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Abstract

We study a class of constrained reinforcement
learning (RL) problems in which multiple con-
straint specifications are not identified before
training. It is challenging to identify appropri-
ate constraint specifications due to the unde-
fined trade-off between the reward maximiza-
tion objective and the constraint satisfaction,
which is ubiquitous in constrained decision-
making. To tackle this issue, we propose a
new constrained RL approach that searches
for policy and constraint specifications to-
gether. This method features the adaptation
of relaxing the constraint according to a re-
laxation cost introduced in the learning objec-
tive. Since this feature mimics how ecological
systems adapt to disruptions by altering op-
eration, our approach is termed as resilient
constrained RL. Specifically, we provide a set
of sufficient conditions that balance the con-
straint satisfaction and the reward maximiza-
tion in notion of resilient equilibrium, propose
a tractable formulation of resilient constrained
policy optimization that takes this equilib-
rium as an optimal solution, and advocate two
resilient constrained policy search algorithms
with non-asymptotic convergence guarantees
on the optimality gap and constraint satis-
faction. Furthermore, we demonstrate the
merits and the effectiveness of our approach
in computational experiments.

1 INTRODUCTION

Constrained reinforcement learning (RL) is a con-
strained control problem in which an agent aims to
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maximize its expected cumulative reward while satisfy-
ing a given constraint by interacting with an environ-
ment over time. Multiple requirements are of growing
interest in constrained RL towards designing an agent
to meet more than one constraint, e.g., resource allo-
cation for many users [De Nijs et al., 2021] and safe
learning in robotics [Brunke et al., 2022]. Real-world
constrained RL often engages practical problems with
unwell-specified requirements, e.g., human-satisfaction
in human-robot interaction [El-Shamouty et al., 2020]
and safety level of robotic agents [Zhang et al., 2020].
Hence, it is challenging to determine reasonable con-
straint specifications for making trade-off between re-
ward maximization and constraint satisfaction.

Although reward shaping has been widely used to ag-
gregate multiple requirements into a single reward,
e.g., [Pérez-D’Arpino et al., 2021], it doesn’t guarantee
constraint satisfaction for each requirement. A known
reason for this single-reward failure is that the solutions
generated by standard RL algorithms do not necessarily
satisfy required constraints, which is known as “scalar-
ization fallacy” [Szepesvári, 2020, Zahavy et al., 2021,
Calvo-Fullana et al., 2023]. Therefore, it is cru-
cial to directly impose the constraints that re-
sult from multiple requirements [Roy et al., 2022],
which has been studied by a lot of recent ef-
forts, e.g., [Chow et al., 2017, Paternain et al., 2019,
Ding et al., 2020]. However, such results are based
on known feasible constraints, not applicable in the
situations with unknown constraint specifications.

To fill this gap, we aim to automate the constraint
specifications during constrained RL training by fa-
cilitating the trade-off between reward maximization
and constraint satisfaction. The focal RL environ-
ment of this paper is the constrained Markov decision
process (MDP) that constrains expected cumulative
utilities [Altman, 1999], which has been widely-used in
many constraint-rich domains, e.g., resource allocation,
robotic planning, and financial management; see more
in [Garcıa and Fernández, 2015, De Nijs et al., 2021,
Gu et al., 2022, Brunke et al., 2022].
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Contribution. Our contributions are threefold.

• We first introduce nominal constraints that are
possibly infeasible, so that they can be relaxed to
compromise reward maximization for constraint
satisfaction. We provide the sensitivity analysis
of the optimal reward value function to the per-
turbations in constraints. Since the compromise
mimics how ecological systems adapt to disrup-
tions by changing operating conditions, we term
this as resilient constrained policy optimization,
and broadly as resilient constrained RL.

• To specify the levels or thresholds of constraints,
we introduce a user-defined cost function that es-
tablishes a price for relaxing nominal constraints,
and exploit the relative difficulty of relaxing dif-
ferent constraints to define a trade-off solution:
resilient equilibrium. We provide a tractable for-
mulation of resilient constrained policy optimiza-
tion that takes this equilibrium as an optimal
solution, and establish its duality theory under
less restrictive feasibility assumption.

• To find an optimal pair of policy and constraint
specification, we extend two non-resilient policy
gradient algorithms for our resilient constrained
policy optimization problem, and prove that
they converge to a optimal solution with non-
asymptotic convergence guarantees on the opti-
mality gap and constraint satisfaction. To the best
of our knowledge, for the first time we establish
provably resilient constrained policy search algo-
rithms against uncertain constraints. Moreover,
we provide computational experiments to show the
merits and the effectiveness of our approach.

Related Work. Our problem formulation is based on
the constrained MDP framework [Altman, 1999]. Con-
strained MDPs with well-specified constraints are rela-
tively well-studied in the literature, e.g., model-based
algorithms [Ding et al., 2021, Efroni et al., 2020] and
policy gradient methods [Ding et al., 2022], under the
strict feasibility assumption on constraints; see more
related works in this line in [Gu et al., 2022]. However,
it is intractable to determine the feasibility of con-
straints in many scenarios, e.g., budget distribution for
many users [Boutilier and Lu, 2016, Vora et al., 2023]
and online budget level [Diaz et al., 2023] are unknown
for feasibility-checking, and safety constraints in train-
ing are different from those for real robotics, which
are expensive to model [Kaspar et al., 2020]. Although
this issue can be alleviated by some heuristic methods in
the references aforementioned, their optimality and con-
straint satisfaction are not established. We note that
the reward and constraint trade-off essentially reduces

to the sensitivity of the optimal reward value function,
which was studied using the parameter perturbations
of a constrained MDP [Altman and Shwartz, 1991,
Altman and Gaitsgory, 1993]. Compared with this line
of works, in this paper we exploit the sensitivity anal-
ysis of the optimal reward value function against the
perturbations in constraints to strike a balance be-
tween reward maximization and constraint satisfaction.
We further develop two constrained policy search algo-
rithms for finding optimal policy and constraint speci-
fication simultaneously, with theoretical guarantees.

Our work is also pertinent to recent efforts of aug-
menting a RL agent with the adaptation to the
interference that is potentially catastrophic to sys-
tem [Yang et al., 2021, Huang et al., 2022]. This ca-
pability is often termed as “resilience” that draws
the ability of ecological systems to adapt to disrupted
environment [Holling, 1973, Holling, 1996]. Resilience
to perturbations in agent-environment interaction has
been studied in several prior works [Yang et al., 2021,
Phan et al., 2021, Gao et al., 2022]; yet the resilience
to corrupted constraints on system or performance
hasn’t been studied. Recently, the adaptation of trained
policy to unknown constraint specifications is inves-
tigated in control [Chamon et al., 2020], constrained
learning [Hounie et al., 2024], and constrained offline
RL [Liu et al., 2023, Zhang et al., 2023]. In contrast,
we investigate “resilience” for constrained policy opti-
mization and provably convergent constrained policy
search algorithms, with a focus on the adaptation of
trained policy to unknown constraint specifications.

2 Preliminaries

We consider an infinite-horizon constrained MDP,

CMDP (S, A, P, r, {ui}mi=1, {bi}mi=1, γ, ρ )

where S and A are state/action spaces, P is a tran-
sition kernel that specifies the probability P (s′ | s, a)
from state s to next state s′ under action a ∈ A, r,
ui: S × A → [0, 1] are reward/utility functions, bi is
a constraint threshold for the ith utility, γ ∈ [0, 1) is
a discount factor, and ρ is an initial distribution. A
stochastic policy π: S → ∆(A) determines a prob-
ability distribution ∆(A) over the action space A
based on the current state, i.e., at ∼ π(· | st) at time
t. Let Π be the set of all possible stochastic poli-
cies. A policy π ∈ Π, together with the initial state
distribution ρ, induces a distribution over trajecto-
ries τ = {(st, at, rt, {ui,t}mi=1)}∞t=0, where s0 ∼ ρ,
at ∼ π(· | st), rt = r(st, at), ui,t = ui(st, at), and
st+1 ∼ P (· | st, at) for all t ≥ 0.

Given a policy π, the value functions V πr , V πui
: S → R

associated with the reward r or the utility ui are given
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by the expected sums of discounted rewards or utilities
received under the policy π, respectively,

V πr (s) := E

[ ∞∑
t=0

γtr(st, at) |π, s0 = s

]
where E is expected over the randomness in the tra-
jectory τ induced by π; similarly, we define V πui

(s) for
the utility ui. The expected values over the initial
distribution ρ are given by V πr (ρ) = Es∼ ρ [V

π
r (s) ]

and V πui
(ρ) = Es∼ ρ

[
V πui

(s)
]
. It is useful to in-

troduce the discounted state visitation distribution,
dπs0(s) = (1− γ)

∑∞
t=0 γ

tPr(st = s |π, s0) which adds
up discounted probabilities of visiting s in the execution
of π starting from s0. Denote dπρ (s) := Es0 ∼ ρ[ d

π
s0(s) ]

and thus dπρ (s) ≥ (1− γ)ρ(s) for any ρ and s. Further-
more, for the reward r, we introduce the state-action
value function Qπr : S ×A→ R when the agent begins
with a state-action pair (s, a) and follows a policy π,
together with its advantage function Aπr : S ×A→ R,

Qπr (s, a) := E

[ ∞∑
t=0

γtr(st, at) |π, s0 = s, a0 = a

]
Aπr (s, a) := Qπr (s, a)− V πr (s).

Similarly, we define Qπui
, Aπui

: S ×A→ R for ui.

The constrained MDP aims to find a policy that maxi-
mizes the reward value function V πr (ρ) while the utility
value function V πui

(ρ) is above some threshold bi,

maximize
π ∈Π

V πr (ρ)

subject to V πui
(ρ) ≥ bi, i = 1, . . . ,m

(1)

where bi is the specified threshold priori for the
ith utility value function. Since V πr (ρ), V

π
ui
(ρ) ∈

[0, 1/(1 − γ)], we assume bi ∈ ( 0, 1/(1 − γ) ]. Thus,
by taking gi: S × A → [−1, 1] with gi = ui −
(1 − γ)bi, equivalently we translate the constraint
V πui

(ρ) ≥ bi into V
π
gi(ρ) ≥ 0, which is our focal con-

straint. Those utility constraints often result from
additional requirements on the system operation, e.g.,
budget or safety constraints [Boutilier and Lu, 2016,
Paternain et al., 2022]. We denote the optimal value
for Problem (1) by V ⋆ which takes V ⋆ = V ⋆r (ρ) at an
optimal policy π⋆ if it is feasible; V ⋆ = −∞ otherwise.

Although an optimal policy always exists in the un-
constrained case, i.e., m = 0 in Problem (1), it
is not necessarily true in the constrained case be-
cause of potentially infeasible constraints. Thus, it
is important to specify relevant constraints for Prob-
lem (1). In many scenarios, how to specify the con-
straint thresholds {bi}i=1,...,m is not known priori. For
instance, the threshold bi means the ith user’s neg-
ative budget that is often time-varying in resource
allocation [Boutilier and Lu, 2016, Vora et al., 2023];

to trade-off many rewards in preference-based
RL [Eysenbach et al., 2019, Liang et al., 2022], the
threshold bi is often unknown for preference i; see their
details and more examples in Section 2.1. In practice,
only a nominal constraint specification is given with un-
known feasibility, and we have to relax (or tighten) the
nominal constraints for guarding the feasibility. With
a slight abuse of notation, we use notation {bi}mi=1 to
denote the nominal constraint specifications that might
be too conservative (or loose).

To study the effect of constraint specifications, we form
a variant of constrained MDP with flexible constraints,

V ⋆(ξ) := maximize
π ∈Π

V πr (ρ)

subject to V πgi(ρ) ≥ ξi, i = 1, . . . ,m
(2)

where ξ ∈ Rm is the unknown perturbation that relaxes
the constraint when ξi < 0 (or tightens the ith inequal-
ity constraint when ξi > 0), and V ⋆(ξ) is the primal
value function: V ⋆(ξ) = V ⋆r (ρ) at an optimal policy
π⋆(ξ) if it is feasible; V ⋆(ξ) = −∞ otherwise. Since
V ⋆(0) = V ⋆ for ξ = 0, Problem (1) is our nominal
problem, and Problem (2) is our perturbed problem.

Since |V πgi(ρ)| ≤ 1/(1 − γ), it is natural to restrict
|ξi| ≤ 1/(1−γ) since Problem (2) is infeasible when ξi >
1/(1− γ) for all i = 1, . . . ,m, and it is unconstrained
when ξi < −1/(1 − γ) for all i = 1, . . . ,m. Denote
Rmγ := {ξ ∈ Rm | |ξi| ≤ 1/(1 − γ)}. Let the domain
of V ⋆(ξ) be Ξ, which is the set of all ξ for which the
constraint set {π ∈ Π |V πgi(ρ) ≥ ξi, i = 1, . . . m} is non-
empty, or equivalently, Ξ := {ξ ∈ Rmγ |V ⋆(ξ) > −∞}.

From the non-convexity of value functions in pol-
icy [Agarwal et al., 2021], Problem (2) is non-convex.
Nevertheless, we prove that the primal function V ⋆(ξ)
has several nice properties inherited from the duality
analysis. Lemma 1 shows that the primal function
V ⋆(ξ) enjoys monotonicity and it is concave over the
domain Ξ; see Appendix A.1 for proof.

Lemma 1 (Coordinate-Wise Monotonicity and Con-
cavity). For Problem (2),

(i) V ⋆(ξ) is monotonically non-increasing with respect
to the coordinates of ξ ∈ Ξ, i.e., V ⋆(ξ) ≤ V ⋆(ξ′)
when ξj > ξ′j for some j and ξi = ξ′i for i ̸= j;

(ii) V ⋆(ξ) is a concave function over ξ ∈ Ξ.

Lemma 1 shows that relaxing the constraints more
(or decreasing ξ) may yield a larger optimal value for
Problem (2); however this relaxed problem becomes
more far away from the nominal problem (1). Similarly,
tightening the constraints can decrease the optimal
value, even nullifying the constraints.

To stay close to the nominal problem (1) while specify-
ing constraints efficiently, we will exploit the properties
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of V ⋆(ξ) together with a relaxation cost to introduce a
trade-off solution for Problem (2) in Section 3. We fea-
ture this solution with resilient due to its adaptation of
primal value function to the changing constraint speci-
fications, and we term the problem of finding optimal
policy and constraint specification together as resilient
constrained constrained policy optimization.

2.1 Examples with Unspecified Constraints

We showcase that constraint specifications are often
not a priori knowledge for Problem (1).

Resource allocation. In a system of m users
sharing a transition kernel [Boutilier and Lu, 2016,
Vora et al., 2023], each user i has a reward function
ri and a cost function ci (or consumption), and the
budget B > 0 is given. The resource allocation is to
decide a budget assignment {c̄i}mi=1 for m users by
maximizing the average reward r = 1

m

∑m
i=1 ri and re-

straining the total cost
∑m
i=1 c̄i ≤ B. Formulation (1)

applies when we take ui = −ci and bi = −c̄i, and eval-
uate their discounted value functions. One application
scenario is the robot monitoring problem experimented
in Section 5. However, the budget assignment {bi}mi=1

is a decision variable to be determined. Moreover, the
budget can be uncertain, e.g., multi-arm bandits with
limited resources [Diaz et al., 2023].

Many rewards trade-off. Multiple rewards appear
in real RL applications [Shelton, 2000, Liu et al., 2014,
Eysenbach et al., 2019, Liang et al., 2022]. For in-
stance, in preference-based RL [Liang et al., 2022], ex-
trinsic rewards {ri}mi=1 are preferences of human feed-
back while an intrinsic reward r captures the un-
certainty in the disagreement among humans. Take
ui = ri in Problem (1). To encourage exploration
under alignment with preferences, Problem (1) aims
to maximize the intrinsic reward value function while
constraining extrinsic reward value functions above
some thresholds {bi}mi=1. However, such thresholds are
unknown due to varying human’s preferences.

3 RESILIENT CONSTRAINED RL

To principally specify appropriate constraints, we in-
troduce a cost function of relaxing the constraints, and
a resilient equilibrium that balances the relaxation and
the primal value function in Section 3.1. We formulate
a tractable policy optimization based on regularization
to find a resilient equilibrium in Section 3.2.

3.1 Resilient Equilibrium

We characterize the change of the primal value function
V ⋆(ξ) to relaxation ξ via the subgradient and geometric

multiplier in nonlinear programming [Bertsekas, 2016].
Let the dual function for Problem (1) be D(λ) :=
supπ ∈Π V

π
r+λ⊤g(ρ) and its domain be Λ := {λ ∈

Rm+ |D(λ) > −∞}. A relation between the primal
value function and the dual function is, for any λ ≥ 0,

D(λ) = sup
ξ∈Ξ

{
λ⊤ξ − (−V ⋆(ξ))

}
(3)

which can be derived in Appendix A.2. In other words,
D(λ) is the conjugate convex function of −V ⋆(ξ) for
ξ ∈ Ξ and the domain Λ is a convex set. By the
concavity of the primal function V ⋆(ξ) in Lemma 1 and
Ξ, there exists a subgradient for V ⋆(ξ) at any interior
point ξ ∈ Ξ. This subgradient naturally connects to
the geometric multiplier λ,

V ⋆(ξ) = sup
π ∈Π

{
V πr+λ⊤g(ρ)− λ⊤ξ

}
.

Thus, we can interpret the subgradient of the negative
primal function as a geometric multiplier for Prob-
lem (2); see Appendix A.3 for proof.

Lemma 2 (Subgradient and Geometric Multiplier).
In Problem (2) with any ξ ∈ Ξ, these are equivalent:

(i) λ is a subgradient of −V ⋆(ξ) at ξ;

(ii) λ is a geometric multiplier for Problem (2).

Having described the sensitivity of the primal function,
we next introduce a notion of resilient equilibrium in
supervised learning [Hounie et al., 2024] to determine
the constraint specifications according to the difficulty
in solving the nominal problem (1). The non-increasing
property in Lemma 1 is that the primal function V ⋆(ξ)
would be increased by decreasing ξ coordinate-wise
(relaxing the constraints). However, more relaxation ξ
yields looser constraints. We introduce a convex cost
function h(ξ): Ξ → R to measure the relaxation cost.
Without loss of generality, we use the case: ξ = 0 to
match our nominal problem and set the cost to be zero,
i.e., h(0) = 0. To govern the change in V ⋆(ξ), we use
the marginal price of relaxing constraint: ∇h(ξ), to
define a resilient equilibrium ξ⋆.

Definition 1 (Resilient Equilibrium). For any cost
function h that is continuously differentiable, concave,
and non-increasing coordinate-wise, a resilient equilib-
rium for V ⋆(ξ) is a relaxation ξ⋆ ∈ Ξ,

∇h(ξ⋆) ∈ ∂V ⋆(ξ⋆).

At a resilient equilibrium ξ⋆, for some ϵ > 0, relaxing it
to ξ⋆ − ϵ would increase the cost by −ϵ∇h(ξ⋆) and the
primal function may get larger; similarly, tightening it
to ξ⋆ + ϵ would decrease the cost by ϵ∇h(ξ⋆) and the
primal function may become smaller. The “resilient”
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captures how much we can relax (or tighten) the con-
straints before we observe significant improvement (or
degradation) in the primal value function. Thus, a re-
silient constrained policy optimization problem reduces
to solving Problem (2) for some ξ⋆ that is a resilient
equilibrium for an user-defined cost function h.

Figure 1: Resilient equilibrium for Problem (2) with
m = 1 and a quadratic function h(ξ) for ξ ∈ R. The
horizontal axis is the relaxation ξ, and the vertical axis
is the (sub)gradient values: ∇h(ξ) (—) and ∂V (ξ) (—).
The shaded area means the infeasibility when ξ is large.

We note that V ⋆(ξ)− h(ξ) is a concave function. The
existence of resilient equilibrium can be easily obtained
in Lemma 3, and we delay its proof to Appendix B.1.

Lemma 3 (Equilibrium Existence). There exists a
resilient equilibrium ξ⋆ ∈ Ξ, and it is unique when h is
strictly convex.

Behind the existence, Lemma 4 shows that relaxing the
constraint (or decrease ξ) increases the cost sensitivity
|∇h(ξ)| while the effect on the primal value function is
decreased; see Appendix B.2 for proof. Thus, they must
cross at a resilient equilibrium as shown in Figure 1.

Lemma 4 (Coordinate-Wise Monotonicity). Let ξ,
ξ′ ∈ Ξ satisfy ξ′i < ξi and ξ

′
j = ξj for j ̸= i. Then,

(∇h(ξ′))i ≤ (∇h(ξ))i and (∂V ⋆(ξ))i ≤ (∂V ⋆(ξ′))i

where (·)i is the ith entry.

However, the primal value function is unavailable. The-
orem 1 gives a sufficient condition on a resilient equi-
librium via the geometric multiplier, and we relate it
to the duality next; see Appendices B.3–B.4 for proofs.

Theorem 1 (Geometric Multiplier Condition). For
Problem (2) with ξ̄ ∈ Ξ, if λ is a geometric multiplier
and ∇h(ξ̄) + λ = 0, then ξ̄ is a resilient equilibrium.

As a corollary of Theorem 1, we relate the resilient
equilibrium to an optimal Lagrange multiplier. Let the
standard Lagrangian for Problem (2) for ξ ∈ Rm be

L(π, λ; ξ) = V πr (ρ) +

m∑
i=1

λi(V
π
gi(ρ)− ξi)

:= V πr+λ⊤g(ρ)− λ⊤ξ

and the associated dual function be

D(λ; ξ) = max
π ∈Π

L(π, λ; ξ) for any λ ≥ 0.

The optimal dual function D⋆(ξ) = minλ≥ 0D(λ; ξ) is
achieved at an optimal Lagrange multiplier λ⋆(ξ). By
the weak duality, D⋆(ξ) ≥ V ⋆(ξ) for any ξ ∈ Rm.

Corollary 1. Let the strong duality hold for Prob-
lem (2) with some ξ̄ ∈ Ξ, i.e., V ⋆(ξ̄) = D⋆(ξ̄). If
∇h(ξ̄) + λ⋆(ξ̄) = 0, then ξ̄ is a resilient equilibrium.

The strong duality in Corollary 1 only concerns the
relaxed problem (2), which is much weaker than
the the strong duality for the nominal problem
(e.g., [Paternain et al., 2019, Ding et al., 2020]). We
also remark that the strong duality is stronger than the
geometric multiplier condition [Bertsekas, 2016], which
is more general than the study [Hounie et al., 2024].

3.2 Resilience via Regularization

Although a resilient equilibrium always exists under
mild regularity conditions, it is not straightforward to
design efficient policy learning algorithms for finding
such an equilibrium. To address this issue, we introduce
the cost function into Problem (1) as regularization,

maximize
π ∈Π, ξ∈Ξ

V πr (ρ)− h(ξ)

subject to V πgi(ρ) ≥ ξi for i = 1, . . . ,m
(4)

where h(ξ) is a regularizer that is monotonically non-
increasing coordinate-wise. Relaxing the constraint,
i.e., decreasing ξ would increase h(ξ); tightening the
constraint is the opposite. Lemma 5 states that Prob-
lem (4) provides a resilient equilibrium and an associ-
ated resilient policy; see Appendix B.5 for proof.

Lemma 5 (Regularized Solution). Let (π̄⋆, ξ̄⋆) an op-
timal solution to Problem (4). Then, ξ̄⋆ is a resilient
equilibrium and π̄⋆ is an associated resilient policy.

Problem (4) is a practical extension of constrained
policy optimization to jointly optimizing over policy
and relaxation. Naturally, we can enable the extension
of existing constrained policy search algorithms to being
resilient; see two of them in Section 4. Before that, we
first show some important properties of Problem (4).

We denote the optimal value for Problem (4) by
V ⋆h := V ⋆r (ρ) − h(ξ̄⋆) that is evaluated at an opti-
mal solution (π̄⋆, ξ̄⋆) if it is feasible; V ⋆h = −∞ oth-
erwise. Let the dual function for Problem (4) be
Dh(λ) := supπ ∈Π,ξ∈Ξ{V πr+λ⊤g(ρ) − h(ξ) − λ⊤ξ} and

the optimal dual function be D⋆
h := Dh(λ̄

⋆) that is
achieved at an optimal dual variable λ̄⋆.

Assumption 1 (Strict feasibility). There exist a pair
of (π̄, ξ̄) ∈ Π × Ξ and a constant c > 0 such that
V π̄gi(ρ)− ξ̄i ≥ c for all i = 1, . . . ,m.
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Due to the flexibility of selecting ξ̄, Assumption 1 is
weaker than the usual Slater condition [Altman, 1999].

Thus, the strong duality and dual boundedness hold
for Problem (4); see Appendices B.6–B.7 for proofs.

Theorem 2 (Strong Duality for Regularized Problem).
Let Assumption 1 hold. Then, the strong duality holds
for Problem (4), i.e., V ⋆h = D⋆

h.

Corollary 2 (Dual Boundedness). Let Assumption 1
hold. Then, the optimal dual is bounded, i.e.,

0 ≤ λ̄⋆i ≤ V ⋆r (ρ)− h(ξ̄⋆)− (V π̄r − h(ξ̄))

c
:= Ch.

The strict feasibility of (π̄, ξ̄) and the optimality of
(π̄⋆, ξ̄⋆) leads to Ch > 0. Corollary 2 restricts dual
variables in Λ := {λ ∈ Rm+ |λi ≤ Ch, i = 1, . . . ,m}.
Let the standard Lagrangian for Problem (4) be

Lh(π, ξ;λ) := V πr+λ⊤g(ρ)− h(ξ)− λ⊤ξ.

By the strong duality, Problem (4) is equivalent to the
following constrained saddle-point problem,

maximize
π ∈Π, ξ∈Ξ

minimize
λ∈Λ

Lh(π, ξ;λ)

= minimize
λ∈Λ

maximize
π ∈Π, ξ∈Ξ

Lh(π, ξ;λ).

Let Π⋆×Ξ⋆×Λ⋆ be a set of saddle points of Lh(π, ξ;λ)
over Π× Ξ× Λ. From Theorem 2, there always exists
such a saddle point, i.e., Π⋆ × Ξ⋆ × Λ⋆ ̸= ∅. From
the definition of Ξ⋆, |ξi| ≤ 1/(1 − γ) for any ξ ∈ Ξ⋆.
Aided by these nice properties, we next introduce two
constrained policy search algorithms to find a near-
optimal pair of policy and constraint specification.

4 RESILIENT CONSTRAINED
POLICY LEARNING

We provide two constrained policy gradient algorithms
for searching for policy and constraint specification
together, in Section 4.1 and Section 4.2, respectively.

4.1 Resilient Policy Gradient Primal-Dual
(ResPG-PD) Method

We generalize the policy gradient primal-dual mirror de-
scent [Ding and Jovanović, 2022] for our resilient prob-
lem (4) by adding a relaxation update. The resilient
policy gradient primal-dual (ResPG-PD) method in
Algorithm 1 maintains three sequences for primal and
dual variables via Primal update (5a) and Dual up-
date (5b): two primal sequences ({πt}t≥ 1, {ξt}t≥ 1)
for policy and relaxation, and a dual sequence {λt}t≥ 1,
where η is the stepsize, π0 is the uniform distribution
over the action space, ξ0 = 0, and λ0 = 0. In Primal

update (5a), the policy update works as the projected
Q-ascent [Bhandari and Russo, 2021, Xiao, 2022] and
the relaxation update performs the projected gradient
ascent. Dual update (5b) is the standard projected gra-
dient descent. When the relaxation is fixed, i.e., ξt = ξ,
the relaxation update does not impact the dual update,
and thus Algorithm 1 reduces to the policy gradient
primal-dual method in Euclidean space. By viewing
this, we next extend the average-value convergence
analysis for our resilient problem by incorporating the
additional relaxation update {ξt}t≥ 1 in Theorem 3 and
delay its proof to Appendix C.1.

We measure the performance of Algorithm 1 by com-
paring the sequences {πt, ξt, λt}t≥ 1 with the optimal
solution (π̄⋆, ξ̄⋆) in the standard notion of regret,

Ropt =
1

T

T−1∑
t=0

(V ⋆r (ρ)− h(ξ̄⋆)− (V πt
r (ρ)− h(ξt)))

Rvio =

m∑
i=1

[
1

T

T−1∑
t=0

(ξi,t − V πt
gi (ρ))

]
+

where Ropt is the average of the sub-optimal gaps and
Rvio is the sum of the averaged constraint violations.

Theorem 3 (Regret-Type Performance). Let Assump-
tion 1 hold. Suppose Λ = [0, 2Ch], and h(ξ) has Lips-
chitz continuous gradient with parameter Lh over ξ ∈ Ξ.
If η = 1/

√
T for Algorithm 1, then,

Ropt ≤ m(7 + (Lh + 1)2)√
T

Rvio ≤ (8 + (Lh + 1)2)m/Ch +mCh

(1− γ)2
√
T

.

Theorem 3 states that the average sub-optimal gaps
and constraint violations of the primal-dual iter-
ates of Algorithm 1 decay to zero with rate 1/

√
T .

This rate matches the rate of non-resilient algo-
rithms [Ding and Jovanović, 2022] and is independent
of MDP’s dimension. Due to the regularization and
relaxation in Problem (4), our proof handles regular-
ized reward value and relaxed utility value together,
generalizing the prior art for a broader class of prob-
lems. Since each primal-dual iteration involves projec-
tions to a probability simplex and intervals, requiring
linear complexity, Algorithm 1 has polynomial compu-
tational complexity. Denote ξ′i :=

1
T

∑T−1
t=0 ξi,t. After

T = O(1/ϵ2) iterations of Algorithm 1, we can select
the best policy π′ from T steps,

V ⋆r − h(ξ̄⋆)− (V π
′

r − h(ξ′)) = O(ϵ)[
ξ′i − V π

′

gi

]
+

= O(ϵ)

However, safety-critical systems demand training stabil-
ity of policy iterates, which can’t be guaranteed by re-
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Algorithm 1 Resilient policy gradient primal-dual (ResPG-PD) method

1: Parameters: η > 0.
Initialization: Let π0(a | s) = 1/A for s ∈ S, a ∈ A, and ξ0 = 0, and λ0 = 0.

2: for step t = 0, . . . , T − 1 do
3: Primal-dual update

πt+1(· | s) = argmax
π(· | s)∈Π

{∑
a

π(a | s)Qπt

r+λ⊤
t g

(s, a)− 1

2η
∥π(· | s)− πt(· | s)∥2

}
ξt+1 = argmax

ξ∈Ξ

{
ξ⊤ (−∇h(ξt)− λt)−

1

2η
∥ξ − ξt∥2

} (5a)

λt+1 = argmin
λ∈Λ

{
λ⊤
(
V πt
g (ρ)− ξt

)
+

1

2η
∥λ− λt∥2

}
(5b)

4: end for

gret performance. This issue was addressed by the state-
augmentation method [Calvo-Fullana et al., 2023] and
the regularized or optimistic policy gradient meth-
ods [Ding et al., 2023] in non-resilient problems. We
next address this issue in the resilient context by offer-
ing a resilient optimistic policy gradient method.

4.2 Resilient Optimistic Policy Gradient
Primal-Dual (ResOPG-PD) Method

We extend Algorithm 1 to an optimistic variant via
the optimistic method [Rakhlin and Sridharan, 2013],
which is detailed in Algorithm 2 in Appendix C.2.
The resilient optimistic policy gradient primal-dual
(ResOPG-PD) method maintains two sets of primal-

dual sequences {πt, ξt, λt}t≥ 1 and {π̂t, ξ̂t, λ̂t}t≥ 1. The

update for {π̂t, ξ̂t, λ̂t}t≥ 1 is similar as (5) that can be
viewed as a real update, except that their gradients are
computed at some intermediate iterates {πt, ξt, λt}t≥ 1

that serve as predictions, instead of previous iterates.
Thus, the real step is optimistic about the predictions,
which is used to stabilize the dynamics of gradient-
based algorithms [Popov, 1980]. We can also view Al-
gorithm 2 as a resilient version of the optimistic policy
gradient primal-dual method [Ding et al., 2023] with

the introduction of the relaxation update {ξt, ξ̂t}t≥ 1.
By accounting for the relaxation update, we establish
convergence guarantee on the primal-dual iterates in
Theorem 4; see Appendix C.3 for proof.

We first state a few notations. The distribution mis-
match coefficient over ρ is κ := supπ ∥dπρ/ρ∥∞, where
the division is component-wise. Clearly, κ ≤ 1/ρmin,
where ρmin := mins ρ(s). The projection operator
PX(·) is given by PX(x) := argminx′ ∈X ∥x− x′∥.

Theorem 4 (Last-Iterate Convergence). Let Assump-
tion 1 hold. Suppose Λ = [0, 2Ch], ρmin > 0, h(ξ) is
strongly convex and has Lipschitz continuous gradient

with parameter Lh, and the optimal state visitation dis-
tribution is unique, i.e., dπ

⋆

ρ = dπρ for π ∈ Π⋆. If we set
stepsize η ≤ ηmax, where ηmax is given in Appendix C.3
for Algorithm 2 in Appendix C.2, then for any t,

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t(· | s))− π̂t(· | s)∥2

+
1

2

∥∥∥PΞ⋆(ξ̂t)− ξ̂t

∥∥∥2 + 1

2

∥∥∥PΛ⋆(λ̂t)− λ̂t

∥∥∥2 = O

(
1

t

)
where O(·) hides a problem-dependent constant Cρ,γ,σ
in Lemma 11 in Appendix C.3.

Theorem 4 states that the primal-dual iterates of Al-
gorithm 2 converge to a set of (π̄⋆, ξ̄⋆, λ̄⋆) in a sub-
linear rate. Due to the introduction of regularization
and relaxation, our proof distinguishes itself from the
problem-dependent linear rate [Ding et al., 2023], e.g.,
a new quadratic term enters into the lower bound in
Lemma 11. An immediate implication of Theorem 4
is that the primal iterates (π̂t, ξ̂t) are ϵ-near optimal
after O(1/ϵ2) iterations; see Appendix C.4 for proof.

Corollary 3 (Near-Optimal Policy and Relaxation).
Let assumptions in Theorem 4 hold. For a desired
level of accuracy ϵ > 0, if the stepsize η is provided by
Theorem 4, then for t = Ω(1/ϵ2),

V ⋆r (ρ)− h(ξ̄⋆)− (V π̂t
r (ρ)− h(ξ̂t)) = O(ϵ)∥∥∥ξ̂t − V π̂t

g (ρ)
∥∥∥ = O(ϵ)

where Ω(·) hides some problem-dependent constant.

Corollary 3 states that the last primal iterate (π̂t, ξ̂t) is
ϵ-near optimal after Ω(1/ϵ2) iterations. This iteration
complexity is similar as the one for Algorithm 1, as
well as the computational complexity. However, policy
convergence in Corollary 3 is stated per iterate, which
is stronger than the one for the best iterate.



Resilient Constrained Reinforcement Learning

o
p
ti
m
al
it
y
ga

p

iteration iteration

Figure 2: Policy optimality gaps of ResPG-PD (Algo-
rithm 1, left) and ResOPG-PD (Algorithm 2, right),
with three cost functions h(ξ) = αξ2 for α = 0.03 ( )
α = 0.2 ( ), α = 1 ( ), and stepsize η = 0.2.
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Figure 3: Relaxation of ResPG-PD (Algorithm 1, left)
and ResOPG-PD (Algorithm 2, right), with three cost
functions h(ξ) = αξ2 for α = 0.03 ( ), α = 0.2
( ), α = 1 ( ) and stepsize η = 0.2.
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Figure 4: Constraint specifications under different re-
laxation costs for Algorithm 1 (ResPG-PD, ) and
Algorithm 2 (ResOPG-PD, ). The relaxation cost
function is h(ξ) = αξ2. The horizontal axis is the value
of α and the vertical axis is the relaxation ξ. The
height of is the oscillation magnitude of ResPG-PD.
We run algorithms for 2000 iterations with stepsize
η = 0.2 and uniform initial distribution ρ.

5 EXPERIMENTS

We show the merits and the effectiveness of our resilient
policy search algorithms: ResPG-PD (Algorithm 1) and
ResOPG-PD (Algorithm 2) in three experiments.

We first use a randomly-generated constrained MDP
with state/action size (20, 5) and calculate its optimal
policy and relaxation as a sanity check; see Appendix D

for the detail. Figure 2 shows that ResOPG-PD’s policy
iterates converge for different cost functions and so
does ResPG-PD except for a small cost function, which
verifies the average and the last-iterate performance
in Theorems 3–4; see the convergence of relaxation in
Figure 3. This indicates the capability of ResPG-PD
and ResOPG-PD to find an optimal policy associated
with a proper constraint specification. Figure 4 shows
that increasing relaxing cost leads to less relaxation,
providing relaxation in accord with the relaxing cost.

S0S1 S2

Figure 5: Robot monitoring of three locations.
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Figure 6: Relaxations (ξ1: , ξ2: ) of ResPG-
PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2,

right), with a cost functions h(ξ) = α ∥ξ∥2 for α = 0.1,
and stepsize η = 0.005.
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Figure 7: Constraint specifications under different re-
laxation costs for Algorithm 1 (ResPG-PD, ξ1: , ξ2: )
and Algorithm 2 (ResOPG-PD, ξ1: , ξ2: ). The re-

laxation cost function is h(ξ) = α ∥ξ∥2. The horizontal
axis is the value of α and the vertical axes are re-
laxations ξ1 and ξ2. The height of is the oscillation
magnitude of ResPG-PD. We run algorithms for 100000
iterations with stepsize η = 0.005 and uniform initial
distribution ρ.

Second, we consider a monitoring problem in Figure 5
in which an agent needs to spend as much time as
possible at S0 and must stay S1 and S2 with some
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time [Calvo-Fullana et al., 2023]; see Appendix D for
the detail. Due to the unknown feasibility of the time
for S1 or S2, it warrants a resilient approach to relax
(or tighten) either constraints. We choose the initial
constraints to be infeasible. Figure 6 shows that both
algorithms can adapt two relaxations to the difficulty
of constraints: one is relaxed more than the other, and
Figure 7 shows two relaxation curves for two algorithms
against different relaxation cost functions.

Third, we generalize the previous monitoring problem
to a larger state/action space in Figure 8, where in a
given time a robot has to stay in blue/green areas for a
minimum amount of time while maximizing the time in
red area in Figure 8; see Appendix D for the detail. We
also choose infeasible initial constraints. Figure 8(a)
shows that applying a non-resilient method to this infea-
sible problem yields a policy that does not monitor S0,
where the non-resilient method is ResOPG-PD without
relaxation update [Ding et al., 2023]. ResOPG-PD’s
policy in Figure 8(b) balances three areas. Figure 9
shows that ResOPG-PD gets higher reward value than
the non-resilient method by modifying the constraints.
However, the non-resilient method does not balance the
reward and the constraints. Figure 10 shows two relax-
ation curves for ResPG-PD and ResOPG-PD against
different relaxation cost functions.

6 CONCLUDING REMARKS

To specify the constraint specifications, we have pre-
sented an approach by making trade-off between the
marginal decrease in the optimal reward value func-
tion that results from relaxation and the marginal
increase in relaxation cost. We show the existence of
such a resilient equilibrium under some mild regularity
conditions, and provide a tractable constrained policy
optimization that takes this equilibrium as an optimal
solution. We provide two constrained policy search
algorithms to search for such a resilient equilibrium
with convergence guarantees on the optimality gap and
constraint violation, generating nearly optimal policy
and constraint specification. A series of computational
experiments have demonstrated that our resilient con-
strained policy search methods effectively sustain the
trade-off between the reward maximization and the
constraint satisfaction even if the problem is infeasible.

For future work, our approach readily enhances existing
constrained RL algorithms with resilience in different
learning settings. It is also of our interest to study
tighter convergence analysis, function approximation,
and sample-based algorithms. For application, it is
important to investigate the resilient policy learning in
other practical constrained RL problems.

(a) non-resilient policy (b) resilient policy

Figure 8: Robot monitoring of three areas. Arrows
mean the moving directions of a policy generated by
(a) a non-resilient algorithm: Algorithm 2 (ResOPG-
PD) without relaxation updates; (b) a resilient algo-
rithm: Algorithm 2 (ResOPG-PD), with a cost func-

tions h(ξ) = α ∥ξ∥2 for α = 0.08, and stepsize η = 0.05.
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Figure 9: Convergence performance of a non-resilient
method ( V πr (ρ): , V πg1(ρ): , V πg2(ρ): ) and
Algorithm 2 (ResOPG-PD, V πr (ρ): , V πg1(ρ): ,

V πg2(ρ): ), with a cost functions h(ξ) = α ∥ξ∥2 for
α = 0.08, and stepsize η = 0.05.
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Figure 10: Constraint specifications under different
relaxation costs for Algorithm 1 (ResPG-PD, ξ1: ,
ξ2: ) and Algorithm 2 (ResOPG-PD, ξ1: , ξ2: ).

The relaxation cost function is h(ξ) = α ∥ξ∥2. The
horizontal axis is the value of α and the vertical axes are
relaxations ξ1 and ξ2. The height of is the oscillation
magnitude of ResPG-PD. We run ResPG-PD for 5000
iterations with stepsize η = 0.01, and ResOPG-PD
for 2000 iterations with stepsize η = 0.05. The initial
distribution ρ is uniform.
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[Ding and Jovanović, 2022] Ding, D. and Jovanović,
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A Proofs in Section 2

We state proofs for claims made in Section 2.

A.1 Proof of Lemma 1

By the definition, V ⋆(ξ) is real-valued for ξ ∈ Ξ. The monotonic property of V ⋆(ξ) over ξ ∈ Ξ is straightforward
from Problem (2). We next prove the concavity.

We first check the convexity of the domain Ξ. For any ξ, ξ′ ∈ Ξ, there exist π, π′ ∈ Π such that V πgi(ρ) ≥ ξi

and V π
′

gi (ρ) ≥ ξ′i for i = 1, . . . ,m. Let the occupancy measures associated with π, π′ be q, q′, respectively. Thus,
⟨gi, q⟩ ≥ ξi and ⟨gi, q′⟩ ≥ ξi for i = 1, . . . ,m, which implies ⟨gi, αq + (1− α)q′⟩ ≥ αξi + (1− α)ξ′i, i.e., the policy
induced by αq + (1− α)q′ meets the constraint. Therefore, αξ + (1− α)ξ′ ∈ Ξ.

We next show the convexity of V ⋆(ξ) over ξ ∈ Ξ. We re-formulate Problem (2) in terms of occupancy measure,

maximize
q ∈Q

⟨r, q⟩

subject to ⟨ui, q⟩ ≥ ξi for all i = 1, . . . ,m
(6)

where q is the occupancy measure that lives in a polytope Q specified by Bellman flow equations [Altman, 1999].
Instead of policy π, we work with the occupancy measure q in Problem (6). The primal function V ⋆(ξ), ξ ∈ Ξ
does not change, because of the one-to-one correspondence between π and q. The rest is straightforward from
convex analysis. We define the function,

F (q, ξ) =

{
⟨r, q⟩ if ⟨gi, q⟩ ≥ ξi for i = 1, . . . ,m;

−∞ otherwise.

and its domain,
dom(F ) =

{
(q, ξ) | q ∈ Q, ξ ∈ Rmγ , ⟨gi, q⟩ ≥ ξi for i = 1, . . . ,m

}
.

Because of linearity, dom(F ) is a convex set, and F (q, ξ) is a concave function in its domain. We notice that
V ⋆(ξ) = supq∈Q F (q, ξ) and the convex domain Ξ. Therefore, V ⋆(ξ) is a concave function.

A.2 Proof of Equation (3)

D(λ) = sup
π ∈Π

V πr+λ⊤g(ρ)

= sup
{(ξ,π) |π∈Π, ξ∈Ξ,V π

gi
(ρ)≥ ξi, i=1,...m}

V πr+λ⊤g(ρ)

= sup
{(ξ,π) |π∈Π, ξ∈Ξ,V π

gi
(ρ)≥ ξi, i=1,...m}

{
V πr (ρ) + λ⊤ξ

}
= sup

ξ∈Ξ
sup

{π ∈Π, V π
gi

(ρ)≥ ξi, i=1,...m}

{
V πr (ρ) + λ⊤ξ

}
= sup

ξ∈Ξ

{
λ⊤ξ − (−V ⋆(ξ))

}
.
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A.3 Proof of Lemma 2

There are two directions.

(ii) =⇒ (i): From the geometric multiplier λ for Problem (2),

V ⋆(ξ) = sup
π ∈Π

{
V πr+λ⊤g(ρ)− λ⊤ξ

}
= sup

ξ′ ∈Ξ

{
λ⊤ξ′ − (−V ⋆(ξ′))

}
− λ⊤ξ

where the second equality is due to (3). Therefore,

−V ⋆(ξ′) ≥ −V ⋆(ξ) + λ⊤(ξ′ − ξ) for all ξ′ ∈ Rm (7)

which shows that λ is a subgradient of −V ⋆(ξ) at ξ ∈ Ξ.

(i) =⇒ (ii): Assume that (7) holds for some λ. Since V ⋆(ξ) is monotonically non-increasing with respect to the
coordinates of ξ, thus λ ≥ 0. Otherwise, V ⋆(ξ′) + λ⊤(ξ′ − ξ) would be unbounded below which makes (7) invalid.
From (7), we have

V ⋆(ξ) ≥ sup
ξ′ ∈Ξ

{
V ⋆(ξ′) + λ⊤(ξ′ − ξ)

}
= D(λ)− λ⊤ξ

where the second equality is due to (3). We notice that D(λ)− λ⊤ξ is the dual function for Problem (2) and the
weak duality V ⋆(ξ) ≤ D(λ)− λ⊤ξ. Therefore, λ is a geometric multiplier for Problem (2).

B Proofs in Section 3

We state proofs for claims made in Section 3.

B.1 Proof of Lemma 3

To show the existence, it is equivalent to show existence of subgradients for the function 0 ∈ ∂(−V ⋆(ξ̄) + h(ξ̄))
for some ξ̄ ∈ Ξ. We introduce the set Ξ̄,

Ξ̄ := argmin
ξ∈Ξ

{−V ⋆(ξ) + h(ξ) } . (8)

We notice that Ξ is an effective domain for −V ⋆(ξ)+h(ξ). Because of the concavity of V ⋆(ξ) in Lemma 1 and the
convexity of h(ξ), −V ⋆(ξ)+h(ξ) is a convex function on Ξ. Thus, the set Ξ̄ is nonempty and 0 ∈ ∂(−V ⋆(ξ′)+h(ξ′))
for any ξ′ ∈ Ξ̄ according to the first-order optimality [Recht and Wright, 2019, Theorem 8.2]. Therefore, the
existence is proved by simply taking a resilient equilibrium ξ⋆ = ξ̄ ∈ Ξ̄.

From the further hypothesis on h, the function −V ⋆(ξ)+h(ξ) is strictly convex. Thus, the minimizer in Problem (8)
is unique or Ξ̄ is a singleton. Therefore, the uniqueness holds.

B.2 Proof of Lemma 4

By the concavity of V ⋆ in Lemma 1, if p ∈ ∂V ⋆(ξ) and p′ ∈ ∂V ⋆(ξ′) for ξ, ξ′ ∈ Ξ, then,

V ⋆(ξ′) ≤ V ⋆(ξ) + ⟨p, ξ′ − ξ⟩

V ⋆(ξ) ≤ V ⋆(ξ′) + ⟨p′, ξ − ξ′⟩.

Thus,
⟨p′ − p, ξ − ξ′⟩ ≥ 0

which implies the second inequality. Similarly, the convexity of h yields

⟨ξ − ξ′,∇h(ξ′)−∇h(ξ)⟩ ≤ 0

which implies the first inequality.
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B.3 Proof of Theorem 1

By the geometric multiplier λ ≥ 0,

V ⋆(ξ̄) = sup
π ∈Π

{
V πr+λ⊤g(ρ)− λ⊤ξ̄

}
≥ V

π⋆(ξ)

r+λ⊤g
(ρ)− λ⊤ξ̄

= V
π⋆(ξ)
r (ρ) + λ⊤(V

π⋆(ξ)
g (ρ)− ξ̄)

≥ V ⋆(ξ) + λ⊤(ξ − ξ̄)

where we set π = π⋆(ξ) in the first inequality, and the second inequality is due to that V ⋆(ξ) := V
π⋆(ξ)
r (ρ) and

V
π⋆(ξ)
gi (ρ) ≥ ξi for all i = 1, . . . ,m.

Therefore, −V ⋆(ξ) ≥ −V ⋆(ξ̄)+λ⊤(ξ− ξ̄) for all ξ ∈ Ξ, i.e., λ is a subgradient of −V ⋆(ξ) at ξ̄. By the assumption,
∇h(ξ̄) is a subgradient of V ⋆(ξ̄), which proves that ξ̄ is a resilient equilibrium.

B.4 Proof of Corollary 1

It is straightforward to verify that λ⋆(ξ̄) is a geometric multiplier,

V ⋆(ξ̄) = D⋆(ξ̄) = D(λ⋆(ξ̄); ξ̄) = sup
π∈Π

{
V πr+(λ⋆(ξ̄))⊤g(ρ)− (λ⋆(ξ̄))⊤ξ̄

}
.

By Theorem 1 and ∇h(ξ̄) + λ⋆(ξ̄) = 0, ξ̄ is a resilient equilibrium.

B.5 Proof of Lemma 5

It is equivalent to show that
ξ̄⋆ ∈ argmax

ξ∈Ξ
{V ⋆(ξ)− h(ξ)}

because of the concavity of V ⋆(ξ) − h(ξ) over ξ ∈ Ξ, and that the first-order optimality condition 0 ∈
∂
(
−V ⋆(ξ̄⋆) + h(ξ̄⋆)

)
equals to the resilient equilibrium’s condition.

By the optimality of (π̄⋆, ξ̄⋆),

V π̄
⋆

r (ρ)− h(ξ̄⋆) ≥ V π
⋆(ξ)

r (ρ)− h(ξ) = V ⋆(ξ)− h(ξ)

where the right hand side of inequality particularly uses a pair (π⋆(ξ), ξ) in which π⋆(ξ) is an optimal policy of

Problem (2) for some fixed ξ ∈ Ξ, and the equality is clear from V ⋆(ξ) := V
π⋆(ξ)
r (ρ). For the left hand side of the

inequality, application of π⋆(ξ̄⋆) leads to V ⋆(ξ̄⋆) := V
π⋆(ξ̄⋆)
r (ρ) ≥ V π̄

⋆

r (ρ) and thereby,

V ⋆(ξ̄⋆)− h(ξ̄⋆) ≥ V ⋆(ξ)− h(ξ) for all ξ ∈ Ξ.

Therefore, 0 is a subgradient of −V ⋆(ξ) + h(ξ) at ξ̄⋆ ∈ Ξ.

B.6 Proof of Theorem 2

By the weak duality, V ⋆h ≤ D⋆
h. The rest is to show that V ⋆h ≥ D⋆

h. To proceed, we first make a few observations.
It is easy to show the convexity of the set Z,

Z :=
{
z ∈ Rm+1 | ∃(π, ξ) ∈ Π× Ξ, V πr (ρ)− h(ξ) ≥ z0 and V πgi(ρ)− ξi ≥ zi for all i = 1, . . . ,m

}
.

By the optimality of (π̄⋆, ξ̄⋆), V ⋆h = V π̄
⋆

r (ρ) − h(ξ̄⋆) and V π̄
⋆

gi (ρ) − ξ̄⋆i ≥ 0 for all i = 1, . . . ,m, i.e., (V ⋆h ,0) ∈ Z.
Hence, Z is non-empty. In fact, Z is a convex set. Assume z, z′ ∈ Z and α ∈ [0, 1]. Thus, there exist π, π′ ∈ Π
and ξ, ξ′ ∈ Ξ such that

V πr (ρ)− h(ξ) ≥ z0 and V π
′

r (ρ)− h(ξ′) ≥ z′0

V πgi(ρ)− ξi ≥ zi and V π
′

gi (ρ)− ξ′i ≥ z′i for all i = 1, . . . ,m.
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Let the occupancy measures associated with π, π′ be q, q′, respectively. Thus, ⟨r, q⟩−h(ξ) ≥ z0 and ⟨r, q′⟩−h(ξ′) ≥
z′0, which implies ⟨r, αq + (1 − γ)q′⟩ − h(αξ + (1 − α)ξ′) ≥ αz0 + (1 − α)z′0. Meanwhile, ⟨gi, q⟩ − ξi ≥ zi and
⟨gi, q′⟩ − ξi ≥ z′i for i = 1, . . . ,m, which implies ⟨gi, αq + (1− α)q′⟩ − (αξi + (1− α)ξ′i) ≥ αzi + (1− α)z′i, i.e., the
policy induced by αq + (1− α)q′ meets the constraint in Z. Therefore, αz + (1− α)z′ ∈ Z.

To show that V ⋆h ≥ D⋆
h, it is sufficient to prove that there exists λ ∈ Λ such that

V ⋆h ≥ Dh(λ) := sup
π ∈Π

{
V πr+λ⊤g(ρ)− h(ξ)− λ⊤ξ

}
. (9)

We notice that (V ⋆h ,0) ∈ ∂Z, where ∂Z is the boundary set of Z. If not, then (V ⋆h ,0) ∈ int(Z), i.e., there
exists a small ball around (V ⋆h ,0) inside Z, which contradicts the optimality of V ⋆h . Since Z is a convex set and

(V ⋆h ,0) ∈ ∂Z, by the supporting hyperplane theorem, there exists λ̂ := (λ̂0, λ̂1, . . . , λ̂m) ∈ Rm+1 such that[
V ⋆h 0⊤]λ̂ ≥ z⊤λ̂ for all z ∈ Z. (10)

We can show that λ̂ ≥ 0 and λ̂0 > 0 by contradiction. Assume λ̂i < 0 for some i. Since Z is unbounded from
below, we can always select a very negative zi that fails (10). Hence, λ̂i ≥ 0 for all i = 0, 1, . . . ,m. On the other

hand, assume λ̂0 = 0. Thus, (10) reduces to 0 ≥ z⊤λ̂ for all z ∈ Z. Non-negativity of λ̂ implies that there exists i
from 1 to m such that zi ≤ 0, which contradicts the strict feasibility that demands a positive z ∈ Z. Therefore,
we can denote λ† := λ̂/λ̂0 and

(π†, ξ†) := argmax
π ∈Π, ξ∈Ξ

{
V πr+(λ†)⊤g(ρ)− h(ξ)− (λ†)⊤ξ

}
.

We notice that (V π
†

r (ρ)− h(ξ†), V π
†

g (ρ)− ξ†) ∈ Z, and λ†0 = 1. By the dual function and (10),

Dh(λ
†) =

〈
(V π

†

r (ρ)− h(ξ†), V π
†

g (ρ)− ξ†), λ†
〉

≤ V ⋆h

which proves the existence (9).

B.7 Proof of Corollary 2

We denote the level set of the dual function by Λa := {λ ∈ Rm+ |Dh(λ) ≤ a} for a ∈ R. For any λ ∈ Λa,

a ≥ Dh(λ) = V π̄r (ρ)− h(ξ̄) + λ⊤(V π̄g (ρ)− ξ̄) ≥ V π̄r (ρ)− h(ξ̄) + c λ⊤1

where (π̄, ξ̄) is a Slater point in Assumption 1. Taking a = D⋆
h or V ⋆r (ρ)− h(ξ̄⋆) leads to Λa = Λ⋆ and

m∑
i=1

λi ≤ V ⋆r (ρ)− h(ξ̄⋆)− (V π̄r − h(ξ̄))

c
for all λ ∈ Λa

which implies the bound on λ̄⋆i for i = 1, . . . ,m.

C Proofs in Section 4

We state proofs for claims made in Section 4.

C.1 Proof of Theorem 3

Lemma 6. In Algorithm 1, for any π ∈ ∆(A) and ξ ∈ Ξ

η⟨Qπt

r+λ⊤
t g

(s, ·), (π − πt+1)(· | s)⟩+
1

2
∥πt+1(· | s)− πt(· | s)∥2

≤ 1

2
∥π(· | s)− πt(· | s)∥2 −

1

2
∥π(· | s)− πt+1(· | s)∥2

and

η⟨−∇h(ξt)− λt, ξ − ξt+1⟩+
1

2
∥ξt+1 − ξt∥2

≤ 1

2
∥ξ − ξt∥2 −

1

2
∥ξ − ξt+1∥2 .
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Proof. By the optimality of πt+1,

⟨ηQπt

r+λ⊤
t g

(s, ·)− (πt+1 − πt)(· | s), (π − πt+1)(· | s)⟩ ≤ 0 for any π.

Direct application of the equality 1
2 ∥π(· | s)− πt(· | s)∥2 = 1

2 ∥πt+1(· | s)− πt(· | s)∥2+⟨πt+1(· | s)−πt(· | s), π(· | s)−
πt+1(· | s)⟩+ 1

2 ∥π(· | s)− πt+1(· | s)∥2 leads to the first inequality. Similarly, the optimality of ξt+1 shows that

⟨η(−h(ξt)− λt)− (ξt+1 − ξt), ξ − ξt+1⟩ ≤ 0.

In combination of the equality 1
2 ∥ξ − ξt∥2 = 1

2 ∥ξt+1 − ξt∥2 + ⟨ξt+1 − ξt, ξ − ξt+1⟩+ 1
2 ∥ξ − ξt+1∥2, we conclude

the second inequality.

Lemma 7. In Algorithm 1, for any s and t,

V πt+1
r (s)− V πt

r (s) + λ⊤t (V
πt+1
g (s)− V πt

g (s)) ≥ 1

η(1− γ)
E
s′ ∼ d

πt+1
s

[
∥πt+1(· | s′)− πt(· | s′)∥

2
]
.

Proof. By the performance difference lemma,

V πt+1
r (s)− V πt

r (s) + λ⊤t (V
πt+1
g (s)− V πt

g (s))

=
1

1− γ
E
s′ ∼ d

πt+1
s

[
⟨Qr+λ⊤

t g
(s′, ·), (πt+1 − πt)(· | s′)⟩

]
.

Application of the first inequality in Lemma 6 with π = πt leads to our desired inequality.

Lemma 8. In Algorithm 1, for any T > 0,

1

T

T−1∑
t=0

(V ⋆r (ρ)− h(ξ̄⋆)− (V πt
r (ρ)− h(ξt))) +

1

T

T−1∑
t=0

λ⊤t (V
⋆
g (ρ)− ξ̄⋆ − (V πt

g (ρ)− ξt))

≤ 1

(1− γ)2T
+

1

η(1− γ)T
+

4ηm

(1− γ)2
+
η(Lh + 1)2m

(1− γ)2
.

Proof. By the performance difference lemma,

V ⋆r (s)− h(ξ̄⋆)− (V πt
r (s)− h(ξt)) + λ⊤t (V

⋆
g (s)− ξ̄⋆ − (V πt

g (s)− ξt))

=
1

1− γ
Es′ ∼ d⋆s

[
⟨Qπt

r+λ⊤
t g

(s′, ·), (π̄⋆ − πt)(· | s′)
]
− (h(ξ̄⋆)− h(ξt)) + λ⊤t (−ξ̄⋆ + ξt)

=
1

1− γ
Es′ ∼ d⋆s

[
⟨Qπt

r+λ⊤
t g

(s′, ·), (π̄⋆ − πt+1)(· | s′)
]

+
1

1− γ
Es′ ∼ d⋆s

[
⟨Qπt

r+λ⊤
t g

(s′, ·), (πt+1 − π̄⋆)(· | s′)
]

− (h(ξ̄⋆)− h(ξt)) + λ⊤t (−ξ̄⋆ + ξt)

≤ 1

2η(1− γ)
Es′ ∼ d⋆s

[
∥π̄⋆(· | s)− πt(· | s)∥2 − ∥π̄⋆(· | s)− πt+1(· | s)∥2

]
+

1

1− γ
Es′ ∼ d⋆s

[
⟨Qπt

r+λ⊤
t g

(s′, ·), (πt+1 − π̄⋆)(· | s′)
]

− (h(ξ̄⋆)− h(ξt)) + λ⊤t (−ξ̄⋆ + ξt)

(11)

where the inequality is due to the first inequality in Lemma 6 with π = π̄⋆. To further bound the inequality
above, we first notice that ⟨Qπt

r+λ⊤
t g

(s, ·), (πt+1−πt)(· | s)⟩ ≥ 0 for any s, when we set π = πt in the first inequality

in Lemma 6. Thus,

Es′ ∼ d⋆ρ

[
⟨Qπt

r+λ⊤
t g

(s′, ·), (πt+1 − πt)(· | s′)⟩
]

=
∑
s′

d⋆ρ(s
′)

d
πt+1

d⋆ρ
(s′)

d
πt+1

d⋆ρ
(s′)⟨Qπt

r+λ⊤
t g

(s′, ·), (πt+1 − πt)(· | s′)⟩

≤ 1

1− γ

∑
s′

d
πt+1

d⋆ρ
(s′)⟨Qπt

r+λ⊤
t g

(s′, ·), (πt+1 − πt)(· | s′)⟩

= (V πt+1
r (d⋆ρ)− V πt

r (d⋆ρ)) + λ⊤t (V
πt+1
g (d⋆ρ)− V πt

g (d⋆ρ))
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where the inequality is due to that d
πt+1

d⋆ρ
≥ (1− γ)d⋆ρ. Hence, we further bound (11) as

V ⋆r (ρ)− h(ξ̄⋆)− (V πt
r (ρ)− h(ξt)) + λ⊤t (V

⋆
g (ρ)− ξ̄⋆ − (V πt

g (ρ)− ξt))

≤ 1

2η(1− γ)
Es′ ∼ d⋆ρ

[
∥π̄⋆(· | s)− πt(· | s)∥2 − ∥π̄⋆(· | s)− πt+1(· | s)∥2

]
+

1

1− γ

(
(V πt+1
r (d⋆ρ)− V πt

r (d⋆ρ)) + λ⊤t (V
πt+1
g (d⋆ρ)− V πt

g (d⋆ρ))
)

− (h(ξ̄⋆)− h(ξt)) + λ⊤t (−ξ̄⋆ + ξt).

By the convexity of h, h(ξ̄⋆) ≥ h(ξt) + ⟨∇h(ξt), ξ̄⋆ − ξt⟩. Thus,

−(h(ξ̄⋆)− h(ξt)) + λ⊤t (−ξ̄⋆ + ξt)

≤ ⟨−∇h(ξt)− λt, ξ̄
⋆ − ξt⟩

= ⟨−∇h(ξt)− λt, ξ̄
⋆ − ξt+1⟩+ ⟨−∇h(ξt)− λt, ξt+1 − ξt⟩

≤ 1

2η

∥∥ξ̄⋆ − ξt
∥∥2 − 1

2η

∥∥ξ̄⋆ − ξt+1

∥∥2 + ⟨−∇h(ξt)− λt, ξt+1 − ξt⟩

where the last inequality is due to the second inequality in Lemma 6 with ξ = ξ̄⋆. Therefore, (11) reduces to

V ⋆r (ρ)− h(ξ̄⋆)− (V πt
r (ρ)− h(ξt)) + λ⊤t (V

⋆
g (ρ)− ξ̄⋆ − (V πt

g (ρ)− ξt))

≤ 1

2η(1− γ)
Es′ ∼ d⋆ρ

[
∥π̄⋆(· | s)− πt(· | s)∥2 − ∥π̄⋆(· | s)− πt+1(· | s)∥2

]
+

1

1− γ

(
(V πt+1
r (d⋆ρ)− V πt

r (d⋆ρ)) + λ⊤t (V
πt+1
g (d⋆ρ)− V πt

g (d⋆ρ))
)

+
1

2η

∥∥ξ̄⋆ − ξt
∥∥2 − 1

2η

∥∥ξ̄⋆ − ξt+1

∥∥2 + ⟨−∇h(ξt)− λt, ξt+1 − ξt⟩.

Summing up the inequality above from t = 0 to t = T − 1 and dividing it by T yield,

1

T

T−1∑
t=0

(
V ⋆r (ρ)− h(ξ̄⋆)− (V πt

r (ρ)− h(ξt))
)
+

1

T

T−1∑
t=0

λ⊤t (V
⋆
g (ρ)− ξ̄⋆ − (V πt

g (ρ)− ξt))

≤ 1

2η(1− γ)T
Es′ ∼ d⋆ρ

[
∥π̄⋆(· | s)− π0(· | s)∥2 − ∥π̄⋆(· | s)− πT (· | s)∥2

]
+

1

(1− γ)T
(V πT
r (d⋆ρ)− V π0

r (d⋆ρ)) +
1

1− γ

1

T

T−1∑
t=0

λ⊤t (V
πt+1
g (d⋆ρ)− V πt

g (d⋆ρ))

+
1

2ηT

∥∥ξ̄⋆ − ξ0
∥∥2 − 1

2ηT

∥∥ξ̄⋆ − ξT
∥∥2 + 1

T

T−1∑
t=0

⟨−∇h(ξt)− λt, ξt+1 − ξt⟩.

(12)

We notice that λ0 = 0, λT =
∑T−1
t=0(λt+1 − λt), and |V πt

gi (ρ)− ξi,t| ≤ 2
1−γ for i = 1, . . . ,m. From the λ-update

in (5), we have |λi,t − λi,t+1| ≤ 2η
1−γ and |λi,T | ≤ 2ηT

1−γ . Thus,

T−1∑
t=0

λ⊤t (V
πt+1
g (d⋆ρ)− V πt

g (d⋆ρ))

=

T−1∑
t=0

(λ⊤t+1V
πt+1
g (d⋆ρ)− λ⊤t V

πt
g (d⋆ρ)) +

T−1∑
t=0

(λt − λt+1)
⊤V πt+1

g (d⋆ρ)

≤ λ⊤T V
πT
g (d⋆ρ) +

T−1∑
t=0

m∑
i=1

|λi,t − λi,t+1|V πt+1
gi (d⋆ρ)

≤ 4ηmT

(1− γ)2
.

Meanwhile, from the ξ-update in (5), we have |ξi,t+1 − ξi,t| ≤ η| − ∇h(ξt)− λt|i ≤ η(Lh+1)
1−γ . Thus,

T−1∑
t=0

⟨−∇h(ξt)− λt, ξt+1 − ξt⟩ ≤
η(Lh + 1)2mT

(1− γ)2
.
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Finally, we combine these inequalities above with (12) to get our desired inequality.

Proof. To show the first inequality, we notice that λ0 = 0, λ2i,T =
∑T−1
t=0(λ

2
i,t+1 − λ2i,t), and |V πt

gi (ρ)− ξi,t| ≤ 2
1−γ

for i = 1, . . . ,m. From the λ-update in (5), we have |λi,t − λi,t+1| ≤ 2η
1−γ and |λi,T | ≤ 2ηT

1−γ . Thus,

λ2i,T =

T−1∑
t=0

(λi,t+1)
2 − (λi,t)

2

=

T−1∑
t=0

−2ηλi,t(V
πt
gi (ρ)− ξi,t) + η2(V πt

gi (ρ)− ξi,t)
2

≤ 2η

T−1∑
t=0

λi,t((V
⋆
gi(ρ)− ξ̄⋆i )− (V πt

gi (ρ)− ξi,t)) + η2(V πt
gi (ρ)− ξi,t)

2

≤ 2η

T−1∑
t=0

λi,t((V
⋆
gi(ρ)− ξ̄⋆i )− (V πt

gi (ρ)− ξi,t)) +
4η2T

(1− γ)2

where the first inequality is due to the feasibility V ⋆gi(ρ) ≥ ξ̄⋆i for i = 1, . . . ,m. Thus,

− 1

T

T−1∑
t=0

λ⊤t ((V
⋆
g (ρ)− ξ̄⋆)− (V πt

g (ρ)− ξt)) ≤ 2ηm

(1− γ)2

which can be added to the inequality in Lemma 8 from both sides,

1

T

T−1∑
t=0

(V ⋆r (ρ)− h(ξ̄⋆)− (V πt
r (ρ)− h(ξt)))

≤ 1

(1− γ)2T
+

1

η(1− γ)T
+

4ηm

(1− γ)2
+
η(Lh + 1)2m

(1− γ)2
+

2ηm

(1− γ)2
.

Hence, we obtain the first inequality by taking η = 1√
T
.

We next prove the second inequality. From the λ-update in (5), for any λ ∈ Λ := {λ ∈ Rm | 0 ≤ λi ≤ Ch, i =
1, . . . ,m},

(λi,t+1 − λi)
2 ≤ (λi,t − λi)

2 − 2η(V πt
gi (ρ)− ξi,t)(λi,t − λi) + η2(V πt

gi (ρ)− ξi,t)
2

which combines with |V πt
gi (ρ)− ξi,t| ≤ 2

1−γ to give us,

1

T

T−1∑
t=0

m∑
i=1

(V πt
gi (ρ)− ξi,t)(λi,t − λi)

≤ 1

2ηT

T−1∑
t=0

m∑
i=1

(
(λi,t − λi)

2 − (λi,t+1 − λi)
2
)
+

2ηm

η(1− γ)2

≤ 1

2ηT

m∑
i=1

λ2i +
2ηm

(1− γ)2
.

(13)

Notice that V ⋆g (ρ) ≥ ξ̄⋆. If we add (13) to the inequality in Lemma 8, then

1

T

T−1∑
t=0

(V ⋆r (ρ)− h(ξ̄⋆)− (V πt
r (ρ)− h(ξt))) +

1

T

T−1∑
t=0

λ⊤(−(V πt
g (ρ)− ξt))

≤ 1

(1− γ)2T
+

1

η(1− γ)T
+

4ηm

(1− γ)2
+
η(Lh + 1)2m

(1− γ)2
+

1

2ηT
∥λ∥2 + 2ηm

(1− γ)2

where the RHS can be upper bounded by, if we take η = 1√
T
,

2 + (6 + (Lh + 1)2)m

(1− γ)2
√
T

+
1

2
√
T

∥λ∥2 .
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We next apply a useful property of constrained convex optimization. We notice that V πt
r (ρ) and V πt

g are linear

in the occupancy measure induced by πt. By the convexity of the occupancy measure set, 1
T

∑T−1
t=0 V

πt
r (ρ) and

1
T

∑T−1
t=0 V

πt
g (ρ) are linear in an occupancy measure induced by some policy π′ and we denote them as V π

′

r (ρ) and

V π
′

g (ρ). Since h is convex, there exists ξ′ such that 1
T

∑T−1
t=0 h(ξt) ≥ h(ξ′). If we choose λi = 2Ch if V πt

gi (ρ) ≤ ξi
and λi = 0 otherwise, then

V ⋆r (ρ)− h(ξ̄⋆)− (V π
′

r (ρ)− h(ξ′)) + 2Ch

m∑
i=1

[
1

T

T−1∑
t=0

ξi,t − V π
′

gi (ρ)

]
+

≤ 2 + (6 + (Lh + 1)2)m

(1− γ)2
√
T

+
2mC2

h√
T

.

Due to 2Ch ≥ 2λ⋆ and the strong duality, application of Lemma 12 leads to

m∑
i=1

[
1

T

T−1∑
t=0

ξi,t − V π
′

gi (ρ)

]
+

≤ 2 + (6 + (Lh + 1)2)m

(1− γ)2Ch
√
T

+
2mCh√

T

which shows the second inequality by replacing V π
′

gi (ρ) by
1
T

∑T−1
t=0 V

πt
gi (ρ).

C.2 Resilient Optimistic Policy Gradient Primal-Dual Method

Algorithm 2 Resilient optimistic policy gradient primal-dual (ResOPG-PD) method

1: Parameters: η > 0.
Initialization: Let π0(a | s) = π̂0(a | s) = 1/A for s ∈ S, a ∈ A, and ξ0 = ξ̂0 = 0, and λ0 = λ̂0 = 0.

2: for step t = 1, . . . , T do
3: Primal-dual update

πt(· | s) = argmax
π(· | s)∈Π

{∑
a

π(a | s)Qπt−1

r+λ⊤
t−1g

(s, a)− 1

2η
∥π(· | s)− π̂t(· | s)∥2

}
ξt = argmax

ξ∈Ξ

{
ξ⊤ (−∇h(ξt−1)− λt−1)−

1

2η

∥∥∥ξ − ξ̂t

∥∥∥2}
π̂t+1(· | s) = argmax

π(· | s)∈Π

{∑
a

π(a | s)Qπt

r+λ⊤
t g

(s, a)− 1

2η
∥π(· | s)− π̂t(· | s)∥2

}
ξ̂t+1 = argmax

ξ∈Ξ

{
ξ⊤ (−∇h(ξt)− λt)−

1

2η

∥∥∥ξ − ξ̂t

∥∥∥2}
(14a)

λt = argmax
λ∈Λ

{
λ⊤
(
V πt−1
g (ρ)− ξt−1

)
+

1

2η

∥∥∥λ− λ̂t

∥∥∥2}
λ̂t+1 = argmax

λ∈Λ

{
λ⊤
(
V πt
g (ρ)− ξt

)
+

1

2η

∥∥∥λ− λ̂t

∥∥∥2} (14b)

4: end for

C.3 Proof of Theorem 4

We define

Θt+1 :=
1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t+1(· | s))− π̂t+1(· | s)∥2 +
1

2

∥∥∥PΞ⋆(ξ̂t+1)− ξ̂t+1

∥∥∥2 + 1

2

∥∥∥PΛ⋆(λ̂t+1)− λ̂t+1

∥∥∥2
+

1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2



Dongsheng Ding, Zhengyan Huan, Alejandro Ribeiro

ζt :=
1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

2

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

2

∥∥∥λ̂t+1 − λt

∥∥∥2
+

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t(· | s)∥2 +
1

2

∥∥∥ξt − ξ̂t

∥∥∥2 + 1

2

∥∥∥λt − λ̂t

∥∥∥2
and

ι := max

(
|A|

(1− γ)2
+ 1, L2

h + 1, 2|A|2 γ(1 +m(Ch)
2)κρ

(1− γ)4ρmin
+

|A|mκ2ρ
(1− γ)5

)

ηmax := min

(
1

4
√
|A|

,
1

2(Lh + 1)
,

1

5
√
m|A|κρ

,
ρmin

4γ
√
mCh|A|

,
1

2
√
2ι
,

4max(
κρ

1−γ , 1)√
Θ1Cρ,γ,σ(1− γ)

)
.

Lemma 9. Let assumptions in Theorem 4 hold. In Algorithm 2, for (14) with η ≤ 1
2
√
2ι
,

Θt+1 ≤ Θt −
1

2
ζt.

Proof. For any (π⋆, ξ⋆, λ⋆) ∈ Π⋆ × Ξ⋆ × Λ⋆,

V π
⋆

r+λ⊤
t g

(ρ)− h(ξ⋆)− λ⊤t ξ
⋆ −

(
V πt

r+(λ⋆)⊤g
(ρ)− h(ξt)− (λ⋆)⊤ξt

)
=

(
V π

⋆

r+λ⊤
t g

(ρ)− V πt

r+λ⊤
t g

(ρ)
)

︸ ︷︷ ︸
(a)

+
(
−h(ξ⋆)− λ⊤t ξ

⋆ + h(ξt) + λ⊤t ξt
)︸ ︷︷ ︸

(b)

+
(
V πt

r+λ⊤
t g

(ρ)− V πt

r+(λ⋆)⊤g
(ρ)− λ⊤t ξt + (λ⋆)⊤ξt

)
︸ ︷︷ ︸

(c)

.

(15)

We next analyze three terms (a), (b), and (c), separately.

For (a), we have

V π
⋆

r+λ⊤
t g

(ρ)− V πt

r+λ⊤
t g

(ρ)

=
1

1− γ

∑
s,a

dπ
⋆

ρ (s)(π⋆(a | s)− πt(a | s))Qπt

r+λ⊤
t g

(s, a)

=
1

1− γ

∑
s,a

dπ
⋆

ρ (s)(π⋆(a | s)− π̂t+1(a | s))Qπt

r+λ⊤
t g

(s, a) +
1

1− γ

∑
s,a

dπ
⋆

ρ (s)(π̂t+1(a | s)− πt(a | s))Qπt−1

r+λ⊤
t−1g

(s, a)

+
1

1− γ

∑
s,a

dπ
⋆

ρ (s)(π̂t+1(a | s)− πt(a | s))
(
Qπt

r+λ⊤
t g

(s, a)−Q
πt−1

r+λ⊤
t−1g

(s, a)
)

≤ 1

2η(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π⋆(· | s)− π̂t(· | s)∥2 − ∥π⋆(· | s)− π̂t+1(· | s)∥2 − ∥π̂t+1(· | s)− π̂t(· | s)∥2

)
+

1

2η(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π̂t+1(· | s)− π̂t(· | s)∥2 − ∥π̂t+1(· | s)− πt(· | s)∥2 − ∥πt(· | s)− π̂t(· | s)∥2

)
+

1

1− γ

∑
s,a

dπ
⋆

ρ (s)(π̂t+1(a | s)− πt(a | s))
(
Qπt

r+λ⊤
t g

(s, a)−Q
πt−1

r+λ⊤
t−1g

(s, a)
)

≤ 1

2η(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π⋆(· | s)− π̂t(· | s)∥2 − ∥π⋆(· | s)− π̂t+1(· | s)∥2 − ∥π̂t+1(· | s)− π̂t(· | s)∥2

)
+

1

2η(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π̂t+1(· | s)− π̂t(· | s)∥2 − ∥π̂t+1(· | s)− πt(· | s)∥2 − ∥πt(· | s)− π̂t(· | s)∥2

)
+

4η|A|
(1− γ)3

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)
+8η|A|2 γ(1 +m(Ch)

2)κρ
(1− γ)5ρmin

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
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where the first inequality is due to the optimality of π̂t+1 and πt that results from Lemma 13, and the second
inequality is due to that∑

s,a

dπ
⋆

ρ (s)(π̂t+1(a | s)− πt(a | s))
(
Qπt

r+λ⊤
t g

(s, a)−Q
πt−1

r+λ⊤
t−1g

(s, a)
)

≤ η
∑
s

dπ
⋆

ρ (s)
∥∥∥Qπt

r+λ⊤
t g

(s, ·)−Q
πt−1

r+λ⊤
t−1g

(s, ·)
∥∥∥2

≤ 2η
∑
s

dπ
⋆

ρ (s)
∥∥(λt − λt−1)

⊤Qπt
g (s, ·)

∥∥2 + 2η
∑
s

dπ
⋆

ρ (s)
∥∥∥Qπt

r+λ⊤
t−1g

(s, ·)−Q
πt−1

r+λ⊤
t−1g

(s, ·)
∥∥∥2

≤ 2η|A|
(1− γ)2

∥λt − λt−1∥2 + 2η|A|
∑
s

dπ
⋆

ρ (s)
∥∥∥Qπt

r+λ⊤
t−1g

(s, ·)−Q
πt−1

r+λ⊤
t−1g

(s, ·)
∥∥∥2
∞

≤ 2η|A|
(1− γ)2

∥λt − λt−1∥2 + 4η|A|
∑
s

dπ
⋆

ρ (s) ∥Qπt
r (s, ·)−Qπt−1

r (s, ·)∥2∞

+4η|A|
∑
s

dπ
⋆

ρ (s) ∥λt−1∥2mmax
i

∥∥Qπt
gi (s, ·)−Qπt−1

gi (s, ·)
∥∥2
∞

≤ 2η|A|
(1− γ)2

∥λt − λt−1∥2 + 4η|A|γ(1 +m(Ch)
2)

(1− γ)2
max
s

∥πt(· | s)− πt−1(· | s)∥21

≤ 4η|A|
(1− γ)2

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)
+8η|A|2 γ(1 +m(Ch)

2)κρ
(1− γ)4ρmin

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
where the first inequality is due to Lemma 14, we use the inequality ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 in the second
inequality, the third inequality is due to ∥x∥ ≤

√
d ∥x∥∞ for any x ∈ Rd, and the fourth inequality is due

to the inequalities ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2, ∥x∥ ≤
√
m ∥x∥∞ for any x ∈ Rm, and ∥

∑
i xi∥∞ ≤

∑
i ∥xi∥∞,

application of Lemma 15 leads to the fifth inequality together with ∥λt−1∥ ≤ Ch, and the last inequality is due to

∥x∥1 ≤
√
d ∥x∥ for any x ∈ Rd, ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2, and the property of κρ,

κρ
1− γ

dπ
⋆

ρ (s) ≥ dπρ (s) ≥ (1− γ)ρmin.

For (b), we have

−h(ξ⋆)− λ⊤t ξ
⋆ + h(ξt) + λ⊤t ξt

≤ (−∇h(ξt)− λt)
⊤(ξ⋆ − ξt)

= (−∇h(ξt)− λt)
⊤(ξ⋆ − ξ̂t+1) + (−∇h(ξt−1)− λt−1)

⊤(ξ̂t+1 − ξt)

+ (−∇h(ξt)− λt +∇h(ξt−1) + λt−1)
⊤(ξ̂t+1 − ξt)

≤ 1

2η

(∥∥∥ξ⋆ − ξ̂t

∥∥∥2 − ∥∥∥ξ⋆ − ξ̂t+1

∥∥∥2 − ∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2)+
1

2η

(∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2 − ∥∥∥ξ̂t+1 − ξt

∥∥∥2 − ∥∥∥ξt − ξ̂t

∥∥∥2)
+(−∇h(ξt)− λt +∇h(ξt−1) + λt−1)

⊤(ξ̂t+1 − ξt)

≤ 1

2η

(∥∥∥ξ⋆ − ξ̂t

∥∥∥2 − ∥∥∥ξ⋆ − ξ̂t+1

∥∥∥2 − ∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2)+
1

2η

(∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2 − ∥∥∥ξ̂t+1 − ξt

∥∥∥2 − ∥∥∥ξt − ξ̂t

∥∥∥2)
+4η

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)+ 4ηL2
h

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2)
where the first inequality is due to the convexity of h: h(ξ⋆) ≥ h(ξt) + ⟨∇h(ξt), ξ⋆ − ξt⟩, the second inequality is

due to the optimality of ξ̂t+1 and ξt that results from Lemma 13, and the last inequality is due to that

(−∇h(ξt)− λt +∇h(ξt−1) + λt−1)
⊤(ξ̂t+1 − ξt)

≤ η ∥−∇h(ξt)− λt +∇h(ξt−1) + λt−1∥2

≤ 2η ∥λt − λt−1∥2 + 2η ∥−∇h(ξt) +∇h(ξt−1)∥2

≤ 4η

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)+ 4ηL2
h

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2)
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where the first inequality is due to Lemma 14, the second inequality is due to ∥x+ y∥2 ≤ 2 ∥x∥2+2 ∥y∥2, the third
inequality is due to the Lipschitz continuous gradient of h: ∥∇h(ξ)−∇h(ξ′)∥ ≤ Lh ∥ξ − ξ′∥ for any ξ, ξ′ ∈ Ξ,

and ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2.

For (c), we have

V πt

r+λ⊤
t g

(ρ)− V πt

r+(λ⋆)⊤g
(ρ)− λ⊤t ξt + (λ⋆)⊤ξt

= (λt − λ⋆)⊤
(
V πt
g (ρ)− ξt

)
= (λt − λ̂t+1)

⊤ (V πt−1
g (ρ)− ξt−1

)
+ (λt − λ̂t+1)

⊤ (V πt
g (ρ)− ξt − V πt−1

g (ρ) + ξt−1

)
+(λ̂t+1 − λ⋆)⊤

(
V πt
g (ρ)− ξt

)
≤ 1

2η

(∥∥∥λ̂t+1 − λ̂t

∥∥∥2 − ∥∥∥λ̂t+1 − λt

∥∥∥2 − ∥∥∥λt − λ̂t

∥∥∥2)
+(λt − λ̂t+1)

⊤ (V πt
g (ρ)− ξt − V πt−1

g (ρ) + ξt−1

)
+

1

2η

(∥∥∥λ⋆ − λ̂t

∥∥∥2 − ∥∥∥λ⋆ − λ̂t+1

∥∥∥2 − ∥∥∥λ̂t+1 − λ̂t

∥∥∥2)
≤ 1

2η

(∥∥∥λ̂t+1 − λ̂t

∥∥∥2 − ∥∥∥λ̂t+1 − λt

∥∥∥2 − ∥∥∥λt − λ̂t

∥∥∥2)+
1

2η

(∥∥∥λ⋆ − λ̂t

∥∥∥2 − ∥∥∥λ⋆ − λ̂t+1

∥∥∥2 − ∥∥∥λ̂t+1 − λ̂t

∥∥∥2)
+

4η|A|mκ2ρ
(1− γ)6

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
+4η

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2)

where the first inequality is due to the optimality of λt and λ̂t+1, and the the second inequality is due to that

(λt − λ̂t+1)
⊤ (V πt

g (ρ)− ξt − V
πt−1
g (ρ) + ξt−1

)
≤ η

∥∥V πt
g (ρ)− ξt − V

πt−1
g (ρ) + ξt−1

∥∥2
≤ 2ηm

(
κρ

(1− γ)3

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− πt−1(· | s)∥1

)2

+ 2η ∥ξt − ξt−1∥2

≤
2ηmκ2ρ
(1− γ)6

∑
s

(√
dπ⋆

ρ (s) ∥πt(· | s)− πt−1(· | s)∥1
)2

+ 2η ∥ξt − ξt−1∥2

≤
2η|A|mκ2ρ
(1− γ)6

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− πt−1(· | s)∥2 + 2η ∥ξt − ξt−1∥2

≤
4η|A|mκ2ρ
(1− γ)6

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
+4η

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2)

where the first inequality is due to Lemma 14, the second inequality is due to ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2,
∥x∥ ≤ ∥x∥1, and Lemma 15, the third inequality is due to Cauchy-Schwarz inequality, and the last inequality is

due to ∥x∥1 ≤
√
d ∥x∥ for any x ∈ Rd and ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2.



Resilient Constrained Reinforcement Learning

By applying the above upper bounds on (a), (b), and (c) to (15), it is ready to have

V π
⋆

r+λ⊤
t g

(ρ)− h(ξ⋆)− λ⊤t ξ
⋆ −

(
V πt

r+(λ⋆)⊤g
(ρ)− h(ξt)− (λ⋆)⊤ξt

)
≤ 1

2η(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π⋆(· | s)− π̂t(· | s)∥2 − ∥π⋆(· | s)− π̂t+1(· | s)∥2 − ∥π̂t+1(· | s)− π̂t(· | s)∥2

)
+

1

2η(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π̂t+1(· | s)− π̂t(· | s)∥2 − ∥π̂t+1(· | s)− πt(· | s)∥2 − ∥πt(· | s)− π̂t(· | s)∥2

)
+

4η|A|
(1− γ)3

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)
+8η|A|2 γ(1 +m(Ch)

2)κρ
(1− γ)5ρmin

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
+

1

2η

(∥∥∥ξ⋆ − ξ̂t

∥∥∥2 − ∥∥∥ξ⋆ − ξ̂t+1

∥∥∥2 − ∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2)+
1

2η

(∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2 − ∥∥∥ξ̂t+1 − ξt

∥∥∥2 − ∥∥∥ξt − ξ̂t

∥∥∥2)
+4η

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)+ 4ηL2
h

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2)
+

1

2η

(∥∥∥λ̂t+1 − λ̂t

∥∥∥2 − ∥∥∥λ̂t+1 − λt

∥∥∥2 − ∥∥∥λt − λ̂t

∥∥∥2)+
1

2η

(∥∥∥λ⋆ − λ̂t

∥∥∥2 − ∥∥∥λ⋆ − λ̂t+1

∥∥∥2 − ∥∥∥λ̂t+1 − λ̂t

∥∥∥2)
+

4η|A|mκ2ρ
(1− γ)6

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
+4η

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2) .

We notice that V π
⋆

r+λ⊤
t g

(ρ)− h(ξ⋆)− λ⊤t ξ
⋆ −

(
V πt

r+(λ⋆)⊤g
(ρ)− h(ξt)− (λ⋆)⊤ξt

)
≥ 0. Thus,

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π⋆(· | s)− π̂t+1(· | s)∥2 +
1

2

∥∥∥ξ⋆ − ξ̂t+1

∥∥∥2 + 1

2

∥∥∥λ⋆ − λ̂t+1

∥∥∥2
≤ 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π⋆(· | s)− π̂t(· | s)∥2 +
1

2

∥∥∥ξ⋆ − ξ̂t

∥∥∥2 + 1

2

∥∥∥λ⋆ − λ̂t

∥∥∥2
− 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− π̂t(· | s)∥2 −
1

2

∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2 − 1

2

∥∥∥λ̂t+1 − λ̂t

∥∥∥2
+

1

2(1− γ)

∑
s

dπ
⋆

ρ (s)
(
∥π̂t+1(· | s)− π̂t(· | s)∥2 − ∥π̂t+1(· | s)− πt(· | s)∥2 − ∥πt(· | s)− π̂t(· | s)∥2

)
+

1

2

(∥∥∥ξ̂t+1 − ξ̂t

∥∥∥2 − ∥∥∥ξ̂t+1 − ξt

∥∥∥2 − ∥∥∥ξt − ξ̂t

∥∥∥2)
+

1

2

(∥∥∥λ̂t+1 − λ̂t

∥∥∥2 − ∥∥∥λ̂t+1 − λt

∥∥∥2 − ∥∥∥λt − λ̂t

∥∥∥2)
+4η2ι

1

1− γ

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥π̂t(· | s)− πt−1(· | s)∥2

)
+4η2ι

(∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξ̂t − ξt−1

∥∥∥2)
+4η2ι

(∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λ̂t − λt−1

∥∥∥2)
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where we use the defintion of ι. After some re-combination, we have

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π⋆(· | s)− π̂t+1(· | s)∥2 +
1

2

∥∥∥ξ⋆ − ξ̂t+1

∥∥∥2 + 1

2

∥∥∥λ⋆ − λ̂t+1

∥∥∥2
≤ 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π⋆(· | s)− π̂t(· | s)∥2 +
1

2

∥∥∥ξ⋆ − ξ̂t

∥∥∥2 + 1

2

∥∥∥λ⋆ − λ̂t

∥∥∥2
− 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 −
1

2

∥∥∥ξ̂t+1 − ξt

∥∥∥2 − 1

2

∥∥∥λ̂t+1 − λt

∥∥∥2
−
(
1

2
− 4η2ι

)(
1

1− γ

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t(· | s)∥2 +
∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥λt − λ̂t

∥∥∥2)
+4η2ι

1

1− γ

∑
s

dπ
⋆

ρ (s) ∥π̂t(· | s)− πt−1(· | s)∥2 + 4η2ι
∥∥∥ξ̂t − ξt−1

∥∥∥2 + 4η2ι
∥∥∥λ̂t − λt−1

∥∥∥2 .
By taking

π⋆(· | s) = PΠ⋆(π̂t(· | s)), ξ⋆ = PΞ⋆(ξ̂t), and λ⋆ = PΛ⋆(λ̂t)

and using the non-expansivenss of projection operators PΠ⋆ , PΞ⋆ , and PΛ⋆ , we obtain the following inequality,

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t+1(· | s))− π̂t+1(· | s)∥2 +
1

2

∥∥∥PΞ⋆(ξ̂t+1)− ξ̂t+1

∥∥∥2 + 1

2

∥∥∥PΛ⋆(λ̂t+1)− λ̂t+1

∥∥∥2
≤ 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t(· | s))− π̂t(· | s)∥2 +
1

2

∥∥∥PΞ⋆(ξ̂t)− ξ̂t

∥∥∥2 + 1

2

∥∥∥PΛ⋆(λ̂t)− λ̂t

∥∥∥2
− 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 −
1

2

∥∥∥ξ̂t+1 − ξt

∥∥∥2 − 1

2

∥∥∥λ̂t+1 − λt

∥∥∥2
−
(
1

2
− 4η2ι

)(
1

1− γ

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t(· | s)∥2 +
∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥λt − λ̂t

∥∥∥2)
+4η2ι

1

1− γ

∑
s

dπ
⋆

ρ (s) ∥π̂t(· | s)− πt−1(· | s)∥2 + 4η2ι
∥∥∥ξ̂t − ξt−1

∥∥∥2 + 4η2ι
∥∥∥λ̂t − λt−1

∥∥∥2 .
If we choose η > 0 such that 1

2 − 4η2ι ≥ 1
4 and do some re-arrangement, we have

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t+1(· | s))− π̂t+1(· | s)∥2 +
1

2

∥∥∥PΞ⋆(ξ̂t+1)− ξ̂t+1

∥∥∥2 + 1

2

∥∥∥PΛ⋆(λ̂t+1)− λ̂t+1

∥∥∥2
+

1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2
≤ 1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t(· | s))− π̂t(· | s)∥2 +
1

2

∥∥∥PΞ⋆(ξ̂t)− ξ̂t

∥∥∥2 + 1

2

∥∥∥PΛ⋆(λ̂t)− λ̂t

∥∥∥2
− 1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 −
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥2 − 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2
− 1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t(· | s)∥2 −
1

4

∥∥∥ξt − ξ̂t

∥∥∥2 − 1

4

∥∥∥λt − λ̂t

∥∥∥2
+

1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t(· | s)− πt−1(· | s)∥2 +
1

4

∥∥∥ξ̂t − ξt−1

∥∥∥2 + 1

4

∥∥∥λ̂t − λt−1

∥∥∥2 .
Finally, our desired inequality is obtained by using notation Θ and ζ.
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Lemma 10. In Algorithm 2, for (14) with η ≤ min

(
1

4
√

|A|
, 1
2(Lh+1) ,

1

5
√
m|A|κρ

, ρmin

4γ
√
mCh|A|

)
,

1

1− γ

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
∥∥∥ξ̂t+1 − ξt

∥∥∥2 + ∥∥∥λ̂t+1 − λt

∥∥∥2
+

1

1− γ

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t(· | s)∥2 +
∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥λt − λ̂t

∥∥∥2

≥ η2

9max
(
κρ

1−γ , 1
)2
[(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
−
(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)]2
+(

maxs ∥π(· | s)− π̂t+1(· | s))∥+
∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥)2
for any (π, ξ, λ) ̸= (π̂t+1, ξ̂t+1, λ̂t+1).

Proof. By the optimality of π̂t+1,〈
Qπt

r+λ⊤
t g

(s, ·)− 1

η
(π̂t+1(· | s)− π̂t(· | s)) , π̂t+1(· | s)− π(· | s)

〉
≥ 0 for all π ∈ Π.

Hence,

⟨π̂t+1(· | s)− π̂t(· | s), π(· | s)− π̂t+1(· | s)⟩

≥ η
〈
Qπt

r+λ⊤
t g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

= η

〈
Q
πt+1

r+λ̂⊤
t+1g

(s, ·), π(· | s)− π̂t+1(· | s)
〉
+ η

〈
Qπt

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ⊤
t g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

+ η

〈
Q
π̂t+1

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ̂⊤
t+1g

(s, ·), π(· | s)− π̂t+1(· | s)
〉
.

(16)

Similarly, the optimality of πt+1,〈
Qπt

r+λ⊤
t g

(s, ·)− 1

η
(πt+1(· | s)− π̂t+1(· | s)) , πt+1(· | s)− π(· | s)

〉
≥ 0 for all π ∈ Π

implies that

⟨πt+1(· | s)− π̂t+1(· | s), π(· | s)− πt+1(· | s)⟩

≥ η
〈
Qπt

r+λ⊤
t g

(s, ·), π(· | s)− πt+1(· | s)
〉

= η
〈
Q
πt+1

r+λ⊤
t+1g

(s, ·), π(· | s)− πt+1(· | s)
〉
+ η

〈
Qπt

r+λ⊤
t g

(s, ·)−Q
πt+1

r+λ⊤
t g

(s, ·), π(· | s)− πt+1(· | s)
〉

+ η
〈
Q
πt+1

r+λ⊤
t g

(s, ·)−Q
πt+1

r+λ⊤
t+1g

(s, ·), π(· | s)− πt+1(· | s)
〉
.

By the optimality of ξ̂t+1,〈
−∇h(ξt)− λt −

1

η

(
ξ̂t+1 − ξ̂t

)
, ξ̂t+1 − ξ

〉
≥ 0 for all ξ ∈ Ξ.

Hence, 〈
ξ̂t+1 − ξ̂t, ξ − ξ̂t+1

〉
≥ η

〈
−∇h(ξt)− λt, ξ − ξ̂t+1

〉
= η

〈
−∇h(ξ̂t+1)− λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
−∇h(ξt)− λt +∇h(ξ̂t+1) + λt, ξ − ξ̂t+1

〉
+ η

〈
−∇h(ξ̂t+1)− λt +∇h(ξ̂t+1) + λ̂t+1, ξ − ξ̂t+1

〉
.

(17)
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Similarly, the optimality of ξt+1,

〈
−∇h(ξt)− λt −

1

η

(
ξt+1 − ξ̂t+1

)
, ξt+1 − ξ

〉
≥ 0 for all ξ ∈ Ξ

implies that

〈
ξt+1 − ξ̂t+1, ξ − ξt+1

〉
≥ η ⟨−∇h(ξt)− λt, ξ − ξt+1⟩

= η ⟨−∇h(ξt+1)− λt+1, ξ − ξt+1⟩+ η ⟨−∇h(ξt)− λt +∇h(ξt+1) + λt, ξ − ξt+1⟩

+ η ⟨−∇h(ξt+1)− λt +∇h(ξt+1) + λt+1, ξ − ξt+1⟩ .

By the optimality of λ̂t+1,

〈
V πt
g (ρ)− ξt +

1

η

(
λ̂t+1 − λ̂t

)
, λ̂t+1 − λ

〉
≤ 0 for all λ ∈ Λ.

Hence,

〈
λ̂t+1 − λ̂t, λ− λ̂t+1

〉
≥ η

〈
V πt
g (ρ)− ξt, λ̂t+1 − λ

〉
= η

〈
V
π̂t+1
g (ρ)− ξ̂t+1, λ̂t+1 − λ

〉
+ η

〈
V πt
g (ρ)− ξt − V

π̂t+1
g (ρ) + ξ̂t+1, λ̂t+1 − λ

〉
.

(18)

Similarly, the optimality of λt+1,

〈
V πt
g (ρ)− ξt +

1

η

(
λt+1 − λ̂t+1

)
, λt+1 − λ

〉
≤ 0 for all λ ∈ Λ

implies that

〈
λt+1 − λ̂t+1, λ− λt+1

〉
≥ η

〈
V πt
g (ρ)− ξt, λt+1 − λ

〉
= η

〈
V
πt+1
g (ρ)− ξt+1, λt+1 − λ

〉
+ η

〈
V πt
g (ρ)− ξt − V

πt+1
g (ρ) + ξt+1, λt+1 − λ

〉
.



Resilient Constrained Reinforcement Learning

Summing up the inequalities (16), (17), and (18) from both sides, with some state distribution dπρ , yields,

1

1− γ

∑
s

dπρ (s) ⟨π̂t+1(· | s)− π̂t(· | s), π(· | s)− π̂t+1(· | s)⟩

+
〈
ξ̂t+1 − ξ̂t, ξ − ξ̂t+1

〉
+
〈
λ̂t+1 − λ̂t, λ− λ̂t+1

〉
≥ η

1− γ

∑
s

dπρ (s)

〈
Q
πt+1

r+λ̂⊤
t+1g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

+
η

1− γ

∑
s

dπρ (s)
〈
Qπt

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ⊤
t g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

+
η

1− γ

∑
s

dπρ (s)

〈
Q
π̂t+1

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ̂⊤
t+1g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

+ η
〈
−∇h(ξ̂t+1)− λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
−∇h(ξt)− λt +∇h(ξ̂t+1) + λt, ξ − ξ̂t+1

〉
+ η

〈
−∇h(ξ̂t+1)− λt +∇h(ξ̂t+1) + λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
V
π̂t+1
g (ρ)− ξ̂t+1, λ̂t+1 − λ

〉
+ η

〈
V πt
g (ρ)− ξt − V

π̂t+1
g (ρ) + ξ̂t+1, λ̂t+1 − λ

〉
≥ η

(
V π
r+λ̂⊤

t+1g
(ρ)− V

π̂t+1

r+λ⊤g
(ρ)
)
+ η

(
h(ξ̂t+1)− h(ξ)

)
+ η

〈
−λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
−ξ̂t+1, λ̂t+1 − λ

〉
+

η

1− γ

∑
s

dπρ (s)
〈
Qπt

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ⊤
t g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

+
η

1− γ

∑
s

dπρ (s)

〈
Q
π̂t+1

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ̂⊤
t+1g

(s, ·), π(· | s)− π̂t+1(· | s)
〉

+ η
〈
−∇h(ξt)− λt +∇h(ξ̂t+1) + λt, ξ − ξ̂t+1

〉
+ η

〈
−∇h(ξ̂t+1)− λt +∇h(ξ̂t+1) + λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
V πt
g (ρ)− ξt − V

π̂t+1
g (ρ) + ξ̂t+1, λ̂t+1 − λ

〉
≥ η

(
V π
r+λ̂⊤

t+1g
(ρ)− V

π̂t+1

r+λ⊤g
(ρ)
)
+ η

(
h(ξ̂t+1)− h(ξ)

)
+ η

〈
−λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
−ξ̂t+1, λ̂t+1 − λ

〉
− η

1− γ

∑
s

dπρ (s)
∥∥∥Qπt

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ⊤
t g

(s, ·)
∥∥∥
∞

∥π(· | s)− π̂t+1(· | s)∥1

− η

1− γ

∑
s

dπρ (s)

∥∥∥∥Qπ̂t+1

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ̂⊤
t+1g

(s, ·)
∥∥∥∥
∞

∥π(· | s)− π̂t+1(· | s)∥1

−η
∥∥∥∇h(ξt)−∇h(ξ̂t+1)

∥∥∥∥∥∥ξ − ξ̂t+1

∥∥∥− η
∥∥∥λt − λ̂t+1

∥∥∥∥∥∥ξ − ξ̂t+1

∥∥∥
− η

∥∥∥V πt
g (ρ)− V

π̂t+1
g (ρ)

∥∥∥ ∥∥∥λ̂t+1 − λ
∥∥∥− η

∥∥∥ξt − ξ̂t+1

∥∥∥∥∥∥λ̂t+1 − λ
∥∥∥

≥ η
(
V π
r+λ̂⊤

t+1g
(ρ)− V

π̂t+1

r+λ⊤g
(ρ)
)
+ η

(
h(ξ̂t+1)− h(ξ)

)
+ η

〈
−λ̂t+1, ξ − ξ̂t+1

〉
+ η

〈
−ξ̂t+1, λ̂t+1 − λ

〉
− γη

√
mCh

(1− γ)4
max
s

∥πt(· | s)− π̂t+1(· | s)∥1
∑
s

dπρ (s) ∥π(· | s)− π̂t+1(· | s)∥1

− η

(1− γ)2

∥∥∥λt − λ̂t+1

∥∥∥∑
s

dπρ (s) ∥π(· | s)− π̂t+1(· | s)∥1

−ηLh
∥∥∥ξt − ξ̂t+1

∥∥∥∥∥∥ξ − ξ̂t+1

∥∥∥− η
∥∥∥λt − λ̂t+1

∥∥∥ ∥∥∥ξ − ξ̂t+1

∥∥∥
− η

√
mκρ

(1− γ)3

∥∥∥λ̂t+1 − λ
∥∥∥∑

s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t+1(· | s)∥1 − η
∥∥∥ξt − ξ̂t+1

∥∥∥∥∥∥λ̂t+1 − λ
∥∥∥

where the second inequality is due to the performance difference lemma and the convexity of h(ξ),

h(ξ) ≥ h(ξ̂t+1) +
〈
∇h(ξ̂t+1), ξ − ξ̂t+1

〉
and the the last two inequalities is due to Cauchy–Schwarz inequality, and the inequalities in Lemma 15 and the
smoothness of h, ∥∥∥Qπt

r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ⊤
t g

(s, ·)
∥∥∥
∞

≤ γ
√
mCh

(1− γ)3
max
s

∥πt(· | s)− π̂t+1(· | s)∥1
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r+λ⊤
t g

(s, ·)−Q
π̂t+1

r+λ̂⊤
t+1g

(s, ·)
∥∥∥∥
∞

≤ 1

1− γ

∥∥∥λt − λ̂t+1

∥∥∥
∥∥∥V πt

g (ρ)− V π̂t+1
g (ρ)

∥∥∥ ≤
√
mκρ

(1− γ)3

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t+1(· | s)∥1

∥∥∥∇h(ξt)−∇h(ξ̂t+1)
∥∥∥ ≤ Lh

∥∥∥ξt − ξ̂t+1

∥∥∥ .
We further notice that

1

1− γ

∑
s

dπρ (s) ⟨π̂t+1(· | s)− π̂t(· | s), π(· | s)− π̂t+1(· | s)⟩

+
〈
ξ̂t+1 − ξ̂t, ξ − ξ̂t+1

〉
+
〈
λ̂t+1 − λ̂t, λ− λ̂t+1

〉
≤ 1

1− γ
max
s

∥π(· | s)− π̂t(· | s)∥
∑
s

dπρ (s) ∥π̂t+1(· | s)− π̂t(· | s)∥

+
∥∥∥ξ̂t+1 − ξ̂t

∥∥∥∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ̂t+1 − λ̂t

∥∥∥∥∥∥λ− λ̂t+1

∥∥∥ .
Application of the inequality ac+ bd ≤ (a+ b)(c+ d) for a ≥ 0, b ≥ 0, c ≥ 0, and d ≥ 0 and dπρ (s) ≤

κρ

1−γ d
π⋆

ρ (s)
leads to

η
(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
− η

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
≤

(
max
s

∥π(· | s)− π̂t+1(· | s))∥+
∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥)
×

(
1

1− γ

∑
s

dπρ (s) ∥π̂t+1(· | s)− π̂t(· | s)∥+
∥∥∥ξ̂t+1 − ξ̂t

∥∥∥+ ∥∥∥λ̂t+1 − λ̂t

∥∥∥
+
γη

√
mCh|A|

(1− γ)4
max
s

∥πt(· | s)− π̂t+1(· | s)∥

+
2η
√
|A|

(1− γ)2

∥∥∥λt − λ̂t+1

∥∥∥+ η(Lh + 1)
∥∥∥ξt − ξ̂t+1

∥∥∥
+
η
√
m|A|κρ

(1− γ)3

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t+1(· | s)∥

)
≤

(
max
s

∥π(· | s)− π̂t+1(· | s))∥+
∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥)
×

(
κρ

(1− γ)2

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− π̂t(· | s)∥

+

(
η
√
m|A|κρ

(1− γ)2
+
γη

√
mCh|A|

(1− γ)4ρmin

)
1

1− γ

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t+1(· | s)∥

+
2η
√
|A|

(1− γ)2

∥∥∥λt − λ̂t+1

∥∥∥+ ∥∥∥λ̂t+1 − λ̂t

∥∥∥+ η(Lh + 1)
∥∥∥ξt − ξ̂t+1

∥∥∥+ ∥∥∥ξ̂t+1 − ξ̂t

∥∥∥)︸ ︷︷ ︸
:= Diff

.

If we take η > 0 such that

2η
√
|A|

(1− γ)2
≤ 1

2
, η(Lh + 1) ≤ 1

2
,
η
√
m|A|κρ

(1− γ)2
≤ 1

4
, and

γη
√
mCh|A|

(1− γ)4ρmin
≤ 1

4
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then,

Diff2 ≤ max

(
κρ

1− γ
, 1

)2
(

1

1− γ

∑
s

dπ
⋆

ρ (s)

(
∥π̂t+1(· | s)− π̂t(· | s)∥+

1

2
∥πt(· | s)− π̂t+1(· | s)∥

)
+
∥∥∥λ̂t+1 − λ̂t

∥∥∥+ 1

2

∥∥∥λt − λ̂t+1

∥∥∥+ ∥∥∥ξ̂t+1 − ξ̂t

∥∥∥+ 1

2

∥∥∥ξt − ξ̂t+1

∥∥∥)2

≤ max

(
κρ

1− γ
, 1

)2
(

1

1− γ

∑
s

dπ
⋆

ρ (s)

(
∥πt(· | s)− π̂t(· | s)∥+

3

2
∥πt(· | s)− π̂t+1(· | s)∥

)
+
∥∥∥λt − λ̂t

∥∥∥+ 3

2

∥∥∥λt − λ̂t+1

∥∥∥+ ∥∥∥ξt − ξ̂t

∥∥∥+ 3

2

∥∥∥ξt − ξ̂t+1

∥∥∥)2

≤ 9max

(
κρ

1− γ
, 1

)2
(

1

1− γ

∑
s

dπ
⋆

ρ (s)
(
∥πt(· | s)− π̂t(· | s)∥2 + ∥πt(· | s)− π̂t+1(· | s)∥2

)
+
∥∥∥λt − λ̂t

∥∥∥2 + ∥∥∥λt − λ̂t+1

∥∥∥2 + ∥∥∥ξt − ξ̂t

∥∥∥2 + ∥∥∥ξt − ξ̂t+1

∥∥∥2)

where the second inequality is due to triangle inequality and the last inequality is due to relaxing the multiplier,
(x+ y)2 ≤ 2x2 + 2y2, and Jensen’s inequality.

Lemma 11. In Algorithm 2,

sup
π ∈Π,ξ∈Ξ,λ∈Λ

(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
−
(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
maxs ∥π(· | s)− π̂t+1(· | s))∥+

∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥
≥ Cρ,γ,σ

(∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− PΠ⋆(π̂t+1(· | s))∥+
∥∥∥ξ̂t+1 − PΛ⋆(ξ̂t+1)

∥∥∥2 + ∥∥∥λ̂t+1 − PΛ⋆(λ̂t+1)
∥∥∥)

where Cρ,γ,σ > 0 is some problem-dependent constant.

Proof. Using the saddle-point property of (π⋆, ξ⋆), we first show that for all π̂t+1 and ξ̂t+1,

min
λ∈Λ

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
≤ 1

2
min
λ∈Λ

(
V π

⋆

r+λ⊤g(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
+

1

2
min
λ∈Λ

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ⋆)− λ⊤ξ⋆

)
.

(19)

This can be proved using the linear program formulation of MDP, we can express the value function in terms
of the occupancy measure, i.e., V πr+λ⊤g(ρ) = ⟨qπ, r + λ⊤g⟩, where qπ is the occupancy measure that lives in a

polytope Q. Let the envelope function be F (qπ, ξ) := minλ∈Λ(⟨qπ, r + λ⊤g⟩ − h(ξ)− λ⊤ξ). We notice that the
point-wise minimization is over a family of affine functions ⟨qπ, r + λ⊤g⟩ − λ⊤ξ in terms of (qπ, ξ), and h(ξ) is
strongly convex. Thus, F (qπ, ξ) is a concave function,

F (qπ, ξ) ≤ F (qπ, ξ⋆) + ∂ξF (q
π, ξ⋆)⊤(ξ − ξ⋆) = F (qπ, ξ⋆) + ∂ξF (q

π⋆

, ξ⋆)⊤(ξ − ξ⋆)

F (qπ, ξ) ≤ F (qπ
⋆

, ξ) + ∂qF (q
π⋆

, ξ)⊤(qπ − qπ
⋆

) = F (qπ
⋆

, ξ) + ∂qF (q
π⋆

, ξ⋆)⊤(qπ − qπ
⋆

)

where qπ
⋆

corresponds to π⋆ in the one-to-one way, and we notice that ∂ξF (q
π, ξ⋆) = ∂ξF (q

π⋆

, ξ⋆) and
∂qF (q

π⋆

, ξ⋆) = ∂qF (q
π⋆

, ξ) because of the decoupled structure of qπ and ξ. From the saddle-point property of
(qπ

⋆

, ξ⋆), it also reaches the maximum of F (qπ, ξ). Thus, by the optimality of (qπ
⋆

, ξ⋆),

F (qπ, ξ) ≤ 1

2

(
F (qπ, ξ⋆) + F (qπ

⋆

, ξ)
)

for all qπ ∈ Q and ξ ∈ Ξ

which proves (19) by taking π = π̂t+1 and ξ = ξ̂t+1.
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Denote V ⋆h := V ⋆r+(λ⋆)⊤g(ρ)− h(ξ⋆)− (λ⋆)⊤ξ⋆ and

Dmax := max
π,π′ ∈Π, ξ,ξ′ ∈Ξ, λ,λ′ ∈Λ

(
max
s

∥π(· | s)− π′(· | s)∥+ ∥ξ − ξ′∥+ ∥λ− λ′∥
)
.

Thus,

sup
π∈Π,ξ∈Ξ,λ∈Λ

(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
−
(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
maxs ∥π(· | s)− π̂t+1(· | s))∥+

∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥
≥ 1

Dmax
sup

π ∈Π,ξ∈Ξ,λ∈Λ

((
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
−
(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

))
=

1

2Dmax

(
sup
π ∈Π

(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ⋆)− λ̂⊤t+1ξ

⋆
)
− inf
λ∈Λ

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

))
+

1

2Dmax

(
sup
ξ∈Ξ

(
V π

⋆

r+λ̂⊤
t+1g

(ρ)− h(ξ)− λ̂⊤t+1ξ
)
− inf
λ∈Λ

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

))
≥ 1

2Dmax

(
sup
π ∈Π

(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ⋆)− λ̂⊤t+1ξ

⋆
)
− inf
λ∈Λ

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ⋆)− λ⊤ξ⋆

))
+

1

2Dmax

(
sup
ξ∈Ξ

(
V π

⋆

r+λ̂⊤
t+1g

(ρ)− h(ξ)− λ̂⊤t+1ξ
)
− inf
λ∈Λ

(
V π

⋆

r+λ⊤g(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

))

where the first inequality is due to the domain’s diameter, and the second inequality is due to (19).

Denote V ⋆h := V π
⋆

r+(λ⋆)⊤g(ρ) − h(ξ⋆) − (λ⋆)⊤ξ⋆. If we can prove that there exist constants c1 > 0, c2 > 0, and

c3 > 0 such that

max
π∈Π

(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ⋆)− λ̂⊤t+1ξ

⋆
)
− V ⋆h ≥ c1

∥∥∥λ̂t+1 − PΛ⋆(λ̂t+1)
∥∥∥ (20a)

V ⋆h − min
λ∈Λ

(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ⋆)− λ⊤ξ⋆

)
≥ c2

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− PΠ⋆(π̂t+1(· | s))∥ (20b)

sup
ξ∈Ξ

(
V π

⋆

r+λ̂⊤
t+1g

(ρ)− h(ξ)− λ̂⊤t+1ξ
)
− inf
λ∈Λ

(
V π

⋆

r+λ⊤g(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
≥ c3

∥∥∥ξ̂t+1 − PΛ⋆(ξ̂t+1)
∥∥∥2 (20c)

then,

sup
π ∈Π,ξ∈Ξ,λ∈Λ

(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
−
(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)
maxs ∥π(· | s)− π̂t+1(· | s))∥+

∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥
≥ min(c1, c2, c3)

2Dmax

(∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− PΠ⋆(π̂t+1(· | s))∥+
∥∥∥ξ̂t+1 − PΛ⋆(ξ̂t+1)

∥∥∥2 + ∥∥∥λ̂t+1 − PΛ⋆(λ̂t+1)
∥∥∥)

which proves the desired inequality by taking Cρ,γ,σ = min(c1,c2,c3)
2Dmax

.

To complete the proof, we first show (20a) and (20b) by resorting the following partial bilinear saddle-point
problem,

maximize
qπ ∈Q

minimize
λ∈Λ

⟨qπ, r + λ⊤g⟩ − h(ξ⋆)− λ⊤ξ⋆ = minimize
λ∈Λ

maximize
qπ ∈Q

⟨qπ, r + λ⊤g⟩ − h(ξ⋆)− λ⊤ξ⋆.

Hence, we can apply [Ding et al., 2023, Lemma 10] to obtain (20a) and (20b) directly. To see (20c), we consider
the following partial saddle-point problem,

maximize
ξ∈Ξ

minimize
λ∈Λ

⟨qπ
⋆

, r + λ⊤g⟩ − h(ξ)− λ⊤ξ = minimize
λ∈Λ

maximize
ξ∈Ξ

⟨qπ
⋆

, r + λ⊤g⟩ − h(ξ)− λ⊤ξ

which has a strongly concave and linear saddle-point objective function.
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We notice that V ⋆h = ⟨qπ⋆

, r + (λ⋆)⊤g⟩ − h(ξ⋆)− (λ⋆)⊤ξ⋆. It is straightforward to verify that

max
ξ∈Ξ

(
⟨qπ

⋆

, r + λ⊤g⟩ − h(ξ)− λ⊤ξ
)
− min
λ∈Λ

(
⟨qπ

⋆

, r + λ⊤g⟩ − h(ξ)− λ⊤ξ
)

≥
(
⟨qπ

⋆

, r + λ⊤g⟩ − h(ξ⋆)− λ⊤ξ⋆
)
− V ⋆h

+V ⋆h −
(
⟨qπ

⋆

, r + (λ⋆)⊤g⟩ − h(ξ)− (λ⋆)⊤ξ
)

≥ σ

2
∥ξ − ξ⋆∥2

where we fix ξ = ξ⋆ and λ = λ⋆ for the first inequality and the second inequality is from the strong convexity and
the optimality of (ξ⋆, λ⋆),

⟨qπ
⋆

, r + (λ⋆)⊤g⟩ − h(ξ)− (λ⋆)⊤ξ ≤ V ⋆h + (∇h(ξ⋆)− λ⋆)⊤(ξ − ξ⋆)− σ

2
∥ξ − ξ⋆∥2

⟨qπ
⋆

, r + λ⊤g⟩ − h(ξ⋆)− λ⊤ξ⋆ ≥ V ⋆h + (⟨qπ
⋆

, g⟩ − ξ⋆)⊤(λ− λ⋆).

Finally, we notice that replacing ξ⋆ by PΞ⋆(ξ) does not alter the argument above, which proves (20c) by taking
c3 = σ

2 .

Proof. By the non-increasing sequence in Lemma 9 and the definition of ζt, we have

1

2(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

2

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

2

∥∥∥λ̂t+1 − λt

∥∥∥2 ≤ ζt ≤ 2Θt ≤ 2Θ1.
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Meanwhile, by the definition of ζt and Lemma 10, we have

ζt ≥ 1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

4(1− γ)

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2
+

1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2
+

1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥πt(· | s)− π̂t(· | s)∥2 +
1

4

∥∥∥ξt − ξ̂t

∥∥∥2 + 1

4

∥∥∥λt − λ̂t

∥∥∥2
≥ 1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2

+
η2

32max
(
κρ

1−γ , 1
)2
[(
V π
r+λ̂⊤

t+1g
(ρ)− h(ξ)− λ̂⊤t+1ξ

)
−
(
V
π̂t+1

r+λ⊤g
(ρ)− h(ξ̂t+1)− λ⊤ξ̂t+1

)]2
+(

maxs ∥π(· | s)− π̂t+1(· | s))∥+
∥∥∥ξ − ξ̂t+1

∥∥∥+ ∥∥∥λ− λ̂t+1

∥∥∥)2
≥ 1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥2 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥2
+

η2Cρ,γ,σ

32max
(
κρ

1−γ , 1
)2
(∑

s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− PΠ⋆(π̂t+1(· | s))∥2

+
∥∥∥ξ̂t+1 − PΛ⋆(ξ̂t+1)

∥∥∥4 + ∥∥∥λ̂t+1 − PΛ⋆(λ̂t+1)
∥∥∥2)

≳
1

4(1− γ)

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥4 +
1

4

∥∥∥ξ̂t+1 − ξt

∥∥∥4 + 1

4

∥∥∥λ̂t+1 − λt

∥∥∥4
+

η2Cρ,γ,σ

32max
(
κρ

1−γ , 1
)2
(∑

s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− PΠ⋆(π̂t+1(· | s))∥4

+
∥∥∥ξ̂t+1 − PΛ⋆(ξ̂t+1)

∥∥∥4 + ∥∥∥λ̂t+1 − PΛ⋆(λ̂t+1)
∥∥∥4)

≥ min

1

4
,
η2Cρ,γ,σ(1− γ)

32max
(
κρ

1−γ , 1
)2
( 1

1− γ

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− πt(· | s)∥2 +
∥∥∥ξ̂t+1 − ξt

∥∥∥2 + ∥∥∥λ̂t+1 − λt

∥∥∥2

+
1

1− γ

∑
s

dπ
⋆

ρ (s) ∥π̂t+1(· | s)− PΠ⋆(π̂t+1(· | s))∥2 +
∥∥∥ξ̂t+1 − PΛ⋆(ξ̂t+1)

∥∥∥2 + ∥∥∥λ̂t+1 − PΛ⋆(λ̂t+1)
∥∥∥2)2

≥ min

1

4
,
η2Cρ,γ,σ(1− γ)

32max
(
κρ

1−γ , 1
)2
Θ2

t+1

where ≳ means ≥ up to some normalization constants for (ξ, λ)-relevant terms that can be normalized to one due
to the boundedness.

Denote Cη := min

(
1
4 ,

η2Cρ,γ,σ(1−γ)
32max( κρ

1−γ ,1)
2

)
. Thus,

Θt+1 ≤ Θt − CηΘ
2
t+1.

By Lemma 16, we have

Θt = O

(
1

t

)
where the stepsize η satisfies

η ≤ min

(
1

4
√
|A|

,
1

2(Lh + 1)
,

1

5
√
m|A|κρ

,
ρmin

4γ
√
mCh|A|

,
1

2
√
2ι
,

4max(
κρ

1−γ , 1)√
Θ1Cρ,γ,σ(1− γ)

)
:= ηmax.
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C.4 Proof of Corollary 3

According to Theorem 4, if t = Ω(1/ϵ), then,

1

2

∑
s

dπ
⋆

ρ (s) ∥PΠ⋆(π̂t(· | s))− π̂t(· | s)∥2 = O(ϵ)

1

2

∥∥∥PΞ⋆(ξ̂t)− ξ̂t

∥∥∥2 = O(ϵ)

1

2

∥∥∥PΛ⋆(λ̂t)− λ̂t

∥∥∥2 = O(ϵ).

Let π̂⋆t (· | s) := PΠ⋆(π̂t(· | s)), ξ̂⋆t := PΞ⋆(ξ̂t), and λ̂
⋆
t := PΛ⋆(λ̂t). Because of the interchangeability of saddle points,

(π̂⋆t , ξ̂
⋆
t , λ̂

⋆
t ) is a saddle point in Π⋆ × Ξ⋆ × Λ⋆.

First, we have

V ⋆r (ρ)− h(ξ̄⋆)− (V π̂t
r (ρ)− h(ξ̂t)) =

1

1− γ

∑
s,a

dπ̂t+1
ρ (s)(π̂⋆t (a | s)− π̂t(a | s))Qπ̂t

r (s, a)− h(ξ̄⋆) + h(ξ̂t)

≤ 1

(1− γ)2

∑
s

dπ̂t+1
ρ (s) ∥π̂⋆t (· | s)− π̂t(· | s)∥1 − h(ξ̄⋆) + h(ξ̂t)

≤
√

|A|
(1− γ)2

∑
s

dπ̂t+1
ρ (s) ∥π̂⋆t (· | s)− π̂t(· | s)∥ − h(ξ̄⋆) + h(ξ̂t)

≤
√

|A|
(1− γ)2

√∑
s

d
π̂t+1
ρ (s) ∥π̂⋆t (· | s)− π̂t(· | s)∥2 − h(ξ̄⋆) + h(ξ̂t)

where we use Cauchy–Schwarz inequality in the first and third inequalities, and the second inequality is due to
that ∥x∥1 ≤

√
d ∥x∥2 for x ∈ Rd. We note that h is continuous. Thus,

V ⋆r (ρ)− h(ξ̄⋆)− (V π̂t
r (ρ)− h(ξ̂t)) = O(

√
ϵ)

where V ⋆r (ρ) = V
π̂⋆
t

r (ρ), and |h(ξ̄⋆)− h(ξ̂t)| ≤
√
ϵ for small ϵ.

Second, we have ∥∥∥ξ̂t − V π̂t
g (ρ)

∥∥∥ ≤
∥∥∥V π̂⋆

t
g (ρ)− ξ̂⋆t + ξ̂t − V π̂t

g (ρ)
∥∥∥

=
∥∥∥ξ̂t − ξ̂⋆t

∥∥∥+ ∥∥∥V π̂⋆
t

g (ρ)− V π̂t
g (ρ)

∥∥∥
≤ O(

√
ϵ)

where |V π̂
⋆
t

gi (ρ)− V π̂t
gi (ρ)| = O(

√
ϵ) is similar as we did for the reward value function.

Finally, we replace
√
ϵ by ϵ and combine big O notation to complete the proof.

D Experiment Setup and Additional Results

We provide details of our experiments and additional results. We conduct all experiments on Google Colab in
Jupyter Notebook.

D.1 Resilient Policy Search

In this experiment, we consider a tabular constrained MDP with a randomly generated transition kernel, a
discount factor γ = 0.9, uniform rewards r ∈ [0, 1] and utilities g ∈ [−1, 1], and a uniform initial state distribution
ρ. The relaxation cost function is h(ξ) = αξ2, where parameter α balances the closeness to original constraints
and the reward maximization objective. The initial constraint is V πg (ρ) ≥ c, where c is some constant that often
makes the problem infeasible. For comparison, we solve a linear program in occupancy-measure space to find
the maximal utility value, which is the minimum value of c to make this problem infeasible. Then, we solve a
quadratic program to find the maximal value V π

⋆

r (ρ)− h(ξ) at an optimal policy π⋆. Throughout all experiments,
the random seed is fixed, and the minimal c to make the problem infeasible is 5.56.
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As an example, we take c = 8, presenting an infeasible constraint. We report the reward and utility value
convergence of our two methods: Algorithm 1 (ResPG-PD) and Algorithm 2 (ResOPG-PD) in Figures 11–12,
which show similar convergence behavior as the relaxation in Figure 3. We note, for large α, ResPG-PD behaves
similar as ResOPG-PD, which is mainly due to the strongly convex cost function h. However, when α is
small, ResPG-PD starts to oscillate while ResOPG-PD still converges, which demonstrates the advantage of the
last-iterate convergence in Theorem 4.

We then report the reward, utility, and relaxation gaps by comparing the iterates generated by the two methods
with the optimal values from the quadratic program in Figures 13–15. For three choices of α, reward, utility, and
relaxation of ResOPG-PD converge to the optimal ones, reaching low platforms due to the accuracy of quadratic
program. ResPG-PD behaves similarly for large α: 0.2 or 1, however, oscillates when small α: 0.03.

D.2 Resilient Monitoring: Small State Space

We consider a partial monitoring problem with three locations S0, S1, and S2 in Figure 5. Each location represents
a state of an agent. In each state, the choice of action determines the next state, st+1 = at. In state S0, possible
actions are {S1, S2}. In state Si with i ̸= 0, possible actions are {S0, Si}. We define the reward functions as

ri(st, at) = biI(st = Si) for i = 0, 1, 2

where bi is the reward for a single time step in a state Si. To formulate a constrained MDP, we introduce: (i) two
constraints V πi ≥ ci for i = 1, 2, where the value functions V πi are associated with the corresponding rewards
ri(st, at); (ii) an objective V π0 is the value function associated with the reward r0(st, at). We initialize the agent
using a uniform initial distribution ρ.

As an example, we choose b0 = b1 = 1, b2 = 1.2, a discount factor γ = 0.9 and initial constraints V πg1(ρ) = V π1 (ρ) ≥ 7
and V πg2(ρ) = V π2 (ρ) ≥ 9, which are infeasible to satisfy. The relaxation controls the trade-off between the closeness
to the original constraints and the gain of rewards. One extreme case is that the agent always moves to S0 if not
S0. In this case, the reward reaches the maximum value and the relaxation is the maximum. Another extreme
case is that the agent always stays in its original state Si if not in S0. In this case, the agent spends as much time
as possible in S1, S2 to gain utility, which makes relaxed constraints close to the original constraints and makes
the reward value smallest. The relaxation cost function is h(ξ) = α∥ξ∥2 in which we set α = 0.1. We observe that
our two methods can relax the two initial constraints to make this problem feasible, but keep away from the
extreme cases.

We recall Figure 7 that both methods can successfully relax the two constraints, which are initially infeasible, to be
feasible for different cost functions. To show the reward and utility convergence performance of our two methods:
Algorithm 1 (ResPG-PD) and Algorithm 2 (ResOPG-PD), we report Figures 16–17 for α = 0.1. We show the
reward, utility and relaxation optimality gaps of the two methods in Figures 18–20. As we expect, ResPG-PD
often behave oscillating during training while ResOPG-PD can overcome oscillation, yielding a nearly-optimal
policy in the last iterate.

D.3 Resilient Monitoring: Large State Space

We generalize the problem in Section D.2 to a robot monitoring problem in a 10× 10 grid as shown in Figure 8,
where each grid point is a state. In each state, four possible actions are: left, right, up, and down. The choice of
the action and current state determines next state. The next state is the current state moving towards the action
selected for one unit. If the next state falls outside the grid, the robot remains in the current state. Three shaded
circles S0, S1, S2 in the grid represent three areas to be monitored. We define the reward functions as

ri(st, at) = biI(st ∈ Si) for i = 0, 1, 2

where bi is the reward for a single time step in an area Si. We also have: (i) two constraints V πi ≥ ci for i = 1, 2,
where the value function V πi is associated with the reward ri(st, at); (ii) an objective V π0 is the value function
associated with the reward r0(st, at). The initial distribution ρ is uniform.

We use the same problem parameter setting as Section D.2, i.e., b0 = b1 = 1, b2 = 1.2, a discount factor γ = 0.9
and initial constraints V πg1(ρ) = V π1 (ρ) ≥ 7 and V πg2(ρ) = V π2 (ρ) ≥ 9, which are infeasible to satisfy. The relaxation
cost function is h(ξ) = α∥ξ∥2, where α = 0.08.
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As previously shown in Figure 10, both methods can relax the infeasible constraints. We then report reward
and utility convergence performance for the two methods in Figure 21–22 and report the reward, utility and
relaxation optimality gaps of two methods in Figures 23–25. The convergence behavior of two methods in a large
state/action space is similar as the described in Section D.2.

E Some Useful Lemmas

Lemma 12. Let Assumption 1 hold for Problem (4). For any C ≥ 2λ̄⋆, if there exists a policy π ∈ Π, ξ ∈ Ξ, and
δ > 0 such that V ⋆r (ρ)− h(ξ̄⋆)− (V πr (ρ)− h(ξ)) + C

∑m
i=1[ξi − V πgi(ρ)]+ ≤ δ, then

∑m
i=1[ξi − V πgi(ρ)]+ ≤ 2δ/C,

where [x]+ = max(x, 0).

Proof. For Problem (4), we introduce its value function as

v(τ) = maximize
π ∈Π,ξ∈Ξ

{
V πr (ρ)− h(ξ) |V πgi(ρ) ≥ ξi + τi, i = 1, . . . ,m

}
We note that, v(τ) is a concave function, which is similar as Lemma 1, and v(0) = V ⋆h = V ⋆r (ρ)− h(ξ̄⋆). The rest
of proof is straightforward from [Ding et al., 2022, Lemma 4].

For any convex differentiable function ψ: X → R, the Bregman divergence of x, x′ ∈ X is given by Dψ(x
′, x) :=

ψ(x′) − ψ(x) − ⟨∇ψ(x), x′ − x⟩. When ψ is σ-strongly convex, Dψ(x
′, x) ≥ σ

2 ∥x− x′∥2 for any x, x′ ∈ X.

Specifically, when ψ(x) = 1
2 ∥x∥

2
, Dψ(x

′, x) = 1
2 ∥x

′ − x∥2.
Lemma 13. Let X be a convex set. If x′ = argminx̄∈X⟨x̄, g⟩+Dψ(x̄, x), then for any x⋆ ∈ X,

⟨x′ − x⋆, g⟩ ≤ Dψ(x
⋆, x)−Dψ(x

⋆, x′)−Dψ(x
′, x).

Proof. See [Wei et al., 2020, Lemma 10].

Lemma 14. Assume that Dψ(x, x
′) ≥ 1

2 ∥x− x′∥2p for some ψ and p ≥ 1. If

x1 = argmin
x̄∈X

⟨x̄, g1⟩+Dψ(x̄, x) and x2 = argmin
x̄∈X

⟨x̄, g2⟩+Dψ(x̄, x)

then,
∥x1 − x2∥p ≤ ∥g1 − g2∥q

where 1
p +

1
q = 1.

Proof. See [Wei et al., 2020, Lemma 11].

Lemma 15. For any two policies π and π′, we have∥∥∥Qπr (·, ·)−Qπ
′

r (·, ·)
∥∥∥
∞

≤ γ

(1− γ)2
max
s

∥π(· | s)− π′(· | s)∥1

|V πr (ρ)− V π
′

r (ρ)| ≤ κρ
(1− γ)3

∑
s

dπ
⋆

ρ (s) ∥π(· | s)− π′(· | s)∥1 .

Proof. See [Ding et al., 2023, Lemma 11].

Lemma 16. Let a non-negative sequence {Bt}t≥ 1 satisfy that for any p > 0 and q > 0,

Bt+1 ≤ Bt − qBp+1
t+1 and q(1 + p)Bp1 ≤ 1.

Then, Bt ≤ C t−1/p, where C := max(B1, (1/(pq))
1/p).

Proof. See [Wei et al., 2020, Lemma 12].
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Figure 11: Reward value convergence of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right),
with different cost functions h(ξ) = αξ2, where α = 0.03 ( ), α = 0.2 ( ), α = 1 ( ), and stepsize η = 0.2
in the policy search problem of Section D.1.

iteration

u
ti
li
ty

va
lu
e

iteration

Figure 12: Utility value convergence of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right),
with different cost functions h(ξ) = αξ2, where α = 0.03 ( ), α = 0.2 ( ), α = 1 ( ), and stepsize η = 0.2
in the policy search problem of Section D.1.
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Figure 13: Reward optimality gap of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right), with
different cost functions h(ξ) = αξ2, where α = 0.03 ( ), α = 0.2 ( ), α = 1 ( ), and stepsize η = 0.2 in
the policy search problem of Section D.1.
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Figure 14: Utility optimality gap of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right), with
different cost functions h(ξ) = αξ2, where α = 0.03 ( ), α = 0.2 ( ), α = 1 ( ), and stepsize η = 0.2 in
the policy search problem of Section D.1.
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Figure 15: Relaxation optimality gap of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right),
with different cost functions h(ξ) = αξ2, where α = 0.03 ( ), α = 0.2 ( ), α = 1 ( ), and stepsize η = 0.2
in the policy search problem of Section D.1.
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Figure 16: Reward value convergence of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right), with

a cost functions h(ξ) = α ∥ξ∥2, where α = 0.1, and stepsize η = 0.005 in the monitoring problem of Section D.2.
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Figure 17: Utility value convergence (V πg1(ρ): , V πg2(ρ): ) of ResPG-PD (Algorithm 1, left) and ResOPG-PD

(Algorithm 2, right), with a cost functions h(ξ) = α ∥ξ∥2 for α = 0.1, and stepsize η = 0.005 in the monitoring
problem of Section D.2.
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Figure 18: Reward optimality gap of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right), with

a cost functions h(ξ) = α ∥ξ∥2, where α = 0.1 and stepsize η = 0.005 in the monitoring problem of Section D.2.
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Figure 19: Utility optimality gap (V πg1(ρ): , V πg2(ρ): ) of ResPG-PD (Algorithm 1, two figures on the left)

and ResOPG-PD (Algorithm 2, two figures on the right), with a cost functions h(ξ) = α ∥ξ∥2, where α = 0.1 and
stepsize η = 0.005 in the monitoring problem of Section D.2.
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Figure 20: Relaxation optimality gap (ξ1: , ξ2: ) of ResPG-PD (Algorithm 1, two figures on the left) and

ResOPG-PD (Algorithm 2, two figures on the right), with a cost functions h(ξ) = α ∥ξ∥2, where α = 0.1 and
stepsize η = 0.005 in the monitoring problem of Section D.2.
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Figure 21: Reward value convergence of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right),

with a cost functions h(ξ) = α ∥ξ∥2, where α = 0.08, in the monitoring problem of Section D.3. The stepsize for
ResPG-PD is η = 0.01 and the stepsize for ResOPG-PD is η = 0.05.
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Figure 22: Utility value convergence (V πg1(ρ): , V πg2(ρ): ) of ResPG-PD (Algorithm 1, left) and ResOPG-PD

(Algorithm 2, right), with a cost functions h(ξ) = α ∥ξ∥2 for α = 0.08, in the monitoring problem of Section D.3.
The stepsize for ResPG-PD is η = 0.01 and the stepsize for ResOPG-PD is η = 0.05.
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Figure 23: Reward optimality gap of ResPG-PD (Algorithm 1, left) and ResOPG-PD (Algorithm 2, right), with

a cost functions h(ξ) = α ∥ξ∥2, where α = 0.08 in the monitoring problem of Section D.3. The stepsize for
ResPG-PD is η = 0.01 and the stepsize for ResOPG-PD is η = 0.05.
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Figure 24: Utility optimality gap (V πg1(ρ): , V πg2(ρ): ) of ResPG-PD (Algorithm 1, two figures on the left)

and ResOPG-PD (Algorithm 2, two figures on the right), with a cost functions h(ξ) = α ∥ξ∥2, where α = 0.08 in
the monitoring problem of Section D.3. The stepsize for ResPG-PD is η = 0.01 and the stepsize for ResOPG-PD
is η = 0.05.
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Figure 25: Relaxation optimality gap (ξ1: , ξ2: ) of ResPG-PD (Algorithm 1, two figures on the left) and

ResOPG-PD (Algorithm 2, two figures on the right), with a cost functions h(ξ) = α ∥ξ∥2, where α = 0.08 in the
monitoring problem of Section D.3. The stepsize for ResPG-PD is η = 0.01 and the stepsize for ResOPG-PD is
η = 0.05.
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