
Accuracy-Preserving Calibration via Statistical Modeling on
Probability Simplex

Yasushi Esaki†∗ Akihiro Nakamura† Keisuke Kawano†

Ryoko Tokuhisa† Takuro Kutsuna†

†Toyota Central R&D Labs., Inc.

Abstract

Classification models based on deep neural
networks (DNNs) must be calibrated to mea-
sure the reliability of predictions. Some re-
cent calibration methods have employed a
probabilistic model on the probability sim-
plex. However, these calibration methods
cannot preserve the accuracy of pre-trained
models, even those with a high classifica-
tion accuracy. We propose an accuracy-
preserving calibration method using the Con-
crete distribution as the probabilistic model
on the probability simplex. We theoretically
prove that a DNN model trained on cross-
entropy loss has optimality as the parameter
of the Concrete distribution. We also propose
an efficient method that synthetically gener-
ates samples for training probabilistic models
on the probability simplex. We demonstrate
that the proposed method can outperform
previous methods in accuracy-preserving cal-
ibration tasks using benchmarks.

1 INTRODUCTION

To ensure the safety of systems operated by deep neu-
ral network (DNN) classification models, the reliabil-
ity of the model predictions must be measured for each
input. If the confidence (Guo et al., 2017) computed
by the models matches the classification accuracy, we
can confidently measure the reliability of the predic-
tions for unlabeled inputs. Many previous methods

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s). ∗email: yasushi.esaki.sb@mosk.tytlabs.co.jp

train the models until the confidence matches the ac-
curacy (Zou et al., 2019; Wilson and Izmailov, 2020).
Such a training scheme is called calibration (Guo et al.,
2017). However, models trained under calibration tend
to have lower accuracy than models trained only for
classification accuracy (Thulasidasan et al., 2019). De-
grading the accuracy to improve the model calibration
is undesired. In this paper, we instead aim to calibrate
the confidence of a highly accurate model trained with-
out considering calibration while preserving its accu-
racy. This approach is called accuracy-preserving cal-
ibration (Zhang et al., 2020).

While many previous researches on calibration have
adjusted the input-dependent parameter of the cate-
gorical distribution (Filho et al., 2021), some existing
studies optimize the input-dependent parameter of the
Dirichlet distribution for calibration (Malinin et al.,
2020; Ryabinin et al., 2021). A probabilistic model on
the probability simplex, such as the Dirichlet distri-
bution, enables us to distinguish between two types of
prediction uncertainty, aleatoric uncertainty and epis-
temic uncertainty (Hüllermeier and Waegeman, 2021),
which cannot be distinguished by the categorical dis-
tribution. This advantage prevents overconfidence,
which is caused by failure to estimate the epistemic un-
certainty (Kristiadi et al., 2020). However, the above
methods (Malinin et al., 2020; Ryabinin et al., 2021)
cannot preserve the model accuracy because a DNN-
based classification model is updated for optimizing
the input-dependent parameter of the Dirichlet distri-
bution. In addition, these methods obtain labels on
the probability simplex from ensemble models to esti-
mate the Dirichlet distribution. Since ensemble mod-
els comprise training a few tens of DNN models ini-
tialized with different random weight parameters, the
training overhead is excessively large.

The existing accuracy-preserving calibration methods,
such as Temperature Scaling (TS) (Guo et al., 2017),

mailto:yasushi.esaki.sb@mosk.tytlabs.co.jp

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

introduce a temperature parameter separately from
the logits of a pre-trained DNN model for the con-
fidence computation. The temperature parameter is
optimized to improve confidence while freezing the pre-
trained DNN model. However, TS only adjusts the
parameter of the categorical distribution and does not
optimize the parameter of the probabilistic model on
the probability simplex. Although many extensions to
the original TS method (Zhang et al., 2020; Tomani
et al., 2022; Joy et al., 2023) have been proposed, these
methods also adjust the parameter of the categorical
distribution. Therefore, the previous TS methods have
difficulty distinguishing between the aleatoric uncer-
tainty and the epistemic uncertainty, which limits the
calibration performance.

Therefore, an accuracy-preserving calibration method
that estimates a probabilistic model on the probabil-
ity simplex is required. One possible approach is to
combine TS and the Dirichlet distribution.1 However,
this approach has problems in optimizing the temper-
ature parameter alone (see Section 4.2) and shows low
calibration performance in our experiments (see Sec-
tion 5.5).

In this paper, we propose Simplex TS (STS), which ap-
plies the Concrete distribution (Maddison et al., 2017)
as the probabilistic model on the probability simplex.
The Concrete distribution has two parameters, the
location parameter and the temperature parameter.
STS optimizes these two parameters in turn, corre-
sponding to the training for classification and the sub-
sequent accuracy-preserving calibration, respectively.
More precisely, we prove theoretically that a DNN
model trained with cross-entropy loss optimizes the
location parameter independently of the temperature
parameter. This fact allows us to reuse the pre-trained
DNN model for optimizing the location parameter and
optimize the temperature parameter solely for cali-
bration. Both parameters of the Concrete distribu-
tion are optimized by the accuracy-preserving calibra-
tion alone, if we already have the pre-trained DNN
model. To optimize the temperature parameter, we
also propose Multi-Mixup, which synthetically gen-
erates training samples labeled with vectors on the
probability simplex. Multi-Mixup does not have to
train ensemble models and ameliorates the training
overhead. Through numerical experiments, we demon-
strate that STS can outperform previous TS methods
in accuracy-preserving calibration tasks.

Our contributions are summarized below.

• We propose an accuracy-preserving calibration
method using the Concrete distribution as a
probabilistic model on the probability simplex

1An example is presented in Appendix D.

(Section 4) and demonstrate that the proposed
method outperforms previous methods (Sec-
tion 5).

• We propose a method that synthetically gener-
ates a dataset for training probabilistic models on
the probability simplex. This method reduces the
training overhead from those of the previous en-
semble methods (Section 4.3.1).

2 RELATED WORK

2.1 Accuracy-Preserving Calibration

TS (Guo et al., 2017) is a typical accuracy-preserving
calibration method. As mentioned above, researchers
have proposed many successor methods (Zhang et al.,
2020; Balanya et al., 2022) that extend the original
TS method (Guo et al., 2017). Some recent TS meth-
ods attempt to optimize the temperature parameter
for each sample with a function that depends on the
inputs (Tomani et al., 2022; Joy et al., 2023). The
commonality of these TS methods is that they improve
confidence by tuning a scalar-valued temperature pa-
rameter separately from a pre-trained DNN model.
Accuracy-preserving calibration methods other than
TS are also available (Kuleshov and Deshpande, 2022;
Wenger et al., 2020; Ramalho and Miranda, 2020).
Kuleshov and Deshpande (2022) train an auxiliary
model to transform the softmax outputs of a pre-
trained model for calibration and Wenger et al. (2020)
optimize the parameter of the categorical distribution
following the Gaussian process. These studies do not
consider a probabilistic model on the probability sim-
plex. Ramalho and Miranda (2020) aim to perform
out-of-distribution detection while preserving a pre-
trained DNN model, which deviates from the calibra-
tion in terms of problem settings.

2.2 Uncertainty Estimation on the
Probability Simplex

Many studies estimate the prediction uncertainty,
which consists of aleatoric uncertainty and epistemic
uncertainty (Hüllermeier and Waegeman, 2021), us-
ing the Dirichlet distribution whose parameter is com-
puted by an input-dependent DNN model (Malinin
and Gales, 2018; Sensoy et al., 2018). Prior Net-
works (Malinin and Gales, 2018) are trained by mini-
mizing the Kullback–Leibler divergence of the Dirich-
let distribution. Evidential Deep Learning (Sensoy
et al., 2018) measures the amount of evidence of each
class by estimating the Dirichlet distribution. Un-
certainty estimation methods that use a probabilistic
model on the probability simplex, such as the Dirich-
let distribution, can estimate aleatoric and epistemic

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

uncertainties distinctly. Note that the above studies
do not discuss accuracy-preserving calibration, and to
the best of our knowledge, no studies have applied a
probabilistic model on the probability simplex to the
accuracy-preserving calibration.

2.3 Data Augmentation by Interpolation

Some data augmentation methods generate pseudo-
new samples by linearly interpolating the original sam-
ples (Zhang et al., 2018; Thulasidasan et al., 2019).
Whereas many studies interpolate two samples (Inoue,
2018; Verma et al., 2019), AdaMixup (Guo et al., 2019)
and ζ-Mixup (Abhishek et al., 2022) interpolate three
or more samples, which is the same as Multi-Mixup.
AdaMixup and ζ-Mixup aim to improve the classifi-
cation performance and have mechanisms to restrict
the generation of samples that differ significantly from
the original samples. This property is not suitable for
calibration because the features of inputs with a large
prediction uncertainty cannot be learned.

3 PRELIMINARIES

3.1 Notations

We write a bold symbol a for the real vector, and
let ai be the i-th entry of a with i ∈ N. The real
vector-valued function is also written as a bold sym-
bol f , and let fi(x) be the i-th coordinate of the out-
put of f(x). Furthermore, let 1{·} be an indicator
function and ∆q−1 be the q − 1 dimensional probabil-
ity simplex, where q ∈ N is an integer. Specifically,
∆q−1 := {π ∈ [0, 1]q|

∑q
i=1 πi = 1}. Let X (⊆ Rd)

be an input space and let Y = {1, . . . ,K} be a set of
class categories, where K ∈ N is the number of classes.
Let Cat(y|π) be the probability mass function of the
categorical distribution with a parameter π ∈ ∆K−1.
Let Dir(π|µ) be the probability density function of the
Dirichlet distribution with a parameter µ ∈ (0,∞)q.

3.2 Uncertainty Estimation on the
Probability Simplex

Malinin and Gales (2018) propose to estimate the pre-
diction uncertainty in classification through a prob-
abilistic model on the probability simplex. Let the
class label y ∈ Y be a stochastic variable following a
probability distribution p(y|π), where π ∈ ∆K−1 is a
parameter. Let π be another stochastic variable fol-
lowing the conditional probability distribution p(π|x),
where x ∈ X is the input. A conditional class distri-
bution p(y|x) given an input x can be described as

p(y|x) =
∫

p(y|π)p(π|x)dπ. (1)

To estimate the prediction uncertainty, Malinin and
Gales (2018) estimate p(π|x) following the Dirichlet
distribution. Let µ(x,θµ) = (eg1(x), . . . , egK(x))⊤,
where g : X → RK is a DNN model (a model with
logit outputs g(x)) parameterized by a real vector θµ.
Malinin and Gales (2018) assume that y follows the
categorical distribution with a parameter π, whereas π
follows the Dirichlet distribution with a x-dependent
parameter µ(x,θµ):

p(y|π) = Cat(y|π),
p(π|x) = Dir(π|µ(x,θµ)).

(2)

If the estimated value of θµ is denoted by θ̂µ, the
prediction uncertainty is represented by the esti-
mated distribution Dir(π|µ(x, θ̂µ)), and we can es-
timate the prediction uncertainty for unlabeled in-
puts. The prediction uncertainty is estimated to
be small when Dir(π|µ(x, θ̂µ)) has a high probabil-
ity density at one of the apexes of ∆K−1. Con-
versely, the prediction uncertainty is estimated to be
large when Dir(π|µ(x, θ̂µ)) has a high probability den-
sity at the center of ∆K−1 or has a large variance
over ∆K−1. Specifically, a high probability density at
the center of ∆K−1 corresponds to high aleatoric un-
certainty, and a large variance over ∆K−1 corresponds
to high epistemic uncertainty (Malinin and Gales,
2018). Applying a probabilistic model on ∆K−1 such
as Dir(π|µ(x,θµ)) provides the distinction between
aleatoric uncertainty and epistemic uncertainty, which
cannot be distinguished when considering only the cat-
egorical distribution. This distinction helps confidence
take a lower value when the number of training sam-
ples is small, corresponding to epistemic uncertainty,
and avoids overconfidence (Kristiadi et al., 2020).

The previous studies discussing uncertainty estima-
tion (Malinin et al., 2020; Lindqvist et al., 2020;
Ryabinin et al., 2021) assume that the distribution of
the softmax outputs of ensemble models input with x
indicates the prediction uncertainty of x, and esti-
mate θµ on a dataset labeled with these softmax out-
puts to learn their distribution. The Dirichlet distri-
bution is appropriate for learning the prediction un-
certainty through the ensemble models because the
softmax outputs of the ensemble models are vectors
on ∆K−1 and their distribution is represented by a
probabilistic model on ∆K−1. Although these studies
achieve high calibration performance (Malinin et al.,
2020; Lindqvist et al., 2020; Ryabinin et al., 2021),
they have difficulty in performing accuracy-preserving
calibration.

3.3 Concrete Distribution

The Concrete distribution (Maddison et al., 2017) is a
family of probability distributions on the probability

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

simplex. It is formulated by extending the categorical
distribution to a continuous probability distribution
and is parameterized by two parameters: the location
parameter α ∈ (0,∞)q and the temperature parame-
ter λ ∈ (0,∞). The probability density function of the
Concrete distribution is defined as follows.

Definition (Concrete distribution; (Maddison et al.,
2017)). Letα ∈ (0,∞)q and λ ∈ (0,∞). The probabil-
ity density of a stochastic variable π ∈ ∆q−1 following
the Concrete distribution with location parameter α
and temperature parameter λ is given by

Cn(π|α, λ) := (q − 1)!λq−1

q∏
j=1

(
αjπ

−(λ+1)
j∑q

i=1 αiπ
−λ
i

)
. (3)

The location parameter α indicates the relative
mass among the apexes of ∆q−1, and the tem-
perature parameter λ indicates the difference from
the categorical distribution whose parameter is given
by (α1/

∑q
i=1 αi, . . . , αq/

∑q
i=1 αi)

⊤. The Concrete
distribution has been adopted as the reparameteri-
zation trick in a variational autoencoder (Maddison
et al., 2017; Jang et al., 2017). To the best of our
knowledge, no research has used this distribution for
calibration purposes.

Remark 1 (Properties of the temperature parame-
ter). The variance over ∆K−1 can be changed by shift-
ing λ. Moreover, the probability density is concen-
trated at the apexes of ∆q−1 if λ is sufficiently small
and at the center of ∆q−1 if λ is sufficiently large (Mad-
dison et al., 2017). Note that this variation is realized
even when α is fixed. This property of λ implies that
optimizing λ on a dataset that has labels indicating
the prediction uncertainty contributes to uncertainty
estimation.

4 SIMPLEX TEMPERATURE
SCALING

In this section, we propose STS for accuracy-
preserving calibration. We first present the overview
of STS in Section 4.1. We then show theoretically
that STS enables accuracy-preserving calibration in
Section 4.2. The training of STS with the data gener-
ation method is described in Section 4.3. Section 4.4
covers the confidence calculation, while the implemen-
tation of STS is shown in Section 4.5.

4.1 Overview

This subsection introduces a probabilistic model and
its optimization process for STS.

Probabilistic model. Let α(·,θα) : X → (0,∞)K

and λ(·,θλ) : X → (0,∞) be deterministic functions

parameterized by real vectors θα and θλ, respectively.
Our probabilistic models for p(y|π) and p(π|x) are
respectively formulated as

p(y = k|π) = 1{argmaxi∈Y πi=k} for ∀k ∈ Y, (4)

p(π|x) = Cn(π|α(x,θα), λ(x,θλ)). (5)

As indicated in Eq. (4), p(y|π) is given by a one-hot
vector in which one component is 1 and the other com-
ponents are 0. That is, the value of y is definitively
determined from π, meaning that y is a stochastic vari-
able if and only if π is a stochastic variable. Although
Eq. (4) has no variance, the combination of Eqs. (4)
and (5) has good properties for consistently formulat-
ing the pre-training for classification and the subse-
quent accuracy-preserving calibration.

Optimization process. The pre-training for clas-
sification and the subsequent accuracy-preserving cal-
ibration can be formulated as consecutively estimat-
ing θα and θλ using different criteria. Given a dataset
D := {(xn, yn)}Nn=1, where yn ∈ Y is the class label of
xn ∈ X , STS performs the following two steps.

Step 1: Classification Based on D, we estimate θα
via maximum likelihood estimation of Eq. (1) un-
der Eqs. (4) and (5). The estimated value of θα
is denoted by θ̂α.

Step 2: Calibration Based on D̃, we estimate θλ
via maximum likelihood estimation of Eq. (5), fix-

ing θα to θ̂α. The estimated value of θλ is denoted
by θ̂λ.

In Step 2, D̃(:= {(x̃m, π̃m)}Mm=1) is a dataset in which
the inputs x̃1, . . . , x̃M ∈ X and their prediction un-
certainties π̃1, . . . , π̃M ∈ ∆K−1 have been syntheti-
cally generated from original samples with hard labels.
Since original classification datasets have only hard la-
bels corresponding to the apexes of ∆K−1, we obtain
labels on ∆K−1 by synthetically generating D̃. Note
that in practice we do not need to pre-determine M
and to generate the whole of D̃ before Step 2, since we
can generate as many samples in D̃ as we need during
the optimization in Step 2. The details of generating
samples in D̃ are explained in Section 4.3.1.

In the following subsection, we show the following
properties of the proposed model: 1) Given a clas-
sifier trained with ordinary cross-entropy loss on D,
the parameter θ̂α, which is estimated in Step 1, is im-
mediately obtained. 2) The θ̂α is optimal regardless
of θλ. 3) Step 2 preserves the classification accuracy of
the classifier in Step 1. These properties indicate that
we can calibrate a given pre-trained classifier without
changing its classification accuracy, where θλ is intro-
duced as a new parameter for better calibration.

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

4.2 Why STS Realizes Accuracy-Preserving
Calibration

In this subsection, we present the reason why the
probabilistic model and the optimization process in-
troduced in Section 4.1 serve as classification and
accuracy-preserving calibration. To show that Step 1
corresponds to classification, we discuss Eq. (1) under
Eqs. (4) and (5). Let α(x,θα) = (eg1(x), . . . , egK(x))⊤,
where g : X → RK is a DNN model parameterized
by θα. In this case, Eq. (1) becomes the softmax func-
tion with g(x) as logits, from the following theorem.

Theorem 1 (Predictive distribution). We assume
that p(y|π) and p(π|x) are formulated as Eqs. (4)
and (5). Then, Eq. (1) is given as follows.2

p(y = k|x) =
∫

p(y = k|π)p(π|x)dπ

=
αk(x,θα)∑K
i=1 αi(x,θα)

for ∀k ∈ Y.
(6)

The proof is shown in Appendix A.1. Note that Eq. (6)
is independent of λ(x,θλ). From Theorem 1, we can
show that Step 1 is equivalent to the standard DNN
training with the cross-entropy loss as follows.

Corollary 1 (Classification via the Concrete dis-
tribution). Let D = {(xn, yn)}Nn=1 and α(x,θα) =
(eg1(x), . . . , egK(x))⊤, where g : X → RK is a function
parameterized by θα. Under Eqs. (4) and (5), optimiz-
ing θα on D using the maximum likelihood estimation
of Eq. (1) is equivalent to optimizing θα on D using
the minimization of the following criterion.

L(θα) = − 1

N

N∑
n=1

K∑
k=1

1{yn=k} ln
egk(xn)∑K
i=1 e

gi(xn)
. (7)

Remark 2 (Interpretations of Corollary 1). Corol-
lary 1 shows that the weight parameters of a DNN
model trained with the cross-entropy loss can be re-
garded as θ̂α, which is estimated in Step 1. If the
pre-trained DNN model is denoted by ĝ : X → RK ,
we have α(x, θ̂α) = (eĝ1(x), . . . , eĝK(x))⊤. Therefore,

we can reuse the pre-trained DNN model for α(x, θ̂α)
and skip Step 1. The proof is shown in Appendix A.2.

The maximality of the likelihood of Eq. (1) (i.e., the
minimality of the cross-entropy loss) is guaranteed
if θλ shifts, because Eq. (6) is independent of λ(x,θλ).

This fact motivates us to fix α(x, θ̂α) in Step 2. As
mentioned in Remark 1, we can estimate the predic-
tion uncertainty by optimizing λ(x,θλ) on D̃, even

when α(x, θ̂α) is fixed. Therefore, Step 2 realizes a
calibration based on the prediction uncertainty.

2For confidence, another criterion is applied instead of
Eq. (1). The confidence is explained in Section 4.4.

Preserved accuracy. If we consider predicting the
class using Eq. (1) after Step 2, the classification accu-
racy of the pre-trained DNN model is preserved. Ac-
cording to Theorem 1, if we have θ̂α, the predicted
class is computed as

arg max
k∈Y

p(y = k|x) = arg max
k∈Y

αk(x, θ̂α)∑K
i=1 αi(x, θ̂α)

. (8)

Equation (8) is equal to the class predicted by

the pre-trained DNN model ĝ because α(x, θ̂α) =
(eĝ1(x), . . . , eĝK(x))⊤ as in Remark 2. Moreover, this
prediction does not change when θλ is updated in
Step 2. As a result, the classification accuracy of the
pre-trained DNN model is preserved.

Problems with the Dirichlet distribution. The
probabilistic model with the Dirichlet distribution as
in Eq. (2) also leads to an equation similar to Eq. (6)
such as

p(y = k|x) =
∫

p(y = k|π)p(π|x)dπ

=
µk(x,θµ)∑K
i=1 µi(x,θµ)

for ∀k ∈ Y.
(9)

If µ(x,θµ) = (eg1(x), . . . , egK(x))⊤, where g is param-
eterized by θµ, Eq. (9) becomes the softmax func-
tion. Therefore, the maximum likelihood estimation of
Eq. (1) is equivalent to minimizing the cross-entropy
loss, as in STS. However, the Dirichlet distribution
does not have a temperature parameter independent
of µ(x,θµ). Even if we introduce a temperature pa-
rameter in µ(x,θµ), the maximality of the likelihood
of Eq. (1) (i.e., the minimality of the cross-entropy
loss) is not guaranteed after optimizing the tempera-
ture parameter solely using the maximum likelihood
estimation of Dir(π|µ(x,θµ)).3 Our STS solves this
problem by replacing the Dirichlet distribution with
the Concrete distribution and enables us to perform
an accuracy-preserving calibration.

4.3 Training of the Temperature Parameter

This subsection describes the dataset and objective
function of Step 2.

4.3.1 Generation of Samples on Probability
Simplex by Multi-Mixup

To estimate θλ by the maximum likelihood process, we
require a dataset D̃ in which inputs are labeled with
vectors on the probability simplex that indicate the
prediction uncertainty. As the model must distinguish
inputs with large prediction uncertainties from those

3An example is presented in Appendix D.

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

with small prediction uncertainties, the dataset should
include both input types. As in explained Section 3.2,
previous calibration methods using Eq. (2) train en-
semble models and label the inputs with the softmax
outputs of the trained ensemble models, thus obtaining
a dataset that satisfies the above properties (Malinin
et al., 2020; Lindqvist et al., 2020; Ryabinin et al.,
2021). Composing a dataset through this process re-
quires training a few tens of DNN models initialized
with different random weight parameters, which incurs
a large training overhead. In addition, ensemble mod-
els that follow a pre-trained DNN model are difficult to
obtain when the pre-trained DNN model is published
online.

To solve these problems, we propose a method that
synthetically generates training samples with labels
on the probability simplex. Our Multi-Mixup method
randomly selects one sample from each class k ∈ Y
and linearly interpolates the inputs and one-hot labels
of the selected samples. Let y(1), . . . ,y(K) be one-hot
vectors indicating the classes. The k-th element of y(k)

is 1 and all other elements are 0. Now let x(1), . . . ,x(K)

be the inputs in X corresponding to y(1), . . . ,y(K).
Multi-Mixup performs the following interpolation:

x̃ =

K∑
k=1

wkx
(k), π̃ =

K∑
k=1

wky
(k), (10)

where w is a random variable on ∆K−1. The details
of Multi-Mixup, including how to determine the value
of w, are explained in Appendix B.

Multi-Mixup can automatically generate inputs
with small or large prediction uncertainties, along
with labels indicating their prediction uncertain-
ties. For example, we consider two weights, w =
(0.01, 0.01, 0.98)⊤ and w = (13 ,

1
3 ,

1
3)

⊤, under K = 3.
The first weight generates an input with a small pre-
diction uncertainty near the input x(3), namely, x̃ =
0.01x(1)+0.01x(2)+0.98x(3). The second weight gen-
erates an input with a large prediction uncertainty far
from any of the three inputs x(1), x(2), or x(3), which
is computed as x̃ = 1

3 (x
(1) + x(2) + x(3)). These two

inputs are labeled with π̃ = (0.01, 0.01, 0.98)⊤ and
π̃ = (13 ,

1
3 ,

1
3)

⊤, respectively. These labels indicate the
prediction uncertainty of the two inputs.

Problems with existing data augmentations.
Mixup (Zhang et al., 2018) generates samples only
on the edges of ∆K−1, which is inadequate for
optimizing the parameter of a probabilistic model
on ∆K−1. Although AdaMixup (Guo et al., 2019) and
ζ-Mixup (Abhishek et al., 2022) generate samples in
the interior of ∆K−1, the weights of the interpolations
are constrained to restricted areas. This constraint
is inappropriate for calibration because both inputs

with large and small prediction uncertainty should be
learned during calibration.

4.3.2 Loss Function for Training

Using the maximum likelihood estimation of Eq. (5),
Step 2 of our method estimates θλ on D̃ generated
by Multi-Mixup. To estimate the maximum likelihood
on D̃, we compute the gradient descent (Polak, 1997)
of the following negative log-likelihood.

LD̃(θλ) = − 1

M

M∑
m=1

(K − 1) lnλ(x̃m,θλ)

− 1

M

M∑
m=1

K∑
k=1

lnαk(x̃m, θ̂α)

+
1

M

M∑
m=1

K∑
k=1

(λ(x̃m,θλ) + 1) ln π̃m,k

+
1

M

M∑
m=1

K ln

(
K∑
i=1

αi(x̃m, θ̂α)π̃
−λ(x̃m,θλ)
m,i

)
,

(11)

where D̃ = {(x̃m, π̃m)}Mm=1 and π̃m,k is the k-th entry
of π̃m. Equation (11) is derived by taking the negative
log of Eq. (3).

4.4 Confidence

In previous studies, the maximum of the predictive
distribution maxk∈Y p(y = k|x) is commonly used as
confidence (Filho et al., 2021). However, in STS, this
metric is computed as

max
k∈Y

p(y = k|x) = max
k∈Y

αk(x, θ̂α)∑K
i=1 αi(x, θ̂α)

(12)

= max
k∈Y

eĝk(x)∑K
i=1 e

ĝi(x)
, (13)

because p(y = k|x) is derived as shown in Theo-
rem 1. This means that if we use maxk∈Y p(y = k|x)
as confidence after Step 2, we cannot improve the
confidence of the pre-trained DNN model ĝ. There-
fore, we propose to use another metric as confi-
dence instead of maxk∈Y p(y = k|x). Let p(π|x) =

Cn(π|α(x, θ̂α), λ(x, θ̂λ)). The proposed confidence is
defined as follows.4

confidence(x) := max
k∈Y

(E[π])k (14)

= max
k∈Y

(∫
πp(π|x)dπ

)
k

, (15)

4The confidence shown in Eq. (15) measures the sum
of the aleatoric uncertainty and the epistemic uncertainty.
Appendix E describes how to measure the two uncertainties

separately after we obtain Cn(π|α(x, θ̂α), λ(x, θ̂λ)).

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

where (·)k is the k-th entry of the vector in parentheses
and E[·] is the expectation of p(π|x). The motivation
for using maxk∈Y(E[π])k as confidence is that in the
categorical-Dirichlet model in Eq. (2), maxk∈Y(E[π])k
becomes equivalent to maxk∈Y p(y = k|x), the maxi-
mum of Eq. (9).

The expectation of the Concrete distribution, which
cannot be computed analytically, is approximated as
the sample mean of the values randomly sampled
from Cn(π|α(x, θ̂α), λ(x, θ̂λ)). According to Propo-
sition 1(a) in Maddison et al. (2017), the Concrete
distribution can be sampled using the standard Gum-
bel distribution (Gumbel, 1941). Therefore, the confi-
dences can be computed as follows, where j = 1, . . . , p
and k = 1, . . . ,K.

G
(j)
k ∼ Gumbel(0, 1), (16)

π̂
(j)
k (x) =

exp

(
lnαk(x,θ̂α)+G

(j)
k

λ(x,θ̂λ)

)
K∑
i=1

exp

(
lnαi(x,θ̂α)+G

(j)
i

λ(x,θ̂λ)

) , (17)

confidence(x) ≃ max
k∈Y

1

p

p∑
j=1

π̂
(j)
k (x). (18)

In Eq. (16), Gumbel(0, 1) denotes the standard Gum-
bel distribution. This expression states that pseudo-
random numbers are generated p ×K times from the
standard Gumbel distribution. We set p = 30 in the
experiments of Section 5. The forward computations
of α(x, θ̂α) and λ(x, θ̂λ) are performed only once when
computing the confidence of each input. Therefore,
the computational overhead required to calculate con-
fidence is negligible. If confidence is not required, the
forward computation of the pre-trained DNN model
is sufficient for predicting the class of x, negating
the need for sampling, as explained in Section 4.2.
As discussed in Remark 1, the temperature parame-
ter λ(x,θλ) can represent the prediction uncertainty
of x, and this parameter is optimized by Multi-Mixup,
which reflects the prediction uncertainty of the train-
ing samples, in Step 2. Therefore, Eq. (18) calculated

with λ(x, θ̂λ) can approximate the classification ac-
curacy more strictly than the confidence in previous
studies. This fact is borne out by the experimental
results in Section 5.

4.5 Architectures for Parameters in
Probabilistic Model

As explained in Section 4.2, we can reuse a pre-trained
DNN model for α(x, θ̂α) and skip Step 1. We compute
the location parameter such as

α(x, θ̂α) = (eĝ1(x), . . . , eĝK(x))⊤, (19)

Figure 1: Overview of our proposed method, Simplex
Temperature Scaling (STS). The Concrete distribution
has two parameters, which are computed using a given
pre-trained DNN model and an additional branch.

where ĝ : X → RK is a pre-trained DNN model. In ad-
dition, we introduce another DNN model for λ(x,θλ)
and train it in Step 2. Since many DNN models for
classification include a feature extractor (Tan et al.,
2018), we assume that the DNN model for λ(x,θλ)
shares its feature extractor with ĝ. This sharing helps
to reduce the computational complexity of calibration.
Let f̂ : X → Z be the feature extractor of ĝ, where Z
is a feature space. In other words, f̂(x) denotes the
outputs of a hidden layer in ĝ. The temperature pa-
rameter is computed as

λ(x,θλ) = softplus((h ◦ f̂)(x)), (20)

where softplus(·) : R → (0,∞) is the softplus function,
which is defined as softplus(x) = ln(1 + ex) (Glorot
et al., 2011), and h : Z → R is a scalar-valued function
computed by fully connected layers.

Although θλ contains the weight parameters in f̂
and h, we optimize only the weight parameters of h,
where f̂ is fixed, in Step 2. Figure 1 shows the
pre-trained DNN model (left side) and the accuracy-
preserving calibration by STS with the additional
branch h (right side). Based on Corollary 1, we replace
the softmax function of the pre-trained DNN model
with the exponential function to obtain α(x, θ̂α) and
add a branch to a hidden layer of the pre-trained DNN
model for λ(x,θλ).

5 EXPERIMENTS

The superiority of STS was demonstrated in nu-
merical comparison experiments of STS and existing
accuracy-preserving calibration methods. For the nu-
merical experiments, we selected two recently pro-

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

Table 1: Expected Calibration Errors (ECEs) and accuracies of the test dataset after calibration by Param-
eterized Temperature Scaling (PTS) [ECCV2022] (Tomani et al., 2022), Adaptive Temperature Scaling (Ada-
TS) [AAAI2023] (Joy et al., 2023), and Simplex Temperature Scaling (STS).

ECE (%)
accuracy (%)

pre-trained PTS AdaTS STS (ours)

FMNIST
LeNet5 3.52±0.15 0.95±0.32 0.93±0.28 0.91±0.15 91.2±0.17

ResNet18 3.86±0.31 2.32±0.37 1.15±0.16 1.15±0.28 94.0±0.15

CIFAR10
VGG16-BN 4.40±0.14 2.48±0.24 1.90±0.54 1.48±0.35 93.7±0.19
ResNet18 2.80±0.17 1.28±0.18 1.21±0.38 1.10±0.24 95.1±0.14

CIFAR100
ResNet50 9.04±0.36 6.71±0.56 4.03±2.04 3.73±1.43 78.7±0.72

DenseNet121 7.23±0.59 5.71±0.81 4.22±1.08 2.87±0.25 79.6±0.50

STL10
VGG16-BN 15.23±0.56 3.84±0.60 4.41±1.75 2.15±0.58 79.4±0.38
ResNet18 12.88±0.55 2.01±0.55 2.20±0.58 1.48±0.29 77.8±0.83

posed TS methods: Parameterized Temperature Scal-
ing (PTS) (Tomani et al., 2022) and Adaptive Tem-
perature Scaling (AdaTS) (Joy et al., 2023). The same
pre-trained DNN model was used in each method and
all methods were calibrated. Their calibration perfor-
mances were then compared. The classification accu-
racy is shared among all methods. All calculations
were performed on a NVIDIA A100 GPU.

5.1 Datasets

Experiments were performed on four open datasets
for image classification, namely, FashionMNIST
(FMNIST) (Xiao et al., 2017), CIFAR10, CI-
FAR100 (Krizhevsky and Hinton, 2009), and
STL10 (Coates et al., 2011). The same datasets
were employed in a previous calibration study (Thu-
lasidasan et al., 2019). Each dataset was randomly
split into a training dataset, a validation dataset,
and a test dataset. The numbers of samples in the
training, validation, and test datasets are given in
Appendix C.1. The models were pre-trained on the
training dataset prior to calibration, and the param-
eters for calibration were tuned on the validation
dataset. While PTS and AdaTS were calibrated
using the original samples with hard labels, STS was
calibrated by applying Multi-Mixup to the original
samples. The calibration performance was evaluated
on the test dataset.

5.2 Setup for Training

We adopted LeNet5 (Lecun et al., 1998), ResNet18,
ResNet50 (He et al., 2016), VGG16-BN (Simonyan
and Zisserman, 2014), and DenseNet121 (Huang et al.,
2017) architectures for the DNN models during pre-
training. VGG16-BN defines the VGG16 (Simonyan
and Zisserman, 2014) architecture with batch normal-

ization. The pairings between the datasets and archi-
tectures are shown in Table 1. We applied different ar-
chitectures for each dataset, depending on the image
size and the difficulty of the tasks. During calibra-
tion, STS used the pre-trained DNN models for the
location parameter, and PTS and AdaTS used them
for logits. The architecture of the additional branch
for the temperature parameter in STS is explained in
Appendix C.2. The architecture for the temperature
parameter in PTS was implemented as described in
Tomani et al. (2022), and that in AdaTS was imple-
mented as in the open source code (Joy, 2022).

All architectures on all datasets used the stochas-
tic gradient descent (Bottou, 2010) optimizer for pre-
training. The learning rate was reduced from 0.1 to
0 by cosine annealing (Loshchilov and Hutter, 2017).
The momentum was 0.9, the weight decay was 0.0005,
the batch size was 128, and the number of epochs was
200. The branch for the temperature parameter in
STS was trained using the Adam optimizer (Kingma
and Ba, 2014) with a fixed learning rate (0.001), a
weight decay of 0.0005, and a batch size of 100. The
number of epochs was 500. In each optimization step,
100 samples were generated by Multi-Mixup. The rea-
son for applying the Adam optimizer is to reduce the
impact of the learning rate. The temperature parame-
ter in PTS was optimized as described in Tomani et al.
(2022). For AdaTS, we used the hyperparameter val-
ues set in the open source code (Joy et al., 2023) to
optimize the temperature parameter.

5.3 Evaluation

To evaluate the calibration performances of the meth-
ods, we adopted the Expected Calibration Error
(ECE) (Guo et al., 2017), which divides samples into
multiple bins of confidence levels and measures the dif-

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

ference between the confidence range in each bin and
the accuracy of the samples in each bin. A lower ECE
indicates a higher calibration performance.

In the experiments, we computed the accuracy and
ECE using the test dataset. The number of bins for
ECE was set to 10. In each method, we ran 5 trials
with different random seeds and calculated the mean
and standard deviation of the accuracies and ECEs
over the 5 trials. The number of trials for the pre-
training and the subsequent accuracy-preserving cali-
bration are the same, and their random seeds are the
same. The partitioning of the training, validation, and
test datasets was fixed across the 5 trials.

5.4 Results

Table 1 shows the mean and standard deviation of the
ECEs and accuracies in the methods.5 Bold indicates
the best results or results within one standard devi-
ation of the best results. As shown in Table 1, STS
consistently outperformed the other models, indicat-
ing that the performance of STS matches or surpasses
the performances of PTS and AdaTS. This result, ob-
tained by estimating the prediction uncertainty from
the probabilistic model on the probability simplex,
confirms the superiority of STS over PTS and AdaTS
for calibration.

5.5 Accuracy-Preserving Calibration via
Dirichlet Distribution

As we mentioned in Section 1, one possible approach
to realize an accuracy-preserving calibration with a
probabilistic model on the probability simplex is com-
bining TS and the Dirichlet distribution. However,
this method has problems as explained in Section 4.2.
We experimentally confirmed that this method caused
underconfidence after calibration. In the experiments
using CIFAR10 and ResNet18, the mean of ECEs
was 67.49 and the standard deviation was 3.84. In
Appendix D, we explain the details of the accuracy-
preserving calibration method with the Dirichlet dis-
tribution and the experiments to simulate this method.

5.6 Performance of Out-of-Distribution
Detection

As explained in Section 3.2, the probabilistic model
on the probability simplex can distinguish between
aleatoric uncertainty and epistemic uncertainty. To
confirm the benefit of this distinction, we performed

5Note that these values may differ from the results
in Tomani et al. (2022) and Joy et al. (2023), because the
setup of pre-training is different from these previous stud-
ies.

the experiments of out-of-distribution (OOD) detec-
tion (Yang et al., 2021). The details of the experi-
ments are explained in Appendix F. In OOD detec-
tion, estimating the epistemic uncertainty is impor-
tant because OOD samples have high epistemic un-
certainty for models trained with in-distribution sam-
ples. STS achieved higher OOD detection performance
than PTS and AdaTS by computing the differential
entropy (Cover and Thomas, 2006) of the estimated
Concrete distribution, which is effective in estimating
the epistemic uncertainty. The details of the differen-
tial entropy are discussed in Appendix E.

6 CONCLUSION

This paper proposed an accuracy-preserving calibra-
tion method called STS, which computes the con-
fidence while considering the prediction uncertainty.
STS estimates the prediction uncertainty by apply-
ing the Concrete distribution. The pre-trained DNN
model requires no update in uncertainty estimation be-
cause it optimizes the location parameter of the Con-
crete distribution regardless of the temperature pa-
rameter. We also proposed a method called Multi-
Mixup, which generates training samples labeled with
vectors on the probability simplex. Multi-Mixup
avoids the high training cost of previous methods
that must train ensemble models. This advantage of
Multi-Mixup extends to uncertainty estimation meth-
ods other than STS.

References

Abhishek, K., Brown, C. J., and Hamarneh, G. (2022).
Multi-sample ζ-mixup: Richer, more realistic syn-
thetic samples from a p-series interpolant. arXiv
preprint arXiv: 2204.03323.

Balanya, S. A., Maroñas, J., and Ramos, D. (2022).
Adaptive temperature scaling for robust calibra-
tion of deep neural networks. arXiv preprint arXiv:
2208.00461.

Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. In International Con-
ference on Computational Statistics, pages 177–186.
Physica-Verlag HD.

Boureau, Y., Ponce, J., and LeCun, Y. (2010). A the-
oretical analysis of feature pooling in visual recog-
nition. In International Conference on Machine
Learning, page 111–118. Omnipress.

Bulatov, Y. (2011). notMNIST dataset. Google
(Books/OCR), Tech. Rep. https://yaroslavvb.

blogspot.com/2011/09/notmnist-dataset.html,
Accessed on February 1, 2024.

https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

Coates, A., Ng, A., and Lee, H. (2011). An analy-
sis of single-layer networks in unsupervised feature
learning. In International Conference on Artificial
Intelligence and Statistics, volume 15, pages 215–
223. PMLR.

Cover, T. M. and Thomas, J. A. (2006). Elements of
Information Theory. Wiley-Interscience.

Filho, T. S., Song, H., Perello-Nieto, M., Santos-
Rodriguez, R., Kull, M., and Flach, P. (2021). Clas-
sifier calibration: A survey on how to assess and im-
prove predicted class probabilities. arXiv preprint
arXiv: 2112.10327.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J.,
Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung,
P., Roscher, R., Shahzad, M., Yang, W., Bam-
ler, R., and Zhu, X. X. (2021). A survey of un-
certainty in deep neural networks. arXiv preprint
arXiv: 2107.03342.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep
sparse rectifier neural networks. In International
Conference on Artificial Intelligence and Statistics,
volume 15, pages 315–323. PMLR.

Gumbel, E. J. (1941). The return period of flood flows.
The Annals of Mathematical Statistics, 12(2):163–
190.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.
(2017). On calibration of modern neural networks.
In International Conference on Machine Learning,
volume 70, pages 1321–1330. PMLR.

Guo, H., Mao, Y., and Zhang, R. (2019). Mixup as
locally linear out-of-manifold regularization. AAAI
Conference on Artificial Intelligence, 33(01):3714–
3722.

Hüllermeier, E. and Waegeman, W. (2021). Aleatoric
and epistemic uncertainty in machine learning: an
introduction to concepts and methods. Machine
Learning, 110:457–506.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recog-
nition.

Huang, G., Liu, Z., Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Conference on Computer Vision and Pat-
tern Recognition.

Inoue, H. (2018). Data augmentation by pairing sam-
ples for images classification. arXiv preprint arXiv:
1801.02929.

Jang, E., Gu, S., and Poole, B. (2017). Categorical
reparameterization with gumbel-softmax. In Inter-
national Conference on Learning Representations.

Joy, T. (2022). Adaptive temperature scaling [Source
code]. https://github.com/thwjoy/adats, Ac-
cessed on July 21, 2023.

Joy, T., Pinto, F., Lim, S., Torr, P. H., and Dokania,
P. K. (2023). Sample-dependent adaptive tempera-
ture scaling for improved calibration. AAAI Confer-
ence on Artificial Intelligence, 37(12):14919–14926.

Kingma, D. P. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint arXiv:
1412.6980.

Kristiadi, A., Hein, M., and Hennig, P. (2020). Be-
ing bayesian, even just a bit, fixes overconfidence
in ReLU networks. In International Conference on
Machine Learning, volume 119, pages 5436–5446.
PMLR.

Krizhevsky, A. and Hinton, G. (2009). Learning mul-
tiple layers of features from tiny images. Technical
report, University of Toronto.

Kuleshov, V. and Deshpande, S. (2022). Calibrated
and sharp uncertainties in deep learning via density
estimation. In International Conference on Machine
Learning, volume 162, pages 11683–11693. PMLR.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Lindqvist, J., Olmin, A., Lindsten, F., and Svensson,
L. (2020). A general framework for ensemble dis-
tribution distillation. In International Workshop on
Machine Learning for Signal Processing, pages 1–6.

Loshchilov, I. and Hutter, F. (2017). SGDR: Stochas-
tic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2017).
The concrete distribution: A continuous relaxation
of discrete random variables. In International Con-
ference on Learning Representations.

Malinin, A. and Gales, M. (2018). Predictive uncer-
tainty estimation via prior networks. In Advances in
Neural Information Processing Systems, volume 31.
Curran Associates, Inc.

Malinin, A., Mlodozeniec, B., and Gales, M. (2020).
Ensemble distribution distillation. In International
Conference on Learning Representations.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
B., and Ng, A. Y. (2011). Reading digits in natural
images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Fea-
ture Learning.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

https://github.com/thwjoy/adats

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Polak, E. (1997). Optimization : Algorithms and Con-
sistent Approximations. Springer-Verlag.

Powers, D. M. W. (2020). Evaluation: from pre-
cision, recall and f-measure to roc, informedness,
markedness and correlation. arXiv preprint arXiv:
2010.16061.

Ramalho, T. and Miranda, M. (2020). Density es-
timation in representation space to predict model
uncertainty. In Engineering Dependable and Secure
Machine Learning Systems, pages 84–96. Springer
International Publishing.

Ryabinin, M., Malinin, A., and Gales, M. (2021).
Scaling ensemble distribution distillation to many
classes with proxy targets. In Advances in Neural
Information Processing Systems, volume 34, pages
6023–6035. Curran Associates, Inc.

Sensoy, M., Kaplan, L., and Kandemir, M. (2018). Ev-
idential deep learning to quantify classification un-
certainty. In Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.

Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv: 1409.1556.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and
Liu, C. (2018). A survey on deep transfer learn-
ing. In International Conference on Artificial Neu-
ral Networks, pages 270–279. Springer International
Publishing.

Thulasidasan, S., Chennupati, G., Bilmes, J. A., Bhat-
tacharya, T., and Michalak, S. (2019). On mixup
training: Improved calibration and predictive un-
certainty for deep neural networks. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Tomani, C., Cremers, D., and Buettner, F. (2022). Pa-
rameterized temperature scaling for boosting the ex-
pressive power in post-hoc uncertainty calibration.
In European Conference on Computer Vision, pages
555–569. Springer Nature Switzerland.

Verma, V., Lamb, A., Beckham, C., Najafi, A.,
Mitliagkas, I., Lopez-Paz, D., and Bengio, Y. (2019).
Manifold mixup: Better representations by interpo-
lating hidden states. In International Conference
on Machine Learning, volume 97, pages 6438–6447.
PMLR.

Wenger, J., Kjellström, H., and Triebel, R. (2020).
Non-parametric calibration for classification. In In-
ternational Conference on Artificial Intelligence and
Statistics, volume 108, pages 178–190. PMLR.

Wilson, A. G. and Izmailov, P. (2020). Bayesian deep
learning and a probabilistic perspective of general-
ization. In Advances in Neural Information Process-
ing Systems, volume 33, pages 4697–4708. Curran
Associates, Inc.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:
1708.07747. The MIT License (MIT) Copyright ©
2017 Zalando SE, https://tech.zalando.com.

Yang, J., Zhou, K., Li, Y., and Liu, Z. (2021). Gener-
alized out-of-distribution detection: A survey. arXiv
preprint arXiv: 2110.11334.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T.,
and Xiao, J. (2015). Lsun: Construction of a large-
scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv: 1506.03365.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. (2018). mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Rep-
resentations.

Zhang, J., Kailkhura, B., and Han, T. Y. (2020). Mix-
n-Match : Ensemble and compositional methods for
uncertainty calibration in deep learning. In Inter-
national Conference on Machine Learning, volume
119, pages 11117–11128. PMLR.

Zou, Y., Yu, Z., Liu, X., Kumar, B. V., and Wang,
J. (2019). Confidence regularized self-training. In
IEEE/CVF International Conference on Computer
Vision.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
/ Yes. This description is provided in Sec-
tion 4.

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. / No. We do not discuss complexity.
The complexities of training ensemble models
and Multi-Mixup differ because they depend
on the number of ensemble models and the
training setup.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including

https://tech.zalando.com

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

external libraries. / No. Our ability to re-
lease code to the public is limited by confi-
dentialities imposed by our institution. To
enable the reproduction of our results, we
provide our experimental details in Section 5.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. / Yes. Please refer to
Sections 4.1 and 4.2.

(b) Complete proofs of all theoretical results. /
Yes. Please refer to Appendix A.

(c) Clear explanations of any assumptions. /
Yes. Please refer to Sections 4.1 and 4.2.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). / No. Our ability to release code to
the public is limited by confidentialities im-
posed by our institution. To enable the re-
production of our results, we provide our ex-
perimental details in Section 5.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). /
Yes. The details are provided in Section 5.1,
Section 5.2, Appendix B, and Appendix C.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). / Yes. Please see Sec-
tions 5.3 and 5.4.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). / Yes. This description is
provided at the beginning of Section 5.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. / Yes. Please refer to Sec-
tions 5.1 and 5.2.

(b) The license information of the assets, if ap-
plicable. / Yes. FasionMNIST (Xiao et al.,
2017) specifies a license, which is given in the
References.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. / Not Appli-
cable

(d) Information about consent from data
providers/curators. / Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. / Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. / Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. / Not Appli-
cable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. / Not Applicable

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

A MISSING PROOFS

This section describes the proofs missing from the main paper.

A.1 Proof of Theorem 1

By Eqs. (4) and (5), the following holds, where E[·] denotes the expectation of a stochastic variable π ∼
Cn(π|α(x,θα), λ(x,θλ)) and P(·) returns the probability that the event in the parentheses occurs under the
stochastic variable π ∼ Cn(π|α(x,θα), λ(x,θλ)).

p(y = k|x) =
∫

p(y = k|π)p(π|x)dπ (21)

=

∫
1{argmaxi∈Y πi=k}Cn(π|α(x,θα), λ(x,θλ))dπ (22)

= E
[
1{argmaxi∈Y πi=k}

]
(23)

= P
(
arg max

i∈Y
πi = k

)
(24)

=
αk(x,θα)∑K
i=1 αi(x,θα)

for ∀k ∈ Y. (25)

Equation (22) holds by Eqs. (4) and (5). Equation (24) holds by the definition of the expectation. Equation (25)
holds under Proposition 1(b) in Maddison et al. (2017).

A.2 Proof of Corollary 1

Let π(x,θα) be defined as follows.

π(x,θα) :=

(
α1(x,θα)∑K
k=1 αk(x,θα)

, . . . ,
αK(x,θα)∑K
k=1 αk(x,θα)

)⊤

. (26)

From Theorem 1, Eq. (1) is described as follows, under Eqs. (4) and (5).

p(y = k|x) = αk(x,θα)∑K
i=1 αi(x,θα)

= πk(x,θα) for ∀k ∈ Y. (27)

Therefore, optimizing θα on D using the maximum likelihood estimation of Eq. (1) is equivalent to optimizing θα
on D using the maximum likelihood estimation of Cat(y|π(x,θα)) · · · (A).

Meanwhile, since α(x,θα) = (eg1(x), . . . , egK(x))⊤, Eq. (7) is also described as follows.

L(θα) = − 1

N

N∑
n=1

lnCat(yn|π(xn,θα)). (28)

Equation (28) is the negative log-likelihood of Cat(y|π(x,θα)). Therefore, optimizing θα on D using the
minimization of Eq. (7) is equivalent to optimizing θα on D using the maximum likelihood estimation of
Cat(y|π(x,θα)) · · · (B).

From (A) and (B), we can prove Corollary 1.

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

Algorithm 1: Algorithm to synthetically generate a dataset in which the inputs are labeled with vectors on the
probability simplex by Multi-Mixup.

Input: B(k)(k ∈ Y): mini-batch including the pairs of inputs and one-hot labels in each class

(|B(1)| = · · · = |B(K)| = R, R ∈ N)
β ∈ (0,∞): hyperparameter to generate the weight w by random sampling
S ∈ N: the number of iterations to randomly shuffle the samples.

Output: B̃: mini-batch generated by Multi-Mixup
1 for s = 1, . . . , S do
2 w ∼ Dir(π|β1K)
3 for k = 1, . . . ,K do

4 Randomly shuffle the samples in B(k), and get B(k)
s = {(x(k)

s,r ,y
(k)
s,r)}Rr=1

5 end
6 for r = 1, . . . , R do

7 x̃s,r ←
∑K

k=1 wkx
(k)
s,r

8 π̃s,r ←
∑K

k=1 wky
(k)
s,r

9 end
10 end

11 return B̃ = {(x̃s,r, π̃s,r)}s=1,...,S,r=1,...,R

B ALGORITHM FOR MULTI-MIXUP

Algorithm 1 shows the details of Multi-Mixup in each optimization step. We transform samples with one-hot
labels in classification datasets to samples with labels on the probability simplex that indicate the prediction
uncertainty. At each optimization step, we randomly sample K mini-batches B(1), . . . ,B(K), each containing
samples in each class, from the classification dataset. Random sampling is performed so that all mini-batches
have the same number of samples, which is denoted by R ∈ N.6 In Multi-Mixup, we linearly interpolate the
R×K samples among classes (Lines 6-9), which is repeated S times. For each s ∈ {1, . . . , S} and r ∈ {1, . . . , R},
y
(k)
s,r denotes a one-hot vector whose k-th entry is 1 and whose other entries are 0. In each of the S iterations, we

generate the value of the weight w by randomly sampling from the Dirichlet distribution Dir(π|β1K) (Line 2),
where 1K is a K-dimensional vector whose all entries are 1 and β is a hyperparameter in (0,∞). In addition, we
randomly shuffle the order of samples in each mini-batch (Lines 3-5). In the experiments explained in Section 5,
we generated 100 samples at each step of the optimization by setting R = 10 and S = 10 in Alg. 1. Other
settings are discussed in Appendix G.1.

Note that, in Line 8, y
(i)
s,r ̸= y

(j)
s,r for i ̸= j. If we use a different policy than Alg. 1 and randomly select K samples

without distinguishing the classes, samples corresponding to the surfaces and edges of ∆K−1 would be generated
when there are class overlaps among the samples. In this case, if the number of classes K is large, the proportion
of samples on the interior of ∆K−1 becomes extremely small, and there is a risk of obtaining a model that only
returns a temperature parameter value close to 0 after training. Therefore, we formulate Multi-Mixup so that
samples in different classes are interpolated.

The random sampling of w by Dir(π|β1K) is based on the fact that Mixup (Zhang et al., 2018) determines the
weight of the interpolation by sampling from the beta distribution Beta(π|β, β). Although we can also generatew
by sampling from the Concrete distribution, a temperature parameter value that represents a uniform distribution
on ∆K−1 varies with the number of dimensions, K, and we cannot describe this value in a closed form (Maddison
et al., 2017). Conversely, the Dirichlet distribution can represent a uniform distribution on ∆K−1 regardless of K
if we specify β = 1. In the experiments explained in Section 5, we varied the value of β from 0.2 to 2.0 in 0.1
increments and tried STS for each setting. Then, we calculated ECE for each setting with the validation dataset7

and selected the setting that gave the smallest ECE. Since there were some settings where the loss shown in
Eq. (11) diverged during optimization, such settings were automatically excluded. Finally, we evaluated the
selected setting on the test dataset. The sensitivity of β to ECE is discussed in Appendix C.3.

6Even if we use a class-imbalanced dataset, we still sample equally across classes. In this case, we upsample for classes
with small sample sizes. The evaluation of STS in a class-imbalanced situation is left as future work.

7The validation dataset was used for both training the temperature parameter and tuning the hyperparameter.

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

Table 2: Number of samples in each dataset.

training validation test

FashionMNIST (Xiao et al., 2017) 60000 5000 5000
CIFAR10 (Krizhevsky and Hinton, 2009) 50000 5000 5000
CIFAR100 (Krizhevsky and Hinton, 2009) 50000 5000 5000

STL10 (Coates et al., 2011) 5000 4000 4000

Figure 2: Architecture of the additional branch for
the temperature parameter λ(x,θλ) in the experiments.
We used the same architecture regardless of the archi-
tecture of the pre-trained DNN model.

Figure 3: Transitions of Expected Calibration Errors
(ECEs) when we varied the value of β from 0.2 to 2.0
in 0.1 increments. Each point indicates the median of 5
trials and the shading indicates the standard deviation.

C SUPPLEMENTS OF EXPERIMENTS IN THE MAIN PAPER

C.1 Dataset

Table 2 shows the number of samples in the training, validation, and test datasets used in the experiments
explained in Section 5. The original files of FasionMNIST, CIFAR10, and CIFAR100 contain a training dataset
and a test dataset, respectively. For the validation dataset, we randomly split the original test dataset into
two datasets. The original file of STL10 contains a training dataset, a test dataset, and an unlabeled dataset.
In this study, we did not use the unlabeled dataset and used only the training and test datasets. Similar to
other datasets, we randomly split the original test dataset into two datasets for the validation dataset. The
characteristic of STL10 is a small number of training samples, which causes overfitting to the training dataset.
This characteristic is reflected in the test accuracy shown in Table 1.

C.2 Setup of the Models

As explained in Section 4.5, to compute the temperature parameter, we used an additional branch different from a
pre-trained DNN model. Figure 2 shows the architecture of the branch to compute the temperature parameter.
The same architecture was applied to all datasets and architectures of the pre-training. For the STL10 and
VGG16-BN pairing only, we reduced the feature dimension from 512×3×3 to 512 by average pooling (Boureau
et al., 2010). This process is due to the high resolution of STL10. The experiments with a different architecture
are discussed in Appendix G.2.

C.3 Sensitivity of the Hyperparameter in Multi-Mixup

As explained in Appendix B, we selected the best value of the hyperparameter in Multi-Mixup, β, by the
validation dataset. In this regard, we confirmed the difference in calibration performance among the tried values
of β. Figure 3 shows the ECEs when we set 0.2-2.0 as the value of β. We chose the experiments with CIFAR10
and STL10 and used the models calibrated by STS with different values of β. The pre-training architecture was
ResNet18. As can be seen in Fig. 3, the different datasets show different trends. While the best value of β is
0.6 on CIFAR10, that is 1.3 on STL10. However, the ECEs calculated on the validation dataset are consistent

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

Table 3: Time to calibrate confidence (training) and the time to compute confidence (inference).

PTS AdaTS STS (ours)

training (sec.) 26142.47 269.88 5097.18
inference (sec.) 18.37 18.03 17.91

with those on the test dataset. This means that tuning β on the validation dataset results in high calibration
performance on the test dataset, although this tuning is required on a per-task basis.

C.4 Time Required for Training and Inference

As part of a comparison with existing methods, we measured the time to calibrate confidence, which corresponds
to training, and the time to compute confidence after calibration, which corresponds to inference, for PTS,
AdaTS, and STS. We chose the experiments with the pair of CIFAR10 and ResNet18. The number of training
epochs was set as described in Section 5.2. The time measurements were performed on a Xeon Platinum 8358
CPU. The number of workers in DataLoader (Paszke et al., 2019) and that of cores were unified to 8. We used a
NVIDIA A100 GPU as described in the main paper. Table 3 shows the results of the time measurements. The
time required for training varies greatly from method to method. This variation is caused by the difference in
the objective function used to optimize the temperature parameter and the difference in the number of epochs
due to the objective function. Although STS is shorter than PTS, that is longer than AdaTS. Therefore, we
should devise a method to shorten the training time in future work. In contrast, there is little difference in the
time required for inference among the methods. This implies that the sampling from the Gumbel distribution
required to compute our confidence in STS does not hurt the running time compared to the existing methods.

D INAPPROPRIATENESS OF DIRICHLET DISTRIBUTION FOR
ACCURACY-PRESERVING CALIBRATION

D.1 Calibration with Dirichlet Distribution

In this section, we explain why the probabilistic model as in Eq. (2) is inappropriate for accuracy-preserving
calibration in order to reinforce the validity of adopting the Concrete distribution. We consider calibration using
Eq. (2) as in previous studies (Malinin and Gales, 2018; Malinin et al., 2020; Lindqvist et al., 2020; Ryabinin
et al., 2021). Moreover, we add a temperature parameter into the parameter of the Dirichlet distribution as

µ(x,θµ) =

(
exp

(
ĝ1(x)

t(x,θµ)

)
, · · · , exp

(
ĝK(x)

t(x,θµ)

))⊤

, (29)

where ĝ : X → RK is a pre-trained DNN model and t(·,θµ) : X → (0,∞) is a scalar-valued function parameter-
ized by a real vector θµ. We determined the position of t(x,θµ) in Eq. (29) based on the temperature annealing
discussed in Malinin et al. (2020). In this case, the negative log-likelihood of Dir(π|µ(x,θµ)) is formulated as

L(θµ) = − 1

M

M∑
m=1

ln Γ

(
K∑

k=1

exp

(
ĝk(x̃m)

t(x̃m,θµ)

))
+

1

M

M∑
m=1

K∑
k=1

ln Γ

(
exp

(
ĝk(x̃m)

t(x̃m,θµ)

))

− 1

M

M∑
m=1

K∑
k=1

(
exp

(
ĝk(x̃m)

t(x̃m,θµ)

)
− 1

)
ln π̃m,k,

(30)

where Γ(·) is the gamma function and {(x̃m, π̃m)}Mm=1 denotes the dataset generated by Multi-Mixup. For

an accuracy-preserving calibration, the temperature parameter is computed as t(x,θµ) = softplus((h ◦ f̂)(x)),
where h : Z → R is a scalar-valued function computed by fully connected layers. The weight parameters of h
are optimized by minimizing Eq. (30), where ĝ and f̂ are fixed.

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

(a) Dirichlet distribution. (b) Concrete distribution.

Figure 4: Relation between the confidence and classification accuracy when we use the probabilistic model as in
Eq. (2) (left side) and the probabilistic model as in Eqs. (4) and (5) (right side). The interval between 0 and
1 is divided into 10 bins, and the height of the bars indicates the classification accuracy of the samples whose
confidence is within each bin. The bins without a bar imply that there is no sample in the test dataset that has
a confidence level within the corresponding bins. We plotted the mean of 5 trials with different random seeds,
and the standard deviation is represented by error bars. The diagonal dashed line represents the ideal case where
confidence and classification accuracy are in perfect agreement, and the closer the height of the bars is to the
dashed line, the more accurate the calibration.

Let t(x, θ̂µ) be the temperature parameter estimated by Eq. (30). We compute the confidence as follows.

confidence(x) = max
k∈Y

(E[π])k = max
k∈Y

exp
(

ĝk(x)

t(x,θ̂µ)

)
∑K

i=1 exp
(

ĝi(x)

t(x,θ̂µ)

) , (31)

where E[·] denotes the expectation of Dir(π|µ(x, θ̂µ)). This previous study takes advantage of the fact that the
Dirichlet distribution is a conjugate prior, and Eq. (31) is equivalent to the maximum of Eq. (1).

Using the Dirichlet distribution, the maximum likelihood estimation of Eq. (1) is equivalent to the training with
the cross-entropy loss similar to STS. Therefore, if we denote µĝ(x,θµ) = (eĝ1(x), . . . , eĝK(x))⊤, µĝ(x,θµ) is
optimal in terms of the likelihood of Eq. (1). However, the optimality of this parameter is not guaranteed after
training t(·,θµ) solely using Eq. (30). In other words, training t(·,θµ) by Eq. (30) may make µĝ(x,θµ) less
optimal in terms of the cross-entropy loss. This problem results in poor calibration performance. We confirmed
that the accuracy-preserving calibration with Eq. (30) leads to underconfidence by numerical experiments. The
experiments are explained in the following section.

D.2 Experiments to Confirm Inappropriateness

We used CIFAR10 (Krizhevsky and Hinton, 2009) as a dataset and used ResNet18 (He et al., 2016) as a model
architecture. The pre-trained DNN model ĝ was the same as in Section 5. The architecture for the temperature
parameter t(·,θµ) and the setup for training t(·,θµ) and tuning the hyperparameter β were the same as in STS,
except for the learning rate. The learning rate was set to 10−6 because the loss function (30) diverged when set
to the same value as in STS. After training t(·,θµ), we computed ECE with the test dataset.

As a result, the mean of ECE was 67.49 and the standard deviation was 3.84, which is worse than the pre-trained
DNN model. From this result, we can experimentally confirm that the Dirichlet distribution is inappropriate for
accuracy-preserving calibration even if we add a temperature parameter to the Dirichlet distribution. Figure 4a
implies the cause of the poorer ECE. We have plotted the relation between the confidence computed by Eq. (31)
and the classification accuracy. For reference, we also present the same type of figure for STS, in Fig. 4b. From
Fig. 4a, the accuracy-preserving calibration using the Dirichlet distribution results in confidence levels of only
0.6 or less although the classification accuracy of the pre-trained DNN model is about 95% as shown in Table 1.
In other words, extreme underconfidence is observed.

As we mentioned in the main paper, the failure of the accuracy-preserving calibration when we used the Dirichlet
distribution is caused by the fact that the maximality of the likelihood of Eq. (1) (i.e., the minimality of the

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

(a) t(x,θµ) = 0.2 (b) t(x,θµ) = 1 (c) t(x,θµ) = 2 (d) t(x,θµ) = 10 (e) t(x,θµ) = 20

Figure 5: Variation of the Dirichlet distribution when we shifted only t(x,θµ) with fixed ĝ(x). In this figure,
we did not use any input x and give pseudo values for t(x,θµ) and ĝ(x). The value of ĝ(x) was fixed to
(1.0, 0.5, 0.25)⊤. The value of t(x,θµ) was shifted from 0.2 to 20.

(a) λ = 0.2 (b) λ = 1 (c) λ = 2 (d) λ = 10 (e) λ = 20

Figure 6: Variation of the Concrete distribution when we shifted only the temperature parameter λ with the
fixed location parameter α. The value of α was fixed to (e1.0, e0.5, e0.25)⊤. The value of λ was shifted from 0.2
to 20. Due to the high probability density, bright areas are almost non-existent in Figs. 6a and 6b. In these
figures, the probability density is concentrated at the lower left apex.

cross-entropy loss) does not hold when only t(·,θµ) is trained using Eq. (30). Moreover, even if only t(·,θµ)
increases with fixed ĝ, the Dirichlet distribution cannot represent the case where the probability density of
the center of ∆K−1 is high, depending on the value of ĝ(x), as shown in Fig. 5. Nevertheless, the samples

corresponding to the center of ∆K−1 were given to the probabilistic model, causing t(x, θ̂µ) to be larger than
expected, resulting in underconfidence. On the contrary, the Concrete distribution can represent the case where
the probability density of the center of ∆K−1 is high by shifting the temperature parameter λ alone, as shown
in Fig. 6. Therefore, STS can calibrate the confidence accurately.

E ESTIMATION OF ALEATORIC AND EPISTEMIC UNCERTAINTIES

As explained in Section 3.2, the merit of the probabilistic model on ∆K−1 is that it can measure aleatoric
uncertainty and epistemic uncertainty separately. A high probability density at the center of ∆K−1 corresponds
to aleatoric uncertainty, and a large variance over ∆K−1 corresponds to epistemic uncertainty (Malinin et al.,
2020). Let p(π|x) be a probabilistic model on ∆K−1 with x-dependent parameters and E[·] be the expectation
of p(π|x). The aleatoric uncertainty is measured by the following expectation of entropy.

E

[
−

K∑
k=1

πk lnπk

]
= −

∫ K∑
k=1

πk lnπk p(π|x)dπ. (32)

When p(π|x) has a high probability density at the center of ∆K−1, Eq. (32) has a large value. In this case, the
input x is judged to have high aleatoric uncertainty. The epistemic uncertainty is measured by the following
differential entropy (Cover and Thomas, 2006).

E[− ln p(π|x)] = −
∫

p(π|x) ln p(π|x)dπ. (33)

When p(π|x) has a large variance over ∆K−1, Eq. (33) has a large value. In this case, the input x is judged to
have high epistemic uncertainty.

In the case of the proposed probabilistic model shown in Eqs. (4) and (5), all we need to do is set p(π|x)
to the estimated Concrete distribution Cn(π|α(x, θ̂α), λ(x, θ̂λ)), in the above metrics. As in Section 4.4, the

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

Table 4: Pairs of datasets for in-distribution and out-of-distribution (OOD).

in-distribution out-of-distribution

Set 1 FashionMNIST (Xiao et al., 2017) notMNIST (Bulatov, 2011)
Set 2 CIFAR10 (Krizhevsky and Hinton, 2009) SVHN (Netzer et al., 2011)
Set 3 CIFAR10 (Krizhevsky and Hinton, 2009) LSUN (Yu et al., 2015)

Table 5: Area under the curve of precision-recall (AUPR) and that of receiver operating characteristic (AUROC)
computed by the test datasets for in-distribution and out-of-distribution (OOD).

pre-trained PTS AdaTS
STS (ours)

confidence differential entropy

Set 1
AUPR (%) 97.80±0.48 97.97±0.48 96.80±0.94 98.02±0.53 98.63±0.46
AUROC (%) 94.22±1.28 94.30±1.38 89.70± 3.30 94.40±1.56 95.79±1.43

Set 2
AUPR (%) 98.74±0.21 98.84±0.20 98.89±0.20 98.81±0.20 98.93±0.34
AUROC (%) 95.44±0.51 95.70±0.50 95.74±0.68 95.51±0.53 95.68±1.70

Set 3
AUPR (%) 95.04±0.15 95.39±0.14 94.94±0.22 95.28±0.17 96.58±0.21
AUROC (%) 92.64±0.17 92.93±0.18 92.22±0.25 92.59±0.23 94.11±0.37

expectation of the Concrete distribution is approximated as the sample mean of the values sampled by the
softmax of the standard Gumbel distribution as follows.

E

[
−

K∑
k=1

πk lnπk

]
≃ −1

p

p∑
j=1

K∑
k=1

π̂
(j)
k (x) ln π̂

(j)
k (x), (34)

E[− ln p(π|x)] ≃ −1

p

p∑
j=1

ln Cn(π|α(x, θ̂α), λ(x, θ̂λ))
∣∣∣
π=(π̂

(j)
1 (x),...,π̂

(j)
K (x))⊤

, (35)

where π̂
(j)
k (x) is computed as Eq. (17).

F EFFECTIVENESS ON OUT-OF-DISTRIBUTION DETECTION

In the main paper, Table 1 shows that STS estimates classification accuracy more precisely than the previous
methods. In addition, by computing the differential entropy shown in Eq. (35), STS can achieve higher perfor-
mance in OOD detection than previous methods, because OOD detection is a task of estimating the epistemic
uncertainty that OOD samples have (Gawlikowski et al., 2021). To show the validity of this claim, we confirmed
the OOD detection performance of the pre-trained model and the models calibrated by PTS, AdaTS, and STS.

Table 4 shows the pairs of datasets for in-distribution and OOD. As shown in Table 4, we tried three pairs in our
experiments, which are named Set 1, Set 2, and Set 3. Note that the datasets for OOD, notMNIST (Bulatov,
2011), SVHN (Netzer et al., 2011), and LSUN (Yu et al., 2015), were not used in either pre-training, calibration, or
tuning of hyperparameters, and these datasets were used for performance evaluation purposes only. The number
of samples in the test datasets of notMNIST, SVHN, and LSUN is 18724, 26032, and 10000, respectively. We
adopted ResNet18 architecture for the DNN models during pre-training. The training setup was the same as in
Section 5 and Appendix C. In other words, we reused the pre-trained model and the calibrated models obtained
in the experiments described in the main paper, picking up CIFAR10 and FMNIST. In STS, we also reused the
best value of β selected as explained in Appendix B. Therefore, we do not need to train another model for OOD
detection. The OOD detection performance was evaluated by the area under the curve of precision-recall (AUPR)
and that of receiver operating characteristic (AUROC) (Powers, 2020). The confidence of the pre-trained model
and that of the models calibrated by PTS, AdaTS, and STS were used as OOD detectors. Moreover, differential
entropy was also used as an OOD detector in STS. For differential entropy, the same value of β was adopted as
in the case of confidence.

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex

Table 6: Expected Calibration Errors (ECEs) of the test dataset when we performed calibration with different
values of R and S. The results of the methods except STS are the same as in Table 1.

pre-trained PTS AdaTS
STS (ours)

R = 10, S = 10 R = 20, S = 5 R = 100, S = 1

FMNIST 3.86±0.31 2.32±0.37 1.15±0.16 1.15±0.28 1.01±0.16 1.04±0.26
CIFAR10 2.80±0.17 1.28±0.18 1.21±0.38 1.10±0.24 1.06±0.34 1.08±0.15

Table 5 shows the mean and standard deviation of AUPR and AUROC in the methods. As in Table 1, bold
indicates the best results or results within one standard deviation of the best results. Although there are no
significant differences in Set 2 due to the simplicity of the task, STS shows higher performance than PTS and
AdaTS in Set 1 and Set 3. In particular, differential entropy achieved the highest performance, confirming that
the differential entropy of a distribution on the probability simplex is effective in OOD detection where a detector
that estimates epistemic uncertainty is required. These results also follow up on existing studies claiming the
validity of differential entropy on OOD detection (Malinin and Gales, 2018; Malinin et al., 2020).

G ADDITIONAL EXPERIMENTS WITH DIFFERENT SETUPS

This section describes calibration experiments with different setups than those described in the previous sections.

G.1 Sensitivity of Sampling for Multi-Mixup

As explained in Appendix B, in the previous sections we set R = 10, which is the number of samples in mini-
batches B(k) for each class, and S = 10, which is the number of times the interpolation is repeated. Since R and S
are adjustable, we performed additional experiments to investigate the variation in calibration performance as
these numbers are adjusted. We used CIFAR10 and FMNIST for the datasets and ResNet18 for the architecture
in pre-training. For R and S, we tried two setups. One is R = 20, S = 5 and the other is R = 100, S = 1. All
setups except R, S, and the number of epochs were not changed from the previous sections. The number of
iterations in the optimization was adapted to the experiments in the main paper. Therefore, as we increased R,
the number of epochs, which is the number of times each original pre-Multi-Mixup sample is accessed, was
increased.

Table 6 shows the mean and standard deviation of the ECEs in the methods. There are no significant differences
among the different R and S settings and the choices of these numbers have little effect on calibration. However,
if we focus on the mean, the ECEs become smaller as R is increased. These results suggest the possibility of
achieving smaller ECEs.

G.2 Sensitivity of the Architecture for the Temperature Parameter

In the previous sections, we used only the architecture shown in Fig. 2 for the temperature parameter λ(x,θλ).
Therefore, this section presents experiments using a different architecture to investigate the sensitivity of the
architecture to λ(x,θλ). As in Appendix G.1, we used CIFAR10 and FMNIST for the datasets and ResNet18
for the architecture in pre-training. Figure 7 shows a new architecture introduced for additional experiments.
The new architecture has fewer layers and narrower widths than the architecture in Fig. 2. All setups except
architectures were not changed from the previous sections. We adopted the R = 10, S = 10 setting.

Table 7 shows the mean and standard deviation of the ECEs in the methods. There are no significant differences
among the different architectures and the choices of the architectures for λ(x,θλ) have little effect on calibration.
However, if we focus on the mean, the ECEs get larger as the architecture gets smaller. This suggests that there
is a risk that the calibration performance will deteriorate as the architecture gets smaller, and we should make
sure that the size of the architecture is sufficient for λ(x,θλ) when we perform the calibration using STS.

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna

Figure 7: Architecture of the additional branch for the temperature parameter λ(x,θλ), introduced for additional
experiments described in Appendix G.2.

Table 7: Expected Calibration Errors (ECEs) of the test dataset when we performed calibration with different
architectures for the temperature parameter λ(x,θλ). The results of the methods except STS are the same as in
Table 1. The columns indicated by “Figure 2” and “Figure 7” show the results with the different architectures.

pre-trained PTS AdaTS
STS (ours)

Figure 2 Figure 7

FMNIST 3.86±0.31 2.32±0.37 1.15±0.16 1.15±0.28 1.30±0.18
CIFAR10 2.80±0.17 1.28±0.18 1.21±0.38 1.10±0.24 1.11±0.16

	INTRODUCTION
	RELATED WORK
	Accuracy-Preserving Calibration
	Uncertainty Estimation on the Probability Simplex
	Data Augmentation by Interpolation

	PRELIMINARIES
	Notations
	Uncertainty Estimation on the Probability Simplex
	Concrete Distribution

	SIMPLEX TEMPERATURE SCALING
	Overview
	Why STS Realizes Accuracy-Preserving Calibration
	Training of the Temperature Parameter
	Generation of Samples on Probability Simplex by Multi-Mixup
	Loss Function for Training

	Confidence
	Architectures for Parameters in Probabilistic Model

	EXPERIMENTS
	Datasets
	Setup for Training
	Evaluation
	Results
	Accuracy-Preserving Calibration via Dirichlet Distribution
	Performance of Out-of-Distribution Detection

	CONCLUSION
	MISSING PROOFS
	Proof of Theorem 1
	Proof of Corollary 1

	ALGORITHM FOR MULTI-MIXUP
	SUPPLEMENTS OF EXPERIMENTS IN THE MAIN PAPER
	Dataset
	Setup of the Models
	Sensitivity of the Hyperparameter in Multi-Mixup
	Time Required for Training and Inference

	INAPPROPRIATENESS OF DIRICHLET DISTRIBUTION FOR ACCURACY-PRESERVING CALIBRATION
	Calibration with Dirichlet Distribution
	Experiments to Confirm Inappropriateness

	ESTIMATION OF ALEATORIC AND EPISTEMIC UNCERTAINTIES
	EFFECTIVENESS ON OUT-OF-DISTRIBUTION DETECTION
	ADDITIONAL EXPERIMENTS WITH DIFFERENT SETUPS
	Sensitivity of Sampling for Multi-Mixup
	Sensitivity of the Architecture for the Temperature Parameter

