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Daniel Dold David Rügamer Beate Sick Oliver Dürr
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Abstract

Semi-structured regression models enable the
joint modeling of interpretable structured
and complex unstructured feature effects.
The structured model part is inspired by sta-
tistical models and can be used to infer the
input-output relationship for features of par-
ticular importance. The complex unstruc-
tured part defines an arbitrary deep neural
network and thereby provides enough flexibil-
ity to achieve competitive prediction perfor-
mance. While these models can also account
for aleatoric uncertainty, there is still a lack
of work on accounting for epistemic uncer-
tainty. In this paper, we address this problem
by presenting a Bayesian approximation for
semi-structured regression models using sub-
space inference. To this end, we extend sub-
space inference for joint posterior sampling
from a full parameter space for structured ef-
fects and a subspace for unstructured effects.
Apart from this hybrid sampling scheme, our
method allows for tunable complexity of the
subspace and can capture multiple minima in
the loss landscape. Numerical experiments
validate our approach’s efficacy in recover-
ing structured effect parameter posteriors in
semi-structured models and approaching the
full-space posterior distribution of MCMC
for increasing subspace dimension. Further,
our approach exhibits competitive predictive
performance across simulated and real-world
datasets.

1 INTRODUCTION

A linear model is inherently transparent and inter-
pretable due to its model structure and underlying as-
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sumptions. When given features denoted as x, the ex-
pected outcome E(y|x) for a variable of interest y ∈ R
is estimated as a linear combination x⊤θ of features
x ∈ Rp and corresponding parameters θ ∈ Rp. This
interpretability is also preserved in the various exten-
sions such as generalized linear models (GLMs; Nelder
and Wedderburn, 1972) for non-Gaussian conditional
outcome distributions or generalized additive models
(GAMs; Wahba, 1990; Wood, 2017) for the inclusion
of non-linearity via splines. While these extensions al-
low for a flexible definition of univariate or moderate-
dimensional multivariate feature effects, they lack flex-
ibility for complex higher-order interactions and are
restricted to tabular features. A deep neural net-
work (DNN), on the other hand, learns complex fea-
ture effects in a data-driven fashion and can work for
different input modalities (e.g., image data). The fu-
sion of a structured and interpretable statistical model
with highly flexible DNNs thus has some attractive
properties and has been investigated over the last 30
years (cf. Section 2.1).

While this combination is flexible and attractive from
a modeling point of view, many properties of this so-
called semi-structured regression (SSR) are yet still
unexplored. One important aspect is their uncertainty
quantification, particularly relevant in their applica-
tion in the medical domain (Dorigatti et al., 2023).
Although some of the more recent approaches account
for aleatoric (Rügamer et al., 2023) or epistemic un-
certainty in SSR models (Dürr et al., 2022; Dorigatti
et al., 2023), all existing approaches do either not ac-
count for the epistemic uncertainty arising from the
model’s DNN part or assume this uncertainty to be
given. Another significant but understudied challenge
in traditional SSR models is the joint optimization of
the two model components. On the one hand, DNNs
can theoretically fit the training data perfectly, po-
tentially leaving little to explain for the structured
part(Zhang et al., 2017, 2021). Optimization of struc-
tured models such as GLMs, on the other hand, is typi-
cally done using more advanced second-order methods.
This optimization asymmetry in SSR complicates the
process of joint optimization.
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Figure 1: Comparison of semi-structured subspace inference and Hamilton Monte Carlo (HMC) for an SSR
model. The SSR is defined as a combination of a linear shift induced by the categorical feature x (color code)
and a non-linear trend in u (x-axis) modeled by a deep neural network (cf. Equation 1). Left/center: posterior
predictive for dataset D and outcome y with a 2-dim. and 12-dim. subspace; right: posterior predictive of HMC
without any approximation. Points represent the data, colored by their category of x, the solid line is the mean,
and shading depicts the 95% Highest Density Interval.

The Bayesian paradigm offers a rigorous framework
for quantifying uncertainty and Markov Chain Monte
Carlo (MCMC) methods, relying on sampling rather
than optimization, are often considered as the gold
standard for inference in Bayesian neural networks
(Wiese et al., 2023). Hence, a Bayesian variant of SSR
models could provide inference statements and circum-
vent the aforementioned issues with the joint opti-
mization of structured and DNN model parts. These
sampling-based approaches, however, are computa-
tionally intensive and struggle with high-dimensional
parameter spaces typical for DNNs.

Our Contribution In this work, we present
semi-structured subspace inference, a sampling-based
method that not only captures aleatoric and epistemic
uncertainty in SSR models but also addresses the op-
timization asymmetry often observed in such mod-
els. Our method allows obtaining the posterior for ev-
ery structured model parameter while accounting for
the DNN’s uncertainty. By using an adjustable sub-
space approximation of the DNN part, it is compatible
with common MCMC methods. We show that semi-
structured subspace inference 1) yields nearly the same
posterior distribution as full-space MCMC methods
for the structured model component, and 2) provides
posterior predictive distributions of the quality of full-
space inference even when using a highly-compressed
subspace (see Figure 1). We further provide numerical
evidence confirming the efficacy of our approach and
superiority when compared to other Bayesian approx-
imation methods.

2 RELATED WORK

Before introducing our method in Section 3, we briefly
introduce SSR and Subspace inference in the following.

2.1 Semi-Structured Regression

The fusion of structured models from statistics and
(deep) neural networks started with Ciampi and
Lechevallier (1995, 1997), followed by extensions to
model generalized additive neural networks (Potts,
1999; de Waal and du Toit, 2007; DeWaal and Du Toit,
2011). In recent years, this combination has returned
to the limelight under the name of wide and deep
learning (Cheng et al., 2016) or semi-structured re-
gression (SSR; Rügamer, 2023). Due to its flexibility,
SSR has been adapted for various scenarios such as
Deep GLMs (Tran et al., 2020), Deep Bayesian regres-
sion (Hubin et al., 2018), survival analysis (Pölsterl
et al., 2020; Kopper et al., 2022), state space models
(Amoura et al., 2011), transformation models (Bau-
mann et al., 2021; Sick et al., 2021), ordinal (Kook
et al., 2022b) or distributional regression (Rügamer
et al., 2023). The question of how uncertainty can
be quantified in a combination of an (unstructured)
DNN and a structured regression model has however
received not much attention. Only recently, Dorigatti
et al. (2023) showed that for given DNN uncertainty,
it is possible to derive the uncertainty for the struc-
tured model parameters in SSR models in a frequen-
tistic manner. While their derived confidence intervals
achieve nominal coverage when the deep uncertainty
quantification method works well, they also point out
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the failure of the method if the uncertainty of the DNN
is not well quantified. Their approach further leaves
various points unanswered as it only focuses on the
structured parameter uncertainty and cannot be em-
bedded in a Bayesian setting despite many of the DNN
uncertainty quantification methods being motivated in
a Bayesian context (e.g., Daxberger et al., 2021; Iz-
mailov et al., 2020). Another option to account for
uncertainties and improve model performance are deep
ensembles (Lakshminarayanan et al., 2017). While
deep ensembling was adapted for semi-structured mod-
els (Kook et al., 2022a), it only accounts for algorith-
mic uncertainty in the DNN model part and cannot
be considered fully Bayesian.

2.2 Bayesian Approximations and Subspace
Inference

In complex Bayesian models that have many parame-
ters, and where MCMC is not computationally feasi-
ble, Laplace approximation (Daxberger et al., 2021)
provides a tractable alternative. This method ap-
proximates the posterior distribution with a Gaus-
sian distribution centered at a single mode. How-
ever, this simplification neglects the potentially multi-
modal nature of the posterior in complex models. In
contrast, subspace inference (Izmailov et al., 2020)
provides an approach capable of capturing multiple
modes in the posterior. This is achieved by defin-
ing a lower-dimensional subspace within the parame-
ter space that can accommodate multiple modes. This
subspace facilitates efficient posterior sampling using
MCMC methods. Two methods were proposed to
construct this subspace within the high-dimensional
weight space of a neural network: the first employs
principal component analysis on weights collected dur-
ing the last training epochs, which typically corre-
sponds to a single minimum in the loss space and hence
captures a single mode of the posterior; the second
method from Garipov et al. (2018) connects two local
minima in the loss landscape using a quadratic Bézier
curve, enriching the model’s uncertainty by potentially
capturing multiple posterior modes. Control points
of the Bézier curve are determined by weights result-
ing from two independent training runs, with a third
optimization refining the last control point to ensure
all weights along the curve yield well-performing mod-
els. Izmailov et al. (2020) empirically showed that us-
ing a quadratic Bézier with two connected modes out-
performed the principal component analysis approach.
Thus our work exclusively adopts the Bézier approach
for subspace inference. While effective, this method re-
stricts the subspace dimension to two dimensions and
necessitates multiple training runs. Wortsman et al.
(2021) improved upon this by developing an algorithm
that works within a single training run, but also uses

the quadratic Bézier curves. To the best of our knowl-
edge, there has been no further development build-
ing on Wortsman et al. (2021) or extending the Bézier
curve approach originally introduced by Garipov et al.
(2018). Recent work by Jantre et al. (2023) incorpo-
rates output information but remains confined to ex-
ploring a single mode of the posterior.

3 SEMI-STRUCTURED SUBSPACE
INFERENCE

A semi-structured regression model is defined as an
additive combination of a structured model part, cap-
turing the interpretable effect of tabular input features
x ∈ Rp, and an unstructured model part processing
complex effects of a potentially complex input u ∈ U
through a DNN. While the class of models is not re-
stricted to certain regression models and the struc-
tured model part can be flexibly defined, we here fo-
cus on mean regression approaches, where the mean µ
of some distribution is modeled as a semi-structured
predictor of the form

µ = x⊤θ +DNN(u). (1)

In (1), θ ∈ Rp are the interpretable parameters of
the structured model part and DNN : U → R is
parametrized with weights w ∈ Rd, where d is usually
large. We use this simple definition for better read-
ability but note that extending our approach to models
with more complex structured effects such as splines or
distribution regression approaches as discussed in Sec-
tion 2.1 is straightforward. As the parameters θ of the
structured part play a special role, quantifying their
uncertainty is one of our primary goals. One option
to quantify the uncertainty is to employ a Bayesian
approach.

Näıve Approximation Methods Translating SSR
models into a Bayesian framework requires some form
of approximation as classical MCMC is infeasible for
the model’s unstructured DNN part. A näıve ap-
proach to implement approximation techniques such
as Laplace approximation or subspace inference for
SSR models would be to treat the parameters from
the structured model part θ without special attention.
This would mean simply extending the d-dimensional
DNN weight space with the p-dimensional space of θ
and applying the original approximation to the com-
bined (d+ p)-dimensional space without further mod-
ification. However, by not differentiating between
the small parameter set θ and the overparameterized
weights of a DNN, these naive approaches constrain
the posterior p(θ|D) in its shape (e.g., a unimodal
Gaussian distribution for Laplace approximation) or
flexibility (cf. Figure 3 for subspace inference).
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Semi-Structured Subspace Inference Our
method is an extension of subspace inference, origi-
nally introduced by Izmailov et al. (2020), tailored
specifically for SSR models. The core premise of
our approach is a dimensionality reduction applied
to the weight vector w of the neural network to a
k-dimensional subspace, allowing sampling in Rk×Rp,
with k ≪ d, instead of Rd × Rp. In the following, we
elaborate on how our method incorporates elements
from Izmailov et al. (2020) while introducing our
own adaptations and enhancements to better suit
SSR models. The design of the sampling space is
guided by the following criteria. First, the subspace
must be sample-efficient, concentrating on regions of
the loss landscape with low loss values. Second, it
must encompass a diverse set of weight configurations
that correspond to small loss values. Third, the
subspace should facilitate smooth and rapid traversal
between distinct low-loss regions, thereby enabling the
exploration of a diverse set of solutions. Finally, the
subspace construction must be aware of the structured
model part x⊤θ as x⊤θ can have a significant impact
on the loss landscape of the DNN component.

3.1 Construction of the Approximate
Sampling Space

In line with these guiding principles, we introduce a
parametric path bΛ : [0, 1] → Rd that interconnects
weight vectors pl, l = 0 . . . k, of k + 1 neural net-
work parametrizations, within the d-dimensional DNN
weight space (see Figure 2). This path is formulated
using a Bézier curve with the weight vectors pl serving
as control points:

bΛ(t) =

k∑
l=0

(
k

l

)
(1− t)k−ltlpl. (2)

The parameterization of the curve is given by Λ :=
(p0, . . . ,pk). Each point bΛ(t) together with the pa-
rameters θ comprises a parameter set of an SSR model
with loss L(bΛ(t),θ). Empirical evidence, as out-
lined in Garipov et al. (2018), indicates the presence
of a low-loss valley between distinct SGD solutions.
Following their approach, we minimize the functional
L(θ,Λ) defined as

L(θ,Λ) =

∫ 1

0

L(bΛ(t),θ) dt. (3)

We compute an unbiased estimate of the objective (3)
by sampling t ∼ U(0, 1) and update (θ,Λ) via mini-
batch gradient descent (Algorithm 1). The optimal pa-
rameters Λ∗ define a k-dimensional (affine) subspace
in Rd

AffSpan(Λ∗) =

{
p∗
0 +

k∑
i=1

φ′
i∆p∗

i

∣∣∣φ′
i ∈ R

}
, (4)

Algorithm 1 Subspace construction

1: Initialize weights p0, . . . ,pk and θ randomly
2: while validation loss still reducible do
3: for each minibatch B of training data D do
4: Sample t ∼ U(0, 1)
5: Compute L(bΛ(t),θ) and gradients ∇L
6: Update p0, . . . ,pk and θ using any

SGD variant (e.g., Adam)
7: end for
8: end while
9: return optimized p∗

0, . . . ,p
∗
k and θ∗

where ∆p∗
i = (p∗

i −p∗
0), and Λ∗ = (p∗

0, . . . ,p
∗
k), which

includes the estimated low-loss valley given by the
Bézier curve (see Supplementary Material B.1 for a
proof). Figure 2 illustrates this concept for k = 2 and
d = 3. In contrast to Izmailov et al. (2020), our ap-
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Figure 2: Bézier curve (magenta) in three-
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proach streamlines subspace construction by training
the Bézier curve model in a single stage, eliminating
the need for sequential training of p∗
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∗
2, and p∗

1 with
fixed p∗

0 and p∗
2.
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3.2 Subspace Sampling

In order to approximate the DNN part’s posterior,
we sample weights in the k-dimensional affine sub-
space defined in (4). To ensure compatibility with the
methodology presented in Izmailov et al. (2020) for the
case k = 2, we adopt an orthogonal coordinate system
for sampling, as opposed to directly sampling φ′ in (4).
Specifically, we perform a translation to center the con-
trolling points p∗

i around their mean vector, given by

p̄ = 1
k+1

∑k
i=0 p

∗
i . Subsequently, we perform a prin-

cipal component analysis on the centered points to
construct an orthogonal projection matrix, denoted as
Π : Rk → Rd. This matrix Π ∈ Rd×k encapsulates the
first k principal components of the centered dataset.
Given a sample vector φ = (φ1, . . . , φk) ∈ Rk, we
can then transform φ into a weight vector w in the
d-dimensional weight space of the neural network via:

w = p̄+Πφ. (5)

Together with the structured parameters θ, the sam-
pling procedure hence involves generating samples
from a tuple (φ,θ). This allows us to compute the
likelihood contribution of the DNN part and the struc-
tured part as:

p(D|θ,φ) = p(D|θ,w = p̄+Πφ). (6)

Since both p and k are reasonably small, our method
highly supports efficient sampling with MCMC al-
gorithms including sophisticated algorithms such as
HMC. The sampling space design inherently captures
multiple low-loss regions, fostering effective sampling
and diverse solution exploration. Within this space,
through the Bézier curve, a low-loss pathway is em-
bedded to ensure smooth transitions during sampling.
Importantly, this design integrates the interpretable
parameter θ into the sampling space without being
directly affected by the approximation.

Priors As in Izmailov et al. (2020), we model the
vectors φ and θ using independent multivariate nor-
mal distributions φ ∼ N (0, Ikσφ) and θ ∼ N (0, Ipσθ).
Although a Gaussian prior was found to be adequate
for θ in our studies, our framework accommodates the
use of more complex priors. This flexibility is partic-
ularly beneficial for interpreting the structured model
component parameterized by θ. To bring the lower-
dimensional subspace priors in line with conventional
Bayesian DNN priors, Izmailov et al. (2020) discussed
the use of temperature scaling. A detailed discussion
for SSR models is provided in the Supplementary Ma-
terial A.

4 NUMERICAL EXPERIMENTS

We now illustrate the advantages of our framework
on four experiments where we compare our approach
with 1) a näıve Bayesian SSR approximation on a
simple regression toy experiment; 2) ground truth re-
sults derived from HMC on simulated data; 3) MCMC
and approximation methods on benchmark datasets,
and 4) various SSR approaches on a complex medical
dataset. For the latter, we employ the Elliptic Slice
Sampler (Murray et al., 2010). For all other cases, full
batch processing is possible and we hence choose HMC
to sample in the subspace as it typically results in a
larger effective sample size. Further details and ex-
perimental results can be found in the Supplementary
Material Section C and D. Due to the large parameter
space and the inherent symmetry in neural network
weights, it becomes challenging to compare the poste-
rior of different Bayesian approximations Wiese et al.
(2023). Instead, these approximations are typically
evaluated based on their posterior predictive perfor-
mance. We do so in Sections 4.3 and 4.4. In addition,
the architecture of our SSR model enables a direct
comparison of posteriors of the structured parameters,
which is done in Sections 4.1 and 4.2.

4.1 Comparison with Näıve Subspace
Inference

In this first experiment, we aim to compare the
posterior distributions derived from the structured
model component of our approach against those from
a näıve subspace approximation (described in Para-
graph 3). To this end, we adapt the synthetic dataset
{f(ui), ui}ntrain

i=1 from Izmailov et al. (2020) with noisy
nonlinear function f . For each data point i, we then
incorporate a structured effect by randomly choosing a
category vector xi ∈ {(0, 0)⊤, (1, 0)⊤, (0, 1)⊤} to shift
f(ui) by an offset x⊤

i θ
∗ with θ∗ = (−0.5, 1)⊤, re-

sulting in the final training dataset {yi = f(ui) +
x⊤
i θ

∗, ui,xi}ntrain=35
i=1 .

Knowing the structure of the data-generating process,
we model the simulated data by a corresponding SSR
as in Equation (1). For DNN(u) we choose a sim-
ple network with two fully-connected layers, each with
16 neurons and ReLU activation, and a linear output
layer. The inference is done by sampling weights from
a k-dimensional subspace for the unstructured model
part while sampling from the full space of θ = (θ0, θ1)

⊤

for the structured model part. The näıve approach
does not differentiate between the two model parts
and applies subspace inference on the combined (w, θ)-
space.

Results As shown in Figure 3, the näıve subspace
approach fails to represent the true posterior accu-
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rately, this is especially visible along the θ1 direction.
We further visualize the resulting posterior predictive
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Figure 3: Posterior of the parameters in the structured
model part using the näıve subspace approximation
with k = 4 (Näıve-Subspace), our approach with k = 2
and p = 2 (Semi-Subspace), and HMC running in the
full parameter space. The top and the right plot shows
the marginal posterior distribution, whereas the center
plot visualizes the bivariate distribution using a kernel
density estimator based on 4000 samples from 10 HMC
chains.

in Figure 1. While the choice of k does not influ-
ence the predictive distribution’s mean, we find that
k = 2 produces a too narrow distribution compared
to the gold standard obtained via full space HMC,
and hence an overconfident uncertainty measure for
both in- and out-of-distribution data. Notably, when
increasing to k = 12, which is still much less than
d = 337, we obtain almost the same level of uncer-
tainty as HMC despite reducing the space by a factor
of around 28. In contrast, the Laplace approximation
underestimates the epistemic uncertainty (cf. Supple-
mentary Material, Section D.1). This is also reflected
in the log pointwise predictive density (LPPD)1 evalu-
ated on ntest = 365 test data points, where the Laplace
approximation achieved an LPPD of 1.0 and our Semi-
Subspace approach achieves an LPPD of 1.14, while
Semi-Subspace(k = 12) with an LPPD of 1.27 is even
slightly better than HMC (LPPD 1.26) running on the
full parameter space.

4.2 Simulation Study

While simple, the previously analyzed data-generating
process allows us to systematically investigate the be-
havior of our subspace approach in comparison to the
gold standard full space HMC method. As the pre-
vious results suggest, our subspace approach has the

1To be comparable with Wiese et al. (2023), we divided
each reported LPPD by the number of data points

potential to generate a very similar posterior distri-
bution of the structured model part p(θ|D) as HMC
would do for the entire parameter space. To test
this, we extended the data generation of our previ-
ous study with two outcome distributions (Poisson and
Normal), a larger input space u ∈ R4 and x ∈ R3,
and different subspace dimensions k = 2, 4, 8, 12, 16.
We conduct 50 simulation runs for every configura-
tion, with different data sets generated in each run.
Each data point (yi,xi,ui) was generated using the
following data generating process: First, we sam-
ple ui ∼ N(0, I4) and xi ∼ N(0, I3). Next, we
randomly initialize the SSR model with parameters
θ∗ ∈ R3 and w∗ ∈ R336, using a similar architec-
ture as in our first experiment. Finally we choose
yi ∼ N (f(ui) + x⊤

i θ
∗, 1) for the Normal outcome dis-

tribution case and yi ∼ Pois(ρ(f(ui) + x⊤
i θ

∗)) with
ρ the exponential function for the Poisson case. We
model the synthetic data using an SSR model with the
same architecture as in the data generation process.

Results We examine the results focusing on the dif-
ferences in the mean and standard deviation of the
posterior between our method and HMC. Figure 4
shows the results for the Poisson distribution. We find
that our subspace approach yields an unbiased pos-
terior mean irrespective of k and that the difference
to HMC reduces to zero for increasing subspace di-
mension (left plot). While biased in the distribution’s
variance, increasing the subspace alleviates this dis-
crepancy and a larger subspace produces almost the
same posterior variance as HMC. Small k, in con-
trast, leads to overly confident uncertainty quantifica-
tion. We thus argue that the subspace dimension k
can be chosen as large as computationally feasible, as
it consistently improves the distribution quality.

In order to analyze previous results in light of pa-
rameter uncertainty quantification, we further check
the calibration of the posterior. To this end, we
compute the amount of coverage of the true param-
eter θ∗ from the data generation process by the de-
rived α-credibility intervals for different nominal levels
α ∈ (0, 1). This is visualized by plotting the theoret-
ical coverage α against the empirical sample coverage
using the obtained posterior (cf. Figure 5 for θ1). Re-
sults clearly show that for increasing subspace dimen-
sions, calibration improves, and already for k = 12 or
k = 16, coverage is not notably different from the one
obtained by using HMC with 372 dimensions.

4.3 UCI Benchmark

While the previous experiments assess our SSR sub-
space approximation by checking the coverage of struc-
tured model parameters, we now evaluate the gen-
eral applicability of our subspace approach using
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Figure 4: Posterior mean (top) and standard devia-
tion (bottom) of our approximation method compared
to the gold standard HMC. The boxplots show differ-
ences between the learned distribution’s mean/stan-
dard deviation of our approach minus the respective
statistic using HMC for the 50 simulation repetitions.
The x-axis depicts the different subspace dimensions k
used in our approach and each color represents one of
the three parameters in θ.

the benchmark datasets and methods investigated in
Wiese et al. (2023). The authors show how to effi-
ciently use multiple chains to capture different poste-
rior modes and thereby achieve superior performance
by capturing most of the relevant parts of the pos-
terior. The obtained results are hence (close to) an
oracle performance and can be used to check how well
our approximation is working. Their benchmark com-
prises three simulated datasets and six datasets from
the UCI machine learning repository Dua et al. (2017).
We use the same data splits, model architectures, and
data pre-processing as in Wiese et al. (2023), allowing
for a direct comparison with their MCMC approach
as well as results provided for Laplace approximation
(Daxberger et al., 2021) and Deep Ensembles (Laksh-
minarayanan et al., 2017). We run our method using
k = 2 and k = 5.

Results Table 1 summarizes the results, showing
that our method outperforms both the Laplace ap-
proximation and deep ensembles on all provided
datasets while being often very close to the gold stan-
dard MCMC approach. We further see that an in-
crease in subspace dimension can notably improve pre-
dictive performance (Diabetes, ForestF, Yacht).
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Figure 5: Coverage comparison of credibility intervals
derived from the posterior p(θ1|D) using different sub-
space dimensions k (colors). The theoretical cover-
age (x-axis) across different values in (0, 1) is plotted
against the sample coverage (y-axis), based on the em-
pirical ratio of the credibility interval containing the
true parameter. Whiskers represent the 95% Wilson
confidence interval.

4.4 Application to Melanoma Data

Finally, we apply our method to a real-world
melanoma dataset (International Skin Imaging Col-
laboration, 2020) containing 33,058 patient records of
3× 128× 128 RGB color images of skin lesions as well
as additional metadata such as the patient’s age. The
primary objective of this dataset is to predict the pres-
ence or absence of malignant skin lesions. We follow
the approach by Dürr et al. (2022) and process the im-
ages using a basic convolutional neural network (see
Supplementary Material C for details) while model-
ing the patient’s age as a linear effect θage. Next to
a comparison with MCMC using only the age infor-
mation, we compare against the transformation model
approach by Dürr et al. (2022), and the Laplace ap-
proximation (using the last layer approach). The data
is split into six data folds as in previous works.

Results In Figure 6, we compare the posterior dis-
tribution p(θage|D) obtained by the different methods.
Results suggest that the inclusion of image information
decreases the effect of age when comparing the differ-
ent methods to the results of MCMC which only uses
age information. The results from Dürr et al. (2022)
(CNN + BF-VI) are not in line with all other methods,
yielding a differently shaped distribution. While our
approach is similar to the Laplace approximation in
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Table 1: Normalized expected test log pointwise predictive density (LPPD; larger is better) with the network architecture
introduced by Wiese et al. (2023), comprising three hidden layers with 16 neurons. The values within parentheses
represent the standard errors of the predictive density per data point. The best method, excluding MCMC (representing
an approximate upper bound), and all methods within one standard error of the best method are highlighted in bold.

dataset MCMC Subspace (k=2) Subspace (k=5) Deep Ens. Laplace Appr.

DI 0.91 (±0.09) 0.82 (± 0.10) 0.77 (± 0.09) -2.02 (±0.02) -1.81 (±0.01)
DR 0.95 (±0.08) 0.82 (± 0.13) 0.86 (± 0.12) -2.20 (±0.02) -2.33 (±0.00)
Airfoil 0.92 (±0.05) -0.28 (± 0.12) -0.19 (± 0.09) -2.17 (±0.01) -3.57 (±0.18)
Concrete 0.26 (±0.07) -0.53 (± 0.20) -0.55 (± 0.17) -2.03 (±0.01) -4.36 (±0.47)
Diabetes -1.18 (±0.08) -2.40 (± 0.28) -1.21 (± 0.08) -2.09 (±0.04) -2.61 (±0.00)
Energy 2.07 (±0.46) 1.43 (± 0.14) 1.57 (± 0.15) -1.99 (±0.02) -1.39 (±0.06)
ForestF -1.43 (±0.45) -1.90 (± 0.19) -1.38 (± 0.07) -2.20 (±0.02) -2.80 (±0.00)
Yacht 3.31 (±0.21) -0.69 (± 1.90) 1.49 (± 0.51) -2.18 (±0.03) -2.69 (±0.00)
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Figure 6: Posterior p(θage|D) obtained using different
methods on the Melanoma dataset. Distributions are
based on a KDE smoother combining all samples from
all training folds.

terms of the posterior p(θage|D) it surpasses both the
Laplace approximation and the transformation model
approach in terms of negative log-likelihood (see Ta-
ble 2).

Table 2: Mean area under the ROC Curve (AUC) and
LPPD values (standard errors in brackets; not available for
CNN + BF-VI) across the six data folds for the different
methods (rows)

AUC LPPD

CNN + BF-VI 0.82 (±0.03) -0.076 (NA)
Laplace 0.795 (±0.004) -0.076 (±0.001)
Semi-Subspace(k=2) 0.841 (±0.003) -0.072 (±0.001)

Optimization Aspects It’s worth noting that dur-
ing our empirical analysis, we encountered difficulties
fitting the Laplace SSR model, requiring careful tun-
ing of the learning rate, see Supplementary Material

D.4 for a detailed discussion. We attribute this ob-
servation to the optimization asymmetry when train-
ing SSR models, where the optimization of structured
model parameters is not treated differently from the
one of neural network parameters. We note that com-
pared to the Laplace approximation, our method is
less affected by the optimization asymmetry in SSR,
as we do not directly rely on a specific learning rate or
optimizer (except for the construction of the sampling
space). We find this to be a major advantage of our
method compared to Laplace approximation or other
optimization-based SSR methods.

5 CONCLUSION

We have presented a method to address two critical
challenges inherent in SSR models, uncertainty quan-
tification and optimization. Our approach notably
improves over näıve approximation methods in terms
of posterior distribution quality while outperforming
other approximation methods in predictive posterior
performance. We also find that with a sufficiently large
subspace dimension k, our method comes remarkably
close to replicating the posterior distribution and pos-
terior predictive distribution achieved by gold stan-
dard MCMC techniques. Additionally, our method
enables a deeper analysis of parameter uncertainty
within the structured model component, accounting
for the uncertainty propagated through the DNN part.
This nuanced understanding of uncertainty provides
valuable insights, particularly in domains like medi-
cal diagnostics, where model interpretability is crucial.
Furthermore, our work sheds light on the optimization
asymmetry in SSR and makes inference more robust
as it mitigates the challenges arising from this asym-
metry. One limitation of our current method is the
notable memory usage due to the storage of (k+1)×d
parameters in Π and p̄ during the sampling phase, or
in Λ during the training phase. A possible alleviation
of this issue could be achieved by sequentially com-
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puting the necessary values in Equations (2) and (5),
trading performance with memory demand. Another
limitation is the high computational demand, inherent
in sampling-based approaches, requiring one forward
pass per posterior sample. This could be addressed by
treating only parts of the network as Bayesian.

In summary, our method not only boosts the predictive
performance of SSR models but also serves as a com-
prehensive framework for understanding and quanti-
fying uncertainty. It achieves results that are compa-
rable to those of HMC, while also addressing fitting
challenges commonly encountered in other SSR meth-
ods that rely solely on optimization. This makes our
approach a valuable asset across a diverse array of ap-
plications.
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Bayesian Semi-structured Subspace Inference:
Supplementary Materials

A TEMPERED POSTERIOR FOR SSR MODELS

In the following section, we will discuss how we can apply a temperature parameter to improve predictive
performance and what the unique challenges are in the context of SSR models.

As highlighted by Izmailov et al. (2020), subspace inference can yield overly confident uncertainty estimates.
This overconfidence may stem from the fact that the prior is defined within the subspace of dimension k rather
than the larger dimension d. Consequently, reducing the parameter space through subspace construction has
a noticeable impact on the posterior distribution. To mitigate this effect, Izmailov et al. (2020) proposed the
application of a temperature parameter T > 0. This parameter scales the likelihood according to the following
Equation:

pT (θ,φ|D) ∝ p(D|θ,φ)1/T p(θ,φ) (7)

Here, a temperature smaller than one shifts the posterior towards the maximum likelihood estimate, while a
temperature larger than one moves the posterior closer to the prior distribution. Their findings suggest that
using a temperature parameter can improve predictive performance and, potentially, the quality of uncertainty
estimates.

However, with this proposed method the marginal posterior distribution p(θ|D) will be influenced by the temper-
ature parameter. This is problematic for SSR models as θ is not affected by the subspace approximation, hence
there is no reason to modify its marginal posterior with a temperature parameter. To tackle this challenge, we
devised a novel approach. First, we split the joint posterior distribution into two parts, which can be expressed
as follows:

pT (θ,φ|D) = p(θ|φ,D) pT (φ|D)

=
p(D|θ,φ) p(θ|φ)

p(D|φ)
p(D|φ) 1

T p(φ)

pT (D)

(8)

The first part of this equation represents the conditioned posterior for our interpretable parameters, denoted as
θ, while the second part reflects the posterior of the neural network, p(φ|D), where we apply the temperature
parameter. If p(θ|D) and p(φ|D) are independent, the temperature parameter won’t influence the posterior
p(θ|D) in this approach. This can be shown by simply rewriting Equation (9)

pT (θ|D) =

∫
pT (θ,φ|D)dφ

=

∫
p(θ|φ,D) pT (φ|D)dφ

= p(θ|D)

∫
pT (φ|D)dφ , if p(θ,φ|D) = p(θ|D)p(φ|D)

= p(θ|D) ■ (9)

However, the proposed approach necessitates the computation of the marginal likelihood, represented as p(D|φ).
We chose to numerically integrate the likelihood function according to the following equation:

p(D|φ) =
∫

p(D|θ,φ) p(θ|φ) dθ (10)
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It’s important to note that this numerical integration depends on the choice of technical parameters like integra-
tion step size and range, making misconfigurations of these parameters a potential source of inaccurate results.
Additionally, this approach is only feasible when the dimension of the structural parameters is relatively small,
which allows for manageable numerical integration. Given these constraints, applying a temperature parameter
to SSR models proves to be a challenging endeavor.

In our initial analysis, we applied our proposed temperature adjustment to the likelihood function of an SSR
model according to Equation 8. We conducted this analysis on the melanoma dataset and on the adapted
synthetic dataset from Izmailov et al. (2020) as described in Section 4.1, where in both settings the parameter θ
is of low dimension allowing for numerical integration. In both experiments, we observed an undesired influence
of the temperature parameter manifesting in a broadening on the posterior p(θ|D) with increasing temperature
(cf. Figure 7). We attribute this influence to the dependence between p(θ|D) and p(φ|D). Additionally, we
observed only marginal performance improvements in our initial experiments when adjusting the temperature
parameter. However, these slight gains are outweighed by the significant computational difficulties and the
impact of the temperature on the posterior p(θ|D). These difficulties led us to decide against its adaptation.
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p(θ|D)

Temperature=1
Temperature=10
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Figure 7: Samples from the posterior p(θ|D) for different temperature T parameters on the adapted synthetic
dataset described in section 4.1. The contour lines represent the 0.25, 0.5, and 0.75 high-density interval (HDI).

B ADDITIONAL PROOFS

B.1 The Bézier Curve Resides in the Affine Subspace

We aim to demonstrate that every point on the Bézier curve Bλ(t), which serves as an approximation of the
low-energy valley, can be obtained through our chosen sampling procedure. Specifically, our sampling approach
ensures that each sample φ belongs to the affine subspace spanned by the control points p∗

0,p
∗
1, . . . ,p

∗
k.

AffSpan(Λ∗) =

{
p∗
0 +

k∑
i=1

φ′
i∆p∗

i

∣∣∣φ′
i ∈ R

}
. (11)
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To demonstrate that the Bézier curve Bλ(t) resides within this affine subspace, we perform the following algebraic
manipulations:

Bλ(t) =

k∑
l=0

(
k

l

)
(1− t)k−ltlp∗

l

= (1− t)kp∗
0 +

k∑
l=1

(
k

l

)
(1− t)k−ltlp∗

l

= (1− t)kp∗
0 +

k∑
l=1

(
k

l

)
(1− t)k−ltl(p∗

l − p∗
0 + p∗

0)

= p∗
0 ·
(

k∑
l=0

(
k

l

)
(1− t)k−ltl

)
︸ ︷︷ ︸

=1

+

k∑
l=1

(
k

l

)
(1− t)k−ltl︸ ︷︷ ︸

=αl

(p∗
l − p∗

0)

= p∗
0 +

k∑
l=1

αl(p
∗
l − p∗

0),

where αl =
(
k
l

)
(1 − t)k−ltl for l in 1, . . . , k. The last equation clearly indicates that Bλ(t) is contained within

the affine subspace AffSpan(Λ∗).

C EXPERIMENTAL SETUP

The code and notebooks with further experimental settings for this project are available under
https://github.com/doldd/Bayesian Semi Sub.

C.1 General Experimental Setup

Below, we detail how we train the model to construct the subspace. To train the model, we optimized the entire
SSR model, where only the weights of the DNN part are controlled via the Bézier curve. In all experiments,
we used the Adam optimizer with a learning rate of 1e-4 and weight decay of 1e-4 for the medical dataset, a
learning rate of 5e-3 with zero weight decay for the UCI benchmark, and a learning rate of 0.0025 and weight
decay of 1e-3 for the Simulation and toy data. After a fixed number of epochs, we selected the model with the
lowest validation loss and used this model to construct the subspace. We also verified that the training was long
enough for the model to enter the overfitting region and adapted the number of epochs accordingly.

C.2 Sampling Setup

To generate the posterior samples, we used the NUTS implementation from Pyro in cases where we could
evaluate all data in one step, experiments described in Section 4.1, 4.2, and 4.3. For the melanoma dataset (see
Section 4.4), an elliptic slice sampler (ESS) was used. In the simulation study and melanoma experiment, we
ran 10 chains, discarded 400 warmup samples, and collected 800 samples per chain. In the UCI experiment, we
also draw 10 chains with 200 warmup samples and 600 samples per chain. In the NUTS environment, the step
size was optimized during the warmup phase to achieve a target acceptance probability of 0.8. The first proposal
was drawn out of the prior distribution.

To conduct inference on the full parameter space, we employed the NUTS implementation from NumPyro. The
number of chains, warmup, and collected samples remained the same as in the subspace setting. Due to poorer
sampling performance compared to our subspace approximation, as indicated by r hat, we reduced the target
acceptance probability to 0.6 to enhance explorativeness.

C.3 CNN Model Architecture

The following listing defines the PyTorch model which we used to process the medical dataset in Experiment
4.4. The following SSR model architecture consists of a CNN (DNN listing) and a linear structured model part

https://github.com/doldd/Bayesian_Semi_Sub
https://docs.pyro.ai/en/stable/mcmc.html#nuts
https://num.pyro.ai/en/latest/mcmc.html#numpyro.infer.hmc.NUTS
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(structured model listing).

Listing 1: DNN definition used for the melanoma data in Section 4.4

(DNN) : Sequent i a l (
( 0 ) : Sequent i a l (

( 0 ) : Conv2d (3 , 32 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) )
( 1 ) : Tanh ( )
( 2 ) : MaxPool2d ( k e r n e l s i z e =2, s t r i d e =2, padding=0,

d i l a t i o n =1, ce i l mode=False )
( 3 ) : Conv2d (32 , 32 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) )
( 4 ) : Tanh ( )
( 5 ) : MaxPool2d ( k e r n e l s i z e =2, s t r i d e =2, padding=0,

d i l a t i o n =1, ce i l mode=False )
( 6 ) : Conv2d (32 , 64 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) )
( 7 ) : Tanh ( )
( 8 ) : MaxPool2d ( k e r n e l s i z e =2, s t r i d e =2, padding=0,

d i l a t i o n =1, ce i l mode=False )
( 9 ) : Conv2d (64 , 64 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) )
( 1 0 ) : Tanh ( )
( 1 1 ) : MaxPool2d ( k e r n e l s i z e =2, s t r i d e =2, padding=0,

d i l a t i o n =1, ce i l mode=False )
( 1 2 ) : Conv2d (64 , 128 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) )
( 1 3 ) : Tanh ( )
( 1 4 ) : MaxPool2d ( k e r n e l s i z e =2, s t r i d e =2, padding=0,

d i l a t i o n =1, ce i l mode=False )
)
( 1 ) : Sequent i a l (

( 0 ) : F lat ten ( s ta r t d im=1, end dim=−1)
( 1 ) : L inear ( i n f e a t u r e s =512 , o u t f e a t u r e s =128 , b i a s=True )
( 2 ) : Tanh ( )
( 3 ) : L inear ( i n f e a t u r e s =128 , o u t f e a t u r e s =128 , b i a s=True )
( 4 ) : Tanh ( )
( 5 ) : L inear ( i n f e a t u r e s =128 , o u t f e a t u r e s =1, b i a s=True )

)
)
( s t ructured mode l ) : L inear ( i n f e a t u r e s =1, o u t f e a t u r e s =1, b i a s=False )

D ADDITIONAL RESULTS

In this section, we provide further results from our experiments.

D.1 Additional Results from the Toy Data

Here, we present additional results for the näıve Laplace approximation on the toy dataset. Figure 8 shows the
posterior p(θ|D) and Figure 9 the corresponding posterior predictive distribution obtained by applying the näıve
Laplace approximation to the last layer and the structured model component. In the posterior distribution, we see
some deviations between näıve Laplace approximation and HMC. However, the posterior predictive distribution
is comparable to our approach with a subspace dimension of two. If we compare to HMC or our method with a
subspace dimension of 12 it is still too narrow in terms of epistemic uncertainty (See Figure 1).

To complement the experiment on the toy dataset, we present additional results in the posterior distribution of the
parameters from the structured model component in Figure 10. The results for HMC and Semi-Subspace (k = 2)
are identical to those shown in Figure 3, and we extended the results with our Semi-Subspace model, utilizing
a subspace dimension of 12. The corresponding posterior predictive was shown in Figure 1. This comparison
aligns with the findings from our simulation study, indicating that increasing the subspace dimension leads to
posterior distributions that closely resemble those obtained with HMC.
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Figure 8: Comparison of the posterior distribution
p(θ|D) between ground truth HMC and Laplace Ap-
proximation on the regression dataset adapted from
Izmailov et al. (2020). This posterior distribution cor-
responds to the posterior predictive shown in Figure 9
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Figure 9: Posterior predictive using the Laplace ap-
proximation on the toy dataset. We applied the
Laplace approximation on the last layer of the DNN
part and on the two-dimensional θ parameters of the
structured model part. Data and model architecture
are the same as described in Section 4.1

.
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Figure 10: Posterior of the parameters in the struc-
tured model part using our approach with k = 2 and
k = 12 (Semi-Subspace) compared with HMC running
in the full parameter space. The top and right plots
show the marginal posterior distribution, whereas the
center plot visualizes the bivariate distribution using
a kernel density plot based on 4000 samples from 10
HMC chains.
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D.2 Additional Results from the Simulation Study

We continue with further results of our simulation study. Figure 11 and Figure 13 show the results by using
a normal outcome distribution, where the parameters µ is modeled, instead of the Poisson distribution. These
Figures also validate our thesis, that increasing the subspace dimension reduces the error in the first two moments
of the posterior p(θ|D) and improves its uncertainty quality.
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Figure 11: A detailed comparison of the differences in the first four moments between our approximation method
and the gold standard HMC when utilizing a normal outcome distribution in our simulation study. The boxplots
show differences between the learned distribution’s moment of our approach minus the respective moment using
HMC for the 50 simulation repetitions. The x-axis depicts the different subspace dimensions k used in our
approach and each color represents one of the three parameters in θ.

In Figure 5 we visualized the influence of the subspace dimensions on the posterior calibration. This was shown
by depicting one parameter θ1 out of the three-dimensional parameter space. For the sake of completeness,
we provide in the following Figure 12 the calibration comparison for the entire parameter space θ from the
structured model. In a parallel analysis to the previous one, Figure 13 showcases the calibration comparison
using the Normal outcome distribution. The results demonstrate well-calibrated distributions with increasing
subspace dimension k. Overall, this observation holds regardless of the outcome distribution or data.
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Figure 12: Coverage comparison of credibility intervals derived from the posterior p(θ1|D) using different subspace
dimensions k (colors) of all parameters instead of only picking θ1 as shown in Figure 5. The theoretical coverage
(x-axis) across different values in (0, 1) is plotted against the sample coverage (y-axis), based on the empirical
ratio of the credibility interval containing the true parameter. Whiskers represent the 95% Wilson confidence
interval.
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Figure 13: Identical analyses as in Figure 12 but with Normal outcome distribution instead of Poisson distribu-
tion.

The following figures (Figures 16, 17, 14, and 15) depict common sampling evaluation metrics, namely, effective
sample size (ESSbulk) and r hat, from our simulation study. In most cases, r hat for all parameters θ was smaller
than 1.1, indicating an accurate sampling process. Instances where r hat exceeded 1.1 often correlated with
a slightly bimodal subspace, where a single chain has difficulty exploring both modes in a sufficient amount
of time. In practical applications, addressing this challenge might involve further training during the subspace
construction. Overall, we observe that sampling becomes more challenging in higher dimensions (smaller ESSbulk
and larger r hat cf. Figure 16, 17, 14, and 15), but it was still feasible to produce valid samples.
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Figure 14: ESS of all parameters θ of the structured
model part. The three parameters are depicted in dif-
ferent colors. Subspace with dimension 372 refers to
running HMC on the entire parameter space. Each
Boxplot contains the ESS of the 50 different runs from
the simulation study using the Poisson outcome dis-
tribution.
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Figure 15: Same simulation study as shown in Fig-
ure 14 but with the r hat metric.
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Figure 16: Same analysis as shown in Figure 14 but
using the data from the simulation study with the nor-
mal outcome distribution.
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D.3 Evaluating the Arc Length of the Bézier Curve in Subspace Construction

The optimization of the Bézier curve in subspace construction theoretically risks the curve collapsing into a single
point or a tightly confined area of low loss. This would yield a minimal-length curve, leading to a degenerated
subspace characterized by almost identical configurations. However, the inherent stochasticity in optimization
and the vastness of the parameter space likely prevent such unfavorable outcomes.

To assess this, we measured the arc length of the Bézier curve after optimization finished in our simulation study
(Figure 18). The curve lengths were consistently greater than zero and increased as we added more control points.
Additionally, we tracked the curve length dynamics during optimization (Figure 19). These results showed no
signs of the curve collapsing into a single local minimum, suggesting the subspace’s robustness. Nonetheless,
further investigation into the curve’s length behavior would be valuable.
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Figure 18: Boxplot of the Bézier curve arc length com-
puted from the 50 different models used in the simu-
lation study with the Poisson outcome distribution in
Section 4.2. The x-axis represents the subspace di-
mension k which contains k + 1 control points of the
Bézier curve.
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Figure 19: Dynamic of the Bézier curve length during
ten different optimizations in the simulation study us-
ing the Poisson outcome distribution. Each thin line
characterizes the dynamic of a single training and the
bold line represents the mean in each subspace dimen-
sion k.
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D.4 Additional Results from the Melanoma Dataset

In Figure 6, we present the overall posterior p(θage|D) by pooling all samples from the six folds. For a more
detailed examination, we break down the analysis in Figure 20 to visualize the posterior distribution separately
for each fold, rather than aggregating the samples. We observe that in some folds (2, 3, and 6), the posterior
distribution of the Laplace approximation closely resembles our approach. However, folds one and four exhibit
slight differences, but we did not observe a consistent trend. Notably, the expectation of the posterior remains
relatively stable, with fold one being the exception. This suggests that pooling the folds, as shown in Figure 6,
does not significantly alter the distribution’s shape.
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Figure 20: Posterior p(θage|D) for each of the six folds in the melanoma dataset. The color-coding distinguishes
between our method and the Laplace approximation (using a learning rate of 5e-3). The corresponding loss curve
is displayed in Figure 21. According to this loss curve, we select the model with the lowest validation loss and
accomplished the Laplace approximation to generate the shown posterior.
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D.5 Optimization Asymmetry

In the following discussion, we investigate the optimization asymmetry present in SSR models which are optimized
using gradient-based methods. Optimization asymmetry, as we define it, suggests that the parameters θ of the
structured model part require different optimization strategies compared to the weights w of a DNN.

To investigate this issue we trained two SSR models, where each one was trained with a different learning rate
on the melanoma dataset. In the first experiment, we trained a model with a learning rate of 5e-3, as utilized
in our primary work. Analyzing the corresponding validation loss curve (refer to Figure 21), one could argue
for a decrease in the learning rate due to a peak and fast optimization in the early optimization phases. Thus,
we tested a lower learning rate of 1e-4. This leads to a smoother loss curve and is, therefore, more trustworthy
at first sight (as shown in Figure 22). However, the lower learning rate shows an optimization issue for the
parameter θage in the structured model part.

To highlight this issue, we take a look at the posterior p(θage|D) and compare the posterior approximation of
our approach against the Laplace approximation obtained from the trained SSR model which could be affected
by optimization issues. We repeated the training over the six folds from the melanoma dataset with different
weight initialization. As in all experiments, we selected the model with the lowest validation loss to perform the
Laplace approximation.

Figure 20 displays the results from our primary work, which employed the larger learning rate, while Figure 23
illustrates the posterior p(θage|D) using the lower learning rate. In Figure 23 we see the optimization issue because
the Laplace approximation exhibits significantly higher variance in the expectation of the posterior across the
six folds compared to our approach and the results shown in Figure 20.

We argue that this asymmetry arises because the change a parameter must undergo from initialization to maxi-
mum likelihood solution is typically much larger for θ compared to w. Our intuition behind this is, that it exists
an arbitrary number of solutions for w, including those closer to the initialization point. Therefore, optimizing
θ may necessitate a greater number of optimization steps or larger learning rates compared to w. We observed
this in our experiments as the expectation of p(θage|D) still show changes when optimization is finished according
to the validation loss. Thus, in the epoch where we stop training due to the signs of overfitting, the parameter
θage of the structured model part still shows a dependence on the initial value. So while a lower learning rate
produces a smoother learning curve, the increased learning rate leads to more stable results for the structured
part (cf. Figure 20 vs. 23).

This highlights the challenges of optimizing SSR models, which we attribute to what we refer to as optimization
asymmetry.
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Figure 21: Validation and training negative log-
likelihood (NLL) (Lower is better). This loss curve
corresponds to the Laplace approximation training on
fold 3 with the larger learning rate 5e-3

0 50 100

Epoch

0.0

0.1

0.2

0.3

N
LL

train
valid
(lowest: 0.075)

Figure 22: Same validation and training negative log-
likelihood as shown in Figure 21 while learning rate
for the SSR model was 1e-4 compared to 5e-3
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Figure 23: Same analysis as shown in Figure 20, but the Laplace approximation model is trained with a smaller
learning rate (1e-4). However, according to the validation loss (cf. Figure 22), the Laplace approximation model
was still able to achieve overfitting
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D.6 Additional Results with the smaller Network Architecture from Wiese et al. (2023) on the
UCI Benchmark

For the sake of completeness, we also conducted our benchmark study using the ’smaller network f1’ proposed
by Wiese et al. (2023) on the simulated and UCI datasets. Table 3 confirms our previous results, showing that
increasing the subspace dimension improves predictive performance. Additionally, with this network architecture,
our approach is capable of achieving performance close to HMC on almost every dataset, and it outperforms in
most cases the other two approximation methods.

Table 3: Normalized expected test log pointwise predictive density (LPPD; larger is better) with the ”smaller network
f1” introduced by Wiese et al. (2023), comprising a single hidden layer with three neurons. The values within parentheses
represent the standard errors of the predictive density per data point. The best method, excluding MCMC (representing
an approximate upper bound), and all methods within one standard error of the best method are highlighted in bold.

dataset MCMC Subspace (k=2) Subspace (k=5) Deep Ens. Laplace Appr.

DS -0.53 (±0.09) -0.58 (± 0.11) -0.60 (± 0.11) -0.58 (±0.11) -0.57 (±0.10)
DI 0.79 (±0.06) 0.51 (± 0.06) 0.60 (± 0.05) 0.56 (±0.06) 0.53 (±0.07)
DR 0.64 (±0.10) -0.39 (± 0.11) 0.57 (± 0.12) -1.46 (±0.06) -27.39 (±3.65)
Airfoil -0.74 (±0.04) -0.88 (± 0.05) -0.83 (± 0.06) -1.62 (±0.03) -1.78 (±0.13)
Concrete -0.41 (±0.05) -0.53 (± 0.06) -0.50 (± 0.06) -1.59 (±0.03) -14.49 (±1.02)
Diabetes -1.20 (±0.07) -1.24 (± 0.09) -1.17 (± 0.06) -1.47 (±0.07) -1.46 (±0.09)
Energy 0.92 (±0.04) -0.05 (± 0.07) 0.62 (± 0.08) -1.76 (±0.02) -31.74 (±1.88)
ForestF -1.37 (±0.07) -1.47 (± 0.08) -1.37 (± 0.07) -1.60 (±0.06) -2.39 (±0.16)
Yacht 1.90 (±0.16) 1.13 (± 0.47) 1.20 (± 0.44) -1.14 (±0.14) -5.60 (±1.51)
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D.7 Time Consumption

In the following analysis, we discuss the additional time consumption associated with using a larger subspace
dimension. We focus solely on the time spent during the training of the subspace construction. To investigate
this, we optimized a plain SSR model (k=0), which serves as our baseline, and trained our Semi-Subspace
models for k = 1, 3, 7, 15 using the Algorithm 1 stopping after 50 epochs. Note that the weights of these four
Semi-Subspace models are controlled using the Bézier curve, as outlined in Equation 2. We also excluded data
preprocessing and model instantiation from the time computation. The following time computations were carried
out on a NVIDIA GeForce RTX 3080 Ti GPU device. Additionally, we optimized the time consumption by fully
utilizing the GPU capacity through pre-loading data onto its storage.

If we compare the time consumption of the plain SSR model (k=0) with our Semi-Subspace models we observe
an initial offset of around 2.259s − 2.219s = 0.039s. In addition, we see that our Semi-Subspace model scales
linearly with k with a moderate slope.
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Figure 24: Time consumption required to optimize the SSR model per epoch depending on the subspace dimen-
sion k. k = 0 symbolizes the time consumption to train a plain SSR, whereas k > 0 depicts the training of the
Semi-Subspace model with respective k + 1 control points.


