
Certified private data release for sparse Lipschitz functions

Konstantin Donhauser∗ Johan Lokna∗ Amartya Sanyal
ETH Zurich ETH Zurich MPI, Tübingen

March Boedihardjo Robert Hönig Fanny Yang
ETH Zurich ETH Zurich ETH Zurich

Abstract

As machine learning has become more relevant
for everyday applications, a natural require-
ment is the protection of the privacy of the
training data. When the relevant learning
questions are unknown in advance, or hyper-
parameter tuning plays a central role, one
solution is to release a differentially private
synthetic data set that leads to similar con-
clusions as the original training data. In this
work, we introduce an algorithm that enjoys
fast rates for the utility loss for sparse Lips-
chitz queries. Furthermore, we show how to
obtain a certificate for the utility loss for a
large class of algorithms.

1 Introduction

Since sensitive personal information is extensively used
in modern data analysis, ensuring the privacy of in-
dividual data points has become increasingly critical.
Differential privacy (DP) [Dwork et al., 2006] attempts
to address this issue and is used by both governmental
agencies [Abowd, 2018] and commercial actors [Dwork
et al., 2019]. Intuitively, a differential private procedure
ensures that its output is not affected significantly by
individual data points such that it is not possible to
determine whether a particular data point is part of
the data set or not. Formally, a probabilistic algorithm
A is said to be ϵ-DP if it satisfies the conditions in
Definition 1.

Definition 1. An algorithm A is ϵ-DP with ϵ > 0 if
for any data sets D,D′ differing in a single entry and

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

any measurable subset S ⊂ im(A) of the image of A,
we have

P(A(D) ∈ S) ≤ exp (ϵ)P(A(D′) ∈ S)

A long line of research focuses on preserving differen-
tial privacy while extracting specific information from
data, such as executing specific machine learning al-
gorithms [Bassily et al., 2014, Chaudhuri et al., 2011,
Feldman and Xiao, 2014, Raskhodnikova et al., 2008]
or answering a number of predetermined queries [Blum
et al., 2005, Dagan and Kur, 2022, Dwork and Nis-
sim, 2004, Ghazi et al., 2021, Hardt and Talwar, 2010,
Steinke and Ullman, 2016, Abadi et al., 2016]. De-
spite their good performance, these approaches face
the fundamental limitation that no further queries can
be answered after releasing the model without affecting
privacy guarantees. Moreover, the information leakage
introduced by hyper-parameter tuning and model se-
lection must be accounted for in the process to avoid
a loss in privacy guarantees (see e.g., Papernot and
Steinke [2021]).

An approach that mitigates the above shortcomings is
to release a synthetic data set in a differentially private
manner that is ideally representative of the original
data. This process is also known as “data sanitiza-
tion" [Dwork et al., 2009] and has the advantage that
any operation performed on the released data set does
not introduce further privacy leakage - a particularly
useful property when it is difficult to predict potential
future use cases. Moreover, once a differentially private
synthetic data set is generated, any model selection
algorithm can be performed on the synthetic data in a
non-private way.

On a high level, most data sanitization algorithms rely
on some sort of discrepancy measure between data sets,
which is then approximately minimized by the returned
synthetic data set. A common choice used in SOTA
algorithms (see McKenna et al. [2021, 2022], Zhang
et al. [2017] and references therein) is to take the Eu-

Certified private data release for sparse Lipschitz functions

clidean norm between the histograms of the discretized
marginals of the data. This choice for the discrepancy
measure, however, does not take the geometry of the
underlying space into account. For example, if there
is a natural ordering in the domain (e.g. naturally
occurring continuous covariates such as age, income,
etc.), DP data generating algorithms could potentially
achieve better performance by taking this inherent
structure into account.

One natural discrepancy measure that incorporates
such a structure is the Wasserstein distance, studied in
recent works [Boedihardjo et al., 2022, He et al., 2023].
However, the authors show that the required number of
samples in the original dataset scales exponentially in
the dimension of the data (that is, the minimax optimal
rate is of order n−1/d). An alternative measure is the
maximum Wasserstein distance of marginal measures
over subsets of variables. Formally, for an algorithm A
that takes an empirical distribution µD of a data set D
as input and returns a probability measure A(D)1, we
define the following discrepancy measure, also referred
to as the utility loss in Boedihardjo et al. [2022]

U(µD,A(D)) := sup
S⊂[d];|S|=s

W1

(
PS#µD, P

S
#A(D)

)
,

(1)
where W1 is the 1-Wasserstein distance, and PS#µD
is the marginal measure of µD on the s-dimensional
canonical subspace defined by the coordinates in S. The
utility loss measures the transportation cost between
the DP measure A(D) and the empirical measure of
the private data set µD. Moreover, by the Kantorovich-
Rubinstein Duality Theorem [Villani et al., 2009], the
utility loss is equivalent to the maximum mean discrep-
ancy

U(µD,A(D)) = sup
f∈F

∣∣∣∣∫ f(x)dµD −
∫

f(z)dA(D)

∣∣∣∣ ,
(2)

over the function class F consisting of all 1-Lispchitz
functions (w.r.t. some metric ρ) which are additionally
s-sparse; that is, f can be expressed as a function that
only depends on s dimensions and that is constant over
all other dimensions. The expression in (2) corresponds
to what previous works refer to as the accuracy or
usefulness when the output is a discrete measure.

In this paper, we are the first to answer the following
question

1We note that in the literature, the algorithm’s output
A(D) is usually a data set rather than a probability measure.
Nevertheless, a data set can always be constructed from
a probability measure using standard techniques such as
subsampling or discretization (see e.g., [Boedihardjo et al.,
2022, He et al., 2023]). We therefore simplify our notation
by disregarding this distinction in our paper.

Is it possible to generate a private synthetic dataset
with a small structured utility loss in Equation (1)

from a reasonably sized original datasets?

A positive answer to this question would motivate con-
crete applied future work on approximate implementa-
tions. In Section 4 we show that there exists indeed an
algorithm (Sections 2 and 3) that can achieve a rate of
order n−1/s for the utility loss, and thus overcomes the
curse of dimensionality. This rate is minimax optimal
as a function of n, neglecting logarithmic factors. In
order to further enhance the practical utility of our
framework, we simultaneously address the question

Can we privately release practically meaningful
guarantees for the utility loss?

A tight instance-dependent upper bound (which we call
certificate) will allow the practitioner to account for the
maximum utility loss when deriving insights from the
synthetic data. While Theorem 1 in Section 4 proves
an upper bound for the expected utility loss, it only
holds for the optimal, practically infeasible, algorithm
presented in Section 3. Further, evaluating the error
bound for a given configuration, i.e. for given d, n, s,
will likely result in a loose, practically meaningless
bound. Instead, we propose an instance-dependent and
computable high-probability upper bound that can
be privately released alongside the DP measure A(D).
We further show experimentally in Section 5 that this
upper bound is tight.

1.1 Notation

We refer to data sets of size n with D ∈ Tn. In the main
text of this paper we usually assume that T = [0, 1]d is
the hyper cube equipped with the ℓ∞-metric and let
Tk,s := {1/2k, · · · , (2k − 1)/2k}s be the centers of a
minimal 1/2k-covering of [0, 1]s of size N = ks. We
denote withMP(T) the set of probability measures on
T and we let M(T) denote the set of signed measures
on T . Moreover, µD is the empirical measure of a
data set D and Lap(λ) is the Laplace distribution with
zero mean and variance 2λ2. We denote the matrix
vector-1-norm with ∥.∥1, and use the standard big-Oh
notation and the symbols ≲d,≳d,≍d to hide universal
constants only depending on d. Finally, we denote
with △d−1 ⊂ Rd the probability simplex and for any
function g : T → T ′ mapping T to T ′, we denote
with g# :M(T)→M(T ′) the push-forward operator
that outputs a signed measure satisfying g#µ(A) =
µ(g−1(A)) for any A ⊂ T ′.

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

2 Certified DP data generation

In this section, we present a general framework for
private data release sketched in Algorithm 1. However,
unlike existing approaches, in addition to a DP measure
A(D), Algorithm 1 also returns a certificate BG for the
utility loss - a computable upper bound for the utility
loss that holds with probability greater equal 1− δ for
some δ > 0 and depends on the specific algorithmic
choices as well as the particular dataset.

Algorithm 1 Privacy-Preserving Data Generation
Framework
Require: Given a query operator T, a noise generating

processes Pη and a proxy utility loss G
1: project v ← TµD
2: construct the ϵ-DP vector vDP := v+η with η ∼ Pη

3: µDP ← minimize BG(µ, vDP) with respect to µ ∈
MP(T)

4: return DP measure A(D)← µDP and certificate
BG(µDP, vDP) for U(µD, µDP)

Following the standard abstract pattern of common
data release frameworks, Algorithm 1 consists of three
steps. First, a linear query operator T :MP(T)→ Rm
projects the empirical data distribution of the data set
D in the domain T , onto a high-dimensional Euclidean
space Rm. Moreover, let im(T) be the image of T and
T−1 : im(T) → MP(T) be any right-inverse, defined
as satisfying TT−1T = T. The second step is the
standard privatization procedure of adding noise from
some distribution Pη to the queries. In the third step,
we project back from the query space Rm to the space
of probability measures. In Algorithm 1, this third
step is done by minimizing the upper bound from a
DP certificate BG :MP(T) × Rm → R for the utility
loss U .

In contrast to existing algorithms, instead of solely
releasing the final DP-measure µDP, we also output a
certificate for the chosen sanitization/generation pro-
cedure that we detail below.

DP certificate Before defining the DP certificate,
we introduce the concept of proxy utility loss
Definition 2. For a right-inverse T−1, we say that
G : Rm × Rm → R is a proxy utility loss on Rm
(dominating U) if for all v, v′ ∈ im(T) ⊆ Rm,

U(T−1v,T−1v′) ≤ G(v, v′). (3)

Moreover, G should be jointly translation invariant, that
is G(v, v′) = U(v+u, v′ +u) for any v, v′, u ∈ Rm, and
satisfy the triangle inequality.

Next, we propose BG as our DP certificate, a quantity
that can be computed for any probability measure

µ ∈ MP(T), choice of query operator T, and proxy
utility loss G. For any δ > 0 and any DP-vector
vDP := TµD + η, define

BG(µ, vDP) := sup
µ̃∈MP(T)

U(µ̃,T−1Tµ̃)︸ ︷︷ ︸
discretization error

(4)

+ q1−δ (G(0, η))︸ ︷︷ ︸
privatization error

+ G(vDP,Tµ) + U(T−1Tµ, µ)︸ ︷︷ ︸
projection error

where q1−δ(Z) denotes the 1−δ-quantile of the random
variable Z and G is a “proxy" utility loss, that is, any
function G that satisfies Definition 3.

In the following lemma, we show that the certificate
BG(µ, vDP) is a high probability upper bound of the
utility loss for any measure µ ∈MP(T).
Lemma 1. For any proxy utility loss G from Defi-
nition 2 and for vDP = TµD + η with η ∼ Pη, we
have that with probability 1− δ over η (for any δ > 0),
it holds that uniformly over all probability measures
µ ∈MP(T), we have

U(µD, µ) ≤ BG(µ, vDP). (5)

Proof Using the triangle inequality and Equation (3),
we can upper bound the utility loss (2) for any µ ∈
MP(T) and µD: U(µD, µ) ≤

U(µD,T−1TµD) + U(T−1TµD,T−1Tµ) + U(T−1Tµ, µ)
≤ U(µD,T−1TµD) + G(TµD,Tµ) + U(T−1Tµ, µ)
≤ U(µD,T−1TµD) + G(TµD, vDP)

+ G(vDP,Tµ) + U(T−1Tµ, µ)
= U(µD,T−1TµD) + G(0, η) + G(vDP,Tµ)
+ U(T−1Tµ, µ) (6)

where in the last equality we used that vDP = TµD + η
and the joint translation invariance of G.

The first term can be described as the discretization
error associated with T−1T and can be bounded by
the supremum over all probability measures. Since we
know the noise distribution Pη, the second term can
be upper bounded with high probability by its (1− δ)-
quantile. Finally, the third term only depends on µ
and vDP, which is DP by construction, and the fourth
term only depends on µ. As a result, we obtain the
desired DP upper bound in Equation (4).

3 Instantiation of the algorithm for
the sparse Wasserstein loss

In this section we present an instantiation of Algo-
rithm 1 for the utility loss in Equation (1). The pre-
sented algorithm has an exponential run-time com-
plexity in n (see discussion in Section 4) and we leave

Certified private data release for sparse Lipschitz functions

practically useful approximate algorithms as a future
work. For simplicity of exposition, throughout this
section, we only consider the case where the underlying
space T = [0, 1]d is the hypercube equipped with the
ℓ∞-metric and refer to reader to Appendix C for results
on general metric spaces. We first define the specific
choice of the query operator T, the noise generating
processes Pη, and the proxy utility loss G. Finally, we
summarize Algorithm 1 with these choices.

Query operator T Similar to previous works (see
e.g., [McKenna et al., 2022, 2021, Zhang et al., 2017]),
we choose TµD to be the vector representing all dis-
cretized s-marginals. More precisely, the output of the
query operator T : MP(T) → R(

d
s)k

s

consists of all(
d
s

)
blocks TµD =: v = [vS1 , · · · , vSK]T with K =

(
d
s

)
of size vSj ∈ Rks and k ∈ N+ is some discretization
parameter. Moreover, Sj ⊂ [d] and |Sj | = s are all
subsets of size s.

Every block is constructed by first projecting the mea-
sure µ on its marginals µSj = P

Sj

µ, which we then
discretize by a finite measure on Tk,s forming a 1/2k-
covering of PSjT of size ks. Finally, we choose any
(arbitrary) right-inverse T−1 : im(T) → MP(Tk,d) ⊂
MP(T) such that it returns a finite measure on Tk,d.

Noise vector η As in [Boedihardjo et al., 2022, He
et al., 2023], we use the (matrix transformed) Laplace
mechanism [Dwork et al., 2006, Xiao et al., 2010b],
which generates a DP “copy” vDP (Step 2 in Algo-
rithm 1) of the vector v := TµD (Step 1 in Algorithm 1)
by adding matrix transformed i.i.d Laplace noise2

vDP := v + η := v + [Φη̃]1:m , (7)

where η̃ is an i.i.d. Laplace random vector with variance
as in Lemma 2 and Φ ∈ RmΦ×mΦ is some invertible
matrix of dimension mΦ ≥ m. A standard quantity
when comparing two datasets is the sensitivity of T

∆T := sup
D,D′

∥TµD − TµD′∥1, (8)

where we take the supremum over all datasets D,D′ ⊂
Tn of size n which differ in at most one point. Using the
previous definitions, the following privacy guarantee
holds:
Lemma 2. (Corollary of Theorem 3.6 in [Dwork and
Roth, 2014]) The vector vDP is ϵ-DP for η = [Φη̃]1:m
and

η̃ ∼
(
Lap

(
∥Φ−1∥1∆T

ϵ

))mΦ

. (9)

2Since all entries of TµD are multiples of 1
n
, an alterna-

tive choice would be to use the discrete Laplace mechanism
[He et al., 2023, Inusah and Kozubowski, 2006], which yields
the same theoretic guarantees in Section 4 when straight
forwardly modifying the proofs in Appendix C.

By multiplying the noise in Equation (7) with the
matrix Φ, we obtain a “correlated” noise. While such a
noise has been previously used in the literature (see e.g.,
[Xiao et al., 2010a]), a key insight in Boedihardjo et al.
[2022] is to use a Haar-matrix transformed Laplacian
noise to obtain tight guarantees for the utility loss of
1-Lipschitz continuous functions (i.e., when s = d).
Based on this idea, we now describe our choice of Φ
used in Step 2 of Algorithm 1. Recall that we denote
with vSj ∈ Rks the j-th block of the vector v. For
every j ∈

[(
d
s

)]
we define v

Sj

DP := vSj +
[
ΦSj η̃Sj

]
1:ks

where ΦSj are the scaled versions of the transposed
Haar-matrix from Lemma 3 in Appendix B such that
∥(ΦSj)−1∥1 = 1. Furthermore, η̃Sj are i.i.d. Laplacian
random vectors with variance as in Lemma 2 and ∆T =(
d
s

)
2
n .

Proxy utility loss G We now describe a choice for a
proxy utility loss G = LT such that the certificate BLT

can be effectively minimized using linear programming
(see Section 5.3 for a computationally efficient approxi-
mation). Inspired by [Boedihardjo et al., 2022] which
studies the case where s = d, we choose

LT(v, u) := max
S⊂[d],|S|=s

1

k

ks∑
l=1

∣∣∣∣∣
l∑
i=1

vSi − uSi

∣∣∣∣∣ . (10)

where vSi is the i-th element of the block vS ∈ Rks .
We assume that the elements of vDP (and thus also
TµD) are ordered as follows: note that any block
vector v

Sj

DP ∈ Rks of vDP has a one-to-one mapping
to a discrete signed measure ω ∈ MP(Tk,s) on the
s-dimensional discrete hyper cube Tk,s, defined by
ω
Sj
vDP :=

∑
zi∈Tk,s

(v
Sj

DP)iδ[zi], where δ is the Dirac-delta

point measure. Using this definition, we order the in-
dices of vSi such that the corresponding centers zi form
a Hamiltonian path, or more formally, such that for all
i ≤ ks − 1, ∥zi − zi+1∥∞ = 1/2k.

We refer to Appendix C.1 and C.2 for a proof that
LT indeed satisfies Definition 2. On a high level, the
Hamiltonian path allows us to reduce the problem of
constructing a proxy utility loss function over vectors
vS representing discrete measures in a s-dimensional
space to one of construction a proxy utility loss function
over discrete measures on an interval of R.

Minimization of BG(µDP, vDP) in Step 3 We fi-
nally describe how to minimize BG(µDP, vDP) in Step
3 of Algorithm 1. Note that as the query operator
T discretizes every marginal measure using a 1/2k-
covering, the maximum discretization error in Equa-
tion (4) equals

sup
µ̃∈MP(T)

U
(
µ̃,T−1Tµ̃

)
= 1/2k. (11)

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

Moreover, the term U
(
T−1Tµ, µ

)
is zero whenever µ ∈

MP(Tk,d) = T−1TM(T). Thus, minimizing the upper
bound from the certificate BLT in Step 3 in Algorithm 1
simplifies to

arg min
µ∈MP(Tk,d)

LT(vDP,Tµ). (12)

Finally, we can output the certificate in Step 4 in
Algorithm 1 after computing the 1 − δ quantile of
LT(0, η), which can be efficiently approximated using
Monte Carlo samples.

4 Statistical rates for the utility loss

In this section, we present rates for the expected utility
loss of the instantiation of Algorithm 1 as described in
Section 3. To the best of our knowledge, we are the
first to study the utility loss, presented in Equation (1).
Theorem 1 shows that the rate of the utility loss only
depends on s in the exponent but not on d. Thus,
we see that by only considering s-sparse marginals in
Equation (1) we can effectively overcome the curse of
dimensionality.

Theorem 1. Let F be the set of s-sparse 1-Lipschitz
functions on T = [0, 1]d with respect to the ℓ∞-metric.
Then, for any nϵ ≥ d and any s ≤ d, Algorithm 1

is ϵ-DP and for k ≍
((
d
s

) log(ϵn)2
nϵ

)−1/s

has an expected
utility loss (2) at most

E U(µD,A(D)) ≲s

((
d

s

)
log(ϵn)2

nϵ

)1/s

. (13)

We refer to Appendix C.3 for the proof of Theorem 1
which is a consequence of the general statement, pre-
sented in Theorem 2 that applies to general metric
spaces. We note that when s = d, we obtain exactly
the rate in [Boedihardjo et al., 2022] up to a logarithmic
factor.

Optimality in n The rate in Theorem 1 is optimal
in n up to logarithmic factors. Indeed, as a corollary of
the results in Section 8 in [Boedihardjo et al., 2022] we
obtain the following information theoretic lower bound
on the expected utility loss (for constant ϵ)

inf
A(D):ϵ-DP

sup
D∈Tn

E U(µD,A(D)) ≳

(
⌊d/s⌋
nϵ

)1/s

(14)

which has the same exponent 1/s as the term in the
upper bound in Theorem 1. We present a proof sketch
for the lower bound in Appendix E.

Open problem: tightness in d While this lower
bound matches the exponential decay rate in n of the

upper bound in Theorem 1, the dependency on d is
not the same. Nonetheless, tightening this gap poses a
challenging problem and we believe it will require novel
creative ideas. The main difficulty arises from the inter-
dependence of the

(
d
s

)
marginal measures, which makes

it challenging to enhance either of the two bounds with-
out carefully considering this dependency. We motivate
future work to solve the open problem of finding the
right dependency on d in the lower bound in Equa-
tion 14 supported by a matching upper bound.

Proof sketch The proof of Theorem 1 builds on the
ideas developed in [Boedihardjo et al., 2022] for the case
where s = d. While the result is a relatively straight
forward extension, the main technical contributions
are two-folds: we simplify the proofs in the mentioned
paper and present them in the context of Section 2
(see Appendix C.1), which then allows us to extend the
results in Boedihardjo et al. [2022] to the case where
s < d (see Section C.2 and C.3).

The first part of the proof is devoted to showing that
LT indeed satisfies Definition 2. Using Equation (6)
(with G = LT), we then upper bound the utility loss in
expectation by

E [U(µD,A(D))] ≤ U(µD,T−1TµD) + E [LT(TµD, vDP)]

+ E [LT(vDP,TA(D))] + U(T−1TA(D),A(D))

≤ 1/2k + 2 E [LT(TµD, vDP)] (15)

where we used the fact that A(D) is a solution of
Equation (12) and thus U(T−1TA(D),A(D)) = 0 and
LT(vDP,TA(D)) ≤ LT(TµD, vDP), and that the dis-
cretization error is upper bounded by 1/2k. Thus,
we obtain an upper bound for the expected util-
ity loss by bounding the term E [LT(TµD, vDP)] =
E [LT(0, [Φη̃]1:m)], which only depends on the random
vector η̃ and Φ, but not on the measure µD. In this step,
we crucially rely on the choice of Φ in Section 3. Finally,
we obtain the bound in Theorem 1 by optimizing over
the discretization parameter k.

4.1 Further discussion

Run-time complexity We now discuss the run-time
complexity of Algorithm 1. First note that both Step
1 and 2 in Algorithm 1 have a run-time complexity of
O(dsn+m) = O(dsn+ dsks) (and thus polynomial in
d). However, solving the minimization problem in Step
3 in Algorithm 1 requires running a linear program
over the |Tk| = kd free variables, which has a run-time
complexity of O(poly(m+ kd)) = O(poly(dsks + kd)).

In particular, when pluging-in the optimal choice for
the discretization parameter k from Theorem 1, we ob-
tain a run-time complexity of order O(dsn+poly(nd/s)).
For small constant choices of s we therefore obtain an

Certified private data release for sparse Lipschitz functions

exponential run-time complexity in d, and computa-
tional hardness results [Dwork et al., 2009, Ullman
and Vadhan, 2011] for the special case of estimating
2-way marginals in fact suggest that the exponential
dependency in d cannot be avoided. Nevertheless, we
can still hope for practically meaningful approximate
algorithms with fast (polynomial) run-time complexity
(see Section 5) and motivate future work on this topic.

Other types of sparsity In Theorem 2 we obtain
fast rates without a dependency on d in the exponent
by restricting F to s-sparse Lipschitz functions. As we
show in Appendix D, we can also obtain similar results
when F is the set of all 1-Lipschitz functions but the
data itself lives on a (unknown) s-dimensional space.
Importantly, the algorithm can adapt to the degree of
the sparsity and does not need to have access to the
effective dimension s of the data. This opens up the
pathway for adaptive DP data generating algorithms,
which we leave as future work.

Comparison with [Boedihardjo et al., 2022, He
et al., 2023] Previous works considered the special
case where the utility loss is the Wasserstein distance,
i.e. the loss from Equation (1) for s = d. In this case,
the authors show that the optimal rate for the utility
loss is of order n−1/d (see Equation (18) in Section 6).
Theorem 1 shows that by restricting to s-way marginals,
we can address the curse of dimensionality in the rates
for the utility loss, resulting in only a linear dependency
in d instead of an exponential.

Comparison with approaches minimizing the
Euclidean distance A natural question to ask is
how the rates in Theorem 1 compare with the ones of
algorithms minmizing the squared Euclidean distance
in Step 3 in Algorithm 1, as commonly done in previous
works (see McKenna et al. [2021, 2022], Zhang et al.
[2017] and references therein). More formally, we draw
η in Step 2 from an i.i.d. Laplacian (resp. Gaussian)
distribution and in Step 3 construct a dataset by mini-
mizing the average Euclidean distance of the vectorized
representations of its marginals to vDP. From a straight
forward computation, such an algorithm only yields an
expected utility loss of order Õd,s((ϵn)−1/(s+1)), hiding
logarithmic dependencies. When comparing with the
rates in Theorem 1, we can see that there is a gap in
the exponent of 1/(s+ 1) vs. 1/s. We believe that this
rate is tight. We present a more detailed discussion in
Appendix F.

5 A tighter certificate and numerical
evaluation using public data

In this section, we present numerical simulations illus-
trating the utility loss U and the certificate BLT from
Section 3 for Algorithm 1. To avoid the exponential
run-time complexity, we first introduce a computation-
ally efficient approximation of Algorithm 1 using public
data in Section 5.1. We then present the numerical
simulations on real-world data sets in Section 5.3. In
Section 5.4, we discuss a tighter choice for the proxy
utility loss UT which, in turn, yields a tighter certificate.
The numerical analysis presented in this paper serves
as a proof of concept and motivates future research on
efficient approximate algorithms.

5.1 Computationally efficient approximation
of Step 3 in Algorithm 1

To avoid the exponential run-time complexity of Step 3
in Algorithm 1, we restrict the search space for µDP to
a set M̃P(Tk) of discrete measures that are supported
on a given public data set Dpub = {zi}na

i=1 ⊂ Tk. Then,
we approximate Step 3 in Algorithm 1 (using Equa-
tion (12)) as µapprox ∈ argmin

µ∈M̃P(Tk)
LT(vDP,Tµ)

with M̃P(Tk) =

{
na∑
i=1

αiδ[zi] | α ∈ ∆na−1

}
. (16)

The approach of using a public data set had been
previously proposed in the literature [Boedihardjo
et al., 2021, Liu et al., 2021a] to improve the com-
putational efficiency. In fact, the optimization problem
in Equation (16) is still a linear program and can be
solved with run-time complexity O(poly(dsna +m)) =
O(poly(ds) poly(na + ks)). Thus, we obtain a poly-
nomial dependency on d given that na grows at most
polynomially in d.

5.2 Experimental setting

For all experiments we use ϵ = 1. We use the real-world
data sets ACSIncome and ACSTravelTime [Ding et al.,
2021] collected from the “American Community Survey"
and rescale them such that the data lives in the hyper-
cube. For the private data, we use n = 195665 samples
from California from 2018 (ACSIncome) and n = 91200
samples from New York from 2018 (ACSTravelTime).
As public data sets, we randomly choose na = 4000
samples from Alabama from 2018, California from 2014
(ACSIncome), Massachusetts from 2018, and New York
from 2014 (ACSTravelTime). Furthermore, from the
ACSIncome data set we only consider d = 5 features
(“AGEP, SCHL, OCCP, POBP, WKHP") and from

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

(a) (b) (c)

5 10 15 20 25 30
discretization prameter k

0.00

0.05

0.10

0.15

(d)

Figure 1: a) upper and lower bound of the utility loss (see Appendix A) and the utility loss of the empirical measure
of the “raw" public data as a function of function of the discretization parameter k (dashed horizontal line). Moreover,
the upper bound from Equation (4) with δ = 0.1 for Algorithm 1 (blue line). b) we compare the term LT(vDP,TA(D))
(dashed purple line) with the term LT(vDP,TµD) = LT(0, η), (dashed green line) as a function of the size of the public
data set. We plot the mean, 0.05 and 0.95 quantiles of LT(η, 0) (horizontal lines). Moreover, we plot the upper and lower
bounds for the utility loss (yellow line) (see Appendix A). We choose the discretization parameter k = 25 for the query
operator T. (c) the upper bound (solid lines) in Equation (4) when using G = UT instead of LT (dashed line) for the upper
bound in Step 4 in Algorithm 1. (d) illustration of the upper bound from Equation (4) and its individual terms for G = UT
with δ = 0.1 for Algorithm 1 as a function of the discretization parameter k.

the ACSTravelTime data set, we consider d = 4 fea-
tures (“AGEP, SCHL, PUMA, POVPIP") (see [Ding
et al., 2021] for the documentation). If not further
specified, we choose the ACSIncome data set with the
samples from Alabama from 2018 as public data and
the samples form California from 2018 as private data
set.

Moreover, while exactly computing the utility loss
(2) turns out to be computationally infeasible for our
choices of n and na, we can compute sharp upper and
lower bounds as described in Appendix A. For all plots,
we take the average over 10-independent runs and use
200 samples to approximating the quantiles in Equa-
tion (5).

5.3 Numerical evaluation using real world
data

In this section we present numerical experiments for
Algorithm 1. We illustrate in Figure 2 the certificate
from Equation (4) and the utility loss for the mea-
sure generated by Algorithm 1 as a function of the
discretization parameter k. As the experiments show,
we achieve significantly smaller utility loss than when
simply using the “un-optimized" public data. Moreover,
the certificate from Algorithm 1 captures the trend of
the utility loss for small k and yields a non-trivial guar-
antee. We refer to Section 5.4 for a tighter choice for
the certificate.

Moreover, we argue based on Figure 1b that we can
measure the “sub-optimality" of an approximate solu-
tion µapprox for Step 3 in Algorithm 1 by comparing the
terms LT(vDP,Tµapprox) and LT(vDP,TµD) = LT(0, η)
(see Figure 1b). Intuitively, these two terms capture the

“distances" between the DP measure µapprox and the
private measure µD to the “reference point" vDP respec-
tively. Thus, once LT(vDP,Tµapprox) ≈ LT(vDP,TµD),
µD and µapprox have the same “distance" to vDP, we
can no longer expect an improvement in the utility
loss when further minimizing LT(vDP,Tµapprox). We
illustrate this in Figure 1b, where we plot the utility
loss and the two terms as a function of the amount of
public data samples. By increasing the amount of pub-
lic data samples, we can improve our approximation of
Step 3 in Algorithm 1. As the results show, once
LT(vDP,Tµapprox) ≈ LT(vDP,TµD) the utility stag-
nates, meaning that we do not benefit from further
optimizing LT(vDP,Tµapprox) by increasing the amount
of public samples.

5.4 A tighter certificate

In this section, we present a tighter choice for the
certificate in Step 4 in Algorithm 1.

A tighter choice for the proxy utility loss G = UT
We first present an alternative choice for the proxy
utility loss UT that yields a sharper certificate in Step
4 of Algorithm 1. A natural idea to construct a tighter
proxy utility loss is to simply “extend" the definition of
the utility loss U to signed measures on the marginals.
We do this as follows: for any two vectors u, v ∈ Rm,
we define UT(v, u) :=

max
S⊂[d]
|S|=s

sup
f∈F(Tk,s)
f(0)=0

∣∣∣∣∣∣
∑

zi∈Tk,s

f(zi)
(
ωSv ({zi})− ωSu ({zi})

)∣∣∣∣∣∣ ,
(17)

where F(Tk,s) is the set of all 1-Lipschitz continuous
functions over Tk,s w.r.t. the ℓ∞-metric and ωSv are as

Certified private data release for sparse Lipschitz functions

(a) Income AL 18’ (b) Income CA 14’ (c) TravelTime MA 18’ (d) TravelTime NY 14’

Figure 2: same curves as Figure 1a but for the certificate G = UT for different combinations of public and private data sets.

in Section 3.

Clearly, UT coincides with U on im(T) (i.e., satisfies
Equation (3)), is jointly translation invariant, and sat-
isfies the triangular inequality. Hence, UT from Equa-
tion (17) is a valid choice for the upper bound in Equa-
tion (4). Concerning the computational complexity,
we note that the RHS in Equation (17) can be com-
puted by taking the maximum over

(
d
s

)
-solutions of

linear programs, which has a total run-time complexity
O
((
d
s

)
poly(ks)

)
. While this allows for a tractable com-

putation of the certificate BUT by taking the maximum
over linear programs, optimizing over the set of mea-
suresMP(T) is not tractable 3. Thus, we keep G = LT
in Step 3 in Algorithm 1 but release the certificate in
Step 4 of Algorithm 1 using G = UT.

Numerical evaluation In Figure 1c, we compare
the certificates and the individual terms in Equation (5)
for the choices G = UT and G = LT. Our results clearly
show that the choice BUT yields a significantly tighter
certificate than BLT , especially for large values of k.
Figure 1d plots the individual terms in the certificate
from Equation (4) for the choice G = UT. The results
show that increasing k leads to a higher privacy and
projection error, but lowers the dicretization error (see
Equation (4)). This highlights the trade-off between
more fine-grained discretizations and the need to add
sufficient noise in order to preserve privacy.

Finally, Figure 2 illustrates the certificate from Equa-
tion (4) and the utility loss for the measure generated
by Algorithm 1 as a function of the discretization pa-
rameter k for different choices of the public and private
data set. Our experiments show that when the public
data has a large distribution shift, we achieve a signifi-
cantly smaller utility loss than when simply using the
“un-optimized" public data. Moreover, in all plots, the
certificate closely matches the utility loss and correctly
captures the trend.

3The only exception here is the case where s = d, in
which case we would obtain the algorithm in He et al. [2023].

6 Related work

Releasing datasets privately while minimizing the util-
ity loss for a specific function class is a major challenge
in differential privacy. Most studies have focused on
preserving utility for counting queries (referred to as
statistical queries in Kearns [1998]). The field started
with Blum et al. [2008], who applied the Exponential
Mechanism algorithm of McSherry and Talwar [2007]
to release a private data set while ensuring that the
loss of utility for any a priori known set of count-
ing queries grows at most logarithmically with the set
size. Subsequent works by Dwork et al. [2009], Hardt
et al. [2012], Hardt and Rothblum [2010], Roth and
Roughgarden [2010] improved both the statistical and
computational complexity and studied fundamental
statistical-computational tradeoffs and gaps [Dwork
et al., 2009, Ullman and Vadhan, 2011]

In order to reduce sample complexity, several works
have considered sparsity assumptions in various ways.
For example, Blum and Roth [2013] propose an efficient
algorithm for queries that take on a non-zero value only
on a small subset of an unstructured discrete domain.
More related to us, a special class of linear statistical
or counting queries are k-way marginals [Dwork et al.,
2015, Liu et al., 2021b, Thaler et al., 2012]. A k-
way marginal query involves fixing the values of k
indices and determining the proportion of data that
matches those values. Further, a range of works [Barak
et al., 2007, Cheraghchi et al., 2012, Gupta et al.,
2011] also study the query class of k-way conjunctions
and provide fast algorithms when k is small. Further
common problems in the privacy literature related to
this paper include histogram release [Abowd et al.,
2019, Acs et al., 2012, Hay et al., 2009, Meng et al.,
2017, Nelson and Reuben, 2019, Qardaji et al., 2013,
Xiao et al., 2010b, Xu et al., 2013, Zhang et al., 2016]
and private clustering [Balcan et al., 2017, Ghazi et al.,
2020, Stemmer, 2020, Su et al., 2016].

Finally, recent works [Boedihardjo et al., 2022, He et al.,
2023, Wang et al., 2016] studied the case where F is the
class of all 1-Lipschitz continuous functions, resulting in

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

the utility loss (2) equaling the 1-Wassterstein distance.
A small Wasserstein distance is desirable in many prac-
tical applications as it for instance guarantees that
clusters present in the original data remain preserved
(see the discussion in [Boedihardjo et al., 2022]). How-
ever, prior results [Boedihardjo et al., 2022, He et al.,
2023] also suggest that ensuring a small Wasserstein
distance requires exponentially many samples in the
dimension. For example, for the d-dimensional hyper-
cube [0, 1]d (with d ≥ 2) equipped with the ℓ∞-metric,
the papers [Boedihardjo et al., 2022, He et al., 2023]
together show that the optimal expected utility loss is
of order

E U(µD,A(D)) ≍
(

1

nϵ

)1/d

, (18)

where n is the size of the data set D and µD its corre-
sponding empirical measure.

7 Conclusion and future work

Especially in sensitive domains, we desire a certificate
for the maximum utility loss to ensure that the data
is provably minimally affected by the DP mechanism.
We take a step in this direction by introducing Algo-
rithm 1 in Section 2, which simultaneously releases a
DP discrete probability measure and provides a cer-
tificate for the maximum utility loss when F is the
class of all s-sparse Lipschitz continuous functions. As
shown in Section 4, our algorithm achieves an optimal
non-asymptotic exponential decay rate for the expected
utility loss and effectively overcomes the curse of di-
mensionality for moderate choices of s.

Future work The certificate in Algorithm 1 can be
computed for any “approximate" solution and we leave
practically meaningful, efficient approximations of Step
3 in Algorithm 1 as future work. Moreover, we motivate
theoretical research on the right dependency on d in
Theorem 1. Improving the upper bound would likely
result in a novel algorithm with potentially practical
applications, while an improved lower bound would
require the development of new mathematical ideas
and provide evidence for the optimality of Algorithm 1.

Acknowledgements

KD was supported by the ETH AI Center and the ETH
Foundations of Data Science. AS was supported by the
ETH AI Center.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security, pages
308–318, 2016.

John Abowd, Robert Ashmead, Garfinkel Simson,
Daniel Kifer, Philip Leclerc, Ashwin Machanava-
jjhala, and William Sexton. Census topdown: Dif-
ferentially private data, incremental schemas, and
consistency with public knowledge. US Census Bu-
reau, 2019.

John M Abowd. The us census bureau adopts dif-
ferential privacy. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2867–2867, 2018.

Gergely Acs, Claude Castelluccia, and Rui Chen. Differ-
entially private histogram publishing through lossy
compression. In IEEE International Conference on
Data Mining, pages 1–10, 2012.

Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wen-
long Mou, and Hongyang Zhang. Differentially pri-
vate clustering in high-dimensional euclidean spaces.
In International Conference on Machine Learning,
pages 322–331, 2017.

Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork,
Satyen Kale, Frank McSherry, and Kunal Talwar.
Privacy, accuracy, and consistency too: a holistic
solution to contingency table release. In Proceedings
of the ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 273–282,
2007.

Raef Bassily, Adam Smith, and Abhradeep Thakurta.
Private empirical risk minimization: Efficient algo-
rithms and tight error bounds. In IEEE symposium
on foundations of computer science, pages 464–473,
2014.

Avrim Blum and Aaron Roth. Fast private data re-
lease algorithms for sparse queries. In Approximation,
Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques: International Workshop,
pages 395–410, 2013.

Avrim Blum, Cynthia Dwork, Frank McSherry, and
Kobbi Nissim. Practical privacy: the sulq frame-
work. In Proceedings of the ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database sys-
tems, pages 128–138, 2005.

Avrim Blum, Katrina Ligett, and Aaron Roth. A
learning theory approach to noninteractive database
privacy. In Proceedings of the ACM Symposium on
Theory of Computing, 2008.

March Boedihardjo, Thomas Strohmer, and Roman
Vershynin. Privacy of synthetic data: A statistical
framework. arXiv preprint arXiv:2109.01748, 2021.

March Boedihardjo, Thomas Strohmer, and Roman
Vershynin. Private measures, random walks, and

Certified private data release for sparse Lipschitz functions

synthetic data. arXiv preprint arXiv:2204.09167,
2022.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D
Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12
(3), 2011.

Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari,
and Homin K Lee. Submodular functions are noise
stable. In Proceedings of the ACM-SIAM symposium
on Discrete Algorithms, pages 1586–1592, 2012.

Yuval Dagan and Gil Kur. A bounded-noise mechanism
for differential privacy. In Conference on Learning
Theory, pages 625–661, 2022.

Frances Ding, Moritz Hardt, John Miller, and Lud-
wig Schmidt. Retiring adult: New datasets for fair
machine learning. Advances in Neural Information
Processing Systems, 34, 2021.

Cynthia Dwork and Kobbi Nissim. Privacy-preserving
datamining on vertically partitioned databases. In
Advances in Cryptology–CRYPTO 2004: Interna-
tional Cryptology Conference, pages 528–544, 2004.

Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3–4):
211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of Theory of
Cryptography, 2006.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N
Rothblum, and Salil Vadhan. On the complexity of
differentially private data release: efficient algorithms
and hardness results. In Proceedings of the ACM
symposium on Theory of computing, pages 381–390,
2009.

Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar.
Efficient algorithms for privately releasing marginals
via convex relaxations. Discrete & Computational
Geometry, 53:650–673, 2015.

Cynthia Dwork, Nitin Kohli, and Deirdre Mulligan.
Differential privacy in practice: Expose your epsilons!
Journal of Privacy and Confidentiality, 9(2), Oct.
2019.

Vitaly Feldman and David Xiao. Sample complexity
bounds on differentially private learning via commu-
nication complexity. In Proceedings of the Conference
on Learning Theory, pages 1000–1019, 2014.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Dif-
ferentially private clustering: Tight approximation
ratios. Advances in Neural Information Processing
Systems, 33:4040–4054, 2020.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. On
avoiding the union bound when answering multi-
ple differentially private queries. In Proceedings of
Conference on Learning Theory, volume 134, pages
2133–2146, 15–19 Aug 2021.

Jin Sheng Guf and Wei Sun Jiang. The Haar wavelets
operational matrix of integration. International Jour-
nal of Systems Science, 27(7):623–628, 1996.

Anupam Gupta, Moritz Hardt, Aaron Roth, and
Jonathan Ullman. Privately releasing conjunctions
and the statistical query barrier. In Proceedings of
the ACM symposium on Theory of computing, pages
803–812, 2011.

Moritz Hardt and Guy N Rothblum. A multiplicative
weights mechanism for privacy-preserving data anal-
ysis. In IEEE symposium on foundations of computer
science, pages 61–70, 2010.

Moritz Hardt and Kunal Talwar. On the geometry
of differential privacy. In Proceedings of the forty-
second ACM symposium on Theory of computing,
pages 705–714, 2010.

Moritz Hardt, Katrina Ligett, and Frank Mcsherry. A
simple and practical algorithm for differentially pri-
vate data release. In Advances in Neural Information
Processing Systems, volume 25, 2012.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan
Suciu. Boosting the accuracy of differentially-private
histograms through consistency. arXiv preprint
arXiv:0904.0942, 2009.

Yiyun He, Roman Vershynin, and Yizhe Zhu. Algorith-
mically effective differentially private synthetic data,
2023.

Seidu Inusah and Tomasz Kozubowski. A discrete
analogue of the laplace distribution. Journal of Sta-
tistical Planning and Inference, 136:1090–1102, 03
2006. doi: 10.1016/j.jspi.2004.08.014.

Michael Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM, 45(6):983–
1006, 1998.

Terrance Liu, Giuseppe Vietri, Thomas Steinke,
Jonathan Ullman, and Steven Wu. Leveraging public
data for practical private query release. In Proceed-
ings of the International Conference on Machine
Learning, pages 6968–6977, 2021a.

Terrance Liu, Giuseppe Vietri, and Steven Z Wu. Iter-
ative methods for private synthetic data: Unifying
framework and new methods. Advances in Neural
Information Processing Systems, 34:690–702, 2021b.

Ryan McKenna, Gerome Miklau, and Daniel Shel-
don. Winning the NIST contest: A scalable and
general approach to differentially private synthetic

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

data. CoRR, abs/2108.04978, 2021. URL https:
//arxiv.org/abs/2108.04978.

Ryan McKenna, Brett Mullins, Daniel Sheldon, and
Gerome Miklau. AIM: an adaptive and iterative
mechanism for differentially private synthetic data.
CoRR, abs/2201.12677, 2022. URL https://arxiv.
org/abs/2201.12677.

Frank McSherry and Kunal Talwar. Mechanism de-
sign via differential privacy. In IEEE Symposium
on Foundations of Computer Science, pages 94–103,
2007.

Xue Meng, Hui Li, and Jiangtao Cui. Different strate-
gies for differentially private histogram publication.
Journal of Communications and Information Net-
works, 2(3):68–77, 2017.

Boel Nelson and Jenni Reuben. Sok: Chasing ac-
curacy and privacy, and catching both in differen-
tially private histogram publication. arXiv preprint
arXiv:1910.14028, 2019.

Nicolas Papernot and Thomas Steinke. Hyperparam-
eter tuning with renyi differential privacy. arXiv
preprint arXiv:2110.03620, 2021.

Wahbeh Qardaji, Weining Yang, and Ninghui Li. Un-
derstanding hierarchical methods for differentially
private histograms. Proceedings of the VLDB En-
dowment, 6(14):1954–1965, 2013.

Sofya Raskhodnikova, Adam Smith, Homin K Lee,
Kobbi Nissim, and Shiva Prasad Kasiviswanathan.
What can we learn privately. In Proceedings of the
Symposium on Foundations of Computer Science,
pages 531–540, 2008.

Aaron Roth and Tim Roughgarden. The median mech-
anism: Interactive and efficient privacy with multiple
queries. In Proc. STOC, 2010.

Thomas Steinke and Jonathan Ullman. Between pure
and approximate differential privacy. Journal of
Privacy and Confidentiality, 7(2):3–22, 2016.

Uri Stemmer. Locally private k-means clustering. In
Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, page 548–559, 2020.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and
Hongxia Jin. Differentially private k-means cluster-
ing. In Proceedings of the sixth ACM conference
on data and application security and privacy, pages
26–37, 2016.

Justin Thaler, Jonathan Ullman, and Salil Vadhan.
Faster algorithms for privately releasing marginals.
In Automata, Languages, and Programming: 39th
International Colloquium, pages 810–821, 2012.

Jonathan Ullman and Salil Vadhan. Pcps and the
hardness of generating synthetic data. In Proceedings

of Theory of Cryptography, volume 5978, pages 572–
587, 2011.

S. S. Vallender. Calculation of the wasserstein distance
between probability distributions on the line. Theory
of Probability & Its Applications, 18(4):784–786, 1974.
doi: 10.1137/1118101.

Roman Vershynin. High-dimensional probability: An
introduction with applications in data science, vol-
ume 47. Cambridge university press, 2018.

Cédric Villani et al. Optimal transport: old and new,
volume 338. Springer, 2009.

Martin J Wainwright. High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019.

Ziteng Wang, Chi Jin, Kai Fan, Jiaqi Zhang, Junliang
Huang, Yiqiao Zhong, and Liwei Wang. Differentially
private data releasing for smooth queries. The Jour-
nal of Machine Learning Research, 17(1):1779–1820,
2016.

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke.
Differential privacy via wavelet transforms, 2010a.

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke.
Differential privacy via wavelet transforms. IEEE
Transactions on knowledge and data engineering, 23
(8):1200–1214, 2010b.

Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu,
and Marianne Winslett. Differentially private his-
togram publication. The VLDB journal, 22:797–822,
2013.

Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree:
A differentially private algorithm for hierarchical
decompositions. In Proceedings of the international
conference on management of data, pages 155–170,
2016.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc,
Divesh Srivastava, and Xiaokui Xiao. Privbayes:
Private data release via bayesian networks. ACM
Transactions on Database Systems (TODS), 42(4):
1–41, 2017.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

https://arxiv.org/abs/2108.04978
https://arxiv.org/abs/2108.04978
https://arxiv.org/abs/2201.12677
https://arxiv.org/abs/2201.12677

Certified private data release for sparse Lipschitz functions

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Not Applicable

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes
(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
No, our experiments are only very limited.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Not Applicable

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). No, our experiments are
only very limited.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Not Applicable

(b) The license information of the assets, if appli-
cable. Not Applicable

(c) New assets either in the supplemental material
or as a URL, if applicable. Not Applicable

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

A Experimental Setting

For completeness, we describe the upper and lower bounds for the utility loss (1) used in Figures 1 and 2. Although
we can compute the Wasserstein distance for discrete measures using linear programming, for the choices of n
and na considered in this paper, a direct computation turns out to be computationally infeasible. Instead, for any
measures µ, µ′, we can bound the wasserstein distance using the triangle inequality

U(µ, µ′) ≤ U(PTk,d

µ, P
Tk,d

µ′) + U(µ, PTk,d

µ) + U(PTk,d

µ′, µ′) and (19)

U(µ, µ′) ≥ U(PTk,d

µ, P
Tk,d

µ′)− U(µ, PTk,d

µ)− U(PTk,d

µ′, µ′), (20)

where PTk,d : MP(T) → MP(Tk,d) projects the space T to Tk,d. We remark that U(PTk,d

µ, P
Tk,d

µ′) =

U(T−1Tµ,T−1Tµ′) = UT(Tµ,Tµ′), which can be computed efficiently (for moderate choices of k) as described in
Section 3. Moreover, by construction U(PTk,d

A(D),A(D)) = 0, and for any data set D, we can bound

U(PTk,d

µD, µD) ≤ max
S⊂[d];|S|=s

1

n

|D|∑
i=1

∥PSzSi − P
Tk,d

PSzi∥∞, (21)

Finally, we plot in Figures 1 and 2 the upper and lower bounds from Equation (19) and 20, as well as the term
U(PTk,d

µD, P
Tk,d

A(D)) and U(PTk,d

µD, P
Tk,d

µDpub), respectively, for k = 30.

B Haar Basis

In this section, we give a quick introduction to the Haar matrices, which play a crucial role in the proofs of
Theorem 2. For a more in depth discussion please refer to [Guf and Jiang, 1996].

The k-th transposed Haar matrix Mk is a 2k×2k matrix. We can separate the columns into k+1 levels L0, . . . , Lk
where level Ll contains max{1, 2l−1} columns (see Figure 3). The level L0 only consists of the first column,
the level L1 contains the next column, and the level L2 the following two columns and so on. Moreover, the
absolute values of all non-zero elements in the level Ll in Mk are all equal to max{1, 2l−1}/2k. Furthermore,
a key property of transposed Haar matrices is that the columns are sparse; each column in the level Ll in Mk

contains exactly 2min{k,k−l+1} non-zero elements. We visualize in Figure 3 the transposed Haar matrices M1, M2

and M3. The pattern can be extended to general Mk. It is straight forward to verify that all the columns in any
Mk are orthogonal. Consider any two columns in the same level; their support is disjoint and their scalar product
vanishes. On the other hand, for any two columns in different levels, their support is either disjoint or the support
of one is contained in an index set where the values in the other column is constant. Hence, as every column has
an equal number of positive and negative values with equal magnitude, we can conclude that either way the scalar
product is zero. Consequently, if we scale the columns appropriately, the Haar basis matrix would be orthogonal.
M−1
k is therefore equal to MT

k with the columns scaled appropriately. Finally, we note that the appropriate
scaling is such that all non-zero elements of the inverse have absolute value 1, as visualized in Figure 4.

L0 L1 L0 L1 L2 L0 L1 L2 L3

Figure 3: Evolution of the transposed Haar basis shwoing M1, M2 and M3. Green cells contain positive values,
red cells negative values while white cells contain 0. The intensity of a cell correspond to the magnitude of the
value within it.

Certified private data release for sparse Lipschitz functions

Figure 4: Evolution of the inverse of the transposed Haar basis showing M−1
1 ,M−1

2 and M−1
3 . Green cells contain

value 1, red cells -1 while white cells contain 0.

We can now state the following lemma which we use in the proof of Theorem 2. These properties of the transposed
Haar matrix have already been implicitly used in the proofs in [Boedihardjo et al., 2022].

Lemma 3. For any m ≥ 0 and Φ = (⌈log2(m)⌉ + 1)M⌈log2(m)⌉ with Mk the k-th transposed Haar Matrix, it
holds that ∥Φ−1∥1 ≤ 1 and

max
i∈[m]

∥∥∥∥∥∥
i∑

j=1

Φj

∥∥∥∥∥∥
1

≤ (⌈log2(m)⌉+ 1)2 and max
i∈[m]

∥∥∥∥∥∥
i∑

j=1

Φj

∥∥∥∥∥∥
2

≤ (⌈log2(m)⌉+ 1)3/2 (22)

Proof of Lemma 3

• For the first property, we note that by definition, ∥Φ−1∥1 = maxl ∥Φ−1
l ∥1 where Φ−1

l is the l-th column of
Φ−1. By the construction (see Figure 4), we have that for all k, ∥(M−1

k)l∥1 = k+1, and thus ∥M−1
k ∥1 = k+1.

Therefore, we get that ∥Φ−1∥1 = ∥M−1
k ∥1/(k + 1) = 1.

• For the second and third property we notice that due to the disjoint support between the columns within a
level, the contiguous support of each column and the equal number of positive and negative values within a
column (see Figure 3), when summing the j-first columns of Mk there will be at most one non-zero element
in each level. As the 1-norm of each column is 1, we know that the magnitude of this non-zero element is
upper bounded by 1. Furthermore, in total we have k + 1 levels. Hence, ∥

∑i
l=1(Mk)l∥2 ≤

√
k + 1 for any

i ∈ [k + 1]. Thus, for any i ∈ [2k] we get that ∥
∑i
l=1 Φl∥2 ≤ (k + 1)

3
2 and ∥

∑i
l=1 Φl∥1 ≤ (k + 1)2.

C Extension of Theorem 1 to general metric spaces

In this section we generalize the setting in Theorem 1 to general metric spaces in Theorem 2. Generally, we can
ask for an algorithm A, taking a data set D ∈ Tn on some measurable space (T,B) as input, to achieve a small
utility loss (2) over a function class

F =

K⋃
i=1

F (i) :=

K⋃
i=1

{f (i) ◦ h(i)|f (i) is 1-Lipschitz w.r.t. ρ(i)}, (23)

with (T (i), ρ(i))Ki=1 being some set of metric spaces and surjective measurable functions h(i) : T → T(i) serving
as “projections” of T to T (i). We assume that the push-forward σ-algebras generated by h(i) coincide with the
σ-algebras generated by ρ(i) on T (i).

Analogous to Equation (1), by the Kantorovich-Rubinstein Duality Theorem [Villani et al., 2009], the utility loss
is exactly the maximum of the Wasserstein distances w.r.t. the metrics ρ(i),

U(µ, µ′) = max
i∈[K]

W1(h
(i)
µ, h

(i)
µ′). (24)

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

To give an example, in the context of Theorem 1, we have K =
(
d
s

)
and T (i) = [0, 1]s are the s-sparse marginals

of T with ρ(i)(x, y) = ∥x− y∥∞. Furthermore, h(i) are the functions projecting x ∈ [0, 1]d to the corresponding
s-dimensional subspaces and h

(i)
µ are the marginal measures of µ on the corresponding s-dimensional subspaces.

We now turn to the main result of this section, Theorem 2, which provides a general upper bound for the utility
loss over the function class F . When K = 1 we can directly obtain the upper bounds in Theorem 2 from the
results in [Boedihardjo et al., 2022]. The main technical contribution of this section is to show that the price to
pay if K > 1 is at most linear in K (plus a logarithmic factor). Let N(T, ρ, t) be the covering number of T , we
have:

Theorem 2. For the setting described above, there exists a universal constant c > 0 and a randomized algorithm
A that takes a data set D ∈ Tn of size n as input and returns a finitely-supported measure A(D) ∈MP(T) such
that A is ϵ-DP private and has expected utility loss (2) over the function class F , defined in Equation (23), at
most

E U(µD,A(D)) ≤ t

+ cK max
i∈[K]

[(⌈log2 N(T (i), ρ(i), t
)
⌉+ 1 + log(K)

)2
nϵ

∫ diam(T (i))/2

t/2

N
(
T (i), ρ(i), x

)
dx

]
.

(25)

We now divide the proof of Theorem 2 into two parts. First, we prove in Appendix C.1 Theorem 2 for the known
case when K = 1. While the proofs builds upon the ideas in Boedihardjo et al. [2022], we present the proof in a
different structure based on Equation (15) and Definition 2 from Section 4. This structure is crucial since it then
allows us in a second part in Section C.2 to extend the proofs to the case where K > 2

C.1 Proof of Theorem 2 when K = 1

We first present a proof for the case where K = 1, where we can assume w.l.o.g. that h1 is the identity function.
In this case, we obtain exactly the results from Section 7 in [Boedihardjo et al., 2022]. The proof consists of three
parts, where we first construct a query operator T and a proxy utility loss LT (Definition 2).

Construction of the query operator T and the right-inverse T−1: Let m = N(T, ρ, t) be the covering
number of T and let Tm be the centers of any minimal t-covering of T . Furthermore, let DTm

: MP(T) →
MP(Tm) ⊂ MP(T) be the projection operator which constructs a probability measure on Tm by dividing the
space T into m disjoint measurable neighborhoods around the points in Tm of diameter at most t. Given any
indexing of the elements in Tm, we can straightforwardly define a bijection from MP(Tm) to the probability
simplex V = {z ∈ Rm : ∥z∥1 = 1, zi ≥ 0} and thus complete the construction of the operator T. Furthermore, let
the right-inverse T−1 : V →MP(Tm) ⊂MP(T) be any operator such that T−1T = DTm

.

To simplify the following analysis, we now describe how to choose a particular indexing of the elements in Tm
based on the analysis in Boedihardjo et al. [2022]. Proposition 6.5 and Equation (7.4) in [Boedihardjo et al.,
2022] together guarantee the existence of a finite set Ω = {w1, · · · , wm} ⊂ [0, L] as well as a 1-Lipschitz (w.r.t. ρ)
bijection f : Ω→ Tm with

L = 64

∫ diam(T)/2

t/2

N(T, ρ, x)dx. (26)

Note that w.l.o.g. we can assume that wi ≤ wi+1 which thereby implicitly induces a Hamiltonian path on Tm
of length at most L. We can now define the indexing of the elements in Tm by zi = f(wi), which allows us to
complete the construction of the operator T.

Step 3 in Algorithm 1: proxy utility loss LT: One of the key ideas of Boedihardjo et al. [2022] is to reduce
the the problem of constructing a private measure on T to that of constructing a private measure on an interval
on R. This is done via the bijection f introduced in the previous paragraph. Along these lines, we now show how
we can make use of the bijection f to construct a proxy utility loss LT satisfying the conditions in Definition 2.

If µTm ∈MP(Tm), then let µTm,f be the push-forward measure of µTm ∈MP(Tm), i.e. the measure onMP(Ω)
such that for any A ⊂ Ω, µTm,f (A) = µTm

(f(A)). Since f is a 1-Lipschitz continuous function, the Wasserstein

Certified private data release for sparse Lipschitz functions

distance of any two measures µTm , µ′
Tm
∈MP(Tm) is upper bounded by

U(µTm , µ′
Tm

) = W1(µTm , µ′
Tm

) ≤W1(µTm,f , µ
′
Tm,f)

= ∥FµTm,f
− Fµ′

Tm,f
∥L1(R)

=

m∑
j=1

(wj+1 − wj)

∣∣∣∣∣
j∑
i=1

(µTm
(f−1(wi))− µ′

Tm
(f−1(wi)))

∣∣∣∣∣
=

m∑
j=1

(wj+1 − wj)

∣∣∣∣∣
j∑
i=1

(vi − v′i)

∣∣∣∣∣
(27)

where the second equality follows from the identity in [Vallender, 1974], FµTm,f
is the cumulative distribution

function of the measure µTm,f , and we use the notation v = TµTm
, v′ = Tµ′

Tm
, and wm+1 = L. Using the RHS

of Equation (27) we can now define the utility proxy utility loss function LT on Rm

LT(v, v
′) :=

m∑
j=1

(wj+1 − wj)

∣∣∣∣∣
j∑
i=1

(vi − v′i)

∣∣∣∣∣ , (28)

and therefore have U(µTm
, µ′
Tm

) ≤ LT(TµTm
,Tµ′

Tm
) for all µTm

, µ′
Tm
∈ MP(Tm). Hence, we conclude that LT

satisfies the conditions in Definition 2.

Upper bound for the utility loss U : Finally, we can prove the result by upper bounding the utility loss
using Equation (15). First, the “projection” error term in Equation (15) can be upper bounded by

sup
µ∈MP(T)

U(µ,T−1Tµ) = sup
µ∈MP(T)

sup
S⊂[d];|S|=s

W1(P
S
#µ, PS#T−1Tµ) = sup

µ∈MP(T)

sup
S⊂[d];|S|=s

W1(P
S
#µ, PS#DTm

µ) ≤ t,

(29)
which is a consequence of the fact that DTm

moves every point mass at most distance t.

Next, we bound second term in Equation (15), 2 LT(TµD, vDP). To do so, we first need to choose the matrix Φ
in Equation (7). As first suggested in [Xiao et al., 2010b] and also in [Boedihardjo et al., 2022], we can choose
Φ = (⌈log2(m)⌉+ 1)M⌈log2(m)⌉ where Mk is the k-th Haar Matrix (see Appendix B) and then apply the Laplace
mechanism as in Lemma 2. First note that ∆T ≤ 2

n where ∆T is defined in Lemma 2. Indeed, the vectors TµD
and TµD′ are representations for the discretized measures DTmµD and DTmµD′ , which differ at most in two points.
By Lemma 2 we therefore need to draw η̃ ∼

(
Lap

(
2∥Φ−1∥1

nϵ

))mΦ

. A straightforward calculation then yields the
following upper bound:

E LT(TµD, vDP) = E LT(TµD,TµD + [Φη̃]1:m)

=

m∑
j=1

(wj+1 − wj)E
η̃∼

(
Lap

(
2∥Φ−1∥1

nϵ

))mΦ

∣∣∣∣∣
j∑
i=1

(Φη̃)i

∣∣∣∣∣
(Jensen)
≤ L

m
max
j=1

E
η̃∼

(
Lap

(
2∥Φ−1∥1

nϵ

))mΦ

[
std

(
j∑
i=1

(Φη̃)i

)]
=

2
√
2L∥Φ−1∥1

nϵ
· m
max
j=1

∥∥∥∥∥
j∑
i=1

Φi

∥∥∥∥∥
2

,

(30)

where Φi is the i-th row of Φ. We then obtain the desired upper bounds when applying Lemma 3 in Appendix B.

C.2 Full proof of Theorem 2 for arbitrary K > 1

We now show how we can extend the result for the case where K = 1 (in Section C.2) to the case of K > 1
by changing the query operator T. We construct T with m =

∑
im(i) with m(i) = N

(
T (i), ρ(i), t

)
, by simply

stacking the operators T(i) ◦ h
(i)
:MP(T)→ Rm(i) where T(i) are the query operators described in Section C.1

for the metric spaces (T(i), ρ(i)). It is then straightforward to verify that for any right inverse, the “projection"
error U(µD,T−1TµD) from Equation (15) is upper bounded by t.

In Step 2 of Algorithm 1, we apply the transformed Laplace mechanism to every block v(i) ∈ Rm(i) as described
in Section C.1. However, this requires increasing the sensitivity to ∆T ≤ 2K

n due to the increased total number of

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

measurements. Since the proxy utility loss function U is simply the maximum over the Wasserstein distances over
the projected measures of every subspace T(i) (see Equation (24)), we can define the proxy utility loss function
LT dominating the utility loss U (see Definition 2) to be the maximum loss LT(v, v

′) = maxi∈[K] LT(i)
(v(i), v

′
(i))

where v(i) ∈ Rm(i) is the i-th block of the vector v ∈ Rm and LT(i)
is the corresponding proxy utility loss function

as constructed in Section C.1. We then obtain the desired result when bounding the term ELT(TµD, vDP) from
Equation (15) using Lemma 4.
Lemma 4. Assume that vDP is generated as in described in the proof of Theorem 2. We can upper bound
LT(Tµ, vDP) from Equation (15) by:

E LT(TµD, vDP) ≲ max
i∈[K]

2K(⌈log2(m(i))⌉+ 1 + log(K))2

nϵ
L(i). (31)

Proof of Lemma 4 Since the sensitivity for every block i ∈ [K] is 2
n (see Section C.1), we get ∆T ≤ 2K

n . We
can then upper bound the expected privacy error when applying the Laplace mechanism:

E LT(TµD, vDP) = E max
i=[K]

LT(i)
(v(i), v(i) + [Φ(i)η̃i]1:m(i)

)

= E max
i=[K]

m(i)∑
j(i)=1

(wj(i)+1 − wj(i))

∣∣∣∣∣∣
j(i)∑
l=1

(Φ(i)η̃(i))l

∣∣∣∣∣∣
≤ E max

i=[K]
L(i) max

ji∈[m(i)]

∣∣∣∣∣∣
j(i)∑
l=1

(Φ(i)η̃(i))l

∣∣∣∣∣∣ .
(32)

Next, recall that by the construction of the noise η in the proof for the case where K = 1 we have η̃(i) ∼(
Lap

(
2K∥Φ−1

(i)
∥1

nϵ

))mΦ(i)

. In particular, as in Section C.1, we choose Φ(i) to be the rescaled Haar matrix as

described in Lemma 3, and hence η̃(i) ∼
(
Lap

(
2K
nϵ

))m(i) with mΦ(i)
= 2⌈log2(m(i))⌉. We can now use essentially

the following standard argument as in Section 3.3 in [Boedihardjo et al., 2022]:

Since for every i, j(i), nϵ
2K η̃(i),j has sub-exponential norm ∥η̃(i),j∥ϕ1

≤ 2 (see Section 2 in Vershynin [2018]), we can
apply Bernstein’s inequality, which gives together with Lemma 3 and the fact that ∥Φ∥∞ ≤ k(i)/2, for all i, j(i):

P

∣∣∣∣∣∣ nϵ2K

j(i)∑
l=1

(Φ(i)η(i))l

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
−cmin

(
t2

(k(i) + 1)3
,

t

k(i) + 1

))

≤ 2 exp

(
−cmin

(
t2

(kmax + 1)3
,

t

kmax + 1

)) (33)

where kmax = maxi∈[K] k(i). We can then upper bound the term in Equation (32) when taking the union bound
over at most Kmaxi∈[K] m(i) ≤ exp(log(K) + kmax + log(2)) elements. Thus, we obtain the following upper
bound for the expectation:

E max
i∈[K]

L(i) max
j(i)∈[m(i)]

∣∣∣∣∣∣2Knϵ
j(i)∑
l=1

(Φ(i)η̃(i))l

∣∣∣∣∣∣
≲ max
i∈[K]}

2K(⌈log2(m(i))⌉+ 1 + log(K))2

nϵ
L(i).

(34)

C.3 Proof of Theorem 1

We now discuss how Theorem 2 implies Theorem 1. We recall that in this case, T(i) = [0, 1]s and ρ(i) = ∥.∥∞, and
thus, for any k ∈ N>0, we can simply upper bound the covering numbers by N(T(i), ∥.∥∞, t) ≤ ks. with t = 1/2k.

Plugging this upper bound into Equation (25) in Theorem 2, we obtain E U(µD,A(D)) ≲s 1
2k +

(ds) log(k)
2

nϵ ks−1,
where ≲s is hiding constants depending on s. We then obtain the desired result when optimizing over k. Finally,
we note that the procedure described in the proof of Theorem 2 in Appendix C.2 and C.1 agrees exactly with the
Algorithm 1 from Section 3 when T = [0, 1]d equipped with the ℓ∞ distance function.

Certified private data release for sparse Lipschitz functions

D Other types of sparsity: low dimensional data

As shown in [He et al., 2023, Boedihardjo et al., 2022], the expected utility loss when F is the set of all 1-sparse
functions (see Section 6) is of order

(
1
nϵ

)1/d. In Section 4 we showed that we can overcome this curse of
dimensionality when restricting F to sparse functions. In this section we consider the case where F is the set
of all 1-Lipschitz functions, and thus U = W1, and show how this curse of dimensionality can also be overcome
when the data lives on a sparse (although unknown) subspace. As we show, this is the case even when we do not
have access to any oracle knowledge about the data set, nor the ”dimension" of the subspace, as the algorithm is
capable of “adapting” to the data set.

Special case: rates on the hyper cube Consider the same setting as in Theorem (1), where the underlying
space is the d-dimensional hypercube T = [0, 1]d equipped with the ℓ∞-metric. Let Tk,d = {1/2k, · · · , (2k−1)/2k}d
be the centers of a minimal 1/2k-covering of T of size N = kd. We have:
Theorem 3. Let c ≥ 0 be any constant and let F be the set of all 1-Lipschtiz continuous functions on [0, 1]d with
respect to the ℓ∞-metric. For any nϵ ≥ d+ 1, there exists an ϵ-DP algorithm A such that for any data set D,

E W1(µD,A(D)) ≲s

(
d3 log(ϵn)

nϵ

)1/(s+1)

+
d2 log(nϵ)2

nϵ2
, (35)

where s ∈ {0, · · · , d} is the smallest integer such that for all k ≥ 1, D is contained in at most cks ℓ∞-balls of
radius 1/2k with centers in Tk,d.

The proof is a consequence of Theorem 4 below. Note that the definition of s in Theorem 3 resembles the
definition of the Minkowski dimension when the data set D ⊂ Ts lives on a subspace Ts of Minkowski dimension
s. The algorithm in Theorem 3 is “adaptive" in the sense that it adjusts to the characteristic s of the data set
without relying on any prior information or oracle knowledge of s. When the worst case scenario occurs and
s = d, the rate in Equation (35) includes an additional term with an exponent of +1 compared to Equation (18).
This raises the question of whether the cost of adaptivity can be reduced further.

General result Generally, for any t > 0 and metric space space (T, ρ), fix a minimal t-covering Tm of size
N(T, ρ, t) and let qt : T → Tm be any measurable discretization map such that for any point x ∈ T , ρ(qt(x), x) ≤ t.
Further, let |qt(D)| be the size of the support of qt(D) (which captures the “sparsity” of the subspace the data is
lying on). We have:
Theorem 4. In the setting described above, there exists a randomized algorithm A that takes a data set D ∈ Tn

of size n as input on a metric space (T, ρ) and returns a finitely-supported probability measure A(µD) on (T, ρ)
such that A is ϵ-DP private and has expected utility loss (2) over the set of all 1-Lipschitz continuous functions
with respect to ρ at most:

E W1(µD,A(D)) ≤ t+
64 diam(T) log(m+ 1)

nϵ
|qt(D)| (36)

D.1 Proof of Theorem 4

As in Section C.1, let DTm :MP(T) → MP(Tm) be any projection operator and let Tµ be any vector on the
probability simplex representing the measure DTm

µ. Unlike in Section C.1, we can choose any random indexing
of the elements in Tm to represent the vector Tµ.

Data sanitization, Step 2 in Algorithm 1: We are now going to construct a DP vector vDP as in Step 2
in Algorithm 1. A simple way to construct a sparse private variant of v is: first apply the standard Laplace
mechanism (with Φ = Im) to obtain a differential private copy of ṽDP = v + η of v with η as in Lemma 2 and
then solve the convex optimization problem

vDP = argmin
v′
∥v′ − ṽDP∥2 s.t. ∥v′∥1 ≤ 1 (37)

Standard results for the constrained ℓ1-norm ERM solution (see e.g., Theorem 7.13 in Wainwright [2019]) then
yield the following upper bound on the ℓ1-error ∥vDP − v∥1 ≤ 16|qt(D)|∥η∥∞.

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

Optimization, Step 3 in Algorithm 1 For the proxy utility loss we can simply choose UdT form Section 5.4
(where we set s = d). Note that since F is the set of all 1-Lipschitz queries, we can solve the minimization
problem in Step 3 by solving a linear program (see also [He et al., 2023]).

Upper bound for the utility loss W1: Recall from Section C.1 that the projection error W1(µD,T†TµD) ≤ t
from Equation (15) is upper bounded by t. By the same reasoning as in Equation (15), it suffices to upper bound
the (expected) privacy error term E UdT(TµD, vDP) (with s = d) in Equation (15) (where we replace LT with UdT)
by:

E UdT(TµD, vDP) ≤ E sup
f∈F ;f(0)=0

∑
zi∈Tm

|f(zi)(vDP,i − vi)|
Hölder
≤ E sup

f∈F ;f(0)=0

∥f∥L∞∥vDP − v∥1

≤ diam(T) 16 |qt(D)| E∥η∥∞.

(38)

We then obtain the desired result when using the upper bound E ∥η∥∞ ≤ 4
nϵ log(m+ 1) where we used Example

2.19 in [Wainwright, 2019] in the last line and the fact that ∥η∥ψ1
= 2 for η ∼ Lap(1).

D.2 Proof of Theorem 3

Finally, we discuss how we obtain Theorem 3 form Theorem 4. Unlike in the proof of Theorem 1 we can no longer
simply optimize over t because we do not have access to |qt(D)|, nor do we assume to have access to the smallest
integer s from Theorem 3 such that for all t = 1/2k, |q1/2k(D)| ≤ cks.

Instead, we need to “adaptively” optimize over all s′ ∈ {0, · · · , d}. For this, in the first step, we want to find for
every s′ the optimal ts′ which minimizes the RHS in Equation (36) in Theorem 4, assuming that for all t = 1/2k,
|q1/2k(D)| ≤ cks

′
. We choose ts′ = 1/2ks′ and since N([0, 1]d, ∥.∥∞, ts′) = kds′ , we can upper bound the RHS in

Equation (36) in Theorem 4 by:

1/2ks′ +
64 log(kds′ + 1)

nϵ
|q1/2ks′ (D)| ≤ 1/2ks′ + 1

64d log(ks′)

nϵ
cks

′

s′ . (39)

We can now minimize the RHS by choosing ks′ ≍
(
d2 log(ϵn)

nϵ

)1/(s′+1)

, which gives

1/2ks′ +
64 log(kds′ + 1)

nϵ
≲

(
d log(ϵn)

nϵ

)1/(s′+1)

. (40)

We run the algorithm in Theorem 4 for every choice of s′ ∈ {0, · · · , d} with ts′ , resulting in the measures As′(D),
and by Theorem 4 we have

E W1(µD,As′(D)) ≤ 1/2ks′ +
64 log(kds′ + 1)

nϵ
|q1/2ks′ (D)|. (41)

The problem remains which measure As′(D) to return. The idea is to estimate |q1/2ks′ (D)| using the estimates
Ŝs′ for the support. More precisely, we release the d+ 1 ϵ-DP estimates for the sizes of the supports:

Ŝs′ = |q1/2ks′ (D)|+ 1

ϵ
ξs′ with ξs′ ∼ Lap(1) (42)

where we used that the sensitivity of the support function is trivially 1. We can now return the measure Asopt(D)
with

sopt = argmin
s′

1/2ks′ +
64 log(kds′ + 1)

nϵ
Ŝs′ . (43)

Note that by the composition theorem for differential privacy [Dwork et al., 2006], the overall algorithm is
therefore 2(d+ 1)ϵ-DP, and we obtain an ϵ-DP algorithm by simply replacing ϵ with ϵ̃ = ϵ/(2d+ 1).

Certified private data release for sparse Lipschitz functions

Upper bound for the expected utility loss: To prove the result in Theorem 3, we need to upper bound the
expected utility loss. We divide the upper bound into two parts, where we let E be the event where

E : max
s′∈{0,··· ,d}

|ξs′ | ≤ 4 log(nϵ), (44)

and note that (using nϵ ≥ d+ 1), P(Ec) ≤ 1
(ϵn)2 . Since the utility loss is at most 1 (because the transportation

cost is at most diam(T) = 1), we have that E
[
W1(µD,Asopt(D))|Ec

]
≤ 1. Moreover, we can bound:

Eξ,η W1(µD,Asopt
(D)) ≤ Eξ,η

[
W1(µD,Asopt(D))|E

]
+ P (Ec)

≤ Eξ,η
[
W1(µD,Asopt(D))|E

]
+

1

(nϵ)2
.

Thus, we are only left with bounding the expected utility loss conditioning on E . Note that the expectation in
Equation (41) is only over η, and thus:

Eξ,η
[
W1(µD,Asopt(D))|E

]
≤ Eξ

[
1/2ksopt +

64 log(kdsopt + 1)

nϵ̃
|q1/2ksopt (D)|

∣∣E]

≤ 1/2ks +
64 log(kds + 1)

nϵ̃

(
|q1/2ks(D)|+ 4

log(ϵn)

ϵ̃

)
≲

(
d2 log(ϵn)

nϵ

)1/(s+1)

+
d3 log2(nϵ)

nϵ2
,

(45)

where we used in the last line the assumption that for all k, |q1/2ks′ (D)| ≤ cks and Equation (39) and recall that

ks ≍
(
d2 log(ϵn)

nϵ

)1/(s+1)

.

E Proof sketch for the lower bound in Equation (14)

We now present a proof sketch for the lower bound in Equation (14), which follows from a standard geometric
argument pioneered in [Hardt and Talwar, 2010] and used in [Boedihardjo et al., 2022]. The key idea is to apply
the following corollary of Proposition 8.1 in [Boedihardjo et al., 2022]. Adapted to this setting, the proposition
states:

Corollary 1 (Proposition 8.1 in [Boedihardjo et al., 2022]). Let M0 = Tn be the set of all datasets of size n,
and let Mn(T) be the corresponding set of all empirical measures constructed from datasets in M0. Further, let
M1 =MP(T) be the set of all probability measures. Let ρ1 be any metric on M1, and assume that for some
t, ϵ > 0 the packing number is lower bounded by

Npack(Mn(T), ρ1, t) > 2eϵn.

Then, for any randomized algorithm A : M0 →M1 that is ϵ-differentially private, there exists D ∈M0 such that

EA ρ1(A(D), µD) > t/4.

Thus, to obtain the minimax lower bound from Equation (14), it suffices to lower bound the packing number
Npack(Mn(T), ρ1, t) and apply the corollary with ρ1 = U . In the case where s = d, and thus U = W1, Boedihardjo
et al. [2022] construct datasets of size l ≤ n (we let n be a multiple of l) by drawing uniform samples from T .
Leveraging concentration bounds, we then obtain from Proposition 8.2 and 8.6 in [Boedihardjo et al., 2022] that
whenever Npack(T, ∥.∥∞, t) ≥ 2l, we have

Npack(Ml(T),W1, t/3) ≥ exp(cl), (46)

where W1 is the Wasserstein-1 distance. To extend the lower bound to the case where the metric ρ1 = U is the
maximum Wasserstein distance over all s-sparse subspaces, as defined Equation (2), we split the dimensions

Konstantin Donhauser∗, Johan Lokna∗, Amartya Sanyal

{1, · · · , d} into ⌊d/s⌋ disjoint sets of size s. By the argument above, assuming that Npack([0, 1]
s, ∥.∥∞, t) ≥ 2l, we

can then construct exp(cl) many empirical measures on each subspace. Since the dimensions are distinct, we have
shown that

Npack(Ml(T),U , t/3) ≥ exp(⌊d/s⌋cl), (47)

The bound then follows from Npack([0, 1]
s, ∥.∥∞, t) ≍ (1/t)

s and choosing t ≍
(
⌊d/s⌋ 1

ϵn

)1/s, as in Theorem 9.4 in
[Boedihardjo et al., 2022]

F Comparison with approaches minimizing the Euclidean distance

In this section we present a proof sketch for the rate in the last paragraph in Section 4.1. More precisely, we
discuss the utility loss of a modified version of Algorithm 1 based on the Euclidean distance, as used in previous
works (see McKenna et al. [2021, 2022], Zhang et al. [2017] and references therein). While the mentioned papers
present approximate, efficient algorithms, they all rely on the same patter where, similarly to Algorithm 1, we

Step 2 in Alg. 1: draw i.i.d. Laplace (resp. Gaussian) noise η ∼
(
Lap

(
∆T
ϵ

))m
and set vDP = v+ η = TµD+ ν

Step 3 in Alg. 1: construct a DP measure A(D) = argminµ∈MP(T)

∑
S⊂{1,···d};|S|=s ∥vSDP − (Tµ)S∥22

We slightly abuse the notation in Step 3 above by treating vSDP as a vector. Following the same argument as in
the proof of Theorems 2-4, we can bound the expected utility loss as follows. First, similar to Equation (15), we
can upper bound

E [U(µD,A(D))] ≤ U(µD,T−1TµD) + E
[
U(T−1TµD,T−1TA(D))

]
where we made use of the fact we can choose A(D) such that A(D) = T−1TA(D) without increasing the utility
loss. We recall that by construction, the first term is at most 1/2k (see proof of Theorem 1 and 2), where k is the
grid size of the ℓ∞-covering of T = [0, 1]d used to construct T. To bound the second term, note that we have
(using the notation from Equation (17))

U(T−1TµD,T−1TA(D)) = max
S⊂[d]
|S|=s

sup
f∈F(Tk,s)
f(0)=0

∑
zi∈Tm

|f(zi)((TA(D))Si − vSi)|

Hölder
≤ max

S⊂[d]
|S|=s

sup
f∈F(Tk,s)
f(0)=0

√
m∥f∥L∞∥(TA(D))S − vS∥2

≤ max
S⊂[d]
|S|=s

sup
f∈F(Tk,s)
f(0)=0

2
√
m diam(T)∥vDP − vS∥2 = max

S⊂[d]
|S|=s

2
√
m diam(T)∥ηS∥2,

where we recall that vS is a vector of size m. Using the fact that△T = 2
(
d
s

)
/n, we can apply standard concentration

bounds to show that E U(T−1TµD,T−1TA(D)) = Õs,d(
m
nϵ) and thus E U(A(D), µD) ≤ 1/(2k) + Õs,d(

kd

nϵ), where
we used that m = kd. Optimizing over k yields E U(A(D), µD) = Õd,s((ϵn)

−1/(s+1)), as desired.

	Introduction
	Notation

	Certified DP data generation
	Instantiation of the algorithm for the sparse Wasserstein loss
	Statistical rates for the utility loss
	Further discussion

	A tighter certificate and numerical evaluation using public data
	Computationally efficient approximation of Step 3 in Algorithm 1
	Experimental setting
	Numerical evaluation using real world data
	A tighter certificate

	Related work
	Conclusion and future work
	Experimental Setting
	Haar Basis
	Extension of Theorem 1 to general metric spaces
	Proof of Theorem 2 when K=1
	Full proof of Theorem 2 for arbitrary K>1
	Proof of Theorem 1

	Other types of sparsity: low dimensional data
	Proof of Theorem 4
	Proof of Theorem 3

	Proof sketch for the lower bound in Equation (14)
	Comparison with approaches minimizing the Euclidean distance

