Regularized-Leader (FTLR) on the linearized QPL. Thus, we introduce ℓt(q) as the linearization of
the QPL at q = qt, defined as

ℓt(q) := (q − qt)∂qℓtp(yt, qt) = (q − qt)(ot(yt, qt)− p)

where the constant does not depend on q. The linearization ℓt(q) approximates ℓ(yt, q) everywhere by the
supporting hyperplane given by a subgradient at q = qt. Then, at step t, we choose qt to minimize

qt = argmin
q

(ψ(q) +

t−1∑
s=1

ℓs(q)), (13)

where ψ(q) : R → R+ is a regularizer. Observe that if we choose ψ(q) = 1
2η q

2, this choice yields an exact solution
to (13), where qt =

∑t−1
s=1 ηgs and gs ∈ ∂ℓs(qs) is a subgradient at the points qs for s < t. This derivation shows

that we can compute the set of qt via gradient descent (although this is not strictly necessary).

Quantile Calibration Online gradient descent normally yields guarantees on the regret of a model. Here,
we also show that minimizing the quantile pinball loss induces quantile calibration. This is a condition that is
derived from the average gradient of the function, as opposed to the regret. We first establish a technical lemma,
then use the lemma to establish quantile calibration. The arguments for Lemma 3 and Theorem 2 are inspired by
results shown for adaptive conformal inference (Gibbs and Candes, 2021).
Lemma 3. For any t, we have that qt is contained in [−η, 1 + η].

Proof. Suppose not, and let t be the first time step for which qt < −η (the case for qt > 1 + η is identical). Note
that |qt − qt−1| = η|ot−1(yt−1, qt−1) − p| ≤ η. Thus, we know that qt < qt−1 < 0. The first inequality comes
from the minimality of t, and the second comes from the fact that |qt − qt−1| ≤ η. However, qt−1 < 0 implies
that Qt−1(qt−1) = −∞. Thus, ot(yt, qt) = 1 and qt = qt−1 + η(ot(yt, qt) − p) > qt−1. This contradicts that
qt < qt−1.

Theorem 2. For any sequence (Qt, yt, qt)
T
t=1, where qt satisfies (9) with η > 0 and p ∈ [0, 1], we have∣∣∣∣∣ 1T

T∑
t=1

ot(yt, qt)− p

∣∣∣∣∣ ≤ 1 + η

ηT
. (10)

Proof. Observe that the subgradient gt ∈ ∂ℓt(qt) at the point qt can be written as gt = ot(yt, qt)− p. Thus, we
can write

qt =

t−1∑
s=1

ηgs =

t−1∑
s=1

η(os(ys, qs)− p).

Shachi Deshpande, Charles Marx, Volodymyr Kuleshov

Dividing both sides by tη gives

qt
tη

=
1

t

t∑
s=1

(os(ys, qs)− p).

Taking the absolute value and applying the lemma that qt ∈ [−η, 1 + η] gives the desired result.

This proves that the above algorithm yields a valid method for one quantile p.

G.0.2 Quantile Function Recalibration

Consider now a setting where we seek to define a full recalibrator R(p). Our approach is to define the full
recalibrator for p.

Lemma 4. For the linearized quantile pinball losses ℓp1t and ℓp2t with p1 > p2, we have argminq
q2

2η +∑T
t=1 ℓp1t(q) > argminq

q2

2η +
∑T

t=1 ℓp2t(q).

Proof. Recall that ℓpt(q) = (q − qt)(ot(yt, qt) − p). Denote the objective for a target quantile p as Jp(q) =
q2

2η +
∑T

t=1 ℓpt(q). Observe that Jp(q) is a quadratic (since ℓpt is linear), and is uniquely minimized by q∗p =

−η
∑T

t=1(ot(yt, qt)− p). Therefore, q∗p1
− q∗p2

= η(p1 − p2) > 0.

Lemma 4 guarantees that if we fit quantiles individually by optimizing the quantile pinball loss, the resulting
quantile estimates will not “cross”, in that larger target quantiles admit larger estimates. This is desirable, in that
we can produce a valid quantile function representing all the quantile estimates simultaneously. Therefore, we
define the recalibrator R(p) for each p via the algorithm in the previous section. Moreover, we can compute an
approximate R(p) by computing it at a fixed number of quantiles, and then interpolating. Alternatively, we may
compute R(p) at an arbitrary p by solving the optimization problem.

Theorem 3. For any sequence (Qt, yt)
T
t=1 and η > 0, each Rt is a monotone function, and for all p ∈ [0, 1],∣∣∣∣∣ 1T
T∑

t=1

I{yt ≤ Qt(Rt(p))} − p

∣∣∣∣∣ ≤ 1 + η

ηT
.

Proof. The inequality is a direct application of Theorem 2, where Rt(p) is the value q that minimizes the FTRL
objective (6). The fact that Rt is monotonically increasing is a direct result of Lemma 4.

	INTRODUCTION
	BACKGROUND
	Calibrated & Conformal Prediction
	Bayesian Optimization

	UNCERTAINTY IN BAYESIAN OPTIMIZATION
	Which Uncertainties Are Needed in Online Decision-Making?
	Formal Analysis

	ALGORITHMS FOR ONLINE CALIBRATION
	Online Recalibration
	Recalibration via Online Optimization

	CALIBRATED BAYESIAN OPTIMIZATION
	EXPERIMENTS
	Benchmark Optimization Tasks
	Hyperparameter Optimization Tasks

	DISCUSSION & RELATED WORK
	ADDITIONAL DETAILS ON EXPERIMENTS
	Evaluation Metrics
	Comparing Against Additional Baselines
	Sensitivity Analysis
	Increasing the number of optimization steps
	Online LDA
	Image Classification Using Neural Networks

	CALIBRATION OF PROBABILISTIC MODEL
	EXAMINING AQUISITION FUNCTIONS
	ADDITIONAL DISCUSSION
	On the Computational Cost of Calibrated Bayesian Optimization
	On Epistemic vs. Aleatoric Uncertainties
	On Sensitivity With Respect to the Gaussian Assumption
	On Sensitivity With Respect to Higher Dimensions
	Non-stationarity in Bayesian Optimization and Calibration Literature

	ANALYSING CALIBRATION FOR FORRESTER FUNCTION
	Monotonic Loss Bound
	Algorithms for Online Calibration
	Recalibrating One Quantile
	Quantile Function Recalibration

