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Abstract

While conformal predictors reap the benefits
of rigorous statistical guarantees on their er-
ror frequency, the size of their corresponding
prediction sets is critical to their practical util-
ity. Unfortunately, there is currently a lack of
finite-sample analysis and guarantees for their
prediction set sizes. To address this shortfall,
we theoretically quantify the expected size of
the prediction sets under the split conformal
prediction framework. As this precise formu-
lation cannot usually be calculated directly,
we further derive point estimates and high-
probability interval bounds that can be empir-
ically computed, providing a practical method
for characterizing the expected set size. We
corroborate the efficacy of our results with
experiments on real-world datasets for both
regression and classification problems.

1 INTRODUCTION

Imagine a company that recognizes a market where
multiple businesses are interested in the same task,
e.g., the inspection and quality control of manufactured
goods. Seeing this opportunity, the company decides
to provide an AI-powered solution, to help automate
and streamline the process for these customers.

A major characteristic that customers would want to
know is: how often will the system make errors? More-
over, they will often want to constrain the frequency of
errors to a level acceptable for their particular use case.
The conformal prediction framework [Vovk et al., 2005;
Shafer and Vovk, 2008] fulfills this requirement. In-
stead of a single label, it predicts a set of labels (based
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on past experiences) and rigorously guarantees that the
error of the predicted set not containing the true label
is bound to a user-specified level. Notably, the split
conformal prediction framework [Papadopoulos et al.,
2002; Vovk et al., 2005; Lei et al., 2015] further provides
computational efficiency for practical deployment.

A natural follow-up question that customers might ask
is: how big are the prediction sets expected to be? This
is a valid concern. For instance, a naive prediction
of the entire label space achieves zero error; however,
such predictions are not useful. Thus, the sizes of the
prediction sets are of significant relevance in practice.

Existing works have considered the asymptotic behav-
ior of the expected size of prediction sets, analyzing
conformal predictors in the context of statistical opti-
mality [Lei et al., 2013; Lei and Wasserman, 2013; Vovk
et al., 2014; Lei, 2014; Lei et al., 2015; Vovk et al., 2016;
Sadinle et al., 2019]. In practice, however, we are con-
cerned with prediction set sizes in the finite-sample set-
ting. In fact, in most practical applications of conformal
prediction—such as image classification [Angelopoulos
et al., 2021; Fisch et al., 2021a], natural language pro-
cessing [Fisch et al., 2021b,a; Schuster et al., 2021], drug
discovery [Fisch et al., 2021b,a], clinical trials [Lu and
Kalpathy-Cramer, 2021; Lu et al., 2022], robotics [Dixit
et al., 2023; Lindemann et al., 2023], and election
polling [Cherian and Bronner, 2020]—algorithms are
compared based on: (i) their frequencies of error, and
(ii) the expected sizes of their prediction sets.

Currently, this expected size is empirically estimated
by averaging the sizes of the constructed prediction
sets over multiple runs, via Monte Carlo averaging. For
our hypothetical company and customers, this amounts
to the company collecting labeled data from multiple
customers and running predictions repeatedly; this is
an expensive procedure. Additionally, each customer
will have a different set of parameters—e.g., different
frequency of error requirements, different number of
labeled data, etc.—each resulting in a different expected
set size. To provide a satisfactory answer to each
customer, the company will have to run this procedure
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separately for each set of values. As such, it is often
not feasible to provide customers with an indication of
the expected prediction set size using this approach.

To overcome these shortcomings, we theoretically quan-
tify the expected size of split conformal prediction sets.
As computing this quantity directly is often intractable
in practice, we derive procedures to empirically ap-
proximate it. Our proposed procedures require data
to be collected only once to provide a point estimate
and high-probability interval bounds for the expected
prediction set size. Consequently, our hypothetical
company no longer requires access to labeled data from
multiple customers and repeated runs of the conformal
algorithm. Instead, the company could use a single set
of pre-collected in-house data to compute both point
and interval estimates for the expected size of the pre-
diction sets constructed by its proposed (conformal)
system. From the customer’s perspective, this infor-
mation allows them to reliably evaluate the company’s
system and further determine whether to use it or not.

In summary, our contributions are as follows:

• We theoretically quantify the expected size of the
prediction sets constructed under the split confor-
mal prediction framework (cf. Section 4).

• We derive practical point estimates and high-
probability intervals for the above (cf. Section 5).

• We illustrate the efficacy of our results experimen-
tally on regression and classification (cf. Section 6).

2 BACKGROUND

We are concerned with supervised learning, where we
are provided with labeled data and want to predict
the label for new test inputs. The split conformal
prediction framework [Papadopoulos et al., 2002; Vovk
et al., 2005; Lei et al., 2015] predicts a set of labels
for a given test input such that the probability of
error, i.e., the predicted set not containing the true
label, is guaranteed to be bound at a user-specified
level. This is achieved by first splitting the labeled
data into training and calibration data. The training
data trains a (non-conformity) scoring function, which
is used to compute scores on the calibration data; then
a threshold is determined using these calibration scores.
The algorithm uses the computed score threshold to
construct the prediction set for a new test input.

Formally, we denote Zi = (Xi, Yi) ∈ X × Y, for i =
1, . . . , n+1, to be n+1 data points sampled i.i.d. from
an arbitrary distribution over feature and label spaces
X and Y respectively. We treat Z1:n = {Z1, . . . , Zn}
as the calibration data and Zn+1 as the test datum; the

training data is used to implement the scoring function
as discussed later. For a significance level α ∈ (0, 1),
we want to predict a set of labels Ĉα(Xn+1;Z1:n) ⊆ Y
such that the probability of error is bound by α, i.e.,

P
{
Yn+1 ̸∈ Ĉα (Xn+1;Z1:n)

}
≤ α. (1)

This is a marginal probability, taken over both the test
datum Zn+1 and the calibration data Z1:n.

The split conformal framework achieves this by rea-
soning about a non-conformity function [Vovk et al.,
2005; Shafer and Vovk, 2008]. We denote this function
by R : X × Y 7→ R, which maps a data point to a
real-valued non-conformity score (R ⊆ R). This func-
tion quantifies how non-conforming a data point is. If
R(x, y) is small, then (x, y) is conforming; conversely, if
R(x, y) is large, then (x, y) is non-conforming or atypi-
cal. This function is implemented as a distance function
L between the label y and its prediction ŷ = M(x) ob-
tained from a machine learning model M . The model
M is trained on training data that is independent of the
test and the calibration data. Then, the non-conformity
score is defined as R(x, y) = L(M(x), y). For example,
for regression problems, the model M could be a deep
neural network, and the loss L the l1 loss, resulting in
the non-conformity score R(x, y) = |M(x)− y|.

The split conformal framework uses the above function
to compute non-conformity scores. For each calibration
datum Zi, for i = 1, . . . , n, we denote its corresponding
calibration non-conformity score as Ri = R(Zi). Since
the test datum label Yn+1 is not observed, we consider
all possible realizations y ∈ Y of it and denote the
corresponding test non-conformity score as R(Xn+1, y),
a function of the random variable Xn+1 and the fixed
variable y. Subsequently, the framework computes an
acceptance score threshold using only the calibration
data; this is denoted by τα(R1:n) and is set to the
⌈(1−α)(n+1)⌉’th smallest value in the augmented set of
calibration scores {R1, . . . , Rn,∞}. Then, the label y
is included in the prediction set if its corresponding test
non-conformity score is below this acceptance threshold,
i.e., the split conformal prediction set is defined as,

ĈR
α (Xn+1;Z1:n) = {y ∈ Y : τα(R1:n) ≥ R(Xn+1, y)} .

(2)
These prediction sets satisfy Equation (1) [Papadopou-
los et al., 2002; Vovk et al., 2005; Lei et al., 2015].

Note that there is a naive way of satisfying the con-
straint in Equation (1). Consider the predictor that
predicts the entire space of labels; this satisfies the con-
straint, but the predictions are uninformative. There-
fore, the size of the prediction sets plays an important
role in a conformal predictor’s efficacy—the smaller
the size of the prediction sets, the better the predictor.
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3 RELATED WORK

Since its original development [Gammerman et al., 1998;
Saunders et al., 1999], many works have built on the
basic conformal prediction framework. Notably, Pa-
padopoulos et al. [2002]; Vovk et al. [2005]; Lei et al.
[2015] proposed the aforementioned split conformal pre-
diction as a special case. We refer readers to Angelopou-
los and Bates [2023] for a comprehensive overview.

The work done on conformal prediction set sizes has
mostly focused on the statistical optimality of the fam-
ily of predictors defined under this framework. Such
works use the expected size of the prediction sets as a
notion of inefficiency for the predictors—the smaller
the better. They show that conformal predictors are op-
timal under different settings—such as unsupervised
learning [Lei et al., 2013, 2015], regression [Lei and
Wasserman, 2013], binary classification [Lei, 2014],
and multi-class classification [Sadinle et al., 2019]—
by showing that the expected size of their prediction
sets asymptotically converges to that of an oracle. Ad-
ditionally, Vovk et al. [2014, 2016]; Sadinle et al. [2019]
provide similar optimality results when the probability
of error is constrained conditionally per class/label.

This notion of viewing the expected size of the predic-
tion sets as an inefficiency has propagated to practical
settings as well, where conformal predictors are com-
pared based on their average empirical prediction set
sizes. Furthermore, different non-conformity functions
have been proposed to reduce this quantity. For in-
stance, Romano et al. [2019]; Kivaranovic et al. [2020]
propose using quantile regression to train the machine
learning model and an associated quantile interval loss
function, Sadinle et al. [2019]; Romano et al. [2020];
Angelopoulos et al. [2021] propose loss functions for
classification based on the predicted class/label prob-
abilities, and Bellotti [2021]; Stutz et al. [2022] learn
the non-conformity function in an end-to-end fashion
by making the conformal pipeline differentiable.

4 THEORETICAL
QUANTIFICATION

We are interested in analyzing the size of prediction
sets under the split conformal framework. Similar to
previous works, we will analyze the expected prediction
set size E[|ĈR

α (Xn+1;Z1:n)|].1 While theoretical works
considered the asymptotic behavior of this quantity,
empirical works want to estimate it in practice. We
aim to bridge the two by theoretically quantifying the
expected set size in the finite-sample case and deriving

1We overload |·| and
∫
Y dy to be the Lebesgue measure

for continuous and the counting measure for discrete spaces.

procedures to estimate it in practice, providing useful
practical information about the prediction sets.

We begin with the quantification. The prediction set
size is the reference measure of the set of labels included.
However, from Equation (2) we know that the predic-
tion set depends on: (i) the test non-conformity scores
R(Xn+1, y), for all labels y ∈ Y, (ii) the calibration
non-conformity scores R1:n, and (iii) the significance
level α. This implies that the prediction set is depen-
dent on the test datum feature and the calibration data
only through their corresponding non-conformity scores.
Therefore, instead of considering the label space, we
analyze the space of non-conformity scores.

As a result, we compute the reference measure of the
set of non-conformity scores below the acceptance score
threshold τα(R1:n), as determined by the framework.
To translate this measure back to the label space, we in-
troduce a multiplicative factor #R(r), which we discuss
in detail later. With the multiplicative factor #R(r)
and the acceptance score threshold τα(R1:n), we show
in Theorem 1 that the expected prediction set size is,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣]=∫

R
P {τα(R1:n) ≥ r}#R(r)dr,

(3)
where the probability P{τα(R1:n) ≥ r} is over the
calibration data Z1:n and is not easy to compute.

To simplify it further, we assume that the calibration
non-conformity scores are i.i.d. from a probability distri-
bution with the corresponding probability density/mass
function pR.2 Note that we are given i.i.d. calibration
data Z1:n, so their corresponding non-conformity scores
R1:n are i.i.d. as well; here we define the distribution
they follow. With this, the individual probabilities of
each calibration score being strictly smaller than r are
identical. We denote this by P̃R(r) and define it as,

P̃R (r) = P {R1 < r} =

∫
R
1 {r′ < r} pR (r′) dr′, (4)

noting that this is similar to, but not the same as, the
cumulative distribution function PR(r) = P{R1 ≤ r}.

As we are concerned with the event that the acceptance
score threshold, i.e., the ⌈(1 − α)(n+ 1)⌉’th smallest
calibration score, is larger than r, we can allow at
most nα = ⌈(1 − α)(n + 1)⌉ − 1 calibration scores
to be strictly less than r. In doing so, we can now
express P{τα(R1:n) ≥ r} as the cumulative distribution
function of a binomial random variable. The binomial
random variable has n trials and success probability
P̃R(r), which we denote by B(n, P̃R(r)). The required
cumulative distribution function is evaluated at nα, and

2For a random variable X, we use pX and PX to denote
the probability density/mass function and the cumulative
distribution function respectively.
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Table 1: Multiplicative factor under different settings. We summarize the multiplicative factor under
different settings that we will utilize in Section 6 for the experiments. Most settings utilize M(x), the model
prediction for input x; for LAC [Sadinle et al., 2019], My(x) is the predicted probability for label y and for
CQR [Romano et al., 2019], Mβ(x) is the prediction for the β’th level quantile and M∆(x) = (M1−α/2(x) −
Mα/2(x))/2. Details of these settings and the derivations of their multiplicative factors are provided in Appendix B.

Problem type Loss function Non-conformity function Multiplicative factor
R(x, y)R(x, y)R(x, y) #R(r)#R(r)#R(r)

Regression
(Y = R)

l1 |M(x)− y| 2

lp≥1 |M(x)− y|p 2r1/p−1/p

CQR
[Romano et al., 2019]

max{Mα/2(x)− y,
y −M1−α/2(x)}

{
2, r ≥ 0

2
(
1− PM∆(Xn+1) (−r)

)
, r < 0

Classification
(discrete Y)

0-1 1 {M(x) ̸= y}

{
1, r = 0

|Y| − 1, r = 1

LAC
[Sadinle et al., 2019] 1−My(x)

∑
y∈Y pMy(Xn+1) (1− r)

is denoted by PB(n,P̃R(r))(nα). Therefore, the expected
prediction set size in Equation (3) simplifies to,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣] =

∫
R
PB(n,P̃R(r)) (nα)#R(r)dr.

(5)

We package these two results together in the following
theorem and provide the proof in Appendix A.1.

Theorem 1 (Expected size of prediction sets). If the
test and the calibration non-conformity scores are inde-
pendent of each other, then the expected size of the split
conformal prediction sets is given by Equation (3). Fur-
thermore, if the calibration non-conformity scores are
i.i.d., then the expected size is given by Equation (5).

These results pertain to the marginal expected set size.
We include conditional expectations in Section 4.2.

Multiplicative Factor The multiplicative factor is
responsible for translating the reference measure on the
space of non-conformity scores to the reference measure
on the label space. Formally, we define this factor as,

#R(r) =

∫
Y
pR(Xn+1,y) (r) dy, (6)

where pR(Xn+1,y) is the probability density/mass func-
tion of the random variable R(Xn+1, y), with the ran-
domness from the random variable Xn+1 (the test da-
tum feature) and not the fixed variable y (a label).

We provide derivations of the multiplicative factor un-
der different settings in Appendix B and summarize
them in Table 1. A common loss for regression is the
l1 loss, with the multiplicative factor 2. We generalize
to any lp loss (p ≥ 1), with the multiplicative factor
2r1/p−1/p; this highlights the reference measure trans-
lation that the multiplicative factor performs. The 0-1

loss is a candidate for classification, with the multiplica-
tive factor 1 and |Y|−1 for r = 0 and r = 1 respectively.
Alternatively, more nuanced non-conformity functions
have multiplicative factors that depend on the distri-
bution of data and the machine learning model used.

For instance, Sadinle et al. [2019] propose the least
ambiguous set-valued classifiers (LAC) with the non-
conformity function R(x, y) = 1−My(x), where My(x)
is the predicted probability for label y. The associated
multiplicative factor (cf. Table 1) cannot be analytically
solved without making assumptions about the data dis-
tribution and/or the machine learning model. However,
LAC provably constructs prediction sets with minimum
expected size if the predicted probabilities are correct;
this does not hold in practice, but the predicted sets
are small. Similarly, conformalized quantile regression
(CQR, Romano et al. [2019]) for regression and adap-
tive prediction sets (APS, Romano et al. [2020]) for
classification construct small prediction sets, but their
associated multiplicative factors are intractable without
further assumptions. This does not come as a surprise;
the split conformal framework satisfies Equation (1),
but the quality of the prediction sets constructed de-
pends on the data distribution and the machine learning
model used [Vovk et al., 2005; Shafer and Vovk, 2008].

We do not wish to make additional assumptions, so we
treat the multiplicative factor associated with such non-
conformity functions as unknown. Note that Theorem 1
holds for any choice of the non-conformity function.

4.1 Insights

After quantifying the expected prediction set size
in Theorem 1, we analyze its dependence on various
user-specified parameters, providing general insights
into influencing the quantity from a user’s perspective.
We empirically validate our analysis in Appendix C.4.
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Non-conformity Function The non-conformity
function (constituting the machine learning model and
the loss function) plays an important role. Its influence
on the set size is through the binomial random vari-
able’s success probability P̃R(r) and the multiplicative
factor #R(r) (cf. Equation (5)). For example, for re-
gression, l1 and CQR [Romano et al., 2019] use different
machine learning models (with CQR using quantile re-
gression models) and different loss functions (l1 versus
CQR loss). For classification, 0-1, LAC [Sadinle et al.,
2019], and APS [Romano et al., 2020] are different loss
functions that could be used atop the same machine
learning model. Such modifications alter P̃R(r) and
#R(r) and hence the expected set size (cf. Section 6).

There are scenarios where the non-conformity func-
tion can change, but the multiplicative factor does not.
E.g., under the l1 loss for regression, one can change
the machine learning model, but #R(r) = 2 remains
the same (cf. Table 1). In such cases, only the influence
through the binomial random variable’s success prob-
ability P̃R(r) matters. Consider P̃R1 and P̃R2 corre-
sponding to two such non-conformity functions R1 and
R2 respectively, where the non-conformity score distri-
bution of the first first-order stochastically dominates
the second, i.e., P̃R1

(r) ≤ P̃R2
(r), for all r ∈ R. Conse-

quently, the expected set size is larger for the first func-
tion, E[|ĈR1

α (Xn+1;Z1:n)|] ≥ E[|ĈR2
α (Xn+1;Z1:n)|].

Therefore, for small expected set sizes, with the multi-
plicative factor being the same, P̃R should be skewed
to have most of its probability density/mass on small
values of r ∈ R. A common recipe to achieve this is by
using a machine learning model that generalizes well.
As an analytical tool, a practitioner could also plot the
empirical distribution of the calibration non-conformity
scores to compare different non-conformity functions.

When the multiplicative factor changes, it is not
straightforward to compare different non-conformity
functions without making further assumptions. This is
especially the case when the space of non-conformity
scores is modified in the process. E.g., for regression,
the l1 loss admits non-negative non-conformity scores
only, whereas CQR [Romano et al., 2019] additionally
permits negative scores. If we were able to enforce
and/or assume that CQR’s scores smaller than −c (for
some constant c ≥ 0) are never permissible, we could
translate its space of non-conformity scores to the set of
non-negative reals R≥0 by adding an offset of c. Then,
offsetted CQR’s multiplicative factor would never be
larger than that of the l1 loss (cf. Table 1); additionally,
if the l1 loss non-conformity score distribution first-
order stochastically dominates that of offsetted CQR’s
scores, CQR would achieve a smaller expected set size.
Comparisons under other modifications of the multi-
plicative factor would require different assumptions.

Significance Level The significance level is generally
fixed by a user rather than being tunable, specifying the
user’s requirement on the frequency of error. However,
we use this as a sanity check and highlight the trade-
off between the error and the size of the prediction
sets. Intuitively, as the significance level increases, the
framework allows for more errors which decreases the
size of its prediction sets. Indeed, in Equation (5), an
increase in α causes a decrease in nα, which further
prompts a decrease in the expected prediction set size.

Number of Calibration Data Labeled data pro-
curement is often difficult, and a user might need justi-
fication for the benefits of collecting more data. When
using it for calibration, it is unclear how it would influ-
ence the expected prediction set size. In Equation (5),
an increase in n causes an increase in both the number
of trials of the binomial random variable and the value
at which the cumulative distribution function of the
said random variable is evaluated; the former decreases
the expected set size while the latter increases it, dimin-
ishing their contributions. Resolving this disagreement
would require making more assumptions about the
distribution of the calibration non-conformity scores.

4.2 Conditional Expectation

We quantified the marginal expected prediction set
size in Theorem 1, where we marginalize over the ran-
domness induced by both the test datum feature and
the calibration data. For instance, when advertising
its prediction system to potential customers, our com-
pany in Section 1 computes the marginal expected set
size as there is no additional information to condition
on. However, customers might be interested in eval-
uating the quality of the prediction sets constructed
on a particular test input. In this case, the marginal
expected set size is not the quantity of interest, but
the conditional expected set size conditioned on that
test datum is. We therefore extend Theorem 1 to allow
for conditional expectations of the prediction set size.

When conditioning on the test datum feature Xn+1 =
xn+1, there is additional information about the distribu-
tion of R(Xn+1, y) and hence the multiplicative factor.
Synonymous with our definition of the multiplicative
factor in Equation (6), we introduce the feature-specific
multiplicative factor #R(r;xn+1) =

∫
Y δR(xn+1,y)(r)dy,

where the probability density/mass function pR(Xn+1,y)

is replaced by δR(xn+1,y), the Dirac delta distribution
that places all of its probability mass on R(xn+1, y).
Then, the conditional expected set size is given by,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣∣∣∣Xn+1 = xn+1

]
=

∫
R
P {τα(R1:n) ≥ r}#R (r;xn+1) dr,

(7)
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and if the calibration non-conformity scores are i.i.d.,

=

∫
R
PB(n,P̃R(r)) (nα)#R (r;xn+1) dr. (8)

Note that Equations (7) and (8) are analogous to the
marginals in Equations (3) and (5) respectively. We
summarize this below (with the proof in Appendix A.2).
Corollary 2 (Expected size of prediction sets condi-
tioned on the test datum feature). If the test and the
calibration non-conformity scores are independent of
each other, then the expected size of the split conformal
prediction sets conditioned on the test datum feature
Xn+1 = xn+1 is given by Equation (7). Furthermore,
if the calibration non-conformity scores are i.i.d., then
the conditional expected size is given by Equation (8).

We can similarly condition on the calibration data
Z1:n = z1:n; we summarize the result in Corollary 4.

5 PRACTICAL ESTIMATION

We theoretically quantify the expected prediction set
size in Theorem 1. However, it assumes knowledge
of the multiplicative factor #R(r) and the binomial
random variable’s success probability P̃R(r), for all
non-conformity scores r ∈ R. While the former may be
known under some settings (cf. Table 1), the latter is
unknown in most practical scenarios as it relies on the
distribution of the calibration non-conformity scores.

Currently, the expected set size is empirically estimated
by averaging the size of the constructed prediction sets
over multiple runs, i.e., a Monte Carlo average. This
equates to sampling a (pseudo) calibration data, obtain-
ing conformal prediction sets on multiple (pseudo) test
data, and repeating the process many times. The aver-
age size of the obtained sets will estimate the expected
set size; if repeated enough times, this estimate would
be close to the true value. For our company in Sec-
tion 1, this involves collecting large amounts of labeled
data from its customers and repeatedly executing the
above procedure. Furthermore, each such estimation
scheme is instantiated with a fixed configuration of the
significance level and the number of calibration data,
resulting in an estimate that is configuration-specific.
Therefore, the company will need to carry out this
Monte Carlo averaging scheme numerous times to ob-
tain satisfactory estimates for varying values of the
parameters. This becomes infeasible in practice.

Alternatively, knowing the quantification of the ex-
pected prediction set size from Theorem 1, we can
develop procedures to estimate the value directly. This
will require data to be collected only once; we will
assume access to Z ′

1 = (X ′
1, Y

′
1), . . . , Z

′
k = (X ′

k, Y
′
k),

k data points drawn i.i.d. from the data distribution.

Going back to our hypothetical company, possible ways
of obtaining this data are either from a customer or
held-out in-house company data. We will detail pro-
cedures to derive point and interval estimates for the
expected prediction set size using these accessible data
points. Our goals in doing so are: (i) for the point
estimate to be close to the expected set size, and (ii)
for the interval to bound the expected set size with
high probability. We provide a summary in Table 2.

Note that we consider the marginal expected set size,
but our procedures can extend to the conditionals by
substituting in the conditionally given quantities.

5.1 Known Multiplicative Factor

We begin with the setting where the multiplicative
factor can be analytically calculated and is known. We
compute the non-conformity scores for the k accessi-
ble data points as R′

i = R(Z ′
i), for i = 1, . . . , k. We

further use these non-conformity scores to empirically
approximate P̃R (r), for all r ∈ R, with the quantity,

P̃ emp
R (r) =

1

k

∑k

i=1
1 {R′

i < r} . (9)

By replacing P̃R(r) with P̃ emp
R (r) in Equation (5), we

obtain a point estimate for the expected set size. P̃ emp
R

can also be used to estimate the expected set size under
different significance levels and number of calibration
data as P̃R is not dependent on these parameters.

We further provide guarantees for this estimate. We use
the work of Dvoretzky et al. [1956]; Massart [1990] to
bound the difference between a cumulative distribution
function and its empirical approximation. Specifically,
we can compute a 1− γ confidence interval for P̃R(r)
of the form [P̃ emp

R (r) −∆k,γ , P̃
emp
R (r) + ∆k,γ ], where

∆k,γ =
√

ln(2/γ)/2k. Thus by replacing P̃R(r) with
P̃ emp
R (r)±∆k,γ in Equation (5), we obtain the lower-

upper bounds corresponding to a 1 − γ confidence
interval for the expected set size. This is summarized
in the following result (with the proof in Appendix A.3).

Corollary 3 (Confidence interval for the expected pre-
diction set size). Following Equation (5) (Theorem 1),
with a known multiplicative factor, the expected size of
split conformal prediction sets lies in the interval,[∫

R
PB(n,P̃ emp

R (r)+∆k,γ) (nα)#R(r)dr,∫
R
PB(n,P̃ emp

R (r)−∆k,γ) (nα)#R(r)dr

]
,

(10)

with probability at least 1− γ.

As k increases, the error term ∆k,γ decreases and so
does the width of the confidence interval. Therefore,
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Table 2: Practical estimates under different settings. We summarize our point and interval estimates
derived when the multiplicative factor is known (cf. Section 5.1) and when it is unknown (cf. Section 5.2).

Setting Our point estimate Our interval estimate (with significance γ)

Known
multiplicative factor

∫
R PB(n,P̃

emp
R

(r)) (nα)#R(r)dr

[∫
R PB(n,P̃

emp
R

(r)+∆k,γ) (nα)#R(r)dr,∫
R PB(n,P̃

emp
R

(r)−∆k,γ) (nα)#R(r)dr
]

Unknown
multiplicative factor

∫
Y

1
k

∑k
i=1 PB(n,P̃

emp
R (R(X′

i,y)))
(nα) dy

[∫
Y

1
k

∑k
i=1 PB(n,P̃

emp
R (R(X′

i,y))+∆k,γ) (nα) dy,∫
Y

1
k

∑k
i=1 PB(n,P̃

emp
R (R(X′

i,y))−∆k,γ) (nα) dy
]

the larger k is, the tighter the confidence interval gets.
In fact, as k → ∞, the error term ∆k,γ → 0 and the
confidence interval contracts to our point estimate.

5.2 Unknown Multiplicative Factor

Next, we consider the setting where the multiplicative
factor is intractable due to its dependence on the data
distribution and/or the machine learning model. One
way to get around this is to estimate the factor using
density estimation methods and substitute in its value.

To provide a self-contained approach, we re-arrange the
formulation of the expected set size in Equation (5) to
get rid of the multiplicative factor (cf. Appendix A.5).
Instead, the quantification contains the expectation
over the random variable R(Xn+1, y) as follows,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣]

=

∫
Y
E
[
PB(n,P̃R(R(Xn+1,y))) (nα)

]
dy.

(11)

The expectation E[PB(n,P̃R(R(Xn+1,y)))
(nα)] contains

two unknowns: P̃R inside the expectation, and the
distribution of R(Xn+1, y) over which the expecta-
tion is evaluated. This can be empirically approxi-
mated using nested Monte Carlo methods [Rainforth
et al., 2018] with the accessible data points: we ap-
proximate P̃R with P̃ emp

R (cf. Equation (9)), and the
distribution of R(Xn+1, y) with the samples R(X ′

i, y),
for i = 1, . . . , k. This amounts to the approxima-
tion 1

k

∑k
i=1 PB(n,P̃ emp

R (R(X′
i,y)))

(nα) for the expecta-
tion term. Integrating this quantity over y ∈ Y results
in a point estimate for the expected set size, as desired.

Additionally, we can compute intervals synonymous
with Equation (10) by replacing P̃ emp

R (R(X ′
i, y)) with

P̃ emp
R (R(X ′

i, y))±∆k,γ above. However, these may not
be valid confidence intervals due to the extra approxi-
mation; we refer readers to Rainforth et al. [2018] for
nested Monte Carlo estimates’ error analysis. Despite
this, we demonstrate their practical utility in Section 6.

6 EXPERIMENTS

We now illustrate the efficacy of our results experi-
mentally by applying our estimation procedures de-
rived in Section 5 on real-world datasets from the UCI
database [Kelly et al., 2023]. We use the l1 loss and
CQR [Romano et al., 2019] non-conformity functions
for regression, and the 0-1 loss, LAC [Sadinle et al.,
2019], and APS [Romano et al., 2020] for classification.
We include the main experimental results here, with
additional ones incorporated in Appendices C and D.
Our code is available at https://github.com/Guneet-
Dhillon/expected-conformal-prediction-set-size.

6.1 Experimental Setup

Similar to Tibshirani et al. [2019], we randomly split a
dataset into 25% training, 25% calibration, and 50%
test. We use the training data to train a random for-
est [Breiman, 2001] for the non-conformity function,
utilizing the scikit-learn [Pedregosa et al., 2011] imple-
mentation with 100 trees.3 We run the split conformal
algorithm on the calibration and the test data, with the
significance level α set to 0.1. We repeat this process
1000 times, where we sample new training data every
100 runs, and new calibration and test data every run.

6.2 Marginal Expected Prediction Set Size

We begin with the marginal expected size of prediction
sets; we compare our derived estimates with the com-
monly used Monte Carlo averaging in approximating
the marginal expected set size. The latter is the av-
erage size of the prediction sets constructed using the
split conformal algorithm on the test data using the
calibration data, across all data splits. For the former,
we need accessible data points to make approximations.
While any data drawn i.i.d. from the data distribution
suffices, we use the calibration data as the accessible
data to facilitate direct comparison of the two esti-

3For CQR [Romano et al., 2019], we train a quantile
regression forest [Meinshausen, 2006] using the implemen-
tation from https://github.com/zillow/quantile-forest.

https://github.com/Guneet-Dhillon/expected-conformal-prediction-set-size
https://github.com/Guneet-Dhillon/expected-conformal-prediction-set-size
https://github.com/zillow/quantile-forest
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Table 3: Marginal expected prediction set sizes. We illustrate the marginal expected sizes of split conformal
prediction sets using different non-conformity functions and UCI datasets. The estimates are obtained via Monte
Carlo averaging, our point estimates, and our interval estimates (lower-upper bounds with γ = 0.1). We also
compute the absolute error between our individual point estimates and the mean Monte Carlo average. We report
the means and standard deviations. For classification, the number of classes/labels is provided in parentheses.

Marginal expected prediction set size

Dataset Our interval
lower bound

Monte Carlo
average

Our point
estimate

Our interval
upper bound

Absolute
error

R
eg

re
ss

io
n

(Y
=
R

Y
=
R

Y
=
R
) l 1l 1l 1

Abalone 1.870.07 2.190.09 2.190.09 2.710.12 0.070.05
AirFoil 1.110.07 1.390.10 1.390.09 2.030.13 0.080.05
AirQuality 0.010.00 0.020.00 0.020.00 0.020.00 0.000.00
BlogFeedback 2.300.02 2.380.02 2.380.02 2.470.02 0.020.01
CTSlices 0.170.01 0.180.01 0.180.01 0.200.01 0.010.00
FacebookComments 0.380.01 0.410.01 0.410.01 0.440.01 0.010.00
OnlineNews 2.770.03 2.910.03 2.910.03 3.070.03 0.030.02
PowerPlant 0.640.01 0.700.02 0.700.02 0.780.02 0.010.01
Superconductivity 0.920.02 1.020.02 1.020.02 1.130.03 0.020.01
WhiteWineQuality 2.290.06 2.580.08 2.580.07 2.990.09 0.060.05

C
Q

R
[R

om
an

o
et

al
.,

20
19

] Abalone 1.810.06 2.170.98 2.160.17 2.440.05 0.150.09
AirFoil 1.360.05 1.580.64 1.580.07 2.090.13 0.050.04
AirQuality 0.020.00 0.020.11 0.020.00 0.020.00 0.000.00
BlogFeedback 1.390.01 1.390.96 1.390.01 1.390.01 0.010.01
CTSlices 0.280.01 0.280.50 0.280.01 0.280.01 0.010.00
FacebookComments 0.550.04 0.562.27 0.550.04 0.550.04 0.030.03
OnlineNews 2.880.02 2.960.77 2.960.02 3.070.03 0.020.01
PowerPlant 0.690.01 0.730.26 0.730.01 0.790.01 0.010.01
Superconductivity 0.790.01 0.820.71 0.820.01 0.850.01 0.010.01
WhiteWineQuality 2.240.10 2.240.89 2.240.10 2.270.10 0.070.06

C
la

ss
ifi

ca
ti

on
(d

is
cr

et
e
YY Y

)

0-
1

APSFailure (2) 1.000.00 1.000.00 1.000.00 1.000.00 0.000.00
Adult (2) 2.000.00 2.000.00 2.000.00 2.000.00 0.000.00
Avila (12) 1.000.00 1.000.00 1.000.00 1.000.00 0.000.00
BankMarketing (2) 1.000.00 1.000.00 1.010.02 1.740.23 0.010.02
CardDefault (2) 2.000.00 2.000.00 2.000.00 2.000.00 0.000.00
Landsat (6) 1.050.21 4.792.14 4.471.31 6.000.01 1.070.82
LetterRecognition (26) 1.000.00 1.000.00 1.000.01 6.505.85 0.000.01
MagicGamma (2) 1.970.06 2.000.00 2.000.00 2.000.00 0.000.00
SensorLessDrive (11) 1.000.00 1.000.00 1.000.00 1.000.00 0.000.00
Shuttle (7) 1.000.00 1.000.00 1.000.00 1.000.00 0.000.00

L
A

C
[S

ad
in

le
et

al
.,

20
19

] APSFailure (2) 0.910.01 0.930.26 0.930.01 0.930.00 0.000.01
Adult (2) 1.090.01 1.110.32 1.110.01 1.140.01 0.010.00
Avila (12) 0.910.00 0.930.26 0.930.01 0.950.01 0.000.00
BankMarketing (2) 0.960.00 0.990.12 0.990.00 1.010.01 0.000.00
CardDefault (2) 1.200.01 1.250.44 1.250.01 1.320.01 0.010.01
Landsat (6) 0.960.01 1.020.25 1.020.02 1.100.02 0.010.01
LetterRecognition (26) 0.940.01 0.970.32 0.970.01 1.020.01 0.010.00
MagicGamma (2) 1.030.01 1.070.26 1.070.01 1.120.01 0.010.01
SensorLessDrive (11) 0.900.00 0.910.29 0.910.00 0.920.00 0.000.00
Shuttle (7) 0.990.00 0.990.12 0.990.00 0.990.00 0.000.00

A
P

S
[R

om
an

o
et

al
.,

20
20

] APSFailure (2) 0.910.00 0.920.33 0.920.00 0.930.00 0.000.00
Adult (2) 1.200.01 1.230.50 1.230.01 1.260.01 0.010.00
Avila (12) 1.150.02 1.220.69 1.220.02 1.290.03 0.020.01
BankMarketing (2) 1.070.01 1.090.46 1.090.01 1.110.01 0.010.00
CardDefault (2) 1.300.01 1.360.50 1.360.01 1.420.01 0.010.01
Landsat (6) 1.220.03 1.320.78 1.320.03 1.460.04 0.030.02
LetterRecognition (26) 2.260.06 2.492.63 2.490.07 2.770.08 0.050.04
MagicGamma (2) 1.160.01 1.210.49 1.210.01 1.270.02 0.010.01
SensorLessDrive (11) 0.930.01 0.950.39 0.950.01 0.970.01 0.000.00
Shuttle (7) 0.890.00 0.900.31 0.900.00 0.910.00 0.000.00

mates: Monte Carlo averaging uses both the test and
the calibration data, whereas our estimates use only
the calibration data. Our estimation procedures pro-
vide both point and interval (with γ = 0.1) estimates;
they are obtained from Section 5.1 (with valid confi-
dence intervals) for the l1 and 0-1 loss non-conformity
functions, and from Section 5.2 for the other functions.

Table 3 illustrates the Monte Carlo average and our
estimates for the marginal expected prediction set size.
The means of our point estimates are close to that of

the Monte Carlo average, with the standard deviations
being comparable or smaller despite using 3× fewer
data points for the approximation. This is also reflected
in the low absolute error between our individual point
estimates and the mean Monte Carlo average. The only
exception is when using the 0-1 loss non-conformity
function on Landsat, but the standard deviations of
the estimates are high under this setting. Additionally,
our interval estimates provide lower-upper bounds on
the expected set size in practice (with the bounds being
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Figure 1: Expected prediction set sizes conditioned on the test datum feature. We illustrate the
expected sizes of split conformal prediction sets conditioned on varying test datum features using different UCI
datasets. We use CQR [Romano et al., 2019] for regression in the top row and APS [Romano et al., 2020] for
classification in the bottom row. The estimates are obtained via Monte Carlo averaging and our point estimates
(refer to the legend for the color scheme); they are depicted as a histogram with side-by-side bars for comparison.

around our point estimate). These results corroborate
the efficacy of our derived practical estimates.

6.3 Conditional Expected Prediction Set Size

Next, we analyze the expected size of prediction sets
conditioned on the test inputs. Here, we consider the
non-conformity functions CQR [Romano et al., 2019]
for regression and APS [Romano et al., 2020] for classifi-
cation, with other functions included in Appendix C.5.

We follow a similar setup as before, but instead of us-
ing 50% of the data as test, we use 25% and fix them
across the different data splits to compare the condi-
tional expected prediction set sizes on these particular
inputs; we will use the remaining 25% as accessible
data points. As before, we compare our derived point
estimate with Monte Carlo averaging. In this case,
the Monte Carlo average is the average size of the
prediction sets constructed using the split conformal al-
gorithm and the calibration data, across all data splits,
on a fixed test datum. On the other hand, we obtain
our point estimate from Section 5.2 using the accessible
data (without having access to the calibration data),
and condition on a fixed test datum feature with its
feature-specific multiplicative factor (cf. Corollary 2).

Figure 1 depicts histograms of the two estimates for the
expected set sizes conditioned on varying test inputs.
The plots look identical for the two estimates, despite
our point estimate not having seen the calibration data.
This further corroborates the efficacy of our estimates.

7 CONCLUSIONS

In this paper, we have studied the expected size of
the prediction sets constructed by the split conformal
framework. We begin by theoretically quantifying the
(marginal and conditional) expected prediction set size

(cf. Section 4). Consequently, we derive practical esti-
mation procedures that produce point estimates and
high-probability interval bounds for the expected set
size (cf. Section 5); these procedures require data to
be collected only once to produce reliable estimates.
Additionally, we corroborate our results experimentally
on real-world regression and classification problems and
demonstrate the efficacy of our estimates in practice.
Returning to our company and customers in Section 1,
the company now has the tools to provide estimates of
the expected set size, which allows potential customers
to reliably evaluate the company’s conformal system.
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the random seed after running experiments
multiple times). Yes. We include the mea-
sures/statistics used in Section 6.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes. We used a single 2.7
GHz Dual-Core Intel Core i5 processor.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Yes.

(b) The license information of the assets, if appli-
cable. Yes.

(c) New assets either in the supplemental material
or as a URL, if applicable. Yes.

(d) Information about consent from data
providers/curators. Not Applicable.

https://github.com/Guneet-Dhillon/expected-conformal-prediction-set-size
https://github.com/Guneet-Dhillon/expected-conformal-prediction-set-size
https://github.com/Guneet-Dhillon/expected-conformal-prediction-set-size
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(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable.
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A PROOFS

A.1 Proof for Theorem 1

Proof. The expected size of prediction sets under the split conformal prediction framework (cf. Equation (2)) is,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣] = E [|{y ∈ Y : τα(R1:n) ≥ R(Xn+1, y)}|]

= E

[∫
Y
1 {τα(R1:n) ≥ R(Xn+1, y)} dy

]
=

∫
Y
P {τα(R1:n) ≥ R(Xn+1, y)} dy

=

∫
Y

∫
R
P {τα(R1:n) ≥ R(Xn+1, y)|R(Xn+1, y) = r}PR(Xn+1,y) (dr) dy,

where, for every label y ∈ Y, we denote PR(Xn+1,y)(dr) to be the law of the random variable R(Xn+1, y), or
equivalently, the push-forward of the marginal distribution of Xn+1 under the mapping Xn+1 7→ R(Xn+1, y).
In other words, (y,A) ∈ Y × B(R) 7→ PR(Xn+1,y)(A) defines a transition kernel, where B(R) denotes the Borel
σ-algebra of the space of non-conformity scores R. Continuing from above, we have that,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣] = ∫

Y

∫
R
P {τα(R1:n) ≥ R(Xn+1, y)|R(Xn+1, y) = r}PR(Xn+1,y) (dr) dy

(i)
=

∫
Y

∫
R
P {τα(R1:n) ≥ r}PR(Xn+1,y) (dr) dy

=

∫
R
P {τα(R1:n) ≥ r}

∫
Y
PR(Xn+1,y) (dr) dy

=

∫
R
P {τα(R1:n) ≥ r}#R(dr),

where (i) follows from the test and the calibration non-conformity scores being independent of each other (since
test and calibration data are independent of each other, so are their scores). The measure #R is defined as,

#R(A) =

∫
Y
PR(Xn+1,y) (A) dy,

for A ∈ B(R). Note that #R(R) = |Y|, which may be infinite, for instance, when Y = R.

If #R is absolutely continuous w.r.t. the reference measure, then #R(dr) = #R(r)dr. If the law of R(Xn+1, y) is
absolutely continuous w.r.t. the reference measure on R, i.e., PR(Xn+1,y)(dr) = pR(Xn+1,y)(r)dr, then #R is also
absolutely continuous w.r.t. the reference measure, with the following density,

#R(r) =

∫
Y
pR(Xn+1,y) (r) dy,

where we use the same symbol for the density. This is the multiplicative factor, defined in Equation (6).

Continuing from above, we quantify the expected size of the prediction sets as follows,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣] =

∫
R
P {τα(R1:n) ≥ r}#R(r)dr,

which is the desired formulation in Equation (3).

Furthermore, the calibration non-conformity scores are i.i.d. with the probability density/mass function pR. As a
result, the individual (identical) probabilities for each calibration non-conformity score being strictly less than
r is P̃R(r) (cf. Equation (4)). Additionally, the threshold τα(R1:n) is the ⌈(1− α)(n+ 1)⌉’th smallest value in
the augmented set of calibration non-conformity scores {R1, . . . , Rn,∞}. Then, for the event τα(R1:n) ≥ r to
occur, at most nα = ⌈(1 − α)(n + 1)⌉ − 1 of the n calibration non-conformity scores can be strictly smaller
than r. If we consider a calibration score being strictly smaller than r as a success, we can simplify the event
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τα(R1:n) ≥ r to the event B(n, P̃R(r)) ≤ nα, where B(n, P̃R(r)) is a binomial random variable with n trials and
success probability P̃R(r). Finally, the probability of the event τα(R1:n) ≥ r simplifies to the following,

P {τα(R1:n) ≥ r} = P
{
B
(
n, P̃R (r)

)
≤ nα

}
= PB(n,P̃R(r)) (nα) .

Making the above simplification in Equation (3) leads to the desired expected set size in Equation (5).

A.2 Proof for Corollary 2

Proof. The expected size of split conformal prediction sets conditioned on the test datum feature Xn+1 = xn+1 is,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣∣∣∣Xn+1 = xn+1

]
= E [|{y ∈ Y : τα(R1:n) ≥ R(Xn+1, y)}||Xn+1 = xn+1]

= E

[∫
Y
1 {τα(R1:n) ≥ R(Xn+1, y)} dy

∣∣∣∣Xn+1 = xn+1

]
=

∫
Y
P {τα(R1:n) ≥ R(Xn+1, y)|Xn+1 = xn+1} dy

(i)
=

∫
Y
P {τα(R1:n) ≥ R(xn+1, y)} dy

=

∫
Y

∫
R
P {τα(R1:n) ≥ r} δR(xn+1,y)(dr)dy

=

∫
R
P {τα(R1:n) ≥ r}

∫
Y
δR(xn+1,y)(dr)dy

=

∫
R
P {τα(R1:n) ≥ r}#R(dr;xn+1),

where (i) follows from the test and the calibration non-conformity scores being independent of each other (since the
test and the calibration data are independent of each other). The measure is #R(dr;xn+1) =

∫
Y δR(xn+1,y)(dr)dy,

where δR(xn+1,y) is the Dirac delta distribution that places all of its probability mass on R(xn+1, y). We define
its Radon-Nikodym w.r.t. the reference measure as #R(r;xn+1) =

∫
Y δR(xn+1,y)(r)dy, when it exists; this is the

feature-specific multiplicative factor (cf. Section 4.2). As a result, we obtain #R(dr;xn+1) = #R(r;xn+1)dr.

Continuing, we quantify the expected prediction set size conditioned on the test datum feature Xn+1 = xn+1 as,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣∣∣∣Xn+1 = xn+1

]
=

∫
R
P {τα(R1:n) ≥ r}#R(r;xn+1)dr,

which is the desired formulation in Equation (7). Furthermore, following the proof in Appendix A.1, we can simplify
P{τα(R1:n) ≥ r} = PB(n,P̃R(r))(nα), to get the desired conditional expected prediction set size in Equation (8).

A.3 Proof for Corollary 3

Proof. For each calibration non-conformity score Ri, for i = 1, . . . , n, we introduce a new random variable
Vi = −Ri. Since R1:n are i.i.d., the random variables V1:n are i.i.d. as well, and we denote their cumulative
distribution function as PV . We recognize that P̃R (cf. Equation (4)) and PV are related in the following way,

P̃R (r) = P {R1 < r} = P {−R1 > −r} = P {V1 > −r} = 1− P {V1 ≤ −r} = 1− PV (−r) .

Equivalently, the empirical approximation P̃ emp
R (cf. Equation (9)) approximates PV in the following way,

P̃ emp
R (r) =

1

k

∑k

i=1
1 {R′

i < r} =
1

k

∑k

i=1
1 {−R′

i > −r}

=
1

k

∑k

i=1
1 {V ′

i > −r} = 1− 1

k

∑k

i=1
1 {V ′

i ≤ −r} = 1− P emp
V (−r) ,
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where we define V ′
i = −R′

i, for i = 1, . . . , k.

The Dvoretzky–Kiefer–Wolfowitz inequality [Dvoretzky et al., 1956; Massart, 1990] bounds the difference between
the cumulative distribution function and its empirical approximation, which can be transformed into confidence
intervals. We set ∆k,γ =

√
ln(2/γ)/2k. With probability at least 1− γ, for all r ∈ R,

PV (−r) ∈ [P emp
V (−r)−∆k,γ , P

emp
V (−r) + ∆k,γ ]

⇐⇒ 1− PV (−r) ∈ [1− P emp
V (−r)−∆k,γ , 1− P emp

V (−r) + ∆k,γ ]

⇐⇒ P̃R (r) ∈
[
P̃ emp
R (r)−∆k,γ , P̃

emp
R (r) + ∆k,γ

]
.

This implies that with probability at least 1− γ, for all r ∈ R,

PB(n,P̃R(r)) (nα) ∈
{
PB(n,p) (nα)

}
p∈[P̃ emp

R (r)−∆k,γ ,P̃
emp
R (r)+∆k,γ ]

.

Since PB(n,p)(nα) is a non-increasing function in p, with probability at least 1− γ, for all r ∈ R,

PB(n,P̃R(r)) (nα) ∈
[
PB(n,P̃ emp

R (r)+∆k,γ) (nα) , PB(n,P̃ emp
R (r)−∆k,γ) (nα)

]
.

Since this holds for all r ∈ R simultaneously, with probability at least 1− γ,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣] (i)

=

∫
R
PB(n,P̃R(r)) (nα)#R(r)dr ∈[∫

R
PB(n,P̃ emp

R (r)+∆k,γ) (nα)#R(r)dr,

∫
R
PB(n,P̃ emp

R (r)−∆k,γ) (nα)#R(r)dr

]
,

where (i) follows from Equation (5) and the multiplicative factor #R(r) is known. This is the desired confidence
interval for the expected size of the prediction sets in Equation (10) of Corollary 3.

A.4 Corollary 4

In addition to Corollary 2 where we quantify the expected prediction set size conditioned on a test datum feature,
we can condition on the calibration data Z1:n = z1:n instead. We summarize the corresponding result below.
Corollary 4 (Expected size of prediction sets conditioned on the calibration data). If the test and the calibration
non-conformity scores are independent of each other, then the expected size of the split conformal prediction sets
conditioned on the calibration data Z1:n = z1:n (and ri = R(zi), for i = 1, . . . , n) is given by the following,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣∣∣∣Z1:n = z1:n

]
=

∫
R
1 {τα (r1:n) ≥ r}#R(r)dr. (12)

Proof. The expected size of split conformal prediction sets conditioned on the calibration data Z1:n = z1:n is,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣∣∣∣Z1:n = z1:n

]
= E [|{y ∈ Y : τα(R1:n) ≥ R(Xn+1, y)}||Z1:n = z1:n]

= E

[∫
Y
1 {τα(R1:n) ≥ R(Xn+1, y)} dy

∣∣∣∣Z1:n = z1:n

]
=

∫
Y
P {τα(R1:n) ≥ R(Xn+1, y)|Z1:n = z1:n} dy

(i)
=

∫
Y
P {τα (r1:n) ≥ R(Xn+1, y)} dy

(ii)
=

∫
R
1 {τα (r1:n) ≥ r}#R(r)dr,

where (i) follows from the test and the calibration non-conformity scores being independent of each other (since
the test and the calibration data are independent of each other), and (ii) follows from the proof in Appendix A.1.
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A.5 Proof for Practical Estimation (Unknown Multiplicative Factor)

Under the setting where the multiplicative factor is intractable due to its dependence on the data distribution
and/or the machine learning model, we can re-arrange the formulation of the expected prediction set size
in Equation (5) to get rid of this factor. Using Equations (5) and (6), we obtain the following,

E
[∣∣∣ĈR

α (Xn+1;Z1:n)
∣∣∣] =

∫
R
PB(n,P̃R(r)) (nα)#R(r)dr =

∫
R
PB(n,P̃R(r)) (nα)

∫
Y
pR(Xn+1,y) (r) dy dr

=

∫
Y

∫
R
PB(n,P̃R(r)) (nα) pR(Xn+1,y) (r) dr dy =

∫
Y
E
[
PB(n,P̃R(R(Xn+1,y))) (nα)

]
dy,

where the expectation term is evaluated over the random variable R(Xn+1, y). This derives Equation (11).

B MULTIPLICATIVE FACTOR

The multiplicative factor (cf. Equation (6)) is responsible for translating the reference measure on the space of
non-conformity scores to the reference measure on the label space. Here we provide the derivation of this factor
under different settings used in Section 6 for the experiments. Note that we overload

∫
Y dy to be the Lebesgue

measure when Y is continuous and the counting measure when it is discrete (amounting to a sum over Y).

B.1 lp Loss for Regression

We begin with regression problems, where the label space is the set of reals, i.e., Y = R. A common non-conformity
function for such problems involves a machine learning model M and the l1 loss [Papadopoulos et al., 2002; Vovk
et al., 2005; Tibshirani et al., 2019; Barber et al., 2023]. We generalize this to any lp loss, with p ≥ 1. Then, the
non-conformity function is given by R(x, y) = |M(x)− y|p and the space of non-conformity scores is R = [0,∞).

We can define the cumulative distribution function of R(Xn+1, y) as follows,

PR(Xn+1,y) (r) = P {R(Xn+1, y) ≤ r} = P {|M(Xn+1)− y|p ≤ r} = P
{
|M(Xn+1)− y| ≤ r1/p

}
= P

{
y − r1/p ≤ M(Xn+1) ≤ y + r1/p

}
= P

{
M(Xn+1) ≤ y + r1/p

}
− P

{
M(Xn+1) < y − r1/p

}
(i)
= P

{
M(Xn+1) ≤ y + r1/p

}
− P

{
M(Xn+1) ≤ y − r1/p

}
= PM(Xn+1)

(
y + r1/p

)
− PM(Xn+1)

(
y − r1/p

)
,

where (i) follows from the prediction M(Xn+1) being continuous. Further, differentiating the above with respect
to r, we get the probability density function of R(Xn+1, y) as follows,

pR(Xn+1,y) (r) =
r1/p−1

p
pM(Xn+1)

(
y + r1/p

)
+

r1/p−1

p
pM(Xn+1)

(
y − r1/p

)
.

Therefore, the multiplicative factor in this setting is given by,

#R(r) =

∫
R

pR(Xn+1,y) (r) dy =

∫
R

r1/p−1

p
pM(Xn+1)

(
y + r1/p

)
dy +

∫
R

r1/p−1

p
pM(Xn+1)

(
y − r1/p

)
dy

=
r1/p−1

p

(∫
R

pM(Xn+1)

(
y + r1/p

)
dy +

∫
R

pM(Xn+1)

(
y − r1/p

)
dy

)
(ii)
=

r1/p−1

p

(∫
R

pM(Xn+1) (u) du+

∫
R

pM(Xn+1) (v) dv

)
=

r1/p−1

p
(1 + 1) =

2r1/p−1

p
,

where (ii) follows from a change of variables with u = y + r1/p and v = y − r1/p.

lp Loss for High-Dimensional Regression We do not restrict ourselves to one-dimensional regression; we
can further generalize the above to m-dimensional regression problems, where the label space is Y = Rm, with
m ≥ 1. The non-conformity function involves a machine learning model M and the lp loss, with p ≥ 1. Then, the
non-conformity function is given by R(x, y) = ∥M(x)− y∥pp and the space of non-conformity scores is R = [0,∞).



Guneet S. Dhillon, George Deligiannidis, Tom Rainforth

The multiplicative factor in this setting is given by,

#R(r) =

∫
Rm

pR(Xn+1,y) (r) dy =

∫
Rm

d

dr
PR(Xn+1,y) (r) dy =

d

dr

∫
Rm

PR(Xn+1,y) (r) dy

=
d

dr

∫
Rm

P {R(Xn+1, y) ≤ r} dy =
d

dr

∫
Rm

P
{
∥M(Xn+1)− y∥pp ≤ r

}
dy

=
d

dr

∫
Rm

P
{
∥M(Xn+1)− y∥p ≤ r1/p

}
dy.

We denote Bp
m(c, r) to be a m-dimensional lp-ball with center c and radius r, and V p

m(r) to be the volume of a
m-dimensional lp-ball with radius r. Continuing from above, we have that,

#R(r) =
d

dr

∫
Rm

P
{
∥M(Xn+1)− y∥p ≤ r1/p

}
dy =

d

dr

∫
Rm

P
{
y ∈ Bp

m

(
M(Xn+1), r

1/p
)}

dy

=
d

dr

∫
Rm

∫
Rm

P
{
y ∈ Bp

m

(
M(Xn+1), r

1/p
)∣∣∣M(Xn+1) = c

}
pM(Xn+1) (c) dc dy

=
d

dr

∫
Rm

∫
Rm

1
{
y ∈ Bp

m

(
c, r1/p

)}
pM(Xn+1) (c) dc dy =

d

dr

∫
Rm

pM(Xn+1) (c)

∫
Rm

1
{
y ∈ Bp

m

(
c, r1/p

)}
dy dc

=
d

dr

∫
Rm

pM(Xn+1) (c)V
p
m

(
r1/p

)
dc =

d

dr
V p
m

(
r1/p

)∫
Rm

pM(Xn+1) (c) dc =
d

dr
V p
m

(
r1/p

)
.

Furthermore, the volume of a m-dimensional lp-ball with radius r is V p
m(r) = (2Γ(1/p + 1))mrm/Γ(m/p + 1).

Therefore, the multiplicative factor in this setting is given by,

#R(r) =
d

dr
V p
m

(
r1/p

)
=

d

dr

(2Γ(1/p+ 1))
m

Γ(m/p+ 1)
rm/p =

(2Γ(1/p+ 1))
m

Γ(m/p+ 1)

m

p
rm/p−1.

Note that this is a generalization of our previous result for 1-dimensional regression (Y = R) to higher dimensions
(Y = Rm). Indeed, by substituting m = 1, we recover the multiplicative factor #R(r) = 2r1/p−1/p as before.

B.2 0-1 Loss for Classification

Here we consider classification problems, where the label space is discrete. The machine learning model M predicts
a label directly, i.e., M(x) ∈ Y for an input feature x ∈ X . We consider the 0-1 loss which takes the value 0 if the
prediction is correct and 1 when incorrect. Then, the non-conformity function is given by R(x, y) = 1{M(x) ̸= y}
and the space of non-conformity scores is R = {0, 1}. The multiplicative factor in this setting is given by,

#R(r) =
∑
y∈Y

pR(Xn+1,y) (r) =
∑
y∈Y

P {R(Xn+1, y) = r} =
∑
y∈Y

P {1 {M(x) ̸= y} = r}

=

{∑
y∈Y P {M(x) = y} , r = 0∑
y∈Y P {M(x) ̸= y} , r = 1

=

{∑
y∈Y P {M(x) = y} , r = 0∑
y∈Y (1− P {M(x) = y}) , r = 1

=

{
1, r = 0

|Y| − 1, r = 1
.

B.3 Other Settings

There are many other non-conformity functions proposed for regression and classification problems. However, in
some cases, the multiplicative factor can depend on the distribution of data and the machine learning model used.

Least Ambiguous Set-Valued Classifiers (LAC) Sadinle et al. [2019] propose LAC that provably construct
prediction sets with minimum expected size if the predicted probabilities are correct; this does not hold in practice,
but the predicted sets are small. In this case, the machine learning model M predicts a probability distribution
over the labels; we denote My(x) as the predicted probability for label y ∈ Y for an input feature x ∈ X . The
non-conformity function is given by R(x, y) = 1−My(x) and the space of non-conformity scores is R = [0, 1].

We can define the cumulative distribution function of R(Xn+1, y) as follows,

PR(Xn+1,y) (r) = P {R(Xn+1, y) ≤ r} = P {1−My(Xn+1) ≤ r} = P {My(Xn+1) ≥ 1− r}

= 1− P {My(Xn+1) < 1− r} (i)
= 1− P {My(Xn+1) ≤ 1− r} = 1− PMy(Xn+1) (1− r) ,
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where (i) follows from the prediction My(Xn+1) being continuous. Further, differentiating the above with respect
to r, we get the probability density function of R(Xn+1, y) as follows,

pR(Xn+1,y) (r) = pMy(Xn+1) (1− r) .

Therefore, the multiplicative factor in this setting is given by,

#R(r) =
∑
y∈Y

pR(Xn+1,y) (r) =
∑
y∈Y

pMy(Xn+1) (1− r) ,

which is dependent on the data distribution and the machine learning model. Consequently, the multiplicative
factor cannot be analytically solved under this setting without making any further assumptions.

Conformalized Quantile Regression (CQR) Romano et al. [2019] propose a non-conformity function for
regression (Y = R). In this case, the machine learning model is trained using quantile regression [Koenker and
Bassett, 1978] to have two outputs Mα/2(x),M1−α/2(x) ∈ R, corresponding to predictions of the (α/2)’th and (1−
α/2)’th level quantiles respectively, conditioned on an input feature x ∈ X . Further, the proposed non-conformity
function is a loss on the predicted quantile interval, given by R(x, y) = max{Mα/2(x)− y, y −M1−α/2(x)}. For
ease of notation when deriving the associated multiplicative factor, we set M(x) = (M1−α/2(x)+Mα/2(x))/2 ∈ R
and M∆(x) = (M1−α/2(x) − Mα/2(x))/2 ∈ R≥0. Then, the non-conformity function can be rewritten as
R(x, y) = max{M(x)−M∆(x)− y, y −M(x)−M∆(x)} and the space of non-conformity scores is R = R.

The multiplicative factor in this setting is given by,

#R(r)=

∫
R

pR(Xn+1,y) (r) dy=

∫
R

d

dr
PR(Xn+1,y) (r) dy=

d

dr

∫
R

PR(Xn+1,y) (r) dy=
d

dr

∫
R

P {R(Xn+1, y) ≤ r} dy

=
d

dr

∫
R

P {max{M(Xn+1)−M∆(Xn+1)− y, y −M(Xn+1)−M∆(Xn+1)} ≤ r} dy

=
d

dr

∫
R

P {y ∈ [M(Xn+1)−M∆(Xn+1)− r,M(Xn+1) +M∆(Xn+1) + r]} dy

=
d

dr

∫
R

∫
R≥0

∫
R

P {y∈ [M(Xn+1)−M∆(Xn+1)− r,M(Xn+1) +M∆(Xn+1) + r]|M(Xn+1)=c,M∆(Xn+1)=δ}

pM(Xn+1),M∆(Xn+1) (c, δ) dc dδ dy

=
d

dr

∫
R

∫
R≥0

∫
R

1 {y ∈ [c− δ − r, c+ δ + r]} pM(Xn+1),M∆(Xn+1) (c, δ) dc dδ dy

=
d

dr

∫
R≥0

∫
R

pM(Xn+1),M∆(Xn+1) (c, δ)

∫
R

1 {y ∈ [c− δ − r, c+ δ + r]} dy dc dδ

=
d

dr

∫
R≥0

∫
R

pM(Xn+1),M∆(Xn+1) (c, δ) 2(δ + r)1 {δ + r ≥ 0} dc dδ

=
d

dr

∫
R≥0

2(δ + r)1 {δ + r ≥ 0}
∫
R

pM(Xn+1),M∆(Xn+1) (c, δ) dc dδ

=
d

dr

∫
R≥0

2(δ + r)1 {δ + r ≥ 0} pM∆(Xn+1) (δ) dδ=
d

dr

∫ ∞

max{0,−r}
2(δ + r)pM∆(Xn+1) (δ) dδ

=2

∫ ∞

max{0,−r}

d

dr
(δ + r)pM∆(Xn+1) (δ) dδ=2

∫ ∞

max{0,−r}
pM∆(Xn+1) (δ) dδ=2P {M∆(Xn+1) ≥ max{0,−r}}

=2 (1− P {M∆(Xn+1) < max{0,−r}}) (i)=2 (1− P {M∆(Xn+1) ≤ max{0,−r}})

=2
(
1− PM∆(Xn+1) (max{0,−r})

)
=

{
2
(
1− PM∆(Xn+1) (0)

)
, r ≥ 0

2
(
1− PM∆(Xn+1) (−r)

)
, r < 0

=

{
2, r ≥ 0

2
(
1− PM∆(Xn+1) (−r)

)
, r < 0

,

where (i) follows from M∆(Xn+1) being continuous. The multiplicative factor is again dependent on the data
distribution and the machine learning model, and is therefore intractable without making further assumptions.
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Table 4: Dataset statistics summaries. We summarize the statistics of the UCI datasets used in our
experiments. This includes the number of data points and features for each dataset. For regression datasets, we
also include the range of label values; for classification, we also include the number of classes/labels.

Regression (Y = RY = RY = R) Classification (discrete YYY)

Dataset Number of
data points

Number of
features

Range of
labels

Dataset Number of
data points

Number of
features

Number
of labels

Abalone 4177 10 [-2.79, 5.94] APSFailure 120000 341 2
AirFoil 1503 5 [-3.11, 2.34] Adult 48842 108 2
AirQuality 8991 14 [-1.35, 7.20] Avila 20867 10 12
BlogFeedback 60021 280 [-0.72, 3.20] BankMarketing 41188 63 2
CTSlices 53500 384 [-2.00, 2.25] CardDefault 30000 23 2
FacebookComments 209074 53 [-0.21, 70.12] Landsat 6435 36 6
OnlineNews 39644 58 [-8.03, 6.63] LetterRecognition 20000 16 26
PowerPlant 9568 4 [-2.00, 2.43] MagicGamma 19020 10 2
Superconductivity 21263 81 [-1.00, 4.39] SensorLessDrive 58509 48 11
WhiteWineQuality 4898 11 [-3.32, 3.57] Shuttle 58000 9 7

Table 5: Prediction error frequencies. We report the empirically achieved prediction error frequencies for the
split conformal prediction framework using different non-conformity functions and UCI datasets (with α = 0.1).

Regression (Y = RY = RY = R) Classification (discrete YYY)

Prediction error frequency Prediction error frequency

Dataset l1l1l1 CQR Dataset 0-1 LAC APS

Abalone 0.0987 0.0846 APSFailure (2) 0.0055 0.0742 0.0999
AirFoil 0.0987 0.0983 Adult (2) 0.0000 0.0982 0.1001
AirQuality 0.0987 0.0201 Avila (12) 0.0489 0.0973 0.0998
BlogFeedback 0.1001 0.0514 BankMarketing (2) 0.0904 0.0982 0.0999
CTSlices 0.1000 0.0999 CardDefault (2) 0.0000 0.0984 0.0999
FacebookComments 0.1000 0.0449 Landsat (6) 0.0255 0.0982 0.1001
OnlineNews 0.1000 0.0999 LetterRecognition (26) 0.0781 0.0972 0.0999
PowerPlant 0.0997 0.0998 MagicGamma (2) 0.0000 0.0983 0.0999
Superconductivity 0.0999 0.0996 SensorLessDrive (11) 0.0036 0.0938 0.0999
WhiteWineQuality 0.0977 0.0387 Shuttle (7) 0.0007 0.0144 0.0999

Adaptive Prediction Sets (APS) and Regularized Adaptive Prediction Sets (RAPS) Romano
et al. [2020]; Angelopoulos et al. [2021] propose non-conformity functions for classification. Romano et al.
[2020] propose adaptive prediction sets (APS) that sum the predicted label probabilities in descending order
until the label assigned to the data point is included; the corresponding non-conformity function is given by
R(x, y) = UMy(x)+

∑
y′∈Y 1 {My′(x) > My(x)}My′(x), where My(x) is the predicted probability for label y ∈ Y

for an input feature x ∈ X and U ∼ U(0, 1) is a uniform random variable over [0, 1]. Additionally, Angelopoulos
et al. [2021] propose regularized adaptive prediction sets (RAPS) that further add a regularization term to
penalize the number of labels included in the prediction set. Both these non-conformity functions construct small
prediction sets, but their associated multiplicative factors are intractable without making further assumptions.

C EXPERIMENTS ON UCI DATASETS

We illustrate the efficacy of our results experimentally by applying our estimation procedures derived in Section 5
on real-world datasets from the UCI database [Kelly et al., 2023].4 We summarize the dataset statistics in Table 4.

C.1 Prediction Errors

We include the empirically achieved prediction error frequencies for our implementation of the split conformal
prediction framework using different non-conformity functions. This facilitates the evaluation of our implementation
in satisfying the requirement in Equation (1). We use the same setup as the one highlighted in Section 6.1.

With the significance level α set to 0.1, the results are illustrated in Table 5. We observe that the error frequencies
are either close to or less than the desired bound of α = 0.1 for every non-conformity function and dataset.

4We use the python package https://github.com/isacarnekvist/ucimlr to access the datasets.

https://github.com/isacarnekvist/ucimlr
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Table 6: Interval error frequencies. We report the error frequencies of our individual interval estimates (with
γ = 0.1) bounding the mean Monte Carlo average for different non-conformity functions and UCI datasets.

Regression (Y = RY = RY = R) Classification (discrete YYY)

Interval error frequency Interval error frequency

Dataset l1l1l1 CQR Dataset 0-1 LAC APS

Abalone 0.0000 0.0000 APSFailure (2) 0.0000 0.4420 0.0040
AirFoil 0.0000 0.0000 Adult (2) 0.0000 0.0000 0.0000
AirQuality 0.0020 1.0000 Avila (12) 0.0000 0.0000 0.0080
BlogFeedback 0.0000 1.0000 BankMarketing (2) 0.0370 0.0000 0.0020
CTSlices 0.0050 0.8820 CardDefault (2) 0.0000 0.0000 0.0000
FacebookComments 0.0000 1.0000 Landsat (6) 0.0000 0.0000 0.0020
OnlineNews 0.0000 0.0000 LetterRecognition (26) 0.0000 0.0000 0.0000
PowerPlant 0.0000 0.0000 MagicGamma (2) 0.0000 0.0000 0.0010
Superconductivity 0.0000 0.0330 SensorLessDrive (11) 0.0000 0.0000 0.0000
WhiteWineQuality 0.0000 0.8920 Shuttle (7) 0.0000 1.0000 0.0050

Table 7: Marginal expected prediction set sizes (high-dimensional regression). We illustrate the
marginal expected prediction set sizes. The estimates are obtained via Monte Carlo averaging, our point estimates,
and our interval estimates (lower-upper bounds with γ = 0.1). We also compute the absolute errors between
our individual point estimates and the mean Monte Carlo average, and the frequencies of error of our individual
interval estimates bounding the mean Monte Carlo average. We report the means and standard deviations.

Marginal expected prediction set size

Dataset Our interval
lower bound

Monte Carlo
average

Our point
estimate

Our interval
upper bound

Absolute
error

Interval error
frequency

l1l1l1 Parkinson 1.330.20 1.850.29 1.850.28 2.710.43 0.240.14 0.0010
l2l2l2 1.070.16 1.480.23 1.480.22 2.160.34 0.190.11 0.0000

C.2 Interval Estimate Errors

Our estimation procedures in Section 5 provide point and interval estimates for the expected prediction set
size. The latter are high-probability bounds, which in fact are valid confidence intervals when the multiplicative
factor is known (cf. Corollary 3). We want to validate our results experimentally; however, it is impossible to
do so as the true expected set size is unknown in practice. As a proxy, we use the mean Monte Carlo average
instead and test its inclusion in our individual interval bounds. With that, we expand on our experimental results
in Section 6.2. Note that our interval estimates are obtained from Section 5.1 (with valid confidence intervals) for
the l1 and 0-1 loss non-conformity functions, and from Section 5.2 for the other non-conformity functions.

Table 6 illustrates the frequency of error of our individual estimated intervals (with γ set to 0.1) bounding the
mean Monte Carlo average; we would expect these values to be below γ = 0.1. When the intervals are valid
confidence intervals (under the l1 and 0-1 loss non-conformity functions), the error frequencies are always below
0.1, corroborating our result in Corollary 3. When the intervals are not necessarily valid confidence intervals,
they still achieve errors lower than 0.1 on 23/30 instances. In the 7 remaining instances, our point and interval
estimates are close to the mean Monte Carlo average, but the standard deviation in the Monte Carlo average
estimate itself is high. Note that this is a proxy to the true interval error, which cannot be computed in practice.

C.3 High-Dimensional Regression

Here we consider the Parkinson dataset from the UCI database [Kelly et al., 2023], a 2-dimensional regression
dataset with 5875 data points and 19-dimensional features. We use the l1 and the l2 loss non-conformity functions
with multiplicative factors #R(r) = 4r and #R(r) = π respectively (cf. Appendix B.1). As the multiplicative
factors are known, we compute our empirical estimates from Section 5.1. We use the same setup as in Section 6.1.

Table 7 illustrates the Monte Carlo average and our estimates for the marginal expected prediction set size on the
Parkinson dataset. We observe trends similar to those in Table 3; the means of our point estimates are close to
that of the Monte Carlo average, with the standard deviations being comparable despite using 3× fewer data
points. This is also reflected in the low absolute error between our individual point estimates and the mean Monte
Carlo average. Additionally, our interval estimates provide lower-upper bounds on the expected set size. Similar
to Table 6, the error frequencies of our individual estimated intervals bounding the mean Monte Carlo average are
below γ = 0.1. These results corroborate the efficacy of our estimates on high-dimensional regression problems.
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Table 8: Marginal expected prediction set sizes (insights ablation). We illustrate changes in the marginal
expected prediction set sizes (the Monte Carlo averages) using different non-conformity functions and UCI
datasets. The first column corresponds to no change from the setup in Section 6.1. The second corresponds to an
increase in the amount of training data. The third corresponds to a decrease in the significance level. The fourth
corresponds to an increase in the amount of calibration data. We report the means and standard deviations.

Marginal expected prediction set size (Monte Carlo average)

Dataset No change Increase in
training data

Decrease in
significance level

Increase in
calibration data

R
eg

re
ss

io
n

(Y
=
R

Y
=
R

Y
=
R
)

l 1l 1l 1

Abalone 2.190.09 2.140.09 4.860.36 2.180.06
AirFoil 1.390.10 1.040.08 2.800.39 1.380.08
AirQuality 0.020.00 0.010.00 0.070.02 0.020.00
PowerPlant 0.700.02 0.640.01 1.320.06 0.700.01
WhiteWineQuality 2.580.08 2.430.08 4.810.27 2.570.05

C
Q

R

Abalone 2.170.98 1.960.97 4.091.15 2.190.97
AirFoil 1.580.64 1.220.56 3.010.81 1.570.63
AirQuality 0.020.11 0.010.06 0.050.19 0.020.11
PowerPlant 0.730.26 0.680.25 1.270.32 0.730.26
WhiteWineQuality 2.240.89 2.110.93 5.081.18 2.240.89

C
la

ss
ifi

ca
ti

on
(d

is
cr

et
e
YY Y

)

0-
1

Avila (12) 1.000.00 1.000.00 12.000.00 1.000.00
CardDefault (2) 2.000.00 2.000.00 2.000.00 2.000.00
Landsat (6) 4.792.14 1.351.28 6.000.00 5.251.78
LetterRecognition (26) 1.000.00 1.000.00 26.000.00 1.000.00
MagicGamma (2) 2.000.00 2.000.00 2.000.00 2.000.00

L
A

C

Avila (12) 0.930.26 0.900.29 1.260.48 0.930.26
CardDefault (2) 1.250.44 1.250.43 1.870.34 1.250.44
Landsat (6) 1.020.25 0.990.22 1.690.93 1.020.25
LetterRecognition (26) 0.970.32 0.930.29 2.291.65 0.970.32
MagicGamma (2) 1.070.26 1.060.24 1.630.48 1.070.26

A
P

S

Avila (12) 1.220.69 1.090.61 2.331.37 1.220.69
CardDefault (2) 1.360.50 1.350.50 1.910.29 1.360.50
Landsat (6) 1.320.78 1.270.74 2.271.39 1.310.78
LetterRecognition (26) 2.492.63 2.202.42 6.806.11 2.492.63
MagicGamma (2) 1.210.49 1.190.49 1.740.44 1.210.49

C.4 Insights Ablation

We analyzed the dependence of the expected size of prediction sets on various user-specified parameters in Sec-
tion 4.1. Here we empirically validate our analysis by providing experimental results on such parameter changes.

We use the same setup as the one highlighted in Section 6.1, and further add 3 settings, changing a user-specified
parameter one at a time. These settings are: (i) an increase in the amount of training data from 25% to 50% of
the dataset, hence learning a machine learning model that generalizes better (which is further used to implement
the non-conformity function), (ii) a decrease in the significance level α from 0.1 to 0.01, allowing for fewer errors
in the conformal system, and (iii) an increase in the amount of calibration data n from 25% to 50% of the dataset.

Table 8 illustrates the change in the marginal expected prediction set size (the Monte Carlo average) under
varying user-specified parameters. We observe that: (i) an increase in the amount of training data decreases the
expected prediction set size, (ii) a decrease in the significance level increases the expected prediction set size,
and (iii) an increase in the calibration data does not affect the expected prediction set size by much; the only
exception is when using the 0-1 loss non-conformity function on Landsat, but the standard deviations of the
estimates are high under this setting. These experimental results empirically validate our analysis in Section 4.1.

C.5 Conditional Expected Prediction Set Size

Here we analyze the expected size of prediction sets conditioned on the test inputs. This is an extension of our
experimental results in Section 6.3, where we considered the non-conformity functions CQR [Romano et al., 2019]
and APS [Romano et al., 2020]; here we extend our analysis to other non-conformity functions as well.

Figure 2 depicts histograms of the Monte Carlo average and our point estimates for the expected set sizes
conditioned on varying test inputs. Similar to our observations from Figure 1, the histograms in Figure 2 look
identical for the two estimates, despite our point estimate not having seen the calibration data. The only exception
is when using the 0-1 loss non-conformity function on Landsat. These results further corroborate the efficacy of
our estimates in approximating the expected size of prediction sets conditioned on the test datum feature.
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Figure 2: Expected prediction set sizes conditioned on the test datum feature. We illustrate the expected
sizes of split conformal prediction sets conditioned on varying test datum features using different non-conformity
scores (rows) and UCI datasets (columns). The estimates are obtained via Monte Carlo averaging and our point
estimates (refer to the legend for the color scheme); they are depicted as a histogram with side-by-side bars.

C.6 Other Estimates

The Monte Carlo average is the commonly used empirical estimate for the expected prediction set size. In Sec-
tion 6.2, we compared our estimates from Section 5 with the Monte Carlo average, where the former used 3×
fewer data points in its approximation. Here we compare the two when the same data points are used for both.

We first describe how the Monte Carlo average is obtained. This equates to sampling a (pseudo) calibration data and
obtaining conformal prediction sets on multiple (pseudo) test data; the average size of the obtained prediction sets
is the Monte Carlo average. As we did before, we assume access to k data points Z ′

1 = (X ′
1, Y

′
1), . . . , Z

′
k = (X ′

k, Y
′
k)

that are available for the purpose of deriving estimates. When k > n, we can sample n data points to be the
(pseudo) calibration data and the remaining k − n data points to be the (pseudo) test data; this matches the
number of calibration data used in the estimation and the one we want to estimate for. However, when k ≤ n
(which is often the case), we cannot avoid the mismatch in the calibration data used in the estimation and the one
we want to estimate for. Instead, we split the data into k/2 each for both calibration and test. As a result, the
sizes of the obtained prediction sets are i.i.d. (which will be useful later) and we call their average the same-data
Monte Carlo average (since we will use the same k accessible data points as the ones used for our estimates).

We follow the same setup as in Section 6.1 to compare our point estimate and the same-data Monte Carlo average
with respect to the regular Monte Carlo average; Table 9 compares these estimates. We observe that the means of
both our point estimates and the same-data Monte Carlo averages are close to that of the Monte Carlo average,
but our point estimates have comparable or smaller standard deviations. When comparing the absolute errors
between the individual estimates and the mean Monte Carlo average, the errors of our point estimates never
exceed those of the same-data Monte Carlo averages. This corroborates the practical use of our point estimates.
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Table 9: Marginal expected prediction set sizes (point estimates). We compare different point estimates
for the marginal expected prediction set size with respect to regular Monte Carlo averaging. They are obtained
via our point estimates and the same-data Monte Carlo average. We also compute the absolute errors between
the individual estimates and the mean Monte Carlo average. We report the means and standard deviations.

Marginal expected prediction set size Absolute error

Dataset Monte Carlo
average

Our point
estimate

Same-data
Monte Carlo

average

Our point
estimate

Same-data
Monte Carlo

average

R
eg

re
ss

io
n

(Y
=
R

Y
=
R

Y
=
R
)

l 1l 1l 1

Abalone 2.190.09 2.190.09 2.200.13 0.070.05 0.110.08
AirFoil 1.390.10 1.390.09 1.410.13 0.080.05 0.100.08
AirQuality 0.020.00 0.020.00 0.020.00 0.000.00 0.000.00
PowerPlant 0.700.02 0.700.02 0.700.02 0.010.01 0.020.01
WhiteWineQuality 2.580.08 2.580.07 2.580.11 0.060.05 0.090.07

C
Q

R

Abalone 2.170.98 2.160.17 2.180.28 0.150.09 0.270.09
AirFoil 1.580.64 1.580.07 1.600.11 0.050.04 0.090.07
AirQuality 0.020.11 0.020.00 0.020.00 0.000.00 0.000.00
PowerPlant 0.730.26 0.730.01 0.740.02 0.010.01 0.010.01
WhiteWineQuality 2.240.89 2.240.10 2.240.10 0.070.06 0.080.06

C
la

ss
ifi

ca
ti

on
(d

is
cr

et
e
YY Y

)

0-
1

Avila (12) 1.000.00 1.000.00 1.000.00 0.000.00 0.000.00
CardDefault (2) 2.000.00 2.000.00 2.000.00 0.000.00 0.000.00
Landsat (6) 4.792.14 4.471.31 4.612.24 1.070.82 1.931.16
LetterRecognition (26) 1.000.00 1.000.01 1.000.00 0.000.01 0.000.00
MagicGamma (2) 2.000.00 2.000.00 2.000.00 0.000.00 0.000.00

L
A

C

Avila (12) 0.930.26 0.930.01 0.930.01 0.000.00 0.010.01
CardDefault (2) 1.250.44 1.250.01 1.250.02 0.010.01 0.020.01
Landsat (6) 1.020.25 1.020.02 1.020.03 0.010.01 0.020.02
LetterRecognition (26) 0.970.32 0.970.01 0.970.02 0.010.00 0.010.01
MagicGamma (2) 1.070.26 1.070.01 1.070.02 0.010.01 0.010.01

A
P

S

Avila (12) 1.220.69 1.220.02 1.220.03 0.020.01 0.030.02
CardDefault (2) 1.360.50 1.360.01 1.360.02 0.010.01 0.020.01
Landsat (6) 1.320.78 1.320.03 1.310.05 0.030.02 0.040.03
LetterRecognition (26) 2.492.63 2.490.07 2.500.10 0.050.04 0.080.06
MagicGamma (2) 1.210.49 1.210.01 1.210.02 0.010.01 0.020.01

Table 10: Marginal expected prediction set sizes (interval estimates). We compare interval estimates
for the marginal expected prediction set size (with γ = 0.1). They are obtained via our interval estimates, the
central limit theorem (CLT), Hoeffding’s inequality (HI), and Bernstein’s inequality (BI). We compute their sizes
and error frequencies in bounding the mean Monte Carlo average. We report the means and standard deviations.

Interval size Interval error frequency

Dataset Ours CLT HI BI Ours CLT HI BI

R
eg

re
ss

io
n

(Y
=
R

Y
=
R

Y
=
R
)

l 1l 1l 1

Abalone 0.840.10 0.000.00 0.00 1.00
AirFoil 0.910.11 0.000.00 0.00 1.00
AirQuality 0.010.00 0.000.00 0.00 1.00
PowerPlant 0.130.01 0.000.00 0.00 1.00
WhiteWineQuality 0.700.07 0.000.00 0.00 1.00

C
Q

R

Abalone 0.640.03 0.130.01 0.00 1.00
AirFoil 0.730.12 0.150.01 0.00 0.48
AirQuality 0.000.00 0.010.00 1.00 0.12
PowerPlant 0.100.01 0.020.00 0.00 0.52
WhiteWineQuality 0.030.08 0.120.01 0.89 0.52

C
la

ss
ifi

ca
ti

on
(d
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cr

et
e
YY Y

)

0-
1

Avila (12) 0.000.00 0.000.00 0.580.00 0.020.00 0.00 0.00 0.00 0.00
CardDefault (2) 0.000.00 0.000.00 0.080.00 0.000.00 0.00 0.00 0.00 0.00
Landsat (6) 4.950.21 0.000.00 0.520.00 0.030.00 0.00 1.00 1.00 1.00
LetterRecognition (26) 5.505.85 0.000.00 1.270.00 0.040.00 0.00 0.00 0.00 0.00
MagicGamma (2) 0.030.06 0.000.00 0.100.00 0.000.00 0.00 0.00 0.00 0.00

L
A

C

Avila (12) 0.050.00 0.020.00 0.580.00 0.040.00 0.00 0.44 0.00 0.10
CardDefault (2) 0.120.01 0.020.00 0.080.00 0.040.00 0.00 0.62 0.07 0.42
Landsat (6) 0.150.01 0.030.00 0.520.00 0.060.00 0.00 0.58 0.00 0.26
LetterRecognition (26) 0.080.01 0.020.00 1.270.00 0.060.00 0.00 0.50 0.00 0.07
MagicGamma (2) 0.090.01 0.020.00 0.100.00 0.030.00 0.00 0.56 0.00 0.39

A
P

S

Avila (12) 0.140.01 0.050.00 0.580.00 0.080.00 0.01 0.48 0.00 0.22
CardDefault (2) 0.120.01 0.030.00 0.080.00 0.040.00 0.00 0.54 0.08 0.36
Landsat (6) 0.240.03 0.090.00 0.520.00 0.150.01 0.00 0.36 0.00 0.11
LetterRecognition (26) 0.510.04 0.170.01 1.270.00 0.280.01 0.00 0.40 0.00 0.18
MagicGamma (2) 0.110.01 0.030.00 0.100.00 0.050.00 0.00 0.41 0.01 0.20

Furthermore, since the prediction set sizes are i.i.d., we can obtain confidence intervals for the expected prediction
set size using concentration inequalities; we make use the following ones: (i) the central limit theorem (CLT),
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(ii) Hoeffding’s inequality (HI), and (iii) Bernstein’s inequality (BI). CLT is valid only asymptotically. HI is
finite-sample valid for random variables with known bounds, so is useful only for classification problems (where
the set size is bound by [0, |Y|]). BI is finite-sample valid for random variables with known bounds and variances
(useful only for classification problems); however, since the variance is unknown and needs to be approximated,
the intervals may not be valid confidence intervals. Alternatively, our interval estimates combine the expected set
size in Theorem 1 and the Dvoretzky–Kiefer–Wolfowitz inequality [Dvoretzky et al., 1956; Massart, 1990].

We again follow the same setup as in Section 6.1 to compare our interval estimates and the ones obtained using
CLT, HI, and BI; Table 10 compares these estimates (with γ set to 0.1). We compute the interval sizes and the
frequencies of error in bounding the mean Monte Carlo average. We observe that the CLT and the BI intervals are
small, but their error frequencies can be high. On the other hand, our intervals and the HI intervals consistently
achieve errors below the requirement of γ = 0.1. Further, the HI intervals cannot be applied to regression
problems, and they do not change with the non-conformity function as the intervals are determined by the
classification problem (the number of labels/classes), the number of data points used in the approximation, and γ.
On the other hand, our intervals can be applied to regression problems, and they adapt with the non-conformity
function being used, often resulting in smaller interval sizes. Hence our estimated intervals provide practical use.

D EXPERIMENTS ON SYNTHETIC EXAMPLE

We experimentally validate our theoretical results for the marginal expected prediction set size in Theorem 1
and Corollary 3 through a synthetic example. We design a setup where the distribution of the calibration
non-conformity scores is known. We set the space of non-conformity scores to be a discrete set of m values
R = {r1, . . . , rm}, where r1 < . . . < rm. We set the distribution of the calibration non-conformity scores to
be a beta-binomial distribution BetaBin(m − 1, a, b) over the indices, with parameters a, b > 0. Then, for a
non-conformity score ri ∈ R, P̃R(ri) = P{BetaBin(m− 1, a, b) ≤ i− 2}. Additionally, we set #R(r) = 2.

For a fixed set of values of the parameters a, b,m, n, and α = 0.1, we theoretically compute the expected prediction
set size using Equation (5). We compare this against: (i) the average size of prediction sets constructed by
running the conformal prediction algorithm (the Monte Carlo average), and (ii) our point estimates and confidence
intervals (for a given γ) of the expected prediction set size computed using Section 5.1. We randomly sample n
i.i.d. non-conformity scores; we use these as the calibration non-conformity scores for the Monte Carlo average,
and use the same as accessible non-conformity scores for our estimates. We repeat the process 10 times using
different random seeds. Additionally, we vary the parameter values in the following way: a, b ∈ {.0625, .25, 1, 4, 16},
m,n ∈ {10, 100, 1000, 10000}, and γ ∈ {0.1, 0.01}. This results in a total of 800 settings, repeated 10 times each.

Figure 3 plots the theoretically expected prediction set sizes and their empirical estimates across these different
settings, which we average over different a and b to obtain line plots. The identity line (dashed black line) is the
theoretically expected prediction set size from Equation (5). We make the following observations. (i) The Monte
Carlo average (solid black line) collapses to the identity line as n increases from left to right; this validates our
quantification of the expected set size in Theorem 1. (ii) The average of our point estimates (green line) also
collapses to the identity line as n increases. (iii) Our confidence intervals contain the identity line with high
probability; for γ = 0.1 (orange lines) and γ = 0.01 (blue lines), the confidence intervals contain the theoretically
expected size values 99.9% and 100.0% of the time respectively. Additionally, as n increases, these confidence
intervals collapse to the identity line. These validate our estimates in Section 5.1 and our result in Corollary 3.
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Figure 3: Marginal expected prediction set sizes (synthetic example). We plot the theoretically expected
prediction set sizes (cf. Equation (5)) on the x-axis vs. its empirical estimates on the y-axis. These estimates
include: (i) the Monte Carlo average (solid black line), (ii) our point estimate from Section 5.1 (green line), and
(iii) our upper-lower confidence bounds from Corollary 3 (orange/blue lines, changing with γ as per the legend).
α is set to 0.1 and the results are averaged to a line plot over different a and b values (bands denote the standard
deviations). Additionally, the dashed black line is the identity line. The number of calibration data points n
increases from left to right. The size of the space of non-conformity scores m increases from top to bottom.
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