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Abstract

The SLOPE estimator has the particular-
ity of having null components (sparsity) and
components that are equal in absolute value
(clustering). The number of clusters depends
on the regularization parameter of the es-
timator. This parameter can be chosen as
a trade-off between interpretability (with a
small number of clusters) and accuracy (with
a small mean squared error or a small predic-
tion error). Finding such a compromise re-
quires to compute the solution path, that is
the function mapping the regularization pa-
rameter to the estimator. We provide in this
article an algorithm to compute the solution
path of SLOPE and show how it can be used
to adjust the regularization parameter.

1 INTRODUCTION

The SLOPE estimator (Sorted L One Penalized Es-
timator [Bogdan et al., 2015, Zeng and Figueiredo,
2014]) is defined as a solution to the following convex
program:

min
b∈Rp

{
1

2
‖y −Xb‖22 + γ

p∑
i=1

λi|b|↓i

}
(1)

where λ1 > 0, λ1 ≥ · · · ≥ λp ≥ 0 is a given sequence of
penalty parameters, γ > 0 is the regularization param-
eter and |b|↓1 ≥ · · · ≥ |b|↓p ≥ 0 are the sorted com-
ponents of b in absolute value. The SLOPE estima-
tor generalizes both the LASSO estimator (Least Ab-
solute Shrinkage and Selection Operator [Tibshirani,
1996]) for which λ1 = · · · = λp = 1, and the OSCAR
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estimator (Octagonal Shrinkage and Clustering Algo-
rithm for Regression [Bondell and Reich, 2008]) for
which the sequence λ1, . . . , λp is arithmetic. Note that
the penalty term of OSCAR satisfies

∑p
i=1 λi|b|↓i =

λp‖b‖1 + λ1−λ2

2

∑
1≤i<j≤p(|bi + bj | + |bi − bj |), thus

OSCAR is a particular generalized LASSO [Tibshi-
rani and Taylor, 2011]; however, in broad general-
ity SLOPE is not a particular generalized LASSO (as
proved in supplementary material).

The SLOPE estimator is gaining popularity among
statisticians due to its relevant properties such as min-
imax rates of the estimation and prediction errors
[Bellec et al., 2018, Su and Candes, 2016], false dis-
covery rate control [Bogdan et al., 2015] and dimen-
sion reduction of the regression model. The latter
property comes from the structure of the solutions to
the optimization problem (1), which have null compo-
nents (sparsity) as well as components equal in abso-
lute value (clustering) [Schneider and Tardivel, 2022,
Figueiredo and Nowak, 2016, Bondell and Reich, 2008].
In particular, the sparsity and clustering properties
of SLOPE are clear when X is an orthogonal matrix
since, in this case, the solution to problem (1) is ex-
plicit [Bogdan et al., 2015, Dupuis and Tardivel, 2022,
Skalski et al., 2022, Tardivel et al., 2020]. When y
represents the random response of a linear regression
model, sparsity has a well-known statistical interpreta-
tion: identification of relevant explanatory variables.
Clustering also has a statistical interpretation when
the design matrix X is standardized: the explanatory
variables having the same regression coefficient have
the same impact on the response [Sharma et al., 2013].
On the other hand, without restriction on the design
matrix, for a categorical variable having different lev-
els, the equal regression coefficients represent levels
that can be grouped together [Stokell et al., 2021, Maj-
Kańska et al., 2015]. Therefore, SLOPE estimator can
identify relevant explanatory variables, group explana-
tory variables having the same impact on the response
and, more generally, reduce the dimension of the re-
gression model.
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The solution path gives the solution of a penalized
optimization problem with respect to the regulariza-
tion parameter γ > 0. For instance, the solution path
of the LASSO shows that the number of explanatory
variables selected by this estimator tends to decrease
when the regularization parameter becomes large (see
e.g. [Mairal and Yu, 2012, Rosset and Zhu, 2007]) and
computing this path is useful to select the regulariza-
tion parameter. Similarly, the solution path of SLOPE
shows that the number of clusters of explanatory vari-
ables selected by this estimator tends to decrease when
the regularization parameter becomes large. Moreover
computing this path is useful to adjust the regulariza-
tion parameter by minimizing, for instance, the Stein
Unbiased Risk Estimate (SURE) formula [Stein, 1981]
or the sum of residual squares on a validation set.

The generalized LASSO dual path algorithm [Tibshi-
rani and Taylor, 2011], implemented in the genlasso R
package [Arnold and Tibshirani, 2016], allows to com-
pute the solution path of the generalized LASSO and
therefore of OSCAR but not of SLOPE in broad gen-
erality; moreover it requires ker(X) = {0}. Two arti-
cles focus on the solution path of OSCAR: the starting
point of their respective algorithm is the ordinary least
squared estimator (thus requiring ker(X) = {0}) in
[Takahashi and Nomura, 2020], and a numerical solu-
tion of OSCAR in [Gu et al., 2017]. A recent preprint
[Nomura, 2020] addresses the solution path of SLOPE,
under the assumption ker(X) = {0} to guarantee the
uniqueness of the solution and to use the ordinary least
squares estimator as a starting point; it gives no the-
oretical results on the solution path (such as its conti-
nuity, the proof that it is piecewise linear, the charac-
terization of its affine components).

In this article, for sequences of penalty parameters
λ1 > · · · > λp > 0, we prove that the solution path of
SLOPE is continuous and piecewise linear on (0,+∞),
we characterize its affine components, and we pro-
vide an algorithm to compute the exact solution path
of SLOPE. Our algorithm does not require neither
ker(X) = {0} nor to solve SLOPE with an external
solver. We dedicate a section to numerical experi-
ments on real data sets to illustrate: the computation
of SLOPE solution paths; the exact minimization of
SURE for SLOPE (pointing out differences with the
LASSO estimator); the performance of our algorithm
compared to genlasso to compute the OSCAR solution
path; the performance of our algorithm compared to
the algorithms considered and implemented in Lars-
son et al. [2023] to compute the SLOPE solution for a
single regularization parameter γ.

2 BASIC NOTIONS ON SLOPE

Unlike the `1 norm, in broad generality the sorted `1
norm is not separable (the sorted `1 norm cannot be
written as a sum of functions of its components). As a
result, it is much more challenging to study the SLOPE
optimization problem than the LASSO optimization
problem. For instance the gradient X ′(y − Xβ̂lasso)
(where X ′ denotes the transpose matrix of X) of the

sum of residual squares at the LASSO solution β̂lasso

gives indications on null components of this estimator.
Indeed, |X ′i(y−Xβ̂lasso(γ))| < γ implies β̂lasso

i (γ) = 0.
Unfortunately, because the sorted `1 norm is not sep-
arable, determining null components based on the the
gradient X ′(y−Xβ̂) of the sum of residual squares at

the SLOPE solution β̂ is not straightforward (deter-
mining non-null clusters is also difficult). The impor-
tant notions introduced hereafter, already used either
in the article of Schneider and Tardivel [2022] or in the
article of Bogdan et al. [2022], allow to overcome this
difficulty.

2.1 Sorted `1 norm and its dual norm

Definition 1 The sorted `1 norm associated to λ ∈
Rp with λ1 ≥ · · · ≥ λp ≥ 0 and λ1 > 0 is defined as
follows:

Jλ(b) =

p∑
i=1

λi|b|↓i, b ∈ Rp,

where |b|↓1 ≥ . . . ≥ |b|↓p are the sorted components of
b with respect to the absolute value.

Given a norm ‖ · ‖ on Rp, we recall that its dual norm
‖ · ‖∗ is defined by ‖v‖∗ = max{b′v : ‖b‖ ≤ 1}, for
v ∈ Rp.

Remark 1 The dual sorted `1 norm has an explicit
expression given in [Negrinho and Martins, 2014] and
reminded hereafter:

J∗λ(v) = max

{
‖v‖(1)
λ1

,
‖v‖(2)∑2
i=1 λi

, . . . ,
‖v‖(p)∑p
i=1 λi

}
, v ∈ Rp,

where ‖ · ‖(k) is the k−norm (the sum of the k largest
components in absolute value).

2.2 SLOPE pattern

The SLOPE pattern introduced in [Schneider and Tar-
divel, 2022], whose definition is reminded below, is a
central notion in this article.

Definition 2 The SLOPE pattern patt(b) ∈ Zp of
b ∈ Rp is defined by

patt(b)i = sign(bi) rank(|b|)i, i ∈ {1, . . . , p},
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where rank(|b|)i ∈ {0, 1, . . . , k}, k is the number of
nonzero distinct values in {|b1|, . . . , |bp|}, rank(|b|)i =
0 if and only if bi = 0, and rank(|b|)i < rank(|b|)j if
|bi| < |bj |.

We denote by Pslope
p = patt(Rp) the set of SLOPE

patterns. Note in the definition above that k =
‖patt(b)‖∞ is the number of nonzero clusters of b.

Example 1 Let b = (4.2,−1.3, 0, 1.3, 4.2)′. Then
patt(b) = (2,−1, 0, 1, 2)′.

Definition 3 Let m ∈ Zp be a SLOPE pattern with
k = ‖m‖∞ ≥ 1. The associated pattern matrix Um ∈
Rp×k is defined by

(Um)ij = sign(mi)1(|mi|=k+1−j),

i ∈ {1, . . . , p}, j ∈ {1, . . . , k}.

For k ≥ 1 we denote Rk+ = {s ∈ Rk : s1 > . . . > sk >
0}. Definition 3 is such that, for b ∈ Rp and m ∈ Zp a
SLOPE pattern with k = ‖m‖∞ ≥ 1, we have

patt(b) = m ⇐⇒ ∃s ∈ Rk+ such that b = Ums.

Hereafter, the notation |m|↓ = (|m|↓1, . . . , |m|↓p)′ rep-
resents the components of m sorted non-increasingly
with respect to the absolute value.

Example 2 Let m = (2,−1, 0, 1, 2)′. Then

Um =

(
1 0 0 0 1
0 −1 0 1 0

)′
U|m|↓ =

(
1 1 0 0 0
0 0 1 1 0

)′
.

Definition 4 Let m ∈ Zp be a SLOPE pattern with
k = ‖m‖∞ ≥ 1. The clustered matrix X̃m ∈ Rn×k
of X ∈ Rn×p is defined by X̃m = XUm; the clustered
parameter λ̃m ∈ Rk of λ ∈ Rp is defined by λ̃m =
U ′|m|↓λ.

Note that the dimension of the design matrix X is re-
duced when it is clustered as X̃m by a pattern m:
a null component mi = 0 leads to discarding the
column Xi from the design matrix X, and a clus-
ter K ⊂ {1, . . . , p} of m (set of components of m
equal in absolute value) leads to replacement of the
columns (Xi)i∈K by one column equal to the signed
sum:

∑
i∈K

sign(mi)Xi.

Example 3 Let X = (X1|X2|X3|X4|X5), m =
(2,−1, 0, 1, 2)′, λ = (λ1, λ2, λ3, λ4, λ5)′ ∈ R5. Then
the clustered matrix and the clustered parameter are
given by:

X̃m = (X1 +X5| −X2 +X4) and λ̃m =

(
λ1 + λ2
λ3 + λ4

)
.

2.3 Subdifferential of the sorted `1 norm

The subdifferential of a norm is related to the dual
norm ‖ · ‖∗ via the following formula [Hiriart-Urruty
and Lemaréchal, 2004, p. 180]:

∂‖·‖(b) = {v ∈ Rp : ‖v‖∗ ≤ 1 and b′v = ‖b‖} , b ∈ Rp.

In particular, ∂‖·‖(b) is a face of the dual unit ball. For
the sorted `1 norm, the above formula can be specified
further with the pattern matrix and the clustered pa-
rameter associtated to m = patt(b) for b 6= 0 [Bogdan
et al., 2022, Schneider and Tardivel, 2022]:

∂Jλ(b) =
{
v ∈ Rp : J∗λ(v) ≤ 1 and U ′mv = λ̃m

}
. (2)

Remark 2 Given λ ∈ Rp+, the mapping m 7→
∂Jλ(m) is a bijection between the set of SLOPE pat-
terns and the set of faces of the unit ball of J∗λ (the
signed permutahedron) [Schneider and Tardivel, 2022,
Theorem 6]. It is no longer true when λ1 ≥ · · · ≥
λp ≥ 0 is not a decreasing sequence. Therefore we
restrict our study to the case where λ ∈ Rp+, i.e.
λ1 > · · · > λp > 0.

3 SOLUTION, FITTED VALUE
AND GRADIENT PATHS

3.1 Solution set and fitted value

Given X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+, and γ > 0,
we denote by SX,y,λ(γ) (or simply S(γ) when there
is no ambiguity) the set of solutions to the SLOPE
optimization problem (1), namely:

min
b∈Rp

{
1

2
‖y −Xb‖22 + γJλ(b)

}
.

For any γ > 0, the objective function of the above
problem is continuous and coercive thus the solu-
tion set S(γ) is nonempty. Moreover, the fitted value

fît(γ) = Xβ̂ does not depend on β̂ ∈ S(γ). When S(γ)

is a singleton, we denote by β̂(γ) its unique element.
Note that uniqueness is rather a weak assumption, in-
deed the set

{X ∈ Rn×p : ∃y ∈ Rn,∃γ > 0 such that

SX,y,λ(γ) is not a singleton}

has zero Lebesgue measure [Schneider and Tardivel,
2022, Proposition 3]. Theorem 1 below shows that

fît(·) and β̂(·) are continuous on (0,+∞) and affine be-
tween two regularization parameters for which SLOPE
solutions have the same pattern. Affine expressions of
these piecewise linear functions are explicit and inter-
vals are characterized. We denote hereafter by A+ the
Moore-Penrose pseudo-inverse of a matrix A.
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Theorem 1 Let X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+,
and m ∈ Zp be a non-null SLOPE pattern with k =
‖m‖∞ ≥ 1.

1. The set Im = {γ > 0 : ∃β̂ ∈ S(γ) ,patt(β̂) = m}
is an interval (potentially empty), with the follow-
ing characterization:

γ ∈ Im
m

∃s ∈ Rk+ such that X̃ ′my − γλ̃m = X̃ ′mX̃ms
(positivity condition)

X ′(X̃ ′m)+λ̃m + 1
γX
′(In − (X̃ ′m)+X̃ ′m)y ∈ ∂Jλ(m)

(subdifferential condition)

Moreover, Ums ∈ S(γ) for any s ∈ Rk+ satisfying
the positivity condition at γ ∈ Im.

2. The fitted value path γ 7→ fît(γ) is continuous
and piecewise linear on (0,+∞), with the follow-
ing affine expression on Im:

fît(γ) = (X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m, γ ∈ Im.

3. If S(γ) = {β̂(γ)} for all γ > 0, then the solution

path γ 7→ β̂(γ) is continuous and piecewise linear
on (0,+∞), with the following affine expression
on Im:

β̂(γ) = Um(X̃ ′mX̃m)−1(X̃ ′my − γλ̃m), γ ∈ Im.

The characterization of the interval Im above is closely
related to Theorem 3.1 in Bogdan et al. [2022].

3.2 Gradient path and clusters

A solution of the SLOPE optimization problem is char-
acterized by the following two conditions:

β̂ ∈ S(γ)⇔

{
J∗λ(X ′(y −Xβ̂)) ≤ γ
β̂′X ′(y −Xβ̂) = γJλ(β̂)

Note that X ′(y−Xβ̂) = X ′(y− fît(γ)) is the gradient

at β̂ of the sum of residual squares b 7→ 1
2‖y −Xb‖

2
2.

Subsequently, we call gradient path the expression
γ > 0 7→ X ′(y − fît(γ)). The i−norm of the gradient

satisfies the inequality ‖X ′(y− fît(γ))‖(i) ≤ γ
∑i
j=1 λj

for all i ∈ {1, . . . , p}. Among these inequalities, we
denote by A(γ) the ones which are saturated:

A(γ) =

{
i ∈ {1, . . . , p} :

‖X ′(y − fît(γ))‖(i)∑i
j=1 λj

= γ

}
.

According to Theorem 2 below, the set A(γ) provides
the number of non-zero clusters, the size of these clus-
ters as well as the number of non-zero components.

Theorem 2 Let λ ∈ Rp+, X ∈ Rn×p, y ∈ Rn, γ > 0
and β̂ ∈ S(γ).

1. Let 1 ≤ k1 ≤ · · · ≤ kl ≤ p be a subdivision such
that:

|supp(β̂)| = kl and |β̂|↓1 = · · · = |β̂|↓k1
> · · · > |β̂|↓kl−1+1 = · · · = |β̂|↓kl > 0

(i.e. β̂ has l non-null clusters, the cluster of the

largest value has k1 elements and so on and β̂ has
kl non-null components). Then, {k1, . . . , kl} ⊂
A(γ).

2. Conversely, if {k1, . . . , kl} = A(γ) then

|β̂|↓1 = · · · = |β̂|↓k1 ≥ · · · ≥ |β̂|↓kl−1+1 = . . .

= |β̂|↓kl ≥ |β̂|↓kl+1 = · · · = |β̂|↓p = 0

(i.e. the number of non-null clusters of β̂ is
smaller than or equal to l and the number of non-
null components is smaller than or equal to kl).

There are links between Theorem 2 and screening rules
for SLOPE [Elvira and Herzet, 2023, Larsson et al.,
2020] which identify some null components of this es-
timator. For instance, running Algorithm 1 in [Lars-

son et al., 2020] with |X ′(y − fît(γ))|↓ returns that
a SLOPE solution has at most max{A(γ)} non-zero
components. Otherwise, Theorem 4.1 in [Elvira and
Herzet, 2023] is closely related to the following impli-

cation: |β̂|↓i 6= 0⇒ ∃k ≥ i, k ∈ A(γ).

4 ALGORITHMS TO COMPUTE
THE SOLUTION PATH

To keep this section simple we assume that S(γ) =

{β̂(γ)} for all γ > 0. Let J∗λ(X ′y) = γ0 > γ1 >

. . . γr > γr+1 = 0 be a subdivision such that γ 7→ β̂(γ)
is affine with pattern m(i) on the interval (γi+1, γi) for
i = 0, . . . , r (i.e the interior of Im(i) is (γi+1, γi)).

First, let us explain how to compute the SLOPE so-
lution path on [γ1, γ0]. By construction of m(0) the
following implication holds:

∀γ ∈ (γ1, γ0), patt(β̂(γ)) = m(0)

⇒ 1

γ
X ′(y − fît(γ)) ∈ ∂Jλ(m(0)).

Moreover, since γ > 0 7→ fît(γ) is continuous, fit(γ0) =
0 and ∂Jλ(m(0)) is a closed set, we get

1

γ0
X ′(y − fît(γ0)) =

1

γ0
X ′y ∈ ∂Jλ(m(0)). (3)
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Algorithm 1 provides the pattern M( 1
γ0
X ′y) of the

smallest face of the signed permutahedron containing
1
γ0
X ′y. Therefore, by construction

∂Jλ

(
M

(
1

γ0
X ′y

))
⊂ ∂Jλ(m(0))

⇒
∥∥∥∥M (

1

γ0
X ′y

)∥∥∥∥
∞
≤ ‖m(0)‖∞ (4)

According to (4), if X′y
γ0

lies onto a facet of the signed

permutahedron, we have m(0) = M
(

1
γ0
X ′y

)
.

Algorithm 1 Smallest face pattern containing a vec-
tor
Input: λ ∈ Rp+ and z ∈ Rp such that J∗λ(z) ≤ 1

Define the set of saturated inequalities as follows:

A(z) =
{
i ∈ {1, . . . , p} :

‖z‖(i)∑i
j=1 λj

= 1
}

if A(z) = ∅ then
M(z) = (0, . . . , 0) ∈ Rp

else
for each j ∈ {1, . . . , p} do

Set Mj(z) = sign(zj)
∑
i∈A(z) 1(|zj | ≥ λi)

return M(z)

Example 4 We illustrate the solution path of OS-
CAR for y = (15, 5)′ ∈ R2, λ = (6, 4, 2)′ ∈ R3+ and

X =

(
2 1 0
1 2 1

)
.

Largest node γ0: We have X ′y = (35, 25, 5)′, there-
fore γ0 = J∗λ(X ′y) = 6.

Pattern m(0) in the left neighborhood of γ0:
Since 1

γ0
X ′y = (35/6, 25/6, 0)′ lies in the relative

interior of ∂Jλ(1, 1, 0)′ = [(6, 2)′, (4, 6)′] × [−2, 2]
then m(0) = M( 1

γ0
X ′y) = (1, 1, 0)′.

Expression of β̂(γ) in the left neighborhod of γ0:
According to statement 3 in Theorem 1 when
γ < γ0 = 6 is sufficiently close to γ0 we have
β̂(γ) = (30−5γ

9 , 30−5γ9 , 0)′.

We tried the package genlasso to compute this solution
path. Since dim(ker(X)) 6= 0, genlasso add a small
ridge term ε‖b‖22 to the objective function (the default
value is ε = 10−4); thus genlasso solves

min
b∈R3

{
1

2
‖y −Xb‖22 + γJλ(b) + ε‖b‖22

}
,

= min
b∈R3

{
1

2

∥∥∥∥(y0
)
−
(

X√
2εI3

)
b

∥∥∥∥2
2

+ γJλ(b)

}
.(5)

We computed the solution path of problem (5) when
ε = 10−4 with our algorithm and genlasso. Surpris-
ingly, the solution path computed with genlasso is cor-
rect when γ ≥ 5 but wrong when γ < 5.

Comparatively to the original problem (without adding
the ridge term), when ε = 10−4 the solution path have
more nodes (especially small nodes). Moreover these
paths are extremely different when γ is small since
ε‖b‖22 dominates γJλ(b).

Algorithm 2 uses the characterisation of Im(0) , based
on the positivity and subdifferential conditions, to pro-
vide both the node γ1 as well as the pattern m(1).

Algorithm 2 Iterative calculation of nodes and pat-
terns

Input: X ∈ Rn×p, λ ∈ Rp+, γi > 0 and m(i) ∈ Pslope
p

Set k = ‖m(i)‖∞
Compute s(γ) = (X̃ ′

m(i)X̃m(i))−1(X̃ ′
m(i)y − γλ̃m(i))

if s(γ) ∈ Rk+ for all γ ∈ [0, γi[ then
Set γpatt = 0

else
Set γpatt = sup{γ ∈ [0, γi[: s(γ) /∈ Rk+}

if X ′(y−X̃m(i)s(γ)) ∈ γ∂Jλ(m(i)) for all γ ∈ [γpatt, γi[
then

Set γi+1 = γpatt
Compute m(i+1) = patt(Um(i)s(γpatt))
return γi+1,m

(i+1)

else

Set γi+1 = sup{γ ∈ [γpatt, γi[: X
′(y− X̃m(i)s(γ)) /∈

γ∂Jλ(m(i))}
Compute m(i+1) = M( 1

γi+1
X ′(y − X̃m(i)s(γi+1)))

using Algorithm 1
return γi+1,m

(i+1)

Using iteratively Algorithm 2 allows to compute en-
tirely the SLOPE solution path.

5 NUMERICAL EXPERIMENTS

The code of the implementation in Python of our al-
gorithm and of the experiments below is available at
https://github.com/x-dupuis/slope-path. The
computations were carried out on an Apple M1 Pro
chip (8-core CPU and 14-core GPU) and 16GB of uni-
fied memory.

We use two real data sets:

• the Wine Quality data set1 describes the qual-
ity of red “Vinho Verde” wines [Cortez et al.,

1available at https://archive.ics.uci.edu/dataset/
186/wine+quality

https://github.com/x-dupuis/slope-path
https://archive.ics.uci.edu/dataset/186/wine+quality
https://archive.ics.uci.edu/dataset/186/wine+quality
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2009]. Each column of X ∈ R1599×11 represents a
physicochemical measurement (density, pH, alco-
hol, etc.) and y ∈ R1599 represents wine quality
scores (between 0 and 10);

• the Riboflavin data set2 describes the riboflavin
production with Bacillus subtilis[Bühlmann et al.,
2014]. Each column of X ∈ R71×4088 represents a
gene expression measurement and y ∈ R71 repre-
sents production rates.

The matrices X are mean-centered (∀j,
∑
iXij = 0)

and standardized (∀j,
∑
iX

2
ij = n), the vectors y are

mean-centered (
∑
i yi = 0).

5.1 Full paths computation

We illustrate here the computation of SLOPE solution
paths on the Wine Quality data set. For this numerical
experiment we take λ = (1,

√
2−1,

√
3−
√

2, . . . ,
√

11−√
10), so that the unit ball of the sorted `1 norm is

quasi-spherical [Nomura, 2020]. Figure 1 provides the
solution path of SLOPE as well as the solution path
of LASSO when λ1 = · · · = λ11 = 1 and computed
via the homotopy algorithm in Mairal and Yu [2012]
(this algorithm is devoted to solve the solution path of
LASSO).

5.2 Exact minimization of SURE

The Stein Unbiaised Risk Estimate (SURE) for-
mula is an unbiased estimator of the prediction error
(E(‖Xβ̂ − Xβ‖22 where β̂ is an estimator of β). For
LASSO and SLOPE, unbiased estimators for the pre-
diction error are reported hereafter [Minami, 2020, Zou
et al., 2007]

sure(γ) =


‖y −Xβ̂(γ)‖22 − nσ2 + 2σ2‖patt(β̂(γ))‖∞

when β̂(γ) is a SLOPE estimator

‖y −Xβ̂(γ)‖22 − nσ2 + 2σ2|supp(β̂(γ))|
when β̂(γ) is a LASSO estimator

where σ2 is the variance of residuals. A usual way to
select the regularization parameter γ is to minimize
sure(γ) [Dossal et al., 2013, Bertrand et al., 2022]. For
both SLOPE and LASSO the solution path is piece-
wise linear, therefore the SURE formula is quadratic
between two adjacents nodes (i.e the SURE formula
restricted to the interval (γi+1, γi) is quadratic). As
a result, solving exactly the solution path allows to
minimize exactly the SURE formula3. For this nu-
merical experiment we substitute σ2 in the expression

2available at https://www.annualreviews.org/doi/
suppl/10.1146/annurev-statistics-022513-115545

3One may similarly minimize exactly the sum of residual

squares on a validation set γ > 0 7→ ‖yval −Xvalβ̂(γ)‖22.

Figure 1: Solution paths in absolute value of SLOPE
(top) and LASSO (bottom) as functions of γ > 0. On
top some curves partially superimpose or partially co-
incide with the x-axis, illustrating the clustering and
sparsity properties of SLOPE. At the bottom some
curves just partially coincide with the x-axis, illustrat-
ing the sparsity property of LASSO.

of sure(γ) by σ̂2 = ‖(In − X(X ′X)−1X ′)y‖/1588 =
0.4197. Note that when γ is very large the SURE

formula satisfies sure(γ) = ‖y‖22 − 1599σ̂2 = 371.1382.
Moreover when γ tends to 0, both SLOPE and LASSO
converge to the ordinary least squares estimator there-

fore limγ→0 sure(γ) = 11σ̂2 = 4.6162. We report the
regularization parameter minimizing the SURE for-
mula in Table 5.2.

Table 1: Minimizer and minimum of the SURE fo-
mula for both SLOPE and LASSO.

γsure sure(γsure)

SLOPE 18.6292 3.4641
LASSO 11.7602 4.1297

The explanatory variables “fixed acidity” (correspond-
ing to X1) and “pH” (corresponding to X9) are the
most correlated ones (the largest off-diagonal com-
ponents of X ′X, in absolute value, is |X ′1X9| =
1092.0821). The explanatory variables “fixed acid-
ity” and “density” (corresponding to X8) are also
strongly correlated (|X ′1X8| = 1068.2076). These
three variables are clustered by the SLOPE esti-
mator β̂(γsure) (corresponding to the cluster “4” in

patt(β̂(γsure)) = (4,−8,−1, 2,−5, 3,−6,−4,−4, 7, 9)′)

https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-022513-115545
https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-022513-115545
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whereas the LASSO estimator β̂lasso(γsure) only se-

lects one: the “pH” (actually β̂lasso
1 (γsure)) =

β̂lasso
8 (γsure)) = 0). Clustering property of SLOPE

for highly correlated variables had been discussed in
Figueiredo and Nowak [2016] and intuitively we be-
lieve that this property is beneficial for the prediction
error.

5.3 Full path solvers benchmark

For this benchmark we focus on the solution path of
OSCAR as, in the literature, no algorithm for solving
the solution path of SLOPE is available online (the
code for solving the solution path of SLOPE in the
preprint [Nomura, 2020] is not available). A natural
competitor to our algorithm is genlasso. Hereafter X
and y are provided by the Wine Quality data set and λ
is an arithmetic progression where λ1 = 4 and λ11 = 1.
In table 2 we compare the time needed to compute
the solution path as well as the value of the objective

function of OSCAR at γ ∈
{
J∗λ(X

′y)
2 ,

J∗λ(X
′y)

10

}
.

Table 2: Time in seconds to compute the solution path
and value of the objective function. Our algorithm is
much faster than genlasso. Moreover, the value ob-
tained with our algorithm is lower than the one ob-

tained with genlasso at γ =
J∗λ(X

′y)
10 , illustrating that

the solution provided by genlasso is not accurate.

genlasso SLOPE path (our)

Time 4.96e-01 1.31e-02

Value at
J∗λ(X

′y)
2 483.4367 483.4367

Value at
J∗λ(X

′y)
10 379.8561 378.5511

Comparison between genlasso and our algorithm on
the Riboflavin data set is not tractable; indeed the D
matrix such that Jλ(b) = ‖Db‖1 belongs to R40882×4088

and even if it is sparse, the package genlasso cannot
handle such a big matrix.

5.4 SLOPE solvers benchmark

Computing the full solution path of SLOPE on
(0,+∞) is a more ambitious task than solving the
SLOPE optimization problem for a single regulariza-
tion parameter γ. Therefore, given such a γ, we can
compute the solution path on [γ,+∞) and thus define
a SLOPE solver (called SLOPE path hereafter). We
compare it to the following algorithms implemented in
the extensive benchmark of SLOPE solvers [Larsson
et al., 2023]:

• Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [Beck and Teboulle, 2009];

• Anderson acceleration for Proximal Gradient De-
scent (Anderson PGD) [Zhang et al., 2020];

• Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011] with the augmented
Lagrangian parameter ρ = 100;

• Coordinate Descent for SLOPE (hybrid CD)
[Larsson et al., 2023].

We used their code4 and set as stopping criterion a
primal-dual gap smaller than 1e-12 (which is satisfied
by our algorithm all along the path). When λ is an
arithmetic progression where λ1 = 4 and λp = 1 the
benchmarks on the two real data sets are reported in
tables 3 and 4.

Table 3: Time in seconds to compute the solution for
the Wine Quality data set. In this case, where p = 11
is small, our algorithm is the fastest one.

γ
J∗λ(X

′y)
2

J∗λ(X
′y)

10

FISTA 1.36e-02 4.47e-02
Anderson PGD 5.26e-03 7.02e-02

ADMM (ρ = 100) 2.38e-02 7.18e-03
hybrid CD 2.39e-03 7.91e-03

SLOPE path (our) 6.58e-04 4.51e-03

Table 4: Time in seconds to compute the solution for
the Riboflavin data set. In this case where p = 4088
is large, our algorithm is still the fastest one when γ

is large (γ =
J∗λ(X

′y)
2 ) but is over-performed by hybrid

CD when γ is small (γ =
J∗λ(X

′y)
10 ). The missing val-

ues correspond to algorithms not reaching the required
primal-dual gap (1e-12).

γ
J∗λ(X

′y)
2

J∗λ(X
′y)

10

FISTA 9.01e+01 -
Anderson PGD 1.45e+01 -

ADMM (ρ = 100) - 4.93e+00
hybrid CD 4.19e-02 8.84e-01

SLOPE path (our) 3.83e-02 3.72e+00

6 CONCLUSION AND FUTURE
WORKS

One of the main result in this article is Theorem 1
proving that the SLOPE solution path is piecewise lin-
ear and providing the characterization of the intervals
where the path is affine. Moreover algorithms 1 and
2 allow to solve exactly this path. The computational

4available at https://github.com/jolars/slopecd

https://github.com/jolars/slopecd
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time of our numerical scheme depends mainly on the
number of nodes. In our illustration on real data sets,
the number of intervals is not too large. However the
number of intervals where the path is affine is bounded
by the number of SLOPE patterns in Rp and poten-
tially, similarly as for LASSO [Mairal and Yu, 2012],
this huge upper bound might be reached. Therefore
solving the solution path of SLOPE on (0,+∞) might
be intractable for some pathological examples and, in
such a situation, our algorithm can only compute par-
tially the solution path. A first algorithmic perspec-
tive would be to generalize this method to a wide class
of penalized estimators. Indeed, the crucial notion of
SLOPE pattern might be generalized to a polyhedral
gauge penalty [Graczyk et al., 2023] (the SLOPE pat-
tern is just the pattern associated to the sorted `1
(polyhedral) norm). Another methodological perspec-
tive is to derive, based on Theorem 2, screening rules
identifying null components and clusters for SLOPE.
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The Solution Path of SLOPE: Supplementary Materials

Proof of Theorem 1

1: Im is an interval) Hereafter we suppose that Im 6= ∅. Let γ0, γ1 ∈ Im and pick β̂(γ0) ∈ S(γ0), β̂(γ1) ∈ S(γ1)

such that patt(β̂(γ0)) = patt(β̂(γ1)) = m. Let α ∈ [0, 1], γ̄ = αγ0 + (1 − α)γ1 and β̄ = αβ̂(γ0) + (1 − α)β̂(γ1)

then patt(β̄) = m. Indeed, if m = 0 then clearly patt(β̄) = 0. Otherwise, let k = ‖m‖∞ ≥ 1 then β̂(γ0) = Ums0
for some s0 ∈ Rk+, β̂(γ1) = Ums1 for some s1 ∈ Rk+ therefore β̄ = Ums̄ where s̄ = αs0 + (1 − α)s1 ∈ Rk+.

To prove that Im is an interval it remains to show that β̄ ∈ S(γ̄). Because both β̂(γ0) and β̂(γ1) are SLOPE
minimizers, we have

X ′(y −Xβ̂(γ0)) ∈ γ0∂Jλ(m) and X ′(y −Xβ̂(γ1)) ∈ γ1∂Jλ(m).

By construction of β̄ the following equality occurs:

αX ′(y −Xβ̂(γ0)) + (1− α)X ′(y −Xβ̂(γ1)) = X ′(y −Xβ̄).

Moreover, since ∂Jλ(m) is a convex set, we have αγ0∂Jλ(m) + (1 − α)γ1∂Jλ(m) ⊂ γ̄∂Jλ(m). Consequently,
X ′(y −Xβ̄) ∈ γ̄∂Jλ(m) = γ̄∂Jλ(β̄) thus β̄ ∈ S(γ̄).

1: characterization of Im) The proof of this characterization is closely related to the proof of Theo-
rem 3.1 in Bogdan et al. [2022].

Necessity. If γ ∈ Im, then there exists β̂ ∈ S(γ) such that patt(β̂) = m. Consequently, β̂ = Ums for some

s ∈ Rk+. Because β̂ is a element of S(γ) whose pattern is m then X ′(y − fît(γ)) ∈ γ∂Jλ(β̂) = γ∂Jλ(m).

Multiplying this inclusion by U ′m, we get X̃ ′m(y − fît(γ)) = γλ̃m and so

X̃ ′my − γλ̃m = X̃ ′mfît(γ) = X̃ ′mX̃ms. (6)

The positivity condition is proven.

We apply (X̃ ′m)+ from the left to (6) and use the fact that (X̃ ′m)+X̃ ′m is the projection onto col(X̃m). Since

fît(γ) ∈ col(X̃m), we have (X̃ ′m)+X̃ ′mfît(γ) = fît(γ). Thus,

(X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m = fît(γ).

The above equality gives the subdifferential condition:

∂Jλ(m) 3 1

γ
X ′(y − fît(γ)) =

1

γ
X ′(y − ((X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m)) (7)

= X ′(X̃ ′m)+λ̃m +
1

γ
X ′(In − (X̃ ′m)+X̃ ′m)y.

Sufficiency. Assume that the positivity condition and the subdifferential conditions hold true. Then, by the
positivity condition, one may pick s ∈ Rk+ for which

γλ̃m = X̃ ′my − X̃ ′mX̃ms. (8)
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Let us show that Ums ∈ S(γ). By definition of Um, we have patt(Ums) = m thus ∂Jλ(Ums(γ)) = ∂Jλ(m).
Moreover, using (7) and (8) one may deduce

∂Jλ(Ums) 3 1

γ
X ′(y − (X̃ ′m)+X̃ ′my + γ(X̃ ′m)+λ̃m)

=
1

γ
X ′(y − (X̃ ′m)+X̃ ′my + (X̃ ′m)+(X̃my − X̃ ′mX̃ms))

=
1

γ
X ′(y −XUms).

Consequently Ums ∈ S(γ).

2 and 3: continuity) Let γ ∈ (0,+∞), (γn)n∈N be a sequence converging to γ and β̂(γn) ∈ SX,γnJλ(y). Both

sequences (β̂(γn))n∈N and (fît(γn))n∈N are bounded therefore, up to extract a subsequence, one may assume that

both (β̂(γn))n∈N and (fît(γn))n∈N converge respectively to a limit point l ∈ Rp and Xl ∈ Rn. Let β̂(γ) ∈ S(γ).

Because β̂(γn) is a minimizer, the following inequality occurs.

1

2
‖y − fît(γn)‖22 + γnJλ(β̂(γn)) ≤ 1

2
‖y − fît(γ)‖22 + γnJλ(β̂(γ)).

Taking the limit in the above expression gives

1

2
‖y −Xl‖22 + γJλ(l) ≤ 1

2
‖y − fît(γ)‖22 + γJλ(β̂(γ)).

Because β̂(γ) ∈ S(γ), one may deduce that l ∈ S(γ) and thus Xl = fît(γ). Therefore, the unique limit

point of the bounded sequence (fît(γn))n∈N is fît(γ). Consequently, limn→+∞ fît(γn) = fît(γ) and thus the

function γ ∈ (0,+∞) 7→ fît(γ) is continuous. Similarly, if S(γ) is a singleton then l = β̂(γ), the unique limit

point of the bounded sequence (β̂(γn))n∈N is β̂(γ) and thus limn→+∞ β̂(γn) = β̂(γ). Therefore the function

γ ∈ (0,+∞) 7→ β̂(γ) is continuous.

2) When γ ∈ Im then multiplying both side of the positivity condition by (X̃ ′m)+ and using the fact that
(X̃ ′m)+X̃ ′m is the projection onto col(X̃m) gives

(X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m = (X̃ ′m)+X̃ ′mX̃ms = X̃ms = fît(γ).

3) The proof of statement 3) relies on Lemma 1 (proved further).

Lemma 1 Let X ∈ Rn×p, y ∈ Rn and λ ∈ Rp+. There exists β̂ ∈ S(γ) for which the pattern m = patt(β̂)
satisfies ker(X̃m) = {0} (or equivalently ‖m‖∞ = rk(X̃m)).

Lemma 1 provides a statement more precise than both [Kremer et al., 2022, Theorem 2.1] and [Schneider and

Tardivel, 2022, Corollary 9], proving that, under the assumption of uniqueness, the unique element β̂ of S(γ) has

a number of non-null clusters smaller or equal to rk(X): i.e. ‖patt(β̂)‖∞ ≤ rk(X) (note that rk(X̃m) ≤ rk(X)).

Consequently, when γ ∈ Im and S(γ) is a singleton then ker(X̃m) = {0}, where m = patt(β̂(γ)). Since X̃ ′mX̃m

is invertible, the positivity condition gives

β̂(γ) = Ums = Um(X̃ ′mX̃m)−1(X̃ ′my − γλ̃m).

Basic notions on subdifferential, permutahedron and signed permutahedron

The results of this section will be useful to establish the proof of Proposition 1. We denote by Sp the set of
permutations on the set {1, . . . , p}. Given λ ∈ Rp+, the subdifferential calculus of the sorted `1 norm satisfies
the following properties [Dupuis and Tardivel, 2022, Schneider and Tardivel, 2022, Tardivel et al., 2020]:
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Subdifferential at 0: signed permutahedron The following equality holds:

∂Jλ(0) = conv{(σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp}.

The V-polytope P±(λ1, . . . , λp) = conv{(σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp} is called the signed
permutahedron and can be described as a H-polytope as follows Godland and Kabluchko [2023]:

P±(λ1, . . . , λp) =

{
x ∈ Rp : ∀j ∈ {1, . . . , p},

j∑
i=1

|x|↓i ≤
j∑
i=1

λi

}
.

This polytope is actually the unit ball of the dual sorted `1 norm [Negrinho and Martins, 2014].

Subdifferential at a constant vector: permutahedron Let c > 0. Then the following equality holds:

∂Jλ(c, . . . , c) = conv{(λπ(1), . . . , λπ(p)), π ∈ Sp}.

The V-polytope P (λ1, . . . , λp) = conv((λπ(1), . . . , λπ(p)), π ∈ Sp) is called the permutahedron and can be described
as an H-polytope as follows Godland and Kabluchko [2023], Negrinho and Martins [2014]:

P (λ1, . . . , λp) =

{
b ∈ Rp :

p∑
i=1

bi =

p∑
i=1

λi and

j∑
i=1

b↓i ≤
j∑
i=1

λi ∀j ∈ {1, . . . , p− 1}

}
. (9)

Subdifferential computation rule Let b ∈ Rp be such that b1 ≥ · · · ≥ bk > bk+1 ≥ · · · ≥ bp ≥ 0. Then

∂Jλ(b) = ∂Jλ1,...,λk(b1, . . . , bk)× ∂Jλk+1,...,λp(bk+1, . . . , bp). (10)

Proof of Theorem 2

Let π ∈ Sp and ε ∈ {−1, 1}p be such that

|β̂|↓ = (ε1β̂π(1), . . . , εpβ̂π(p)),

and let φ be the orthogonal transformation defined as follows:

∀x ∈ Rp φ(x) = (ε1xπ(1), . . . , εpxπ(p)).

Proof of 1) Because β̂ ∈ S(γ) is a SLOPE minimizer, the following equivalence holds:

1

γ
X ′(y − fît(γ)) ∈ ∂Jλ(β̂)⇔ φ

(
1

γ
X ′(y − fît(γ))

)
∈ φ(∂Jλ(β̂)) = ∂Jλ(|β̂|↓).

Since the components of |β̂|↓ are decreasing, ∂Jλ(|β̂|↓) is a Cartesian product of permutahedra with potentially

a signed permutahedron (if β̂ has a null component) [Dupuis and Tardivel, 2022, Schneider and Tardivel, 2022].
Specifically, we have

∂Jλ(|β̂|↓) =

{
P (λ1, . . . , λk1)× · · · × P (λkl−1+1, . . . , λkl) if kl = p,

P (λ1, . . . , λk1)× · · · × P (λkl−1+1, . . . , λkl)× P±(λkl+1, . . . , λp) if kl < p.

According to (9), if b ∈ P (λ1, . . . , λk1)× · · · × P (λkl−1+1, . . . , λkl), then the following equalities hold:

∀i ∈ {k1, . . . , kl},
i∑

j=1

bj = ‖b‖(i) =

i∑
j=1

λj .

Finally, since the i−norm ‖.‖(i) is invariant by the transformation φ, one may deduce the following equalities:

∀i ∈ {k1, . . . , kl},

∥∥∥φ( 1
γX
′(y − fît(γ))

)∥∥∥
(i)∑i

j=1 λj
=

∥∥∥ 1
γX
′(y − fît(γ))

∥∥∥
(i)∑i

j=1 λj
= 1.
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Proof of 2) First, let us establish for b ∈ Rp such that b1 ≥ · · · ≥ bp > 0 the following inclusion:

∂Jλ(b) ⊂ conv
{

(λπ(1), . . . , λπ(p)), π ∈ Sp
}

= P (λ1, . . . , λp). (11)

Since the sorted `1 norm is polyhedral, namely

Jλ(b) = max

{
p∑
i=1

εiλπ(i)bi : ε1, . . . , εp ∈ {−1, 1}, π ∈ Sp

}
,

its subdifferential is given by

∂Jλ(b) = conv

{
(ε1λπ(1), . . . , εpλπ(p)), ε1, . . . , εp ∈ {−1, 1}, π ∈ Sp :

p∑
i=1

εiλπ(i)bi = Jλ(b)

}
.

Moreover, if εi0 = −1 for some i0 ∈ {1, . . . , p}, then

p∑
i=1

εiλπ(i)bi < λi0bi0 +
∑
i6=i0

εiλπ(i)bi ≤ Jλ(b).

Therefore (ε1λπ(1), . . . , εpλπ(p)) /∈ ∂Jλ(x), which proves inclusion (11).

Now, let us assume that there exists i /∈ A(γ) such that{
|β̂|↓i > |β̂|↓i+1 if i ≤ p− 1,

|β̂|↓i > 0 if i = p.

Then, according to (10) and (11), we have ∂Jλ1,...,λi(|β̂|↓1, . . . , |β̂|↓i) ⊂ P (λ1, . . . , λi). Consequently∥∥∥φ( 1
γX
′(y − fît(γ))

)∥∥∥
(i)∑i

j=1 λj
=

∥∥∥ 1
γX
′(y − fît(γ))

∥∥∥
(i)∑i

j=1 λj
= 1.

Therefore i ∈ A(γ), which leads to a contradiction.

Proof of Lemma 1

If 0 ∈ S(γ) and since every elements in S(γ) have the same sorted `1 norm, one may deduce that S(γ) = {0}.
Now, let us assume that 0 /∈ S(γ). Let β̂ ∈ S(γ) be such that the number of non-null clusters k = ‖patt(β̂)‖∞ =
‖m‖∞ ≥ 1 is minimal. Let us prove that ker(X̃m) = {0}. If dim(ker(X̃m)) ≥ 1, then pick h ∈ ker(X̃m), h 6= 0.

Then set β̂ = Ums where s ∈ Rk+ and c(t) = β̂ + tUmh = Um(s + th). Since X̃mh = XUmh = 0, then

X ′(y − Xc(t)) = X ′(y − Xβ̂). Let tmin = inf{|t| : s + th /∈ Rk+} > 0; by construction, for t ∈ (−tmin, tmin),
s+ th ∈ Rk+ and thus patt(c(t)) = m. Consequently,

∀t ∈ (−tmin, tmin) X ′(y −Xc(t)) ∈ ∂Jλ(m) = ∂Jλ(c(t)),

⇒ ∀t ∈ (−tmin, tmin) c(t) ∈ S(γ).

Since S(γ) is a closed set, one may deduce that c(±tmin) ∈ S(γ). Finally, by construction of tmin, one of
the vectors s + tminh or s − tminh does not have k distinct components, therefore ‖patt(c(tmin))‖∞ < k or

‖patt(c(−tmin))‖∞ < k which contradicts the fact that β̂ ∈ S(γ) has a minimal number of non-null clusters.

SLOPE is a generalized LASSO if and only if λ is an arithmetic progression

Let D ∈ Rm×p. The subdifferential at 0 of the function b ∈ Rp 7→ ‖Db‖1 is D′[−1, 1]m. The polytope D′[−1, 1]m

is a zonotope (the image of a cube under an affine transformation). On the other hand the signed permutahedron
(the subdifferential at 0 of Jλ) is a zonotope if and only if λ is an arithmetic progression [Godland and Kabluchko,
2023, Theorem 4.13]. Consequently, when λ is not an arithmetic progression one cannot pick a matrix D ∈ Rm×p
such that Jλ(.) = ‖D.‖1 thus SLOPE is not a generalized LASSO. Finally OSCAR (i.e. SLOPE when λ1 ≥
· · · ≥ λp ≥ 0 is an arithmetic progression) is clearly a particular generalized LASSO.



The Solution Path of SLOPE

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. Yes

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. Yes. The
complexity to compute the solution path of SLOPE depends on the number of intervals.
In pathological examples the number of intervals might reach the number of SLOPE
patterns.

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
Yes. The anonymized source code is available online: https://github.com/x-dupuis/

slope-path.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. Yes.

(b) Complete proofs of all theoretical results. Yes, proofs are given in supplementary material

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). Yes. One may reproduce these numerical experiments
via the URL https://github.com/x-dupuis/slope-path.

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). Not Applicable

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). Yes.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. Yes.

(b) The license information of the assets, if applicable. Not Applicable.

(c) New assets either in the supplemental material or as a URL, if applicable. Yes.

(d) Information about consent from data providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
Not Applicable.

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. Not Applicable

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. Not Applicable

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. Not Applicable

https://github.com/x-dupuis/slope-path
https://github.com/x-dupuis/slope-path
https://github.com/x-dupuis/slope-path
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