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Abstract

Graph Neural Networks (GNNs) have demon-
strated remarkable success in modeling com-
plex relationships in graph-structured data.
A recent innovation in this field is the fam-
ily of Differential Equation-Inspired Graph
Neural Networks (DE-GNNs), which leverage
principles from continuous dynamical systems
to model information flow on graphs with
built-in properties such as feature smooth-
ing or preservation. However, existing DE-
GNNs rely on first or second-order temporal
dependencies. In this paper, we propose a
neural extension to those pre-defined tempo-
ral dependencies. We show that our model,
called TDE-GNN, can capture a wide range
of temporal dynamics that go beyond typical
first or second-order methods, and provide
use cases where existing temporal models are
challenged. We demonstrate the benefit of
learning the temporal dependencies using our
method rather than using pre-defined tempo-
ral dynamics on several graph benchmarks.

1 INTRODUCTION

Graph neural networks (GNNs) are now ubiquitous
in diverse applications from social media to chemistry
and physical systems, see Wu et al. (2020); Wang et al.
(2021) and references within. In recent years, it has
been shown that GNNs can be viewed as dynamical
systems. Specifically, Ordinary Differential Equations
(ODE) based methods have been found to be useful,
providing understandable behavior, such as smoothing
(Poli et al., 2019; Chamberlain et al., 2021), energy
conservation (Eliasof et al., 2021; Rusch et al., 2022),
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anti-symmetry (Gravina et al., 2023), pattern formation
(Wang et al., 2022; Choi et al., 2023b), and more. We
refer to this family of architectures as DE-GNNs.

Many works in the field of DE-GNNs consider station-
ary data, that is, data that is not time dependent. As
such, most works focus on the spatial interactions be-
tween nodes, and how to better model them. At the
same time, the majority of existing DE-GNNs employ
first-order temporal dynamics, which, as we show later
in Example 1, can be limiting. Therefore, in this pa-
per, we study the importance of the time domain of
DE-GNNs, and propose a novel mechanism to model
the temporal order and dependencies of the underlying
ODEs of GNN layers in a data-driven fashion. As we
show, the utilization of the proposed advanced tem-
poral domain learning mechanism offers a practical
performance advantage, while also naturally bridging
between works that have been proposed to handle tasks
for non-stationary data by time-dependent graph neu-
ral networks (TD-GNNs), as in Taheri and Berger-Wolf
(2019); Guan et al. (2022); Xiong et al. (2020); Pilva
and Zareei (2022); Longa et al. (2023).

The goal of this work is to develop and study a novel
mechanism to model the time domain of DE-GNNs.
Our approach, called TDE-GNN 1 , is based on learning
(i) the temporal order, and, (ii) the temporal dependency
in a data-driven fashion. The temporal order defines
the order of the underlying dynamics as favored by
the data, while the temporal dependency specifies the
relationship between intermediate DE steps. To the
best of our knowledge, this is the first work to study
the temporal domain of DE-GNNs, in the sense that it
learns higher-order DEs in a general manner. All DE-
GNNs known to us, utilize either first or second-order
time dependencies. In other words, existing DE-GNNs
assume fixed temporal behavior, which is constant in
time and is pre-defined. This shortcoming, as we show
later, can be rather limiting when complex phenom-
ena are to be modeled. Our TDE-GNN can also be
viewed as an extension for Residual Networks (He et al.,
2016), which is aimed to incorporate node features from

1Read as Teddy-GNN.
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previous time steps (i.e., layers) in a learnable manner.

2 RELATED WORK

Graph Neural Networks Inspired by Differential
Equations. Adopting the interpretation of convolu-
tional neural networks (CNNs) as discretizations of
ODEs and PDEs (Ruthotto and Haber, 2018; Chen
et al., 2018b; Zhang et al., 2019) to GNNs, works like
GCDE (Poli et al., 2019), GODE (Zhuang et al., 2020),
GRAND (Chamberlain et al., 2021), PDE-GCND (Elia-
sof et al., 2021), GRAND++ (Thorpe et al., 2022) and
others, propose to view GNN layers as time steps in
the integration of the non-linear heat equation. This
perspective allows to control the diffusion (smoothing)
in the network, to understand oversmoothing (Nt and
Maehara, 2019; Oono and Suzuki, 2020; Cai and Wang,
2020) in GNNs. Thus, works like Chien et al. (2021);
Luan et al. (2022); Giovanni et al. (2023) propose to
utilize a learnable diffusion term, thereby alleviating
oversmoothing. Other architectures like PDE-GCNM

(Eliasof et al., 2021) and GraphCON (Rusch et al., 2022)
propose to mix diffusion and oscillatory processes (e.g.,
based on the wave equation) to avoid oversmoothing by
introducing a feature energy preservation mechanism.
Nonetheless, as noted in Rusch et al. (2023), besides
alleviating oversmoothing, it is also important to de-
sign GNN architectures with improved expressiveness.
Recent examples of such networks are Gravina et al.
(2023) that propose an anti-symmetric GNN to allevi-
ate over-squashing (Alon and Yahav, 2021), Wang et al.
(2022); Choi et al. (2023b) that formulate a reaction-
diffusion GNN to enable non-trivial pattern growth,
Zhao et al. (2023) that propose a convection-diffusion
based GNN, advection-reaction-diffusion to allow di-
rected information transportation (Eliasof et al., 2023),
and Maskey et al. (2023) that formalize a fractional
Laplacian ODE based GNN with improved expressive-
ness. A common theme of most of the aforementioned
works, is the focus on the spatial term of the ODE,
while the temporal term is set to be of first or second
order. In this work, we propose to extend the family
of ODE-inspired GNNs from the perspective of the
temporal domain.

The Temporal Domain in Graph Neural Net-
works. In recent years, GNNs for spatio-temporal data
were developed. Some examples are Chen et al. (2018a);
Seo et al. (2018); Zhao et al. (2019) that combine graph
convolution with LSTM mechanisms, and other com-
bines graph attention with temporal mechanisms, as
in Zhu et al. (2020a). Other works like Pareja et al.
(2020); Bai et al. (2020) propose adaptive graph con-
volutions for temporal graphs. It has also been shown
in Gutteridge et al. (2023) that adjacency matrix up-
date according to intermediate node features is useful

for long-range benchmarks. Furthermore, recent works
have shown that GNNs for temporal graph datasets can
benefit from the interpretation and construction of ordi-
nary differential equations. For example, it was shown
in Xiong et al. (2023); Sun et al. that reaction and
diffusion systems can improve traffic prediction, and it
was shown in Choi et al. (2023a) that advection and
diffusion can improve weather forecasting performance.
However, all the considered works discussed here utilize
first-order temporal dynamics, while focusing on the
spatial term of the ordinary differential equation. In
this paper, we explore and study the temporal domain
in the context of DE-GNNs, and show its importance
to model complex systems and improve performance.

Multihop Graph Neural Networks. Multihop
GNN architectures were extensively studied in previous
years, leading to several popular architectures such as
JK-Net (Xu et al., 2018) and MixHop (Abu-El-Haija
et al., 2019). These works take inspiration from earlier
works like DenseNets (Huang et al., 2017), where the
main idea is to consider a combination of feature maps
from multiple layers, instead of only considering the last
layer feature map as in ResNets (He et al., 2016). By
interpreting layers as time steps, similarities between
higher-order DE-inspired GNNs and multihop meth-
ods can be established. We distinguish our TDE-GNN
from JK-Net and MixHop in a three-fold manner. First,
these methods do not stem from an ODE perspective
that allows to construct higher-order DE-GNNs. Sec-
ond, methods like JK-Net can become computationally
expensive if many layers are used within a network, as
it considers all previous layers. On the other hand, our
TDE-GNN is bounded by a maximal order hyperpa-
rameter, as we discuss later. Third, in TDE-GNN we
propose a novel attention mechanism to learn the rela-
tions between layers which was not studied in previous
works.

3 MATHEMATICAL
BACKGROUND AND
MOTIVATION

In this section, we provide a related mathematical
overview, and motivate the necessity of our TDE-GNN
architecture that enables higher-order DE-GNNs, by
an example where first-order models are challenged.

Notations. We consider a graph G = (V,E), where
V is a set of n nodes, and E ⊆ V × V is a set of
m edges. The i-th node is associated with a possibly
time-dependent hidden feature vector fi(t) ∈ Rk. Let
F (t) = [f0(t), . . . , fn−1(t)]⊤ be a n × k matrix that
represents the node state (features) at time t.
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Differential Equations Inspired GNNs (DE-
GNNs). The basic idea of the DE-GNN family of
architectures is to discretize the following ODE:

dF

dt
= s (F (t);G) (1a)

F (t = 0) = F(0) (1b)

where s(F (t);G) is a spatial operator that depends on
the graph G and the node features F (t). Specifically, it
is common to employ graph diffusion, combined with a
channel mixing operator implemented by a multilayer
perceptron (MLP). Some examples of such methods
were proposed in Chamberlain et al. (2021); Eliasof et al.
(2021); Thorpe et al. (2022); Choi et al. (2023b), and
others. Because we focus on the temporal component
of the ODE in this paper, we employ a similar spatial
term that combines diffusion and channel mixing, as
discussed later. Then, the graph ODE in Equation (1)
is discretized in time, until time T , typically with the
forward Euler method. The chosen discretization times
are considered as GNN layers, with a total of L time
steps with step size h such that T = hL.

For stationary problems (e.g., node classification), the
input consists of a single time step at time T0. Given
input features I(0) ∈ Rn×kin , we embed them us-
ing an MLP to obtain the initial conditions of the
ODE, denoted by F(0) ∈ Rn×k. For spatio-temporal
tasks (e.g., forecasting node quantities), the node fea-
tures [I(0), . . . , I(r)] are provided at sampled times
[T0, . . . , Tr], and embedded in latent space. The node
features at the final GNN layer F(L) are then fed to
a classifier to output the desired shaped prediction to
be compared with the labeled data, depending on the
task.

The right-hand side of Equation (1a) describes the spa-
tial behavior of the DE-GNN, and has been thoroughly
studied in previous works, as discussed in Section 2.
The left-hand side, which describes the temporal order
and dynamics of the ODE, however, did not receive sig-
nificant attention, to the best of our knowledge. Most of
the works known to us, also discussed in Section 2, con-
sider only first-order time dynamics, with the exception
of Eliasof et al. (2021); Rusch et al. (2022) that limit
their models to second-order dynamics. Thus, in this
work, we focus on the left-hand side of Equation (1a),
which describes the temporal order and dynamics of
DE-GNNs. We will show that learning the temporal
domain of the DE-GNN offers two major benefits: (i)
interpretable learned weights in the time domain, and
(ii) improved downstream task performance.

Problem Formulation. The downstream tasks con-
sidered in this work aim to predict node values, either
by regression or classification. The common theme

Figure 1: An illustration of a pendulum.

among the considered tasks is that we view them as
the prediction of the time and space evolution of the
node features, given past and current node features.
A popular approach is to treat the problem by com-
bining a GNN with time series mechanisms such as
LSTM (Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014), to predict the future state by using
the current state, as discussed in Section 2. While such
techniques have shown promising results, we provide
Example 1, where a standard GNN-LSTM is challenged,
in the sense that it does not perform better than a naive
solution. We attribute this shortcoming to the basic as-
sumption of models like LSTM, that future predictions
can be based on the previous state, effectively assuming
first-order dynamics, which may not be sufficient to
model higher-order phenomena, as shown below.

Example 1. (Nonlinear Pendulum) Let us consider
the problem of a nonlinear pendulum. The pendulum
can be treated as a graph with two nodes. The first
node v0 is fixed at (0, 0), and the second, v1, is located
at (x1(t), y1(t)) that evolve in time. We illustrate the
pendulum system in Figure 1. Evaluating the coor-
dinates of the nodes v0, v1 at time t can be done by
solving the Newtonian mechanics that define the non-
linear pendulum’s motion. Specifically, it is described
by the following equation:

∂2F

∂t2
= q(F ), (2)

where q(F ) is a gradient of the energy that characterizes
the behavior of the pendulum discussed in Appendix C.1.

We discretize Equation (2) using the leapfrog method
(Ascher, 2008), to generate a time series data of the
pendulum vertices locations. Recall that node v0 is
static, and remains in (0,0), while v1 moves according
to Equation (2). We plot the location of v1 in Figure 2a.

We define a task whose inputs are observed locations
of the pendulum nodes, and the goal is to predict the
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(a)

(b)

Figure 2: The pendulum location prediction example.
(a). Pendulum y1(t) coordinate vs. time (b) The predic-
tion performance of naive, 1st, and 2nd order models.
Higher-order models offer improved predictions.

future locations of nodes. We consider four possible
prediction models to address this task: (i) A naive pre-
diction model, oftentimes called a consistency model,
that simply outputs the latest available state. Formally,
it is given by F(l+1) = F(l). (ii) A GNN-LSTM, similar
to Seo et al. (2018), (iii) a second order GNN-LSTM
discussed in Appendix C.1, and, (iv) our TDE-GNN
limited to second order for a fair comparison, to be
defined later in Section 4.

We report the obtained prediction mean squared error
(MSE) compared to the ground-truth data in Figure
2b. We observe that the first-order GNN-LSTM model
performs as good as the naive model of consistency,
thereby not offering improved results as one would like.
To understand the limitations of GNN-LSTM, it is key
to recall Equation (2), and see that a pendulum’s mo-
tion involves a second-order system. That is, to predict
a future location F(l+1), one is required to use both
F(l) and F(l−1). However, the first-order GNN-LSTM
mechanism considers only the latest state (node fea-
tures) F(l). Indeed, when considering a second-order
GNN-LSTM that involves both F(l) and F(l−1) one
can obtain improved performance. Finally, we see that
our TDE-GNN limited to second-order offers further
prediction performance improvement. The convergence
curves of the considered networks are plotted in Fig-
ure 2b.

This example demonstrates that the order (length)

of the history used for prediction is important. If
the history used is too short, it may be impossible to
accurately predict the behavior of systems with order
higher than the available history length. Since for many
problems, the order is unknown and can vary in time,
we allow TDE-GNN to learn the order from the data.

4 TIME DEPENDENT
DIFFERENTIAL EQUATIONS
INSPIRED GNNS

Example 1 demonstrates the importance of utilizing
higher-order temporal behavior to fit complex data.
Motivated by this example, we propose and study, a
method that can learn the temporal domain of the DE-
GNNs from the data, in addition to leveraging useful
spatial terms, as proposed in other works and discussed
in Section 2. Therefore, we call our method TDE-GNN.

4.1 TDE-GNN Learns Higher-Order DEs

As discussed, previous works have so far mostly con-
sidered first order time dependent GNNs as in Equa-
tion (1), whose forward Euler discretization reads:

F(l+1) = F(l) + hs(F(l);G), (3)

where F(l) ∈ Rn×k are the node features at the l-th
layer, h is a positive discretization step size, and s is
the spatial term. To focus on the proposed temporal
mechanism, in this work we follow previous works that
combine graph diffusion with channel mixing. We
elaborate on the implementation of s in Appendix B.3.

In this paper, we generalize and study the time order
and dynamics, and introduce a TDE-GNN layer that
stems from the following ODE, with a maximal order
of o ≥ 1, which is a hyperparameter:

o∑
p=1

cp
dpF

dtp
= s (F (t);G) , (4)

accompanied by the initial conditions

dpF

dtp

∣∣∣
t=0

= F (p)(t = 0) p = 0, . . . , o− 1. (5)

The forward Euler discretization of Equation (4) yields
a layer of our extended, higher-order, TDE-GNN layer:

F(l+1) =

o∑
p=1

cp(H(l)
o )F(l−p+1) + hs(F(l);G). (6)

Here, we define c(H(l)
o ) = [c1(H(l)

o ), . . . , co(H(l)
o )] ∈

Ro, which are learned weights based on previous node
features of up to order o, formally denoted by:

H(l)
o = [F(l)∥F(l−1)∥ . . . ∥F(l−o+1)] ∈ Ro×n×k, (7)
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where ∥ denotes the stacking operation. It is important
to note that Equation (6) models the dynamics of the
l-th layer with o−1 previous layers, and therefore yields
a discretization of an ODE of order o. For stability
of computation, and for interoperability, we demand
that

∑o
p=1 cp = 1. This constraint ensures that the

coefficients approximate derivatives of the data up to o-
th order (Evans, 1998). Because in this paper we focus
on the temporal behavior of the underlying graph ODE,
in Section 4.2 we describe our mechanism that learns
the temporal order and dynamics encoded by c(H(l)

o ),
and for completeness, in Appendix B.3 we discuss the
spatial term of our TDE-GNN.

Understanding the learned coefficients c(H(l)
o ).

Before we proceed with implementation details, it is
important to note that Equation (6) extends the idea
of residual networks. Typical residual networks (as in
ResNet (He et al., 2016)) can be obtained by Equa-
tion (6) with o = 1 and c1 = 1, which yields the
forward Euler method that is often used to discretize
diffusive GNNs (Chamberlain et al., 2021; Eliasof et al.,
2021). Also, second order oscillatory GNNs as pro-
posed in Eliasof et al. (2021); Rusch et al. (2022),
can be implemented by Equation (6) with o = 2 and
c = [c1, c2] = [2,−1]. Overall, our TDE-GNN can
implement, as well as extend, both of these types of
architectures by learning higher-order dynamics with

adaptive coefficients c(H(l)
o ). Those extensions allow

our TDE-GNN to model a diverse family of dynam-
ics that cannot be obtained with the aforementioned
methods. We now provide Example 2 that shows how
a third-order DE-GNN is implemented by our method
and how the learned coefficients can be interpreted.

Example 2. (3rd Order TDE-GNN) We now draw
a link between a third-order TDE-GNN (with an order
hyperparameter o = 3), and a third-order ODE. Note
that every set of coefficients {c1, c2, c3} that sum to 1,
with a step size h = 1 can be spanned by the basis:c1

c2
c3

 = α1

1
0
0

 + α2

 2
−1
0

 + α3

 2
−2
1

 , (8)

with the constraint
∑3

i=1 αi = 1. Note that the vectors
that multiply α1, α2 and α3 correspond to a first-order,
second-order, and third-order finite difference, respec-

tively (i.e., dF (t)
dt , d2F (t)

dt2 , and d3F (t)
dt3 ). Since the basis

in Equation (8) is complete, for any c1, c2, c3 that sum
to 1, there exists a 3rd order differential equation whose
discretization yields the same coefficients.

Thus, treating the temporal domain in DE-GNNs us-
ing our learnable framework allows us to reveal and
understand the order of the underlying time-dependent

process in a data-driven fashion. Furthermore, as we
have shown in Example 1, such a treatment can be
crucial to accurately model data that stems from higher-
order phenomena. Namely, if the system we intend to
predict is of order o and we do not expose the network
to a history of at least o time steps, then accurate
predictions may not be possible.

4.2 Implementing c(H(l)
o )

At the core of our TDE-GNN stands the learning of

the temporal coefficients c(H(l)
o ), with two key require-

ments for a valid implementation: (i) the vector c

sums to 1, i.e.,
∑o

p=1 cp(H(l)
o ) = 1, and, (ii) the en-

tries of c(H(l)
o ) can be any real-valued number. These

requirements offer both training stability (due to the
normalization in requirement (i)), and the approxima-
tion of a finite order derivative (Evans, 1998). We
now discuss two implementations that we consider in
this paper, and later, in our experiments in Section 5,
we compare their performance. In appendix B.1 we
discuss a possible implementation that transforms a
higher-order ODE into a system of first-order ODEs,
and our rationale for using maintaining the view of a
higher-order ODE.

Direct parameterization. Perhaps the most intu-
itive implementation is obtained by direct parameter-
ization, where we directly learn a vector c̃ ∈ Ro, and
divide it by the sum of its entries (to satisfy requirement
(i)), leading to the temporal coefficients vector:

c =
c̃∑o

p=1 c̃p
. (9)

Note that in this case, the coefficients vector c is not

directly influenced by the history H(l)
o , but it is still

optimized according to the history via backpropagation.

Attention-based parameterization. In addition
to the direct parameterization, we propose a novel
mechanism that leverages an attention mechanism as
in Vaswani et al. (2017). A key feature of the atten-
tion mechanism is that it outputs a pairwise score of
its input. The novelty here is to apply the attention
mechanism on the temporal dimension. To this end, by
collecting and appropriately shaping the node features

of the previous o layers, denoted by H(l)
o ∈ Ro×n×k as

defined in Equation (6), and feeding it to an attention
layer (Vaswani et al., 2017), one obtains a pairwise
score map S ∈ [0, 1]o×o. The last row in S represents
the temporal scores of the l-th layer with the previous
layers o − 1. Clearly, requirement (i) is met by the
SoftMax function used in the attention mechanism in
Vaswani et al. (2017). However, a SoftMax function
yields non-negative pairwise values, which do not sat-
isfy requirement (ii). Such a limitation will prevent, for
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Figure 3: The embedding of input features I using an
MLPs (e1, e2, e3) to obtain o = 3 initial conditions,
followed by our TDE-GNN for stationary problems.

instance, the ability to implement the oscillatory equa-
tion discussed in 4.1 using our TDE-GNN. Therefore,
we follow the same implementation as in Vaswani et al.
(2017) up to the SoftMax step. Instead, we only apply a
normalization of the obtained pairwise interaction map
by dividing it by its sum. This procedure satisfies both
requirements (i) and (ii). We provide further details
about the implementation in Appendix B.2.

Initial conditions. When considering high-order
ODEs, the aspect of the initial conditions of the model
is important (Ascher and Petzold, 1998). We consider
two use cases that are treated differently. First, when
solving a stationary problem such as node classification,
where only a single initial temporal condition is avail-
able, we use o MLPs to embed this single state into o
states, and then use the network in Equation (6). This
initialization, as well as the application of a TDE-GNN
at the first layer, is illustrated in Figure 3.

For time series graph problems where we have a time
series as input, we use at least o historical data in order
to initialize the states. In this case, the frequency of
the observed input can be different than the frequency
of the hidden space F(l) that discretizes the ODE, in
the sense that we can use more hidden layers than
observed inputs. Upon receiving at least o input ob-
servations, we embed them using an MLP to obtain
o hidden initial conditions. In Figure 4, we illustrate
the described process as well as the application of a
TDE-GNN layer to the inputs. Past the initialization
step, in both stationary and non-stationary cases, the
features update relies on previously computed hidden
node features, as described in Equation (6).

Complexity. Compared to existing DE-GNN meth-
ods, our TDE-GNN involves additional o− 1 additions
of previous node features, to allow modeling differential
equations of order o, and achieve improved performance,
as we show in Section 5. If the coefficients c are ob-
tained using the direct parameterization, then o − 1
scalar multiplications are required. If the attention
based mechanism is utilized to learn and evaluate c,

Figure 4: The initialization of TDE-GNN for spatio-
temporal data with a history of o = 3.

adding O(n · k · o2) multiplications. We note that o,
the order hyperparameter of TDE-GNN, is typically
significantly smaller than the number of channels k
and nodes n, because it is bounded by the number of
layers L. In Appendix C.4 we report the training and
inference runtimes of the proposed implementations.

Properties of TDE-GNN. Our TDE-GNN draws
inspiration from a stable discrete process of ODE in-
tegration, that generates future time values, which is
regarded as the node features evolution throughout
the layers. Therefore, a natural question that arises
is whether the obtained network is stable. Indeed, if
the proposed architecture is unstable, then it may be
difficult to fit the data, or, the network may not gener-
alize well (see Haber and Ruthotto (2017) for stability
definition and a thorough discussion). To this end, we
prove the following theorem in Appendix A.

Theorem 1 (Stability of TDE-GNN). For the dis-
cretization of Equation (6), there exists a vector c =
[c1, . . . , co] such that the discrete solution is stable.

In our ablation study in Section 5.3, we verify Theo-
rem 1, and show that the learnable weights c can be
interpreted as finite difference derivatives.

5 EXPERIMENTS

To demonstrate the efficacy of TDE-GNN, we experi-
ment with two tasks: (i) node classification, and, (ii)
spatio-temporal node forecasting, on several bench-
marks. We provide benchmark details and statistics
in Appendix C.2. The hyperparameters are deter-
mined using a grid search, as discussed in Appendix
C.3. Because we propose two possible implemen-
tations of the temporal learning mechanism in Sec-
tion 4.2, we denote the direct parameterization vari-
ant by TDE-GNND and the attention based param-
eterization variant by TDE-GNNA. A detailed de-
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Dataset Squirrel Film Chameleon Citeseer Pubmed Cora
Homophily 0.22 0.22 0.23 0.71 0.74 0.81

General GNNs
GCN 23.96±2.01 26.86±1.10 28.18±2.24 73.68±1.36 88.13±0.50 85.77±1.27
GAT 30.03±1.55 28.45±0.89 42.93±2.50 74.32±1.23 87.62±1.10 86.37±0.48
GCNII∗ 38.47±1.58 32.87±1.30 60.61±3.04 77.13±1.48 90.30±0.43 88.49±1.25
Geom-GCN∗ 38.32±0.92 31.63±1.15 60.90±2.81 77.99±1.15 90.05±0.47 85.27±1.57
GGCN 55.17±1.58 37.81±1.56 71.14±1.84 77.14±1.45 89.15±0.37 87.95±1.05
H2GCN 36.48±1.86 35.70±1.00 60.11±1.71 77.11±1.57 89.49±0.38 87.87±1.20
FAGCN 42.59±0.69 34.87±1.35 55.22±2.11 74.01±1.85 76.57±1.88 86.34±0.67
GPRGNN 31.61±1.24 34.63±1.22 46.58±1.71 77.13±1.67 87.54±0.38 87.95±1.18
LINKX 61.81±1.80 36.10±1.55 68.42±1.38 73.19±0.99 87.86±0.77 84.64±1.13
ACMII∗ 67.40±2.21 37.09±1.32 74.76±2.20 77.12±1.58 89.71±0.48 88.25±0.96

Multihop GNNs
MixHop 43.80±1.48 32.22±2.34 60.50±2.53 76.26±1.33 85.31±0.61 87.61±0.85
JK-Net 45.03±1.73 35.14±1.37 63.79±2.27 76.05±1.37 88.41±0.45 85.96±0.83

GNNs Inspired by DEs
GRAND 40.05±1.50 35.62±1.01 54.67±2.54 76.46±1.77 89.02±0.51 87.36±0.96
PDE-GCN∗ N/A N/A 66.01±2.11 78.45±1.98 89.93±0.62 88.60±1.77
GRAND++ 40.06±1.70 33.63±0.48 56.20±2.15 76.57±1.46 88.50±0.35 88.15±1.22
NSD∗ 56.34±1.32 37.79±1.15 68.68±1.58 77.14±1.57 89.49±0.40 87.14±1.13
GRAFF∗ 59.01±1.31 37.11±1.08 71.38±1.47 77.30±1.85 90.04±0.41 88.01±1.03
GREAD∗ 59.22±1.44 37.90±1.17 71.38±1.30 77.60±1.81 90.23±0.55 88.57±0.66

CDE* 55.04±1.73 40.08±1.49 68.45±2.47 80.04±1.75 90.05±0.64 87.19±1.44
FLODE 64.23±1.84 37.16±1.42 73.60±1.55 78.07±1.62 89.02±0.38 86.44±1.17

Vanilla baseline
DE-GNN 63.97±1.77 36.04±1.08 70.99±2.27 76.58±1.89 89.92±0.59 87.03±1.14

TDE-GNN (ours)
TDE-GNND 70.19±1.74 37.29±1.19 77.38±2.05 77.66±1.91 90.28±0.53 87.99±1.02
TDE-GNNA 71.38±1.93 37.02±1.27 78.48±2.11 77.47±1.82 90.08±0.49 87.93±0.95

Table 1: Node classification accuracy (%). ↑. * denotes the best result out of several variants.

scription of the TDE-GNN architectures is given in
Appendix B.4. Our implementation is available at
https://github.com/MosheEliasof/TDE-GNN.

We compare TDE-GNN with a baseline model that we
call DE-GNN and is implemented according to Equa-
tion (6) with o = 1 and c1 = 1, that is, it considers
only first-order dynamics, similarly to existing GNNs
inspired by DEs. The inclusion of this baseline model
to our experiments helps to directly quantify the con-
tribution of our work, TDE-GNN, and our results show
the consistent improvement of TDE-GNN over the first-
order baseline. Additionally, we compare the obtained
performance with other GNNs and in particular to
other DE-GNNs such as GRAND (Chamberlain et al.,
2021), PDE-GCN (Eliasof et al., 2021), GRAND++
(Thorpe et al., 2022), GREAD (Choi et al., 2023b),
CDE (Zhao et al., 2023), and FLODE (Maskey et al.,
2023), as well as other GNNs, as described below.

5.1 Node Classification

We experiment with homophilic and non-homophilic
datasets. The homophilic datasets are Cora (McCallum

et al., 2000), Citeseer (Sen et al., 2008), and Pubmed
(Namata et al., 2012). The non-homophilic datasets are
Chameleon, Squirrel, and Film from Rozemberczki et al.
(2021a). In all cases, we use the 10 splits from Pei et al.
(2020), and report their average accuracy and standard
deviation in Table 1. We consider four types of base-
lines: (i) ‘general’ GNN architectures, such as GCN
(Kipf and Welling, 2017), GAT (Veličković et al., 2018),
GCNII (Chen et al., 2020), Geom-GCN (Pei et al.,
2020), GGCN (Yan et al., 2021), H2GCN (Zhu et al.,
2020b), FAGCN (Bo et al., 2021), GPRGNN (Chien
et al., 2021), LINKX (Lim et al., 2021), and ACMII
(Luan et al., 2022). (ii) Multihop GNNs such as Mix-
Hop (Abu-El-Haija et al., 2019) and JK-Net (Xu et al.,
2018). (iii) GNNs inspired by differential equations
(DEs), including: GRAND (Chamberlain et al., 2021),
PDE-GCN (Eliasof et al., 2021), GRAND++ (Thorpe
et al., 2022), NSD (Bodnar et al., 2022), GRAFF (Gio-
vanni et al., 2023), GREAD (Choi et al., 2023b), CDE
(Zhao et al., 2023), and FLODE (Maskey et al., 2023).
The common theme of those methods is that all con-
sider first-order temporal behavior with o = 1, c1 = 1,
except for PDE-GCN, which considers a second-order
model, where o = 2, c = [c1, c2] = [2,−1]. In contrast,

https://github.com/MosheEliasof/TDE-GNN
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Dataset
Chickenpox PedalMe Wikipedia
Hungary London Math

Temporal GNNs
DCRNN 1.124±0.015 1.463±0.019 0.679±0.020
GConvGRU 1.128±0.011 1.622±0.032 0.657±0.015
GC-LSTM 1.115±0.014 1.455±0.023 0.779±0.023
DyGrAE 1.120±0.021 1.455±0.031 0.773±0.009
EGCN-O 1.124±0.009 1.491±0.024 0.750±0.014
A3T-GCN 1.114±0.008 1.469±0.027 0.781±0.011
T-GCN 1.117±0.011 1.479±0.012 0.764±0.011
MPNN LSTM 1.116±0.023 1.485±0.028 0.795±0.010
AGCRN 1.120±0.010 1.469±0.030 0.788±0.011

GNNs Inspired by DEs
GRAND 1.068±0.021 1.557±0.049 0.798±0.034
GREAD 0.983±0.027 1.291±0.055 0.704±0.016
CDE 0.848±0.020 0.810±0.063 0.694±0.028

Vanilla baseline
DE-GNN 0.998±0.022 1.329±0.041 0.714±0.019

TDE-GNN (ours)
TDE-GNND 0.792±0.028 1.096±0.057 0.614±0.023
TDE-GNNA 0.787±0.018 0.714±0.051 0.565±0.017

Table 2: The performance of spatio-temporal networks
evaluated by the average MSE and standard deviation
(↓) of 10 experimental repetitions.

our TDE-GNN can learn the vector of coefficients c
with maximal order o, and unless otherwise specified,
we set the order to be the number of layers in the net-
work, i.e., o = L. The fourth baseline we consider is (iv)
a vanilla version of our TDE-GNN, where o = 1, c1 = 1,
and we call this variant DE-GNN. Our results in Table
1 suggest that for homophilic graphs which are known
to benefit from diffusion (Gasteiger et al., 2019), TDE-
GNN performs similarly to other first-order differential
equations inspired GNNs, including our baseline DE-
GNN, since a diffusion process can be described using
a first-order ODE. We find that the significance of
learning higher-order dynamics is more pronounced for
non-homophilic graphs which may stem from more com-
plex phenomena than homophilic graphs. For instance,
we find that our TDE-GNNA achieves an accuracy of
78.48%, compared to the baseline vanilla, first order
DE-GNN with 70.99% – a considerable improvement.

5.2 Spatio-Temporal Forecasting

We now focus on the applicability of TDE-GNN to
spatio-temporal datasets, where the goal is to fore-
cast future node values, given time-series data. We
use the Chickenpox-Hungary, PedalMe-London, and
Wikipedia-Math datasets from Rozemberczki et al.
(2021b). We use incremental training, mean-squared-
error (MSE) loss, and testing procedure from Rozem-
berczki et al. (2021b). We report the prediction perfor-
mance of TDE-GNN, in terms of MSE, in Table 2, and
compare it with recent methods like DCRNN (Li et al.,
2018), GConv (Seo et al., 2018), GC-LSTM (Chen
et al., 2018a), DyGrAE (Taheri et al., 2019; Taheri
and Berger-Wolf, 2019), EGCN Pareja et al. (2020),

A3T-GCN (Zhu et al., 2020a), T-GCN (Zhao et al.,
2019), MPNN LSTM (Panagopoulos et al., 2021), and
AGCRN (Bai et al., 2020).

We also provide a comparison with recent DE-inspired
methods such as GRAND, GREAD, and CDE. We also
provide the important baseline of a vanilla TDE-GNN
that utilizes o = 1, c1 = 1. As previously discussed, this
architecture is similar to other first-order DE-inspired
GNN models, and we therefore call it DE-GNN. We
also note again that including the baseline of DE-GNN
allows to directly measure the contribution of our TDE-
GNN with the learnable temporal in Equation (6), and
therefore it provides an objective and accurate com-
parison to our TDE-GNN. Our results are reported in
Table 2, and they show improvement over existing tem-
poral GNN models, as well as other DE-inspired GNNs,
and the vanilla baseline of DE-GNN. These results
further highlight the importance of learning higher-
order dynamics offered by our TDE-GNN. Also, we see
that the attention-based TDE-GNNA offers improved
performance compared to the directly parameterized
TDE-GNND, which can be attributed to the increased
complexity of the attention module.

5.3 Ablation Study

We now study and report two important aspects of
our TDE-GNN: the influence of the order o, and an
analysis of the learned values in c.

The influence of the order o. As shown in Example
1, having sufficiently high order can be crucial to mod-
eling complex data. In that example, we have demon-
strated this significance via a synthetic task where the
order is known. We now supplement this study by
reporting the obtained performance as a function of
the order o on real-world datasets, where the exact
order of the underlying process that generated the data
is unknown. To provide a comprehensive study of the
impact of o, we report the results on both the node clas-
sification and spatio-temporal node forecasting tasks
considered in this work, on several datasets. The re-
sults are reported in Figure 5. Our results indicate, in
congruence with Example 1, that higher-order models
can improve performance compared to using a first-
order model only, as is common in GNNs. We also note
that interestingly, for the Chickenpox-Hungary dataset,
we see that a second-order model performs almost as
well as a third, fourth, or fifth-order model. While
we do not know the exact order of such a real-world
dataset, the empirical results may hint that the actual
underlying process of the spread of the Chickenpox
disease in this dataset is of second order.

Inspecting the values c(H(l)
o ). Following Example

1, where the underlying process of the data is known
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(a) (b)

Figure 5: The impact of the model order o on the
performance of TDE-GNN.

c1 c2 c3 c4 c5
o = 2 2 -1 – – –
o = 3 1.4 0.2 -0.6 – –
o = 4 0.975 0.675 -0.25 -0.4 –
o = 5 -0.08 1.68 0.153 0.006 -0.759

Table 3: The learned coefficients c with a varying order
o ∈ {2, 3, 4, 5} when solving Example 1.

to be second-order, we now inspect and analyze the ob-
tained coefficients c for a varying order o ∈ {2, 3, 4, 5}.2
As we show in Appendix C.5, it is possible to verify
that the learned coefficients in Table 3 yield a valid

discretization of the second-derivative operator ∂2F
∂t2 ,

revealing the true order of the differential equation of
the nonlinear pendulum.

6 CONCLUSIONS

In this paper, we studied the temporal domain of GNNs
inspired by differential equations. We showed that in-
corporating higher-order models can be crucial to model
data that arises from complex phenomena. This under-
standing motivated us to develop a novel architecture
called TDE-GNN, which utilizes a temporal dynamics
learning mechanism, that allows modeling higher-order
ODE behaviors in GNNs. Our experimental results
show the significance of higher-order GNNs, especially
on non-homophilic, and spatio-temporal datasets. Fur-
thermore, the learned temporal coefficients in TDE-
GNN allow us to interpret and explain the underlying
time-dependent process hidden in the data.
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Youngjoo Seo, Michaël Defferrard, Pierre Van-
dergheynst, and Xavier Bresson. Structured Se-
quence Modeling with Graph Convolutional Recur-
rent Networks. In International Conference on Neu-
ral Information Processing, pages 362–373. Springer,
2018.

Yue Sun, Chao Chen, Yuesheng Xu, Sihong Xie, Rick S.
Blum, and Parv Venkitasubramaniam. Reaction-
diffusion graph ordinary differential equation net-
works: Traffic-law-informed speed prediction un-
der mismatched data. URL https://par.nsf.gov/

biblio/10466683.

https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://par.nsf.gov/biblio/10466683
https://par.nsf.gov/biblio/10466683


On The Temporal Domain of Differential Equation Inspired Graph Neural Networks

Aynaz Taheri and Tanya Berger-Wolf. Predictive Tem-
poral Embedding of Dynamic Graphs. In Proceedings
of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining,
pages 57–64, 2019.

Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf.
Learning to represent the evolution of dynamic
graphs with recurrent models. In Companion Pro-
ceedings of The 2019 World Wide Web Conference,
WWW ’19, page 301–307, 2019.

Matthew Thorpe, Tan Minh Nguyen, Hedi Xia,
Thomas Strohmer, Andrea Bertozzi, Stanley Os-
her, and Bao Wang. GRAND++: Graph neural
diffusion with a source term. In International Con-
ference on Learning Representations, 2022. URL
https://openreview.net/forum?id=EMxu-dzvJk.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez,  Lukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
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Supplementary Materials: On The Temporal Domain of Differential
Equation Inspired Graph Neural Networks

A Proof to Theorem 1
We first define the stability of a solution of an ODE:

Definition 1 (Stability of an ODE solution). A solution F(t) of an ODE equipped with appropriate initial
condition F(0), is stable if for any ω > 0, there exists δ > 0 such that any other solution F̃(t) of the ODE with
initial condition F̃(0) satisfying |F(0)− F̃(0)| ≤ δ also satisfies |F(t)− F̃(t)| ≤ ω, for all t ≥ 0.

We now prove Theorem 1 from the main paper.

Proof: Let us write the discrete DE in Equation (6) explicitly as

F(l+1) = coF
(l−o+1) + . . . c1F

(l) + hs(F(l);G). (10)

Similar to the proofs for multistep ODE methods (Ascher et al., 1995), to prove the stability of the method,
assuming the Jacobians of s have non-positive real part3, it is sufficient to consider only the temporal term:

F(l+1) = coF
(l−o+1) + . . . + c1F

(l)

This is a linear, constant-coefficient differential equation, and it must be stable for Equation (6) to be stable.
Also, as common in proofs of multistep ODE methods (Ascher et al., 1995), we start from a solution of the form

F(l) = ξl

(meaning ξ to the power of l). Substituting we obtain

ξl+1 = coξ
l−o+1 + . . . c1ξ

l

Dividing by ξl−o+1 we obtain the polynomial equation

ξo+1 − c1ξ
o − . . .− co = 0

This is a polynomial of degree o + 1 with coefficients [1,−c1, . . . ,−co] where
∑

ci = 1. Let ρ(c) be the roots of
the polynomial. It is straightforward to see (by substitution) that 1 is a root of the polynomial, and therefore a
constant is a valid solution of Equation (10). For the solution to be stable, we need to have that:

F(n) = ξn

|F(n)| ≤ |F(n−1)|
|ξn| ≤ |ξn−1| → |ξ| ≤ 1

In multi-step methods for ODEs, this condition is referred to as the root condition. Furthermore, as shown in
Ascher et al. (1995), since the coefficients c are to be determined (learned, in the case of TDE-GNN), there always
exists a set of coefficients such that the root condition is satisfied. □

Remark 1 While it is difficult to verify the root condition analytically, it is possible to compute it numerically,
thus revealing the order of the process we learn, as we also show in C.5.

3If the Jacobian has a positive real part, then the underlying ODE is unstable, and therefore its discretization is also
unstable.
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B Implementation Details

B.1 Higher-Order DE-GNN by First Order ODEs System

As is known (Evans, 1998), it is possible to transform higher-order ODEs into a system of first-order ODEs. Thus,
theoretically, it would be possible to model higher-order DE-GNNs as our TDE-GNN using this approach. In our
implementation, we chose to maintain the view of a higher-order ODE instead for the following reasons: (i) Using
a system of first-order ODEs requires explicit higher-order time differentiation. In the presence of discrete input
data (as in our experiments), computing high-order derivatives is prone to noise amplification. In contrast, our
computation of the coefficients c directly from the data allows us to generate stable architectures, as shown in
Theorem 1 and validated in our ablation study. (ii) Additionally, using derivatives to express higher-order models
results in a system of o×k channels, leading to channel mixing operations (MLPs) with a cost of O(o2×k2), while
our implementation is of cost O(o× k2). (iii) Our implementation of TDE-GNN allows a direct interpretation of
the time-dependent process by inspecting the values of c.

B.2 Implementing the Temporal Term with Attention

We now describe the implementation of TDE-GNNA, i.e., the TDE-GNN implemented by an attention mechanism.
Namely, to learn the dynamics between the node features at a current layer l and the previous o− 1 layers, we
utilize a multi-head self-attention mechanism (Vaswani et al., 2017) that assigns scores between the considered
layer l and the o− 1 layers. The difference in our implementation compared to a standard attention module as in
Vaswani et al. (2017) is that we remove the SoftMax normalization step, as discussed in 4.2, and it is required to
allow both positive and negative numbers. We denote the attention mechanism by MHA. The MHA computes
a score for each pair of layers (li, lj) ∈ o × o. As an input to the MHA, we use the history feature tensor as
described in Equation (7), which is comprised of the stacking of the current and previous (layer-wise) o− 1 node
features. Then, the output of the attention module is given by:

S̃(l)o = MHA(H(l)
o ) ∈ Ro×o. (11)

The (li, lj)-th entry in S(l)o represents the connection between the li-th and lj-th layers. Specifically, the last row

of S(l)o represents the connection between the current layer l and the previous o− 1 layers. Therefore we define

the unnormalized layer coefficients vector as the last row of S̃(l)o , that can be extracted using the following Python
notations:

c̃(H(l)
o ) = S̃(l)o [−1, :] ∈ Ro (12)

In order to satisfy condition (i) that demands the weights to sum to 1, described in 4.2, we also add a normalization
step, such that the coefficients are defined as:

c(H(l)
o ) =

c̃(H(l)
o )∑

c̃(H(l)
o )

. (13)

B.3 Implementing the Spatial Term

The temporal mechanism developed in this paper is generic and can possibly be applied to various DE-GNNs,
and is the novelty of our work. However, a GNN inspired by differential equations, and therefore also our
TDE-GNN, is not complete without the spatial term that propagates node features across the graph. As discussed
in Equation (1), our spatial aggregation function s is based on the combination of a channel mixing operation

realized by an MLP and the symmetric normalized graph Laplacian L = D− 1
2 (D−A)D− 1

2 where D is the degree
matrix, and A is the adjacency matrix of the graph G. Formally, the spatial aggregation is given by:

s(F(l);G) = σ
((

F(l) − hLF(l)
)
W(l)

)
, (14)

where σ is a non-linear activation function, ReLU in our implementation, and h is a positive step size, and
W(l) ∈ Rk×k are the learnable weights of the MLP.
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Therefore, substituting the prescribed temporal in Equation (14) into Equation (6) leads to our TDE-GNN layer,
as follows:

F(l+1) =

o−1∑
p=0

cp(H(l)
o )F(l−p) + hσ

((
F(l) − hLF(l)

)
W(l)

)
. (15)

B.4 Architecture details

Node classification architecture. We now elaborate on the TDE-GNN architecture for stationary problems, as
used in our node classification experiments. The overall architecture flow is similar to standard GNN architectures
for node classification, such as GCN (Kipf and Welling, 2017) and GCNII (Chen et al., 2020). It is composed of
initial embedding layers e1, . . . , eo, followed by L TDE-GNN layers, and a classifier implemented by a linear layer
denoted by eout. The complete flow of this architecture is described in Algorithm 1. We train this architecture on
node classification datasets by minimizing the cross-entropy loss between the ground-truth node labels Y and the
predicted node labels Ỹ.

Algorithm 1 TDE-GNN for stationary problems with order o.

Input: Node features I(0) ∈ Rn×kin

Output: Predicted node labels Ỹ ∈ Rn×kout

1: procedure TDE-GNN
2: I(0) ← Dropout(I(0), p)
3: F(−o+1) = e1(I(0)); F(−o+2) = e2(I(0)); . . . ; F(0) = eo(I(0))

4: Initialize history tensor H(0)
o according to Equation (7).

5: for l = 0 . . . L− 1 do
6: F(l) ← Dropout(F(l), p)

7: Compute coefficients c(H(l)
0 ) according to Section 4.2.

8: Update features F(l+1) according to Equation (15).

9: Update history tensor H(l+1)
o according to Equation (7).

10: end for
11: F(L) ← Dropout(F(L), p)
12: Ỹ = eout(F

(L))
13: Return Ỹ
14: end procedure

Spatio-Temporal Node Forecasting. The typical task in spatio-temporal datasets is to predict future
quantities (e.g., driving speed) given several previous time steps (also called frames). Formally, one is given an
input tensor Iintemporal = [I(0), . . . I(r)] ∈ Rn×rkin , where r is the number of input (observed) time frames, and the

goal is to predict a time frames ahead, i.e., the ground-truth is given by Igttemporal = [I(r+1), . . . , I(r+a)] ∈ Rn×akin .
This is in contrast to stationary datasets such as Cora (McCallum et al., 2000), where input node features
I(0) ∈ Rn×kin are given, and the goal is to fit to some ground-truth Y ∈ Rn×kout which can also be of different
dimensionality in its output space. In this context, a stationary dataset can be thought of as setting r = a = 1 for
the non-stationary settings. We show the overall flow of our TDE-GNN architecture for non-stationary problems
in Algorithm 2 4.

In this architecture, we update the hidden state feature matrix F
(l)
state based on the hidden historical feature

matrix F
(l)
hist. The reason for this construction is that we want to continue from the current, most recent feature

F
(l)
state, but also consider the given historical data encoded in F

(l)
hist.

Similarly to Attention models (Vaswani et al., 2017), we incorporate time embedding based on the concatenation
of sine and cosine function evaluations with varying frequencies multiplied by the time of the input frames, as
input to our TDE-GNN, denoted by Temb ∈ Rn×rktemb , where we choose the number of frequencies to be 10, and
by the concatenation of both sine and cosine lead to ktemb = 20. We note that the time embedding is computed

4In Algorithm 2, ⊕ denotes channel-wise concatenation.



Moshe Eliasof1, Eldad Haber2, Eran Treister3, Carola-Bibiane Schönlieb1

in a pre-processing fashion. To initialize the hidden feature matrices F
(0)
state, F

(0)
hist, we embed the input data

Iintemporal, concatenated with Temb, using two fully connected layers denoted by estate and ehist.

During training, we minimize the mean squared error (MSE) between the ground truth future node quantities and
the predicted quantities by TDE-GNN, similar to the training procedure of the rest of the considered methods in
Table 2. Specifically, following Rozemberczki et al. (2021b), the goal is to predict the node quantities of the next
time frame given 4 previous time frames.

Algorithm 2 TDE-GNN for non-stationary problems with order o.

Input: Node features Iintemporal = [I(0), . . . I(r)] ∈ Rn×rkin , time embedding Temb ∈ Rn×rktemb

Output: Predicted future node quantities Ĩpredtemporal = [Ĩ(r+1), . . . , Ĩ(r+a)] ∈ Rn×akin

1: procedure TDE-GNN
2: Iintemporal ← Dropout(Iintemporal, p)

3: Temb ← etime−embed(Temb)

4: F
(0)
state = estate(I(r) ⊕Temb)

5: F
(0)
hist = ehist(Iintemporal ⊕Temb)

6: Initialize history tensor H(0)
o according to Equation (7).

7: for l = 0 . . . L− 1 do
8: F

(l)
state ← Dropout(F

(l)
state, p)

9: Compute coefficients c(H(l)
0 ) according to Section 4.2.

10: Update features F
(l+1)
state according to Equation (15).

11: Update history tensor H(l+1)
o according to Equation (7).

12: F
(l+1)
hist = ehistl (F

(l)
hist ⊕ F

(l+1)
state ⊕Temb)

13: end for
14: F

(L)
state ← Dropout(F

(L)
state, p)

15: Ỹ = estateout (F
(L)
state)

16: Return Ĩ
17: end procedure

C Experimental Details

C.1 Pendulum example problem

The pendulum’s motion in Example 1 is modeled by a time-varying frequency pendulum, such that

q(F ; t) = sin(ω(t)F ),

where ω(t) = 1− 0.04 sin(t).

C.2 Benchmarks

Node classification datasets. We report the statistics of the datasets used in our node classification experiments
in Table 4. All datasets are publicly available, and appropriate references to the data sources are provided in the
main paper. All the datasets considered in our experiments consider a transductive node classification problem.
That is, at training time, we have labels available at a fraction of the graph’s nodes, and our goal is to predict
the labels of the remaining nodes.

Spatio-temporal forecasting datasets. We report the statistics of the datasets used in our spatio-temporal
forecasting experiments in Table 5. All datasets are publicly available, and appropriate references to the data
sources are provided in the main paper. In this task, our goal is to reduce the MSE between the ground-truth
future value (which depends on the dataset) and the predicted value, given previous time snapshots.
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Table 4: Node classification datasets statistics.

Dataset Classes Nodes Edges Features Homophily

Squirrel 5 5,201 198,493 2,089 0.22
Film 5 7,600 33,544 932 0.22
Chameleon 5 2,277 36,101 2,325 0.23
Citeseer 6 3,327 4,732 3,703 0.80
Pubmed 3 19,717 44,338 500 0.74
Cora 7 2,708 5,429 1,433 0.81

Table 5: Attributes of the spatio-temporal datasets, and information about the number of time periods (T ) and
spatial units (|V|).

Dataset Frequency T |V|
Chickenpox Hungary Weekly 522 20
Pedal Me Deliveries Weekly 36 15

Wikipedia Math Daily 731 1,068

C.3 Hyperparameters

All hyperparameters were determined by grid search, and the ranges and sampling mechanism distributions are
provided in Table 6. Also, unless otherwise specified, in all experiments, we use L = 8 layers, and for node
classification datasets, we use o = L. For the spatio-temporal datasets, we use o = r, i.e., the order is set to be
equal to the number of historical data given by the task.

Table 6: Hyperparameter ranges

Hyperparameter Range Uniform Distribution

input/output embedding learning rate [1e-4, 1e-1] log uniform
temporal term c learning rate [1e-4, 1e-1] log uniform

spatial term learning rate [1e-4, 1e-1] log uniform
input/output embedding weight decay [0, 1e-2] uniform

temporal term c weight decay [0, 1e-2] uniform
spatial term weight decay [0, 1e-2] uniform

input/output dropout [0, 0.9] uniform
hidden layer dropout [0, 0.9] uniform

use BatchNorm { yes / no } discrete uniform
step size h [1e-3, 1] uniform

hidden channels k { 8,16,32,64,128,256 } discrete uniform

C.4 Runtimes

In addition to the complexity discussion in the main paper, we provide the measured runtimes in Table 7. Learning
the temporal order and dynamics requires additional computations compared to the vanilla baseline of DE-GNN,
however, it also offers improved performance, as we show in our experiments in Section 5. We report the measured
training and inferences runtimes, and the number of parameters on the Cora dataset in Table 7. We measure
the runtimes using an Nvidia-RTX3090 with 24GB of memory, which is the same GPU used to conduct our
experiments.
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Table 7: Training and inference GPU runtimes (milliseconds), and the number of parameters (thousands).

Metric DE-GNN (o = 1, c1 = 1) TDE-GNND (o = 8) TDE-GNNA (o = 8)

Training time 21.45 23.96 34.55
Inference time 11.84 12.83 16.97
Parameters 125 157 174

C.5 Coefficients analysis

We now conduct an analysis of the learned coefficients c for the pendulum problem in Example 1. For convenience,
we present the learned coefficients again, in Table 8. Our analysis consists of two parts: (i) stability, and, (ii)
consistency.

c1 c2 c3 c4 c5
o = 2 2 -1 – – –
o = 3 1.4 0.2 -0.6 – –
o = 4 0.975 0.675 -0.25 -0.4 –
o = 5 -0.08 1.68 0.153 0.006 -0.759

Table 8: The learned coefficients c with a varying order o ∈ {2, 3, 4, 5} when solving Example 1.

Stability analysis. Following the derivations in Theorem 1 proof presented in Appendix A, we examine the root
conditions of the learned coefficients. In Table 9 we report the absolute values of the characteristic polynomial
with the coefficients from Table 8. We note that for orders 2, 3, and 4, stability is obtained. However, for o = 5
the coefficients have one unstable mode. This result suggests that one should not use o = 5 for the pendulum
problem in Example 1. However, orders lower than 5 yield stability. We believe that a stable fifth-order model is
possible to be learned from the data, however, the incorporation of the root condition to the learning process
requires adding constraints to the learning process and therefore is beyond the scope of this work.

|r1| |r2| |r3| |r4| |r5|
o = 2 1 1 – – –
o = 3 1 0.6 1 – –
o = 4 1 1 0.629 0.629 –
o = 5 1 0.73 0.73 1.4 1

Table 9: The absolute value of the roots r1, . . . , r5 of the characteristic polynomial with coefficients from Table 8.

Consistency analysis. There are two conditions that verify the consistency of the learned coefficients. The
first condition requires that the sum of the coefficients c equals to 1, which implies that if the spatial term in
Equation (15), the future state (node features) is equal to a weighted average of the previous o− 1 states. This
implies that a constant solution can always be achieved. The second condition requires that the application of
the coefficients c to a known discrete function yields a consistent approximation to its derivatives of some order.

Note that condition (i) is satisfied by our construction of c. The second condition can be verified numerically,
as we show now. To this end, we discretize the function y = sin(2πt) in the interval [0, 1]. We then apply the
stencils based on the learned coefficients c as shown in Table 8. As can be depicted in Figure 6, the application of
the stencils to the discrete function y(t) yields a scaled version of the second derivative of y(t) (which also equals

to y, that is, ∂2y(t)
∂t2 = βy(t)). This result shows that our TDE-GNN is able to reveal the true order that describes

the pendulum’s motion, which is a second-order process.
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Figure 6: Examining the consistency of the learned coefficients. The learned coefficients model a second-derivative
of the test function y(t) = sin(2πt).
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