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Abstract

This work proposes a decision-making frame-
work for partially observable systems in con-
tinuous time with discrete state and action
spaces. As optimal decision-making becomes
intractable for large state spaces we employ
approximation methods for the filtering and
the control problem that scale well with an in-
creasing number of states. Specifically, we ap-
proximate the high-dimensional filtering dis-
tribution by projecting it onto a parametric
family of distributions, and integrate it into
a control heuristic based on the fully observ-
able system to obtain a scalable policy. We
demonstrate the effectiveness of our approach
on several partially observed systems, includ-
ing queueing systems and chemical reaction
networks.

1 INTRODUCTION

Partial observability in dynamical systems is a ubiq-
uitous problem for many applications. This includes
settings such as robotics (Lauri et al., 2022), commu-
nication systems and signal processing (Proakis and
Salehi, 2008; Kay, 1993), or biology (Wilkinson, 2018).
In partially observable settings only noisy data from
a latent time-dependent process is available. A princi-
pled way to deal with the resulting inference problem
is Bayesian filtering (Bain and Crisan, 2009; Särkkä,
2013). The framework of Bayesian filtering can be ex-
ploited to infer in an online manner the latent state of
the system given the historical information available.
The information of the latent state is then encoded
in the filtering posterior distribution, the belief state.
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This stochastic filtering approach is especially appeal-
ing for the control of such partially observed dynamical
systems. This includes among others, e.g., control prob-
lems with noisy sensor measurements, such as grasping
and navigation in robotics (Kurniawati et al., 2008) or
cognitive medium access control (Zhao et al., 2005) for
communication systems. For finding decision strategies,
which use the available observational data to control
the system at hand, a solid framework can be found
in the area of optimal control (Stengel, 1994). The
classical setting for partially observable problems in
optimal control theory is historically a continuous-time
setting with a real-valued stochastically evolving latent
state (Bensoussan, 1992). This includes the well-known
linear quadratic Gaussian (LQG) control problem, dat-
ing back to the work of Wonham (1968). Contrary to
the continuous modeling approach, a discrete-time and
discrete-state setting has historically been discussed in
the area of operations research (Åström, 1965), and
has ever since found popularity as partially observable
Markov decision process (POMDP) within the machine
learning community (Kaelbling et al., 1998).

Over the years numerous algorithms for solving
partially observable control problems, especially for
discrete-time settings have been proposed. For exam-
ple, the work of Zhou et al. (2010), which is closely
related to ours, uses projection filtering to represent the
belief to perform optimal control for continuous state
and action spaces. Similarly, other approximate filter-
ing methods, such as particle filtering (Thrun, 1999),
have been exploited in a discrete-time context. For the
discrete-time setting with discrete spaces, Monte Carlo
tree search methods have shown substantial success,
such as DESPOT (Somani et al., 2013) and POMCP
(Silver and Veness, 2010). Also, more recently methods
solving POMDPs in a discrete-time regime using mod-
ern deep-learning techniques such as the algorithms of
Igl et al. (2018) and Singh et al. (2021), have shown to
find good control strategies. However, many problems
can neither be modeled by a discrete-time approach
nor using continuous-time and space strategies such as
the LQG setup. Consider for example the control of
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a queueing network within a communication system
(Bolch et al., 2006). Here the state space is discrete
as the system is described by the discrete number of
packets in each queue. However, as an instance of a
discrete event system, it can not be directly described
by a discrete-time modeling approach as the packets
arrive and are serviced at non-equidistant time points.
Another example is the modeling of molecules in a
biological system. In the context of systems biology
(Wilkinson, 2018) the dynamical system is described
by the discrete number of each of the molecules in the
system. The molecule count is dynamically changed
due to reactions occurring in the system, which as a
physical system evolves continuously in time. When
the control of such systems is of interest, it poses a
problem for both classical setups and the derived algo-
rithms. Even though there exist strategies to transform
these continuous-time discrete-state space problems to
one of both setups they are often not sensible and sub-
ject to large modeling errors. For example, Langevin
dynamics or a deterministic fluid limit are methods
used to approximate discrete states by continuous ones,
see, e.g., Gardiner (2009) and Ethier and Kurtz (2009).
Although these approximations have been used, e.g., in
the context of heavy traffic in queueing networks (Kush-
ner, 2001), they fail when the latent state is inherently
discrete. This is the case, when the ordinal number rep-
resenting the state is small or in the extreme case when
on-off switching behavior occurs in the system, as the
state can not sufficiently be described by a continuous
value. Naively discretizing time also has its downside,
as many algorithms derived under a discrete-time as-
sumptions are often not robust to time discretization
(Tallec et al., 2019). Contrary to that, continuous-time
models can numerically be solved using elaborate nu-
merical differential equation solvers, that automatically
adapt, e.g., the step size to the specific problem.

The control for fully observed continuous-time discrete-
state space Markov decision processes (MDPs) has
been discussed in the context of semi-Markov decision
processes (SMDPs), e.g., for the control of queueing
networks (Bertsekas, 2012a,b), see also Du et al. (2020)
and the references therein. However, partial observ-
ability in this setting has received little attention by
the machine learning community. Recently, Alt et al.
(2020) discussed the theory to model partially observed
continuous-time discrete-state space problems. How-
ever, a substantial scalability issue of their approach
is that it has to solve a high-dimensional partial dif-
ferential equation (PDE) in belief space. Additionally,
the presented approach leverages exact filtering within
the control problem. These two algorithmic choices
make the presented method doubly intractable, as both
the exact filter and the control problem in belief space
suffer from the curse of dimensionality.

Hence, our contributions are: We provide a new scal-
able algorithm for the solution of continuous-time
discrete-state space POMDPs. Our new method can
be divided into two parts: First, we approximate the
filtering distribution by a parametric distribution us-
ing the method of entropic matching (Bronstein and
Koeppl, 2018b). Here we give closed-form solutions
for the evolution of the parameters in some interest-
ing problem settings, such as queueing networks and
chemical reaction networks (CRNs). Second, to get a
scalable control law we adapt a heuristic used histori-
cally within discrete-time partially observable systems
to the continuous-time POMDP framework described
in Alt et al. (2020). This enables us to consider control
problems with an unbounded number of states, well be-
yond the setup of Alt et al. (2020). An implementation
of our proposed method is publicly available1.

2 MODEL

We consider the problem of optimal decision-making
under partial observability in continuous time t ∈ R≥0.
For this, we exploit a continuous-time POMDP model
(Alt et al., 2020), where the latent state trajectory
X[0,∞) := {X(t) ∈ X | t ∈ R≥0} is modeled as a con-
trolled continuous-time Markov chain (CTMC) (Norris,
1998) on a countable state space X ⊆ Nn. The rate
function for a state x ̸= x′ of the CTMC is given as

Λ(x, x′, u, t)

:= lim
h→0

h−1 P(X(t+ h) = x′ | X(t) = x, u(t) = u),

where we assume time homogeneity, i.e., Λ(x, x′, u, t) ≡
Λ(x, x′, u),∀t. In the above equation the state trajec-
tory X[0,∞) can be controlled by a control trajectory
u[0,∞) := {u(t) ∈ U | t ∈ R≥0}. Throughout this
work, we assume a finite action space setting, i.e.,
U = {1, 2, . . . ,m}, where m denotes the number of
actions. We assume that X(t) can not be directly
observed but only a partial observation Y (t) ∈ Y is
available. The goal of an optimal control sequence is
then to maximize a reward function R : X × U → R
over a time horizon, i.e.,

maximize
u[0,∞)

E

[∫ ∞

0

e−
t
τ R(X(t), u(t)) dt

]
,

where we assume an infinite horizon setting with inverse
exponential discount variable τ ∈ R≥0. Note that, in
the POMDP setting the control u(t) at time point t
can only depend on the observation and control history
y[0,t] := {y(s) | s ∈ [0, t]} and u[0,t) := {u(s) | s ∈
[0, t)}, respectively, i.e., u[0,∞) has to be an admissible
control trajectory. Mathematically, we let u[0,∞) ∈

1https://github.com/yannickeich/ApproxPOMDPs
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DFu
y
([0,∞),U), where DFu

y
([0,∞),U) is the space of

càdlàg functions on [0,∞) taking values in U that
are adapted to the family of control dependent sigma-
algebras Fu

y (t) = σ(Y (s) | s ≤ t) of the observation
process, i.e., indicating that u(t) is Fu

y (t)-measurable
(Bensoussan, 1992).

It is well known that the partial observable control
problem can be cast as a problem of optimal control
in belief space (Bertsekas, 2012a,b). The belief at time
point t is the Bayesian filtering distribution

πt(x) = P(X(t) = x | y[0,t], u[0,t)).

This yields the optimal feedback policy u(t) = µ∗(πt).

In the next sections, we explain how to find both the
optimal feedback policy, as well as how to compute the
exact filtering distribution. However, both problems
are computationally intractable. Hence, we present
two approximations for the solution of (i) the optimal
filtering problem and (ii) the optimal control problem.

3 CONTINUOUS-TIME
PROBABILISTIC INFERENCE
FOR POMDPS

The state of the underlying belief MDP is character-
ized by the filtering distribution πt(x). For computing
the filtering distribution, we first consider the prior
distribution for the latent process X[0,∞). We can char-
acterize it by its time-point-wise marginal distribution
pt(x) := P(X(t) = x | u[0,t)). For a controlled CTMC
X[0,∞), with action trajectory u[0,∞) and rate func-
tion Λ, the time evolution of the prior is given by the
differential form of the forward Chapman-Kolmogorov
equation (Ethier and Kurtz, 2009), the master equation
(Gardiner, 2009),

d

dt
pt(x) = [Lu(t)pt](x) (1)

with initial distribution p0(x) at time point t = 0. The
evolution operator Lu of the Markov chain is given as

[Luϕ](x)

:=
∑
x′ ̸=x

{
Λ(x′, x, u)ϕ(x′)− Λ(x, x′, u)ϕ(x)

}
for an arbitrary test function ϕ. Next, we have to
specify the generative model for the observation process
{Y (t) | t ∈ R≥0}. In this paper, we will consider two
observation models, which are (i) a discrete-time noisy
measurement model and (ii) a sub-system measurement
model.

Noisy Measurements. A natural observation model
to consider is a discrete-time noisy measurement model,

which we denote as D. For this we assume that the
observations Y (t) are given at discrete time instances
{ti}, i.e., {Yi := Y (ti) | i ∈ N}. Further, we assume
that the state is not directly observed but only a noisy
measurement is available as

D : Yi | {X(ti) = x, u(t−i ) = u} ∼ p(yi | x, u), (2)

where throughout this paper we denote by ϕ(t−i ) :=
limt↗ti ϕ(t) the limit from the left of an arbitrary func-
tion ϕ, respectively. Note that this observation model
gives rise to a continuous-discrete filtering problem,
i.e., filtering for latent states evolving in continuous-
time and discrete-time observations, for more see, e.g.,
Maybeck (1982), and Särkkä and Solin (2019).

Sub-System Measurements. Additionally we con-
sider a sub-system measurement model, which we de-
note by C. For this we assume that we can only ob-
serve some components of the n-dimensional random
vector X(t). Consider without loss of generality that
X(t) = [X̂⊤(t), X̄⊤(t)]⊤, and that the components
X̂(t) and X̄(t) are unobserved and observed, respec-
tively. Hence, as for the observations {Y (t) | t ∈ R≥0}
we have the noise-free measurement model

C : Y (t) = X̄(t). (3)

As the process {X(t)} evolves on a countable space,
this implies that at the discrete-time instances {ti}
we observe a jump from a state X̄(t−i ) to state X̄(ti),
i.e., we have a discrete-time noise-free observation as
Yi := Y (ti) = X̄(ti). Note that this observation model
(Bronstein and Koeppl, 2018a) can be seen as a general-
ization of a Poisson process observation model (Elliott
and Malcolm, 2005).

3.1 Exact Inference

When considering the task of computing the filtering
distribution, the sought after posterior distribution can
be calculated by Bayes’ rule. This yields for the noisy
measurement model D in Eq. (2) a differential equation
for the filter between observations as

D :
d

dt
πt(x) = [Lu(t)πt](x). (4)

At observation time points, Bayes’ rule is computed as

D : πti(x) = Z−1
i p(yi | x, u(t−i ))πt−i (x), (5)

where Zi =
∑

x p(yi | x, u(t
−
i ))πt−i

(x) is a normal-
ization constant, for more see Huang et al. (2016).
The resulting filtering equation is the usual result in
continuous-discrete filtering, as the prediction step in
Eq. (4) between the observations is given by the time
evolution of the prior distribution, see Eq. (1), and the
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update step in Eq. (5) carries out Bayes’ rule for the
observation yi.

For the sub-system measurement model C in Eq. (3), we
find analog equations between jumps of the observation
process, i.e., when the observation process is constant
y(t) = y(t−),

C :

d

dt
πt(x) = 1y(t)(x)[Lu(t)πt](x)

− πt(x)
∑
x′

1y(t)(x
′)[Lu(t)πt](x

′),
(6)

where x = [x̂⊤, x̄⊤]⊤ and 1y(t)(x) := 1(y(t) = x̄).
When the observation process jumps yi = y(ti) ̸= y(t−i ),
we have

C : πti(x) = Z−1
i 1yi(x)[Lu(t)πt−i

](x), (7)

with the normalization constant Zi =∑
x 1yi

(x)[Lu(t)πt−i
](x), for more see Bronstein

and Koeppl (2018a).

However, all these equations suffer from the curse of
dimensionality as the numerical solution of the system
of ordinary differential equations (ODEs) in Eqs. (4)
and (6) scales in |X |2, which in the case X = Nn is
even infinite. Similarly, computing the update steps in
Eqs. (5) and (7) requires computing the normalization
constant Zi, which is intractable. Hence, we propose
next an approximate inference method for the solution
to the intractable exact filtering problem.

3.2 Approximate Inference

In order to overcome the challenge of computing the
exact intractable filtering distribution, we propose to
approximate it by a parametric distribution using an
assumed density filtering method (Maybeck, 1982). For
this we use a deterministic approximation method,
entropic matching (Ramalho et al., 2013; Bronstein and
Koeppl, 2018b), which can be seen as a continuous-time
extension of a special expectation propagation method
(Minka, 2005). As a result, we obtain low-dimensional
time evolution equations for the parameters of the
distribution.

We start by assuming a parametric form for the filtering
distribution at time t as πt(x) ≈ qθ(t)(x), with parame-
ters θ(t) ∈ Θ ⊆ Rdθ . We then consider the evolution
of the distribution qθ(t)(x) over a small time step h
in absence of new measurements. For the observation
model D, the distribution follows the prediction step
in Eq. (4), which yields

π̃t+h(x) := qθ(t)(x) + h[Lu(t)qθ(t)](x) + o(h).

It is worth noting that π̃t+h(x) generally does not
match the structure of the parametric family used for

approximation. To obtain a distribution within the
parametric family, its optimal parameters after a small
time step h can be computed by minimizing the reverse
Kullback-Leibler (KL) divergence

θ(t+ h) = argmin
θ′

KL(π̃t+h ∥ qθ′).

The entropic matching method approximates the
change of the filtering distribution in an infinites-
imal time step such that the approximated distri-
bution stays in the space of the parametric distri-
butions. By computing the continuous-time limit
limh→0 h

−1{θ(t+h)−θ(t)} an ODE for the parameters
can be found (Bronstein and Koeppl, 2018b) as

D :

d

dt
θ(t) = F (θ(t))−1

· Eq

[
L†
u(t)∇θ(t) log qθ(t)(X(t))

]
,

(8)

where F (θ) is the Fisher information ma-
trix of the parametric distribution, i.e.,
F (θ) = Eq

[
∇θ log qθ(X)∇⊤

θ log qθ(X)
]
. The score

∇θ(t) log qθ(t)(x) evolves according to the operator L†
u

[L†
uψ](x) :=

∑
x′ ̸=x

Λ(x, x′, u) {ψ(x′)− ψ(x)} ,

for an arbitrary test function ψ, where L†
u is adjoint

to the evolution operator Lu, w.r.t. the inner product
space ⟨ϕ, ψ⟩ =

∑
x ϕ(x)ψ(x). At the observation jump

time points, we have a discontinuity in the filtering
distribution as in the update step in Eq. (5). Here we
find the optimal parameters accordingly as

θ(ti) = argmin
θ′

KL(π̂ti ∥ qθ′), (9)

where π̂ti is the posterior distribution that follows from
Bayes’ rule

D : π̂ti(x) := Z−1
i p(yi | x, u(t−i ))qθ(t−i )(x),

with Zi =
∑

x p(yi | x, u(t
−
i ))qθ(t−i )(x). For the obser-

vation model C, we have for the time evolution

C :

d

dt
θ(t) = F (θ(t))−1

· Eq

[
L†
u(t)

{
1y(t) ·∇θ(t) log qθ(t)

}
(X(t))

]
.

(10)
For the reset condition, we have the same objective as in
Eq. (9), however, the reset is computed by minimizing
the reverse KL divergence w.r.t.

C : π̂ti(x) := Z−1
i 1yi(x)[Lu(t)qθ(t−i )](x),

with Zi =
∑

x 1yi
(x)[Lu(t)qθ(t−i )](x), for more see Bron-

stein and Koeppl (2018a). For completeness we give
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the derivation of Eqs. (8) and (10) in Appendix 1.1.
We want to emphasize that these equations can also
be derived from a geometrical approach, which is then
known as projection filtering (Brigo et al., 1999).

The resulting equations for the time evolution in
Eqs. (8) and (10) require only the solution of an ODE
in the parameter space Θ. Therefore, the computa-
tional complexity is only d2θ instead of |X |2. Further,
when assuming an exponential family parameterization,
the optimal variational distribution at the discrete ob-
servation time points in Eq. (9) reduces to the problem
of moment matching (Bishop, 2006).

4 CONTINUOUS-TIME CONTROL
FOR POMDPS

Next, we describe how an optimal control trajectory
u∗[0,∞) can be found. First, we consider the problem of
exact decision-making, which is however, intractable.
Therefore, we present an approximate control method.

4.1 Exact Control

We can describe the POMDP by a belief MDP using
the filter distribution as the continuous state. For
the sake of presentation we assume for now, that the
state space X is finite, therefore, we can represent
the filtering distribution at time point t as a vector
πt ∈ ∆|X |, with components {πt(x) | x ∈ X}, where
∆|X | is the |X | dimensional probability simplex. This
allows us to use stochastic optimal control theory for
continuous-valued states. We define the value function
for a belief π ∈ ∆|X | as the expected cumulative reward
under the optimal control, i.e.,

V (π)

:= max
u[t,∞)

E

[∫ ∞

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds

∣∣∣∣ πt = π

]
,

where we use a normalization by 1
τ . Exploiting the

principle of optimality, a Bellman equation can then be
found in the form of a Hamilton-Jacobi-Bellman (HJB)
equation (Alt et al., 2020) as

V (π) = max
u∈U

E

[
R(X,u) + τ

∂V (π)

∂π
f(π, u)

+ τλ(X,u)(V (π + h(π, u))− V (π))

∣∣∣∣ π],
(11)

where the functions f , h and λ are defined by the
filter dynamics, for more see the work of Alt et al.
(2020). An optimal policy can be retrieved by finding
the maximizer of the r.h.s. of Eq. (11).

Hence, finding the optimal policy requires solving for
the value function, which is generally hard, as it re-

quires solving a |X |-dimensional PDE. Therefore, even
methods based on learning with function approxima-
tion, such as the one used in the work of Alt et al. (2020)
scale very poorly with the state-space size. Addition-
ally, even when using approximate filter dynamics, as
the ones previously discussed in Section 3.2, the r.h.s.
of the HJB equation in Eq. (11) requires solving ex-
pectations over the state, as well as the observation
space. This makes numerical solution methods, includ-
ing learning-based PDE solution methods, intractable
for all but very small state and observation space prob-
lems. For this reason, we present next an approximate
control method, which does not require the solution of
a high-dimensional PDE.

4.2 Approximate Control

Instead of computing the optimal control based on the
dynamics of the filtering distribution we approximate
it by separating the filtering and the control problem.
First, we compute the value function for the underlying
MDP. We then combine it with the filtering distribu-
tion to approximate the value function of the POMDP
to retrieve a policy. In the discrete-time literature,
this is known as the QMDP method (Littman et al.,
1995), which has also recently found success using func-
tion approximation (Karkus et al., 2017). Although
the method assumes full observability for the planning
and therefore does not consider the information gath-
ering effect of actions, it leads to good results in many
examples (Littman et al., 1995).

Similar to the belief MDP we define the value function
of the underlying MDP for a state x ∈ X as the
expected cumulative reward under the optimal control,
i.e.,

V (x)

:= max
u[t,∞)

E

[∫ ∞

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds

∣∣∣∣ X(t) = x

]
,

where for the underlying MDP we assume that the
admissible control u(t) can depend on the state X(t).
By the principle of optimality the Bellman equation
for continuous time and discrete state space (Bertsekas,
2012a,b) is

V (x) = max
u∈U

R(x, u)+ τ
∑
x′ ̸=x

Λ(x, x′, u)(V (x′)−V (x)).

(12)
The optimal policy for the MDP maximizes the r.h.s. of
Eq. (12), which we define as state-action value function

Q(x, u) := R(x, u) + τ
∑
x′ ̸=x

Λ(x, x′, u)(V (x′)− V (x)).

The definition of the state-action value function above
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can be reformulated as a contraction mapping, as

Q(x, u) =
R(x, u)

1 + τ
∑

x′ ̸=x Λ(x, x
′, u)

+ τ
∑
x′ ̸=x

Λ(x, x′, u)

1 + τ
∑

x′ ̸=x Λ(x, x
′, u)

max
u′∈U

Q(x′, u′).

The derivation is provided in Appendix 2.1. When
the state space is finite, above equation can be solved
using fixed point iteration, similar to tabular dynamic
programming methods like the value iteration algo-
rithm in the discrete-time setting (Sutton and Barto,
2018). For large or even infinite state spaces the fixed
point iteration becomes intractable and we use value
function approximation methods (Bradtke and Duff,
1994). For implementation details see Appendix 2.2.

An approximate optimal policy for the POMDP is then
found as the maximizer of the expected state-action
value function i.e.,

u(t) = argmax
u′∈U

Eq [Q(X(t), u′)], (13)

where the expectation is w.r.t. the approximate filter
distribution. For large or even infinite state spaces,
where the expectation is intractable, we approximate it
by Monte Carlo sampling to obtain a scalable policy.

5 EXPERIMENTS

To evaluate the efficacy of our method for partially
observed systems we test it on three continuous-time
discrete-state space control problems. We evaluate (i) a
controlled queueing network, (ii) a controllable preda-
tor-prey system in form of a Lotka-Volterra (LV) model,
and (iii) a controlled closed-loop four species CRN.

5.1 Queueing Network
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Figure 1: A schematic description of the considered
queueing problem. The decision-maker decides which
queue outputs its packets to the third queue.

First, we consider a queueing problem consisting of
n = 3 queues with fixed buffer size N = 1000, i.e.,
X = {0, 1, . . . , N}n. The queues are connected as
displayed in Fig. 1. Packets arrive with constant rates
λ1 and λ2 in the first and the second queue, respectively.
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Figure 2: A sample trajectory of the queueing problem
using a policy computed by the QMDP method. The
upper plots compare the projection filter to a particle
filter by indicating their mean and variance. The lower
plot describes the actions over time.

The action u(t) decides which of the two queues (with
service rates µ1 or µ2) preprocesses packets before
sending them to the final queue. If u(t) = 0, queue 1 is
servicing queue 3; if u(t) = 1, queue 2 is servicing queue
3. The preprocessed packets are then being handled
with service rate µ3. As an observation model, we use
Gaussian discrete-time measurements of queue 2 and 3.
The reward model is designed to favor empty queues.
The parameters, reward function, observation model
and additional information to all experiments can be
found in Appendix 3.

We use entropic matching to approximate the (N +
1)n ≈ 109-dimensional exact filtering distribution
by a binomial distribution for each queue qθ(x) =∏n

i=1 Bin(xi | N, θi), with success probabilities {θi}ni=1

and the total number of trials N is fixed to the maximal
buffer size. Closed-form solutions for the drift of the
binomial parameters for general queuing systems with
finite buffer sizes are derived in Appendix 1.2. The
impact on the parameters by the measurements can be
computed by Eq. (9), which we approximate by mo-
ment matching right before and after the measurement
to get closed-form updates, see Appendix 1.2.

The quality of the approximate filtering distribution
plays a crucial role in the performance of our control
method. To validate the effectiveness of our approach,
we compare our projection filter against a bootstrap
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particle filter. Notably, the particle filter, configured
with a sufficiently large number of samples Ns = 10000,
serves as a robust benchmark or "ground truth" for
our comparison. Figure 2 shows the mean and variance
of both filters for a sample trajectory. The compari-
son highlights the strengths and the limitations of the
projection filter. While it successfully captures the
evolution of the mean induced by the prior dynamic,
it struggles to capture the dynamics of the variance,
due to the limited expressiveness of the parametric
distribution. A second approximation error is notice-
able at the observation times. As the distributions for
each queue are modeled to be independent, there is no
update in the first queue, when the other queues are
being observed. However, despite these limitations, the
projection filter leads to an adequate approximation.

For all experiments, the policy is chosen according to
our QMDP method. Therefore we learned the state
action value function of the underlying MDP and
approximate the expectation in Eq. (13) using k = 20
Monte Carlo samples. The resulting policy effectively
maximizes the cumulative reward by activating the
service rates of the queue where the filter expects
more packets. When the beliefs of the first and second
queue are equal, the policy frequently jumps between
both actions, attempting to maintain the beliefs at the
same level until a new observation updates them.

5.2 Predator-Prey System

Next, we consider the continuous-time discrete-state LV
model of Wilkinson (2018). The LV problem consists
of the following reactions, which are represented using
the notation of CRNs (Wilkinson, 2018) as

X1
c1−→ 2X1, X1 + X2

c2−→ 2X2, X2
c3(u(t))−−−−−→ ∅,

(14)
where X1 is the prey species and X2 is the predator
species. Hence, the unbounded state space of the sys-
tem is X = Nn

0 , with n = 2. As an option to control the
system, the decision maker can influence rate c3 with
u(t) ∈ U = {0, 1}, where c3(u(t) = 1) = 2c3(u(t) = 0).
For the observation model, we use noisy discrete-time
measurements of both states. The reward model re-
turns the negative Euclidean distance to a fixed target
state x∗ = [100, 100]⊤. As an approximation to the
infinite-dimensional filtering distribution we use a prod-
uct Poisson distribution as qθ(x) =

∏n
i=1 Pois(xi | θi).

Bronstein and Koeppl (2018b) showed that using the
entropic matching method with a product Poisson
approximation leads to closed-form solutions for
the drift of the parameters for general CRNs. In
Appendix 1.3 we show generalize the derivation to
include actions and provide details on CRNs.

Using the QMDP method with the approximate filter-
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Figure 3: Advantage function for the LV problem. The
upper and the lower plot show the advantage function
over a section of the belief space for the first and the
second action, respectively.
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Figure 4: A sample trajectory of the LV problem using
a policy computed by the QMPD method. The upper
plots show the evolution of the exact states and the
projection filter by indicating its mean and variance.
The lower plot describes the actions over time.

ing distribution we can compute the advantage function
A(θ, u) := Eq[Q(X,u) − V (X)], visualized in Fig. 3.
From this we can retrieve the policy as the actions that
maximize the advantage function.

Figure 4 depicts a sample trajectory of the controlled
system. By comparison to samples with a constant
control of either u = 0 or u = 1 (see Appendix 3), we
see that the controlled trajectory is more stable in con-
trast to the oscillatory behaviour of the uncontrolled
LV problem. This demonstrates that the controller
effectively combines the dynamics of both actions, re-
sulting in trajectories that are closer to the goal state.
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Figure 5: A schematic description of the considered
CRN. Species X3 and X4 get observed exactly and are
used to build an estimate of X1 and X2. The decision-
maker can influence the flow between species X1 and X2.

5.3 Closed-Loop CRN

Finally, we use our method on a setup with sub-
system continuous-time observations. We consider
the n = 4 species CRN described in Fig. 5. The
decision-maker controls the flow between species X1

and X2 with u(t) = u, where u = 0 corresponds
to a flow from X1 to X2 and u = 1 corresponds to
a flow from X2 to X1. The state of the system is
described by X(t) = [X̂⊤(t), X̄⊤(t)]⊤ ∈ X , where we
consider that the first two species are unobserved, i.e.,
X̂(t) = [X1(t), X2(t)]

⊤ and the last two species are ob-
served, i.e., Y (t) = X̄(t) = [X3(t), X4(t)]

⊤. We design
the reward function to favor a balanced system, where
every species has the same number of molecules. For
closed-loop networks the total species number N stays
constant, therefore, we consider a filter approximation
on X = {0, 1, . . . , N}n using the multinomial family
over the states x̂, with x = [x̄⊤, x̂⊤]⊤ as

qθ(x) = 1y(x)Mult(x̂ | N − x̄1 − x̄2, θ).

In Appendix 1.4 we derive closed-form solutions for the
drift and jump updates of the multinomial parameters
for general CRNs with sub-system measurements using
the method of entropic matching.

Figure 6 shows a sample trajectory of the CRN and
the corresponding evolution of the filtering distribution.
We can see that the filtering distribution captures the
behaviour of the latent states successfully. Also, the
resulting policy leads to reasonable decisions. At the
start of the trajectory, x3 is the highest state while x4
is the lowest. In response, the policy activates the flow
from x1 to x2 to balance the state indirectly as a higher
x2 leads to a higher x4 on average. In the second half
of the trajectory the policy effectively switches between
both actions to bring the system close to the goal state.

In Appendix 3 we provide additional experiments for
systems with smaller state spaces, where exact filtering
is tractable, to evaluate the effect the filtering approxi-
mation has on the control performance.
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Figure 6: A sample trajectory of the CRN described in
Fig. 5 using a policy computed by the QMDP method.
The upper plots show the evolution of the exact states
and the filtering distribution by indicating its mean
and variance. The lower plots describe the observed
species and the actions over time.

6 DISCUSSION

To the best of our knowledge, there exists no other
work addressing POMDPs in continuous time with
large discrete state spaces. While this limits direct
comparisons with existing methods, we view this as
a distinctive strength of our work, providing a solid
foundation that future research can build upon.

As an alternative to the entropic matching method, we
considered the use of sequential Monte Carlo methods
(Doucet et al., 2001), such as the particle filter, which
we compared in the Queueing problem. However, while
sequential Monte Carlo methods may be a viable op-
tion for approximate filtering, integrating them into a
control method in the considered problem setting is far
from trivial. The primary challenge lies in the control
policy’s reliance on the belief generated by all samples,
which necessitates frequent updates when any individ-
ual sample changes. While this update process is not
an issue in discrete-time settings where all samples
change simultaneously, it becomes impractically slow
in continuous-time scenarios. In contrast, the control
method based on the entropic matching approach is
straightforward and circumvents this issue.
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7 CONCLUSION

In this work, we presented the optimal control theory
for continuous-time POMDPs with discrete state and
action spaces. We discussed the arising difficulties for
the filtering and the control problem when dealing with
large state spaces. For both problems, we described
approximations that scale well with an increasing state
space. We then evaluated these methods on several
partially observed systems.

In our experiments we approximated the filtering dis-
tributions with parametric distributions from the ex-
ponential family. While this choice allowed us to de-
rive scalable closed-form solutions for the drift of the
parameters, it is important to acknowledge that the
expressiveness of these distributions has its limitations.
Looking ahead, future research can explore more ad-
vanced parametric families to further enhance the ca-
pabilities of our approach. When it is not possible to
obtain closed-form solutions, Monte Carlo methods of-
fer an alternative approach to approximate the entropic
matching equations. Moreover, we are interested in ap-
plying the presented methods on POMDPs, where the
latent dynamics are described by stochastic differential
equations. In that scenario, the belief is in general
infinite dimensional and could be approximated by con-
tinuous parametric families of distributions. Also, this
would enable the use for a broader range of applications
including stochastic hybrid systems.
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Approximate Control for Continuous-Time POMDPs:
Supplementary Materials

1 ENTROPIC MATCHING

1.1 General

In this subsection we give the derivation for the entropic matching equations Eqs. (8) and (10), following the
steps in Bronstein and Koeppl (2018a,b).

As stated in Section 3.2, we start by assuming a parametric form for the filtering distribution at time point t as

πt(x) ≈ qθ(t)(x),

with parameters θ(t) ∈ Θ ⊆ Rp. We then consider how the distribution qθ(t)(x) evolves in a small time step h
without new measurements. For the observation model D, the evolution between observations is described in
Eq. (4), this yields

π̃t+h(x) = qθ(t)(x) + h[Lu(t)qθ(t)](x) + o(h).

The parameters of the distribution are computed for a small time step h by minimizing the reverse KL divergence

θ(t+ h) = argmin
θ′

KL(π̃t+h ∥ qθ′). (15)

The idea of the entropic matching method is to approximate the change of the filtering distribution in an
infinitesimal time step such that the approximated distribution stays in the space of the parametric distributions.
Therefore we first set Appendix 1.1 in Eq. (15):

KL(π̃t+h ∥ qθ′)

= KL
(
qθ(t) + h[Lu(t)qθ(t)] + o(h)

∥∥ qθ′
)

=
∑
x∈X

(
qθ(t)(x) + h[Lu(t)qθ(t)](x) + o(h)

)
· log

qθ(t)(x) + h[Lu(t)qθ(t)](x) + o(h)

qθ′(x)

=
∑
x∈X

{
qθ(t)(x) log

qθ(t)(x)

qθ′(x)
+h

[
qθ(t)(x)

[Lu(t)qθ(t)](x)

qθ(t)(x)
+ [Lu(t)qθ(t)](x) log

qθ(t)(x)

qθ′(x)

]
+ o(h)

}
= KL

(
qθ(t)

∥∥ qθ′
)
+ hEq

[
[Lu(t)qθ(t)](X(t))

qθ(t)(X(t))
+

[Lu(t)qθ(t)](X(t))

qθ(t)(X(t))
log

qθ(t)(X(t))

qθ′(X(t))

]
+ o(h),

where we used a first order Taylor series around h = 0 in the fourth line. The KL divergence between two
members of a parametric distribution can be given by series expansion in θ − θ′ up to second order as

KL(qθ ∥ qθ′) =
1

2
(θ′ − θ)⊤F (θ)(θ′ − θ),

where F (θ) := −Eqθ(x)

[
∇θ∇⊤

θ log qθ(X)
]

is the Fisher information matrix. Hence, we can compute the minimum
of Eq. (15) as

0 = ∇θ′ KL(π̃t+h(x) ∥ qθ′(x))|θ′=θ(t+h)

= F (θ(t))(θ(t+ h)− θ(t))− hEq

[
∇θ(t+h) log qθ(t+h)(X(t))

[Lu(t)qθ(t)](X(t))

qθ(t)(X(t))

]
+ o(h).
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Dividing both sides by h and taking the limit h→ 0 we obtain

0 = F (θ(t))
d

dt
θ(t)− Eq

[
∇θ(t) log qθ(t)(X(t))

[Lu(t)qθ(t)](X(t))

qθ(t)(X(t))

]
= F (θ(t))

d

dt
θ(t)−

∑
x

qθ(t)(x)∇θ(t) log qθ(t)(x)
[Lu(t)qθ(t)](x)

qθ(t)(x)

= F (θ(t))
d

dt
θ(t)−

∑
x

∇θ(t) log qθ(t)(x)[Lu(t)qθ(t)](x)

= F (θ(t))
d

dt
θ(t)−

∑
x

qθ(t)(x)[L†
u(t)∇θ(t) log qθ(t)](x)

= F (θ(t))
d

dt
θ(t)− Eq

[
L†
u(t)∇θ(t) log qθ(t)(X(t))

]
.

This leads to the entropic matching equation

d

dt
θ(t) = F (θ(t))−1 Eq

[
L†
u(t)∇θ(t) log qθ(t)(X(t))

]
.

For the sub-system measurement model C in Eq. (3), the evolution between between observation jumps is
described in Eq. (10), this yields for the target filtering distribution

π̃t+h(x) = qθ(t)(x) + h1y(t)(x)[Lu(t)qθ(t)](x)− hqθ(t)(x)
∑
x′

1y(t)(x
′)[Lu(t)qθ(t)](x

′) + o(h).

Setting this in Eq. (15) leads to:

KL(π̃t+h ∥ qθ′)

=
∑
x∈X

(
qθ(t)(x) + h1y(t)(x)[Lu(t)qθ(t)](x)− hqθ(t)(x)

∑
x′

1y(t)(x
′)[Lu(t)qθ(t)](x

′) + o(h)

)

·
[
log

qθ(t)(x) + h1y(t)(x)[Lu(t)qθ(t)](x)− hqθ(t)(x)
∑

x′ 1y(t)(x
′)[Lu(t)qθ(t)](x

′) + o(h)

qθ′(x)

]
=
∑
x∈X

{
qθ(t)(x) log

qθ(t)(x)

qθ′(x)

+h

[
qθ(t)(x)

1y(t)(x)[Lu(t)qθ(t)](x)− qθ(t)(x)
∑

x′ 1y(t)(x
′)[Lu(t)qθ(t)](x

′)

qθ(t)(x)

+

(
1y(t)(x)[Lu(t)qθ(t)](x)− qθ(t)(x)

∑
x′

1y(t)(x
′)[Lu(t)qθ(t)](x

′)

)
log

qθ(t)(x)

qθ′(x)

]
+ o(h)

}
= KL

(
qθ(t)

∥∥ qθ′
)

+ hEq

[
1y(t)(X(t))[Lu(t)qθ(t)](X(t))− qθ(t)(X(t))

∑
x′ 1y(t)(x

′)[Lu(t)qθ(t)](x
′)

qθ(t)(X(t))

+
1y(t)(X(t))[Lu(t)qθ(t)](X(t))− qθ(t)(X(t))

∑
x′ 1y(t)(x

′)[Lu(t)qθ(t)](x
′)

qθ(t)(X)
log

qθ(t)(X(t))

qθ′(X(t))

]
+ o(h),

where we used a first order Taylor series around h = 0 in the third line.

By the same argument as before, we can compute the minimum of Eq. (15) as

0 = ∇θ′ KL(π̃t+h(x) ∥ qθ′(x))|θ′=θ(t+h)

= F (θ(t))(θ(t+ h)− θ(t))

− hEq

[
∇θ(t+h) log qθ(t+h)(X(t))

1y(t)(X(t))[Lu(t)qθ(t)](X(t))− qθ(t)(X(t))
∑

x′ 1y(t)(x
′)[Lu(t)qθ(t)](x

′)

qθ(t)(X(t))

]
+ o(h)
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Dividing both sides by h and taking the limit h→ 0 we obtain

0 = F (θ(t))
d

dt
θ(t)− Eq

[
∇θ(t) log qθ(t)(X(t))

1y(t)(X(t))[Lu(t)qθ(t)](X(t))− qθ(t)(X(t))
∑

x′ 1y(t)(x
′)[Lu(t)qθ(t)](x

′)

qθ(t)(X(t))

]
= F (θ(t))

d

dt
θ(t)−

∑
x

qθ(t)(x)∇θ(t) log qθ(t)(x)
1y(t)(x)[Lu(t)qθ(t)](x)− qθ(t)(x)

∑
x′ 1y(t)(x

′)[Lu(t)qθ(t)](x
′)

qθ(t)(x)

= F (θ(t))
d

dt
θ(t)−

∑
x

∇θ(t) log qθ(t)(x)

(
1y(t)(x)[Lu(t)qθ(t)](x)− qθ(t)(x)

∑
x′

1y(t)(x
′)[Lu(t)qθ(t)](x

′)

)

= F (θ(t))
d

dt
θ(t)−

∑
x

∇θ(t) log qθ(t)(x)
(
1y(t)(x)[Lu(t)qθ(t)](x)

)
= F (θ(t))

d

dt
θ(t)−

∑
x

qθ(t)(x)L†
u(t)

{
1y(t) ·∇θ(t) log qθ(t)

}
(x)

= F (θ(t))
d

dt
θ(t)− Eq

[
L†
u(t)

{
1y(t) ·∇θ(t) log qθ(t)

}
(X(t))

]
,

where in the fourth line we used Eq

[
∇θ(t) log qθ(t)(X(t))

]
= 0. This leads to the entropic matching equation

d

dt
θ(t) = F (θ(t))−1 Eq

[
L†
u(t)

{
1y(t) ·∇θ(t) log qθ(t)

}
(X(t))

]
.

1.2 Entropic Matching for Finite Buffer Queues

We consider a queueing network with n queues. We assumed that the ithe queue is an M/M/c/n queue, with
Markovian arrivals and services, a number of c servers and a finite buffer of size n, for more, see (Bolch et al., 2006).
The state of the queueing network is described by the number of packets in the queues, i.e., x = [x1, . . . , xn]

⊤, with
xi ∈ Xi := {0, 1, . . . , Ni} and X :=×n

i=1
Xi. We denote the stochastic routing matrix by P ∈ ∆n+1×n+1. The

entry Pij denotes the probability of routing a packet from queue i to queue j, with (i, j) ∈ {1, . . . n} × {1, . . . , n}.
Additionally, we denote by the entries Pi,n+1 and Pn+1,i the probabilities that a packet leaves and enters the
queueing network from and into the queue i, respectively. The corresponding arrival, and respectively service,
rates are denoted by {λ̃ij}. The effective rate for a number of ci servers is then given by

λij(xi) = λ̃ijPij min(xi, ci),

where we set xn+1 = cn+1 = 1 and Xn+1 = N0 for convenience. We define the corresponding jump vectors as

νij := ej − ei,

where ei is the ith unit vector, and we set by definition en+1 to the n-dimensional zero vector. The system
is then described by a continuous-time Markov chain {X(t)}t∈R≥0

, with reaction rate function Λ(x, x′) :=
limh→0 h

−1 P(X(t+ h) = x′ | X(t) = x) given as

Λ(x, x′) = 1(x′ ∈ X )1(x ∈ X )
n+1∑
i=1

n+1∑
j=1

λij(xi)1(x
′ = x+ νij),
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for all (x, x′) ∈ X × X . The forward master equation is therefore given by

d

dt
pt(x) = [Lpt](x)

=
∑
x′

Λ(x′, x)pt(x
′)

=
∑
x′ ̸=x

Λ(x′, x)pt(x
′)−

∑
x′ ̸=x

Λ(x, x′)pt(x)

=
∑
x′ ̸=x

n+1∑
i=1

n+1∑
j=1

λij(x
′
i)1(x = x′ + νij)pt(x

′)−
∑
x′ ̸=x

n+1∑
i=1

n+1∑
j=1

λij(xi)1(x
′ = x+ νij)pt(x)

=

n+1∑
i=1

n+1∑
j=1

λij(xi + 1)1(x− νij ∈ X )pt(x− νij)−
n+1∑
i=1

n+1∑
j=1

λij(xi)1(x+ νij ∈ X )pt(x)

d

dt
pt(x) =

n+1∑
i=1

n+1∑
j=1

λij(xi + 1)1(xi + 1 ∈ Xi)1(xj − 1 ∈ Xj)pt(x− νij)

−
n+1∑
i=1

n+1∑
j=1

λij(xi)1(xi − 1 ∈ Xi)1(xj + 1 ∈ Xj)pt(x).

Let, L† denote the adjoint operator of L, w.r.t, the inner product ⟨ϕ, ψ⟩ :=
∑

x ϕ(x)ψ(x), i.e,

⟨Lϕ, ψ⟩ = ⟨ϕ, [L†ψ]⟩

⇐⇒
∑
x

[Lϕ](x)ψ(x) = ⟨ϕ, [L†ψ]⟩

⇐⇒
∑
x

∑
x′

Λ(x′, x)ϕ(x′)ψ(x) = ⟨ϕ, [L†ψ]⟩

⇐⇒
∑
x′

ϕ(x′)
∑
x

Λ(x′, x)ψ(x) = ⟨ϕ, [L†ψ]⟩.

Hence, we have
[L†ϕ](x) =

∑
x′

Λ(x, x′)ϕ(x′).

Therefore, we can find the adjoint operator L† working on a test function ϕ as

[L†ϕ](x) =
∑
x′

Λ(x, x′)ϕ(x′)

=
∑
x′ ̸=x

Λ(x, x′)ϕ(x′)−
∑
x′ ̸=x

Λ(x, x′)ϕ(x)

=
∑
x′ ̸=x

Λ(x, x′)(ϕ(x′)− ϕ(x))

=
∑
x′ ̸=x

n+1∑
i=1

n+1∑
j=1

λij(xi)1(x
′ = x+ νij)(ϕ(x

′)− ϕ(x))

[L†ϕ](x) =

n+1∑
i=1

n+1∑
j=1

λij(xi)1(xi − 1 ∈ Xi)1(xj + 1 ∈ Xj)(ϕ(x+ νij)− ϕ(x)).

Let, ϕ(x) = ∇ log qθ(x) and qθ(x) =
∏n

i=1 Bin(xi | Ni, θi), we compute

∂θi log qθ(x) =
xi −Niθi
θi(1− θi)

.
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The inverse Fisher information matrix is given by

F (θ)−1 = diag

([
θ1(1− θ1)

N1
, . . . ,

θn(1− θn)
Nn

]⊤)
.

Note that,
∇θ log qθ(x+ νij)−∇θ log qθ(x) =

ej
θj(1− θj)

− ei
θi(1− θi)

.

Therefore we have for the entropic matching equation

d

dt
θ = F (θ)−1 Eq [L†∇θ log qθ(X)],

the ODE
d

dt
θ(t) = Eq

n+1∑
i=1

n+1∑
j=1

λij(Xi)1(Xi − 1 ∈ Xi)1(Xj + 1 ∈ Xj)(
ej
Nj
− ei
Ni

)


=

n+1∑
i=1

n+1∑
j=1

(
ej
Nj
− ei
Ni

)Eq [λij(Xi)1(Xi − 1 ∈ Xi)]E[1(Xj + 1 ∈ Xj)] .

This can be written component-wise as

d

dt
θi(t) =

1

Ni

n+1∑
j=1

(Eq [λji(Xj)1(Xj − 1 ∈ Xj)]Eq [1(Xi + 1 ∈ Xi)]

−Eq [λij(Xi)1(Xi − 1 ∈ Xi)]Eq [1(Xj + 1 ∈ Xj)]) .

We compute for j ∈ {1, . . . , n}

Eq [1(Xj + 1 ∈ Xj)] =

Nj∑
xj=0

Bin(xj | Nj , θj)1(xj + 1 ∈ Xj)

= 1−
Nj∑

xj=0

Bin(xj | Nj , θj)1(xj + 1 /∈ Xj)

= 1− Bin(Nj | Nj , θj)

and for j = n+ 1

Eq [1(Xj + 1 ∈ Xj)] = 1.

For i ∈ {1, . . . , n}

Eq [λij(Xi)1(Xi − 1 ∈ Xi)] =

Ni∑
xi=0

Bin(xi | Ni, θi)λ̃ijPij min(xi, ci)1(xi − 1 ∈ Xi)

= λ̃ijPij(

ci−1∑
xi=0

Bin(xi | Ni, θi)xi +

Ni∑
xi=ci

Bin(xi | Ni, θi)ci)

= λ̃ijPij(

ci−1∑
xi=0

Bin(xi | Ni, θi)xi + ci(1−
ci−1∑
xi=0

Bin(xi | Ni, θi))

= λ̃ijPij(ci +

ci−1∑
xi=0

Bin(xi | Ni, θi)(xi − ci))

and for i = n+ 1 we have
Eq [λij(Xi)1(Xi − 1 ∈ Xi)] = λ̃ijPij .
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Therefore, we have the component-wise ODE

d

dt
θi(t) =

1

Ni

n+1∑
j=1

Eq [λji(Xj)1(Xj − 1 ∈ Xj)]Eq [1(Xi + 1 ∈ Xi)]

− Eq [λij(Xi)1(Xi − 1 ∈ Xi)]Eq [1(Xj + 1 ∈ Xj)]

=
1

Ni

n∑
j=1

(λ̃jiPji(cj +

cj−1∑
xj=0

Bin(xj | Nj , θj)(xj − cj))(1− Bin(Ni | Ni, θi))

− λ̃ijPij(ci +

ci−1∑
xi=0

Bin(xi | Ni, θi)(xi − ci))(1− Bin(Nj | Nj , θj))

+
1

Ni
λ̃n+1,iPn+1,i(1− Bin(Ni | Ni, θi))−

1

Ni
λ̃i,n+1Pi,n+1(ci +

ci−1∑
xi=0

Bin(xi | Ni, θi)(xi − ci))

=
1− Bin(Ni | Ni, θi)

Ni
(λ̃n+1,iPn+1,i +

n∑
j=1

λ̃jiPji(cj +

cj−1∑
xj=0

Bin(xj | Nj , θj)(xj − cj)))

−
ci +

∑ci−1
xi=0 Bin(xi | Ni, θi)(xi − ci)

Ni
(λ̃i,n+1Pi,n+1 +

n∑
j=1

λ̃ijPij(1− Bin(Nj | Nj , θj)))

In the example we assume that the number of servers is set to c1 = c2 = c3 = 1. Note that, we have
Bin(0 | Ni, θi) = (1− θi)Ni and Bin(Ni | Ni, θi) = θNi

i , hence,

d

dt
θi =

1− θNi
i

Ni
(λ̃n+1,iPn+1,i +

n∑
j=1

λ̃jiPji(1− (1− θj)Nj )− 1− (1− θi)Ni

Ni
(λ̃i,n+1Pi,n+1 +

n∑
j=1

λ̃ijPij(1− θ
Nj

j )).

In the experiments we use a queueing network with n = 3, queues with equal buffer size N = N1 = N2 = N3 and
We set the routing matrix to

P =


0 0 1(u(t) = 0) 0
0 0 1(u(t) = 1) 0
0 0 0 1
1 1 0 0

 .
At observation time points we update the parameters accordingly as

θ(ti) = argmin
θ′

KL
(
πti|θ(t−i )

∥∥∥ qθ′

)
,

where the KL divergence is computed w.r.t.

πti|θ(t−i )(x) ∝ p(yi | x, u(t−i ))qθ(t−i )(x)).

For members of the exponential family parameterization as

qθ(x) = q0(x) exp(θ
⊤T (x)−A(θ)),

with base measure q0(x), natural parameters θ, sufficient statistics T (x), and log-normalizer A(θ), the optimization
at the discrete observation time points, reduces to the problem of moment matching (Bishop, 2006), i.e.,

Eq [T (X)] = Eπ[T (X)].

While this can be computed exact for examples with small state spaces, it can be approximated with Monte Carlo
samples for large state spaces. In our experiments we use a different approximation for the update in order to
obtain closed-form solutions. For queues with a large buffer size Ni, we approximate the binomial distribution at
observation times by a Gaussian distribution via matching the moments, i.e., N (xi | Niθi, Niθi(1− θi)). Since we
consider Gaussian measurements, we can compute the posterior distribution and again match the moments to
approximate the posterior by a binomial distribution.
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1.3 Entropic Matching for Chemical Reaction Networks using a Product Poisson Distribution

Chemical reaction networks (Wilkinson, 2018) are a subclass of CTMCs defined as a system of k reactions
involving n species as

S11X1 + · · ·+ Sn1Xn
c1−→ P11X1 + · · ·+ Pn1Xn

...

S1kX1 + · · ·+ SnkXn
ck−→ P1kX1 + · · ·+ PnkXn,

where cj ∈ R≥0 is called the reaction rate of the j-th reaction and Sij ∈ N0 and Pij ∈ N0 are the stoichiometric
substrate and product coefficients for species Xi in the j-th reaction, respectively. The state of the network is
described by the size of each species, i.e., x = [x1, . . . , xn]

⊤, with xi ∈ Xi := N0 and X :=×n

i=1
Xi. The change

vector vj ∈ Zn corresponding to the j-th reaction is defined by

vj =

P1j − S1j

...
Pnj − Snj

 ,

and the propensity corresponding to the j-th reaction is given by mass-action kinetics as

λj(x, u) = cj(u)

n∏
i=1

(
xi
Sij

)
.

Note that we add the possibility to control the CRN by making the reaction coefficients action dependent. From
this we can define the rate function of the CTMC as

Λ(x, x′, u) =

k∑
j=1

1(x′ = x+ vj)λj(x, u).

We now want to approximate the filtering distribution of a CRN with discrete time observations by a product
Poisson distribution as

qθ(x) =

n∏
i=1

Pois(xi | θi).

Using the entropic matching method the evolution of the parameters can be described by

d

dt
θ(t) = F (θ(t))−1 Eq

[
L†
u(t)∇θ(t) log qθ(t)(X(t))

]
.

For a set of reactions the adjoint operator of the evolution operator which acts on functions ψ is given by

[L†
uψ](x) =

k∑
j=1

λj(x, u){ψ(x+ vj)− ψ(x)}.

As ∇θ(t) log qθ(t)(x) is linear in x, the term inside the expectation can be reduced to

[L†
u(t)∇θ(t) log qθ(t)](x) =

k∑
j=1

vj
θ
λj(x, u(t)).

Combining this with the Fisher matrix of the product Poisson distribution the drift of the lth parameter simplifies
to

d

dt
θl(t) = θl(t)Eq

 1

θl(t)

k∑
j=1

λj(X(t), u(t))vlj
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=

k∑
j=1

Eq [λj(X(t), u(t))] vlj

=

k∑
j=1

Eq

[
cj(u(t))

n∏
i=1

(
Xi(t)

Sij

)]
vlj

=

k∑
j=1

cj(u(t))

n∏
i=1

Eq

[
Xi(t)!

Sij !(Xi(t)− Sij)!

]
vlj

=

k∑
j=1

cj(u(t))

n∏
i=1

θ
Sij

i (t)

Sij !
vlj .

For the LV problem considered in the experiments we get the following drift:

d

dt
θ1(t) = c1θ1(t)− c2θ1(t)θ2(t) + c1

d

dt
θ2(t) = c2θ1(t)θ2(t)− c3(u(t))θ2(t).

Combining the drift in between measurements with the moment matching method at the time points new
measurements are given, we can describe the evolution of the parameters in time.

Similar to the entropic matching for finite buffer queues using a product binomial distribution, we can compute the
update at observation time points using moment matching, which can be approximated with Monte Carlo samples.
In our experiments we use a different approximation for the update in order to obtain closed-form solutions. We
approximate the Poisson distribution at observation times by a Gaussian distribution via matching the moments,
i.e., N (xi | θi, θi). Since we consider Gaussian measurements, we can compute the posterior distribution and
again match the moments to approximate the posterior by a Poisson distribution.

1.4 Entropic Matching for Chemical Reaction Networks with Sub-System Measurements using a
Multinomial Distribution

Consider CRNs with n = n̂+ n̄ species. We denote the state of all species in the system as x = [x̂⊤, x̄⊤]⊤, where
the first n̂ states, also denoted by x̂ = [x1, . . . , xn̂]

⊤, are being estimated using exact continuous observations of
the latter n̄ states x̄ = [xn̂+1, xn̂+2, . . . , xn̂+n̄]

⊤. The exact filter for these systems is considered in (Bronstein
and Koeppl, 2018a).

We want to approximate the exact filter using a multinomial distribution as

qθ(x) = 1y(t)(x)qθ(x̂) = 1y(t)(x)Mult(x̂ | N −
n̄∑

i=1

x̄i, θ),

with event probabilities θ and number of trials N̂ = N −
∑n̄

i=1 x̄i.

Using the method of entropic matching we compute the evolution of the parameters as

d

dt
θ(t) = F (θ(t))−1 Eq

[
L†
u(t){1y(t) ·∇θ(t) log qθ(t)}(X(t))

]
= F (θ(t))−1 Eq

 R∑
j=1

hj(X(t)){1y(t)(X(t) + vj)∇θ(t) log qθ(t)(X(t) + vj)

−1y(t)(X(t))∇θ(t) log qθ(t)(X(t))}
]

= F (θ(t))−1 Eq

 R∑
j=1

hj(X(t)){1(v̄j = 0)(∇θ(t) log qθ(t)(X(t) + vj)−∇θ(t) log qθ(t)(X(t)))

−1(v̄j ̸= 0)∇θ(t) log qθ(t)(X(t))}
]
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= F (θ(t))−1
R∑

j=1

cj

n̄∏
i=1

(
yi
S̄ij

)
(
1(v̄j = 0)Eq

[
n̂∏

i=1

(
X̂i(t)

Ŝij

)
(∇θ(t) log qθ(t)(X(t) + vj)−∇θ(t) log qθ(t)(X(t)))

]

−1(v̄j ̸= 0)Eq

[
n̂∏

i=1

(
X̂i(t)

Ŝij

)
∇θ(t) log qθ(t)(X(t))

])
,

where the gradient of the log probability is given by

∇θ(t) log qθ(t)(x) = 1y(t)(x)


x̂1

θ1(t)
− x̂n̂

θn̂(t)

...
x̂n̂−1

θn̂−1(t)
− x̂n̂

θn̂(t)

 .

This leads to

d

dt
θ(t) = F (θ(t))−1

R∑
j=1

cj

n̄∏
i=1

(
yi
S̄ij

)
1(v̄j = 0)Eq

[
n̂∏

i=1

(
X̂i(t)

Ŝij

)]
v̂1j
θ1(t)

− v̂n̂j

θn̂(t)

...
v̂n̂−1,j

θn̂−1(t)
− v̂n̂j

θn̂(t)

 −1(v̄j ̸= 0)Eq

 n̂∏
i=1

(
X̂i(t)

Ŝij

)
X̂1(t)
θ1(t)

− X̂n̂(t)
θn̂(t)

...
X̂n̂−1(t)
θn̂−1(t)

− X̂n̂(t)
θn̂(t)



 .

The expectations for the multinomial distribution are given by

Eq

[
n̂∏

i=1

(
X̂i

Ŝij

)]
=

n̂∏
i=1

(
θ
Ŝij

i

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!
,

Eq

[
n̂∏

i=1

(
X̂i

Ŝij

)
X̂l

]
=

n̂∏
i=1

(
θ
Ŝij

i

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!

(
Ŝlj + θl(N −

n̂∑
i=1

Ŝij)

)
.

Inserting these expectations, we get the following for the drift:

d

dt
θ(t) =F (θ(t))−1

R∑
j=1

cj

n̄∏
i=1

(
yi
S̄ij

) n̂∏
i=1

(
θ
Ŝij

i (t)

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!1(v̄j = 0)


v̂1j
θ1(t)

− v̂n̂j

θn̂(t)

...
v̂n̂−1,j

θn̂−1(t)
− v̂n̂j

θn̂(t)

− 1(v̄j ̸= 0)


Ŝ1j

θ1(t)
− Ŝn̂j

θn̂(t)

...
Ŝn̂−1,j

θn̂−1(t)
− Ŝn̂j

θn̂(t)


 .

The fisher matrix and its inverse are given by

F (θ)ij =
N̂

θn̂
+ δij

N̂

θi

F (θ)−1
ij =

1

N̂2
Covij ,
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where Covij are the elements of the covariance matrix of the multinomial distribution for 1 ≤ i, j ≤ n̂− 1. This
leads to the drift:

dθl(t)

dt
=

R∑
j=1

cj

n̄∏
i=1

(
yi
S̄ij

) n̂∏
i=1

(
θ
Ŝij

i (t)

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!(
n̂−1∑
i=1

1

N
(−θl(t)θi(t))

(
1(v̄j = 0)(

v̂ij
θi(t)

− v̂n̂j
θn̂(t)

)− 1(v̄j ̸= 0)(
Ŝij

θi(t)
− Ŝn̂j

θn̂(t)
)

)

+
1

N
(θl(t))

(
1(v̄j = 0)(

v̂lj
θl(t)

− v̂n̂j
θn̂(t)

)− 1(v̄j ̸= 0)(
Ŝlj

θl(t)
− Ŝn̂j

θn̂(t)
)

))

=

R∑
j=1

cj

n̄∏
i=1

(
yi
S̄ij

) n̂∏
i=1

(
θ
Ŝij

i (t)

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!(
1(v̄j = 0)

(
n̂−1∑
i=1

1

N
(−θl(t))(v̂ij) +

1

N
v̂lj +

n̂−1∑
i=1

(θi(t)− 1)
1

N
(θl(t))(

v̂nj
θn̂(t)

)

)

−1(v̄j ̸= 0)

(
n̂−1∑
i=1

1

N
(−θl(t))(Ŝij) +

1

N
Ŝlj +

n̂−1∑
i=1

(θi(t)− 1)
1

N
(θl(t))(

Ŝnj

θn̂(t)
)

))

=

R∑
j=1

cj

n̄∏
i=1

(
yi
S̄ij

) n̂∏
i=1

(
θ
Ŝij

i (t)

Ŝij !

)
(N − 1)!

(N −
∑n̂

i=1 Ŝij)!(
1(v̄j = 0)

(
n̂∑

i=1

(−θl(t))(v̂ij) + v̂lj

)
− 1(v̄j ̸= 0)

(
n̂∑

i=1

(−θl(t))(Ŝij) + Ŝlj

))
.

For the closed-loop CRN problem considered in the experiments, we get the following drift:

dθ1(t)

dt
= −c12 1(u(t) = 0)θ1(t) + c21 1(u(t) = 1)θ2(t) + c24θ1(t)θ2(t) + c13θ1(t)θ1(t)− c13θ1(t).

We only need to compute the drift for θ1 as the parameters always need to satisfiy θ1 + θ2 = 1

The filter distribution updates, whenever the observed states jump. If the change vector v̄ is seen, the exact
filtering distribution is given by:

πt+(x) =

∑R
j=1 1(v̄ = v̄j)hj(x̂− v̂j , x̄(t−))πt−(x̂− v̂j , x̄(t−))∑R

j=1 1(v̄ = v̄j)E
[
hj(X̂, X̄(t−))

] ,

where the expectation in the denominator is w.r.t. the filter distribution before the jump. We want to approximate
the posterior using moment matching. Since we work with the multinomial distribution, we only need to match
the first moment M . Here we give the equation for the l-th element of the first moment after the jump Ml,t+:

Ml,t+ =

∑
x x̂l

∑R
j=1 1(v̄ = v̄j)hj(x̂− v̂j , x̄(t−))πt−(x̂− v̂j , x̄(t−))∑R

j=1 1(v̄ = v̄j)E
[
hj(X̂, X̄(t−))

] =

∑R
j=1 1(v̄ = v̄j)E

[
(X̂l + v̂lj)hj(X̂, X̄(t−))

]
∑R

j=1 1(v̄ = v̄j)E
[
hj(X̂, X̄(t−))

] .

We assume that the filter distribution before the jump belongs to the multinomial family. The expectations are
given by:

E
[
hj(X̂, X̄(t−))

]
= cj

n̄∏
i=1

(
yi(t−)
S̄ij

) n̂∏
i=1

(
θ
Ŝij

i

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!
,
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E
[
(X̂l + v̂lj)hj(X̂, X̄(t−))

]
= cj

n̄∏
i=1

(
yi(t−)
S̄ij

) n̂∏
i=1

(
θ
Ŝij

i

Ŝij !

)
N !

(N −
∑n̂

i=1 Ŝij)!

(
Ŝlj + v̂lj + θl(N −

n̂∑
i=1

Ŝij)

)
.

With this we can compute both the drift and the jump updates in closed-form.
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2 DYNAMIC PROGRAMMING

2.1 Dynamic Programming for Continuous-Time MDPs with Discrete State and Action Spaces

We define the value function of the underlying MDP for a state x ∈ X as the expected cumulative reward under
the optimal control, i.e.,

V (x) := max
u[t,∞)

E

[∫ ∞

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds

∣∣∣∣ X(t) = x

]
,

where we assume that the admissible control u(t) can depend on the state X(t).

By applying the principle of optimality, we can rewrite the value function as:

V (x) = max
u[t,∞)

E

[∫ t+h

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds+

∫ ∞

t+h

1

τ
e−

s−t
τ R(X(s), u(s)) ds

∣∣∣∣∣ X(t) = x

]

= max
u[t,t+h)

E

[∫ t+h

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds+ e−

h
τ V (x(t+ h))

∣∣∣∣∣ X(t) = x

]
.

The dynamics of the CTMC are defined through the rate function Λ(x, x′, u, t):

P(X(t+ h) = x′ | X(t) = x, u(t) = u) =

{
Λ(x, x′, u, t)h+ o(h) if x′ ̸= x

1−
∑

x′ ̸=x [Λ(x, x
′, u, t)h+ o(h)] if x′ = x

.

With these we can compute the expectation of V (x(t+ h)) and therefore reformulate V (x):

V (x) = max
u[t,t+h)

E

[∫ t+h

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds

∣∣∣∣∣ X(t) = x

]

+ e−
h
τ

V (x) +
∑
x′ ̸=x

[Λ(x, x′, u, t)h+ o(h)] (V (x′)− V (x))

 .

By bringing the V (x) terms to the left hand side and dividing by h we get

V (x)(
1− e−h

τ

h
) = max

u[t,t+h)

1

h
E

[∫ t+h

t

1

τ
e−

s−t
τ R(X(s), u(s)) ds

∣∣∣∣∣ X(t) = x

]

+ e−
h
τ

∑
x′ ̸=x

[
Λ(x, x′, u, t) +

o(h)

h

]
(V (x′)− V (x))

 .

Taking the limit limh→0 we find the optimality conditions as

1

τ
V (x) = max

u

1

τ
R(x, u) +

∑
x′ ̸=x

Λ(x, x′, u, t)(V (x′)− V (x)),

where we define the state action value function as

Q(x, u) = R(x, u) + τ
∑
x′ ̸=x

Λ(x, x′, u, t)(V (x′)− V (x)).

In the following steps, we show how we can reformulate the value function as a contraction mapping.

V (x) = max
u

R(x, u) + τ
∑
x′ ̸=x

Λ(x, x′, u, t)(V (x′)− V (x)).
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V (x)

1 + τ
∑
x′ ̸=x

Λ(x, x′, u, t)

 = max
u

R(x, u) + τ
∑
x′ ̸=x

Λ(x, x′, u, t)V (x′).

V (x) = max
u

R(x, u)

1 + τ
∑

x′ ̸=x Λ(x, x
′, u, t)

+ τ
∑
x′ ̸=x

Λ(x, x′, u, t)

1 + τ
∑

x′ ̸=x Λ(x, x
′, u, t)

V (x′).

With u∗ as the maximizer of the right hand side, we can also write it in the following form:

Q(x, u∗) =
R(x, u∗)

1 + τ
∑

x′ ̸=x Λ(x, x
′, u∗, t)

+ τ
∑
x′ ̸=x

Λ(x, x′, u∗, t)

1 + τ
∑

x′ ̸=x Λ(x, x
′, u∗, t)

max
u′

Q(x′, u′).

2.2 Q-Learning

We built our approximation of the state action value function on the Q-Learning method by Bradtke and
Duff (1994). In their work they extended traditional reinforcement learning methods, originally designed for
discrete-time MDPs, to encompass SMDPs. In SMDPs the process dynamics are described by semi-Markov
processes, which are a generalization of CTMC. Equivalently, our methodology is easily adaptable to scenarios,
where the fully observed problem can be described by a SMDP.

In their method, transitions from state x to state x′ are sampled while selecting action u. Subsequently, the
state-action value function Q(x, u) is updated using the information from the sampled transition and the associated
reward R(x, u). In contrast, in our method, we forego the sampling of transitions and, instead, aggregate over all
possible transitions, harnessing complete knowledge of the MDP. This is possible, since the possible transitions
for each state-action pair are finite.

We use a fully connected neural network Q(x, u; θ) to approximate the state-action value function. To enhance
stability in the learning process, the utilization of a target network Q̂(x, u; θ−) is a viable strategy. This secondary
network is updated at a slower rate compared to the original network. Algorithm 1 shows the pseudo-code for
this Q-Learning method.

Algorithm 1 Q-Learning without Transition Sampling
Initialize state-action value function Q with random weights θ
Initialize target state-action value function Q̂ with weights θ− = θ
Set target update parameter κ
for episode = 1, M do

Sample a batch of states x
Get rates Λ(x, x′, u, t) for all possible next states x′ and all actions u
Compute the target y(x, u) = R(x, u) + τ

∑
x′ ̸=x Λ(x, x

′, u, t)(maxu′ Q̂(x′, u′; θ−)−maxu′ Q̂(x, u′; θ−))
Perform a gradient step on the mean squared error between Q(x, u; θ) and y with respect to θ
Update the target network: θ′ ← κθ + (1− κ)θ′

end for
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3 EXPERIMENTS

3.1 Additional Information on Experiments

The reward function for the considered experiments in the main section is given by R(x, u) = − 1
n

∑n
i=1(

xi−x∗
i

l )2.
For the problems with discrete-time measurements we chose Gaussian noise measurements of the exact states,
N (y | x, σ2I). For the queueing problem we observe measurements of queue 2 and queue 3, while the first queue
is unobserved. For the LV problem both species are observed. The parameters for the experiments are given
in the tables below. In Fig. 7 we provide sample trajectories for the LV problem with a constant control. By
comparing these with the results in the main section, we can see that the our control method effectively combines
the dynamics of both actions, leading to trajectories that are closer to the goal state.

Table 1: Parameter of the queueing problem

Parameter Value
number of queues n 3

buffer size N 1000
arrival rate λ1 10.0
arrival rate λ2 10.0
service rate µ1 20.0
service rate µ2 20.0
service rate µ3 20.0
reward scale l 100.0
goal state x∗ [0, 0, 0]⊤

discount τ 5.0
observation noise σ2 5.0

Table 2: Parameter of the LV problem

Parameter Value
number of species n 2

c1 2.5
c2 0.025

c3(u = 0) 1.25
c3(u = 1) 2.5

reward scale l 20.0
goal state x∗ [100, 100]T

discount τ 5.0
observation noise σ2 5.0



Approximate Control for Continuous-Time POMDPs

State Projection Observations State Projection Observations

50

100

x
1
(t

)

100

200

x
2
(t

)

0 1 2 3 4 5

Time t in s

−0.05

0.00

0.05

u
(t

)

100

200

x
1
(t

)

100

200

x
2
(t

)

0 1 2 3 4 5

Time t in s

0.95

1.00

1.05

u
(t

)

Figure 7: Sample trajectory for the LV problem with constant control.

Table 3: Parameter of the closed-loop CRN problem

Parameter Value
number of species n 4

total species number N 300
c12 0.05
c21 0.05
c13 0.05
c31 0.05
c24 0.05
c42 0.05
c34 0.05
c43 0.05

goal state x∗ [75, 75, 75, 75]⊤

reward scale l 1.0
discount τ 5.0

3.2 Projection Filter vs Exact Filter

To be able to evaluate the effect the projection filter has on the control method, we compare it to a policy
which employs the QMDP method with respect to the exact filtering distribution. Because exact filtering is only
tractable on small state spaces, we create a simpler queueing example based on the experiment in the main section
with parameters given in Table 4. For this problem we run 100 sample trajectories for each of the following
methods:

• the QMDP method based on the projection filter,

• the QMDP method based on the exact filter,

• and an optimal controller with full knowledge of the state.

For the projection filter we choose again the product binomial distribution as described in Section 5. Fig. 8 shows
the kernel density estimates of the cumulative reward for the different polices based on the sample trajectories.
Overall the results of all policies are very similar, likely due to the relatively modest scale of the problem at hand.
Still we can see that the optimal controller with full knowledge performs best, which is attributable to the fact
that the other two methods only have partial observations of the system. The method based on the exact filtering
only performs slightly better than the method based on the projection filter. This shows, that the performance
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Figure 8: Kernel density estimates of the cumulative
reward for different policies using 100 samples.

loss of using the projection method is very small, making it a reasonable choice for larger problems, where the
exact filtering method is intractable.

Table 4: Parameter of the queueing problem

Parameter Value
number of queues n 3

buffer size N 5
arrival rate λ1 1.0
arrival rate λ2 1.0
service rate µ1 2.0
service rate µ2 2.0
service rate µ3 2.0
reward scale l 1.0
goal state x∗ [0, 0, 0]⊤

discount τ 5.0
observation noise σ2 0.5
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