
RL in Markov Games with Independent Function Approximation:
Improved Sample Complexity Bound under the Local Access Model

Junyi Fan∗† Yuxuan Han∗† Jialin Zeng∗† Jianfeng Cai†
Yang Wang†‡ Yang Xiang†§ Jiheng Zhang†‡

† Department of Mathematics, HKUST
‡Department of Industrial Engineering and Decision Analytics, HKUST
§HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute
∗Equal Contribution, Correspondence to: maxiang@ust.hk, jiheng@ust.hk

Abstract

Efficiently learning equilibria with large state
and action spaces in general-sum Markov
games while overcoming the curse of multi-
agency is a challenging problem. Recent
works have attempted to solve this prob-
lem by employing independent linear func-
tion classes to approximate the marginal Q-
value for each agent. However, existing sam-
ple complexity bounds under such a frame-
work have a suboptimal dependency on the
desired accuracy ε or the action space. In
this work, we introduce a new algorithm,
Lin-Confident-FTRL, for learning coarse cor-
related equilibria (CCE) with local access
to the simulator, i.e., one can interact with
the underlying environment on the visited
states. Up to a logarithmic dependence on
the size of the state space, Lin-Confident-
FTRL learns ϵ-CCE with a provable optimal
accuracy bound O(ϵ−2) and gets rids of the
linear dependency on the action space, while
scaling polynomially with relevant problem
parameters (such as the number of agents
and time horizon). Moreover, our analysis of
Linear-Confident-FTRL generalizes the vir-
tual policy iteration technique in the single-
agent local planning literature, which yields a
new computationally efficient algorithm with
a tighter sample complexity bound when as-
suming random access to the simulator.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 Introduction

As a flourishing subfield of reinforcement learning,
multi-agent reinforcement learning (MARL) systems
have demonstrated impressive success across a vari-
ety of modern artificial intelligence tasks, such as
chess and GO games (Silver et al., 2017), Poker
(Brown and Sandholm, 2019), autonomous self-driving
(Shalev-Shwartz et al., 2016), and multi-robot con-
trols(Matignon et al., 2012). MARL investigates how
multiple agents interact in an unknown shared environ-
ment and learn to take actions that maximize their in-
dividual reward. Compared to single-agent RL, where
an agent only needs to optimize its own behavior by
interacting with the environment, the presence of com-
plex interactions among multiple players in MARL
poses some novel challenges.

MARL encounters similar challenges as single-agent
reinforcement learning in dealing with large state and
action spaces, which are further compounded in the
multi-agent scenario. In single-agent RL, function
approximation is widely employed to tackle the chal-
lenges arising from large state and action spaces that
cannot be exhaustively explored (Cisneros-Velarde and
Koyejo, 2023; Wen and Van Roy, 2017; Jiang et al.,
2017; Du et al., 2019; Yang and Wang, 2020; Jin et al.,
2020; Wang et al., 2020; Zanette et al., 2020; Jin et al.,
2021a; Du et al., 2021; Yin et al., 2022; Foster et al.,
2021). However, applying function approximation to
MARL using a global function approximation that cap-
tures the joint Q-value of all agents results in the curse
of multi-agency, where the sample complexity scales ex-
ponentially with the number of agents (Xie et al., 2020;
Huang et al., 2021; Chen et al., 2021; Jin et al., 2022;
Chen et al., 2022; Ni et al., 2022). To address this prob-
lem, decentralized, or independent linear function ap-
proximation has been proposed in Wang et al. (2023);
Cui et al. (2023) for learning equilibrium in multi-agent

RL in Markov Games with Independent Function Approximation

general-sum Markov games, where the linear function
class only models the marginal Q-value for each agent.
Specifically, Wang et al. (2023) combine new policy
replay mechanisms with V -learning that can learn ε-
coarse correlated equilibirum (CCE) with O(ε−2) sam-
ple complexity. However, the sample complexity of
their algorithm still depends polynomially on the size
of the largest action space maxm

i=1Ai, which is affected
by the large action space issue and does not fully uti-
lize the advantage of function approximation. Cui et al.
(2023) also employ policy replay techniques but with
on-policy samples that eliminate the dependency on
the number of actions. However, this approach yields
a sub-optimal sample complexity of O(ε−4) for finding
ε-CCE.

While both Wang et al. (2023) and Cui et al. (2023)
have utilized the online access model, it is reasonable
to believe that compared to the online access model,
more flexible sampling protocols, such as local access
or random access models can lead to an improved sam-
ple complexity. This observation raises the following
open question:

Can we design more sample-efficient algorithms for
MARL with independent linear function

approximation under stronger access models?

In this paper, we make an effort to answer this question
by designing an algorithm that achieves sharper depen-
dency under the local access model and random access
model. Random access model, also known as genera-
tive model, allows the player to query any state-action
pair. Recently, the local access model has gained popu-
larity in the single-agent RL with function approxima-
tion both theoretically (Weisz et al., 2022; Yin et al.,
2022; Hao et al., 2022; Li et al., 2021) and empirically
(Tavakoli et al., 2020; Lan et al., 2023; Yin et al., 2023).
This model allows the agent to query the simulator
with previously visited states, providing more versatil-
ity than the random access model and accommodating
many realistic scenarios. For example, in many video
games, players can revisit previously recorded states.
We summarize our key contributions and technical in-
novations under these two models below.

1.1 Our Contribution

Independent linear Markov Games under the
local access model. We propose a more efficient al-
gorithm, Linear-Confident-FTRL, for independent lin-
ear Markov games with local access to a simulator. To
leverage accumulated information and prevent unnec-
essary revisits, the algorithm maintains a distinct core
set of state-action pairs for each agent, which then
determine a common confident state set. Then each
agent performs policy learning over his own core set.

Whenever a new state outside the confident state set is
detected during the learning, the core set is expanded,
and policy learning is restarted for all agents. To con-
duct policy learning, the algorithm employs a decen-
tralized Follow-The-Regularized-Leader (FTRL) sub-
routine, which is executed by each agent over their
own core sets, utilizing an adaptive sampling strategy
extended from the tabular and the random model set-
ting (Li et al., 2022). This adaptive sampling strategy
effectively mitigates the curse of multi-agency, which is
caused by uniform sampling over all state-action pairs.

Sample complexity bound under the local
access model. By querying from the lo-
cal access model, the Linear-Confident-FTRL al-
gorithm is provable to learn an ε-CCE with
Õ(min{ log(S)

d
,maxi Ai}d3H6m2ε−2) samples for indepen-

dent linear Markov Games. Here, d denotes the di-
mension of the linear function, S is the size of the
state space, m represents the number of agents, H
stands for the time horizon, and Ai is the number
of actions for player i. When S ≲ edmaxi Ai , we get
rid of the dependency on action space and achieve
near-optimal dependency on ε. For possibly infinite S,
our algorithm achieves Õ(ε−2d3H6m2 maxi Ai) sample
complexity, which is similar to Wang et al. (2023) but
sharpens the dependency on maxi Ai and d. We make
detailed comparisons with prior works in table 1.

Sample complexity bound under the random
access model. Our analysis of Linear-Confident-
FTRL generalizes the virtual policy iteration tech-
nique in the single-agent local planning literature (Hao
et al., 2022; Yin et al., 2022), in which a virtual algo-
rithm is constructed and used as a bridge to analyze
the performance of the main algorithm. In particular,
our construction of the virtual algorithm also yields
a new algorithm with a tighter sample complexity
bound Õ(min{ε−2dH2, log(S)

d ,maxi Ai}d2H6m2ε−2)
when the random access to the simulator is available.
It is worth noting that the minimax lower bound
in the tabular case is Ω(Smaxi AiH

4ε−2) (Li et al.,
2022). Since the independent linear approximation
recovers the tabular case with d = Smaxi Ai, a
lower bound of Ω(dH4ε−2) can be derived within this
framework. By comparing our sample complexity
bound to this lower bound, we can demonstrate
that when S is not exponentially large, our proposed
algorithm under the random access model achieves
optimal dependency on d and ε. On the other hand,
for possibly infinity S, our sample complexity bound
achieves the minimum over the Õ(ε−4) result in Cui
et al. (2023) and the Õ(ε−2A) result in Wang et al.
(2023), with all other problem-relevant parameters
are sharpened.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Result Sample Complexity Tabular Case Complexity Sampling Protocol

Theorem 6, Jin et al. (2021b) Õ(H6Smaxi Aiε
−2)

N.A.

Online Access

Theorem 3.3, Zhang et al. (2020a) Õ(H3SA1A2ε
−2) Random Access

Theorem 2, Li et al. (2022) Õ(H4S
∑m

i=1 Aiε
−2) Random Access

Theorem 2, Xie et al. (2020) Õ(d3H4ε−2) d = SA1A2 Online Access

Theorem 5.2, Chen et al. (2021) Õ(d2H3ε−2) d = S2A1A2 Online Access

Theorem 5, Wang et al. (2023) Õ(d4H6m2 maxi A
5
i ε

−2)

d = Smaxi Ai

Online Access

Theorem 1, Cui et al. (2023) Õ(d4H10m4ε−4) Online Access

Theorem 4, Dai et al. (2024)‡ Õ(m4d5H6 logSε−2) Online Access

Theorem 1 (This Paper)† Õ(min{ log(S)
d ,maxi Ai}d3H6m2ε−2) Local Access

Theorem 2 (This Paper) Õ(min{ε−2dH2, log(S)
d ,maxi Ai}d2H5mε−2) Random Access

Table 1: Comparison of different algorithms, where in Õ(·) we omit polylog(A,H,m, d, ε) terms. Results in
Zhang et al. (2020a); Chen et al. (2021); Xie et al. (2020) are for learning the ε-Nash Equilibrium(NE) in two
player zero-sum Markov Games while other results are for learning ε-CCE for m-player general-sum Markov
Games.
‡ See the last paragraph of section 1.2.
† When min{d−1 logS,maxi Ai} ≥ ε−2, Theorem 1 also ensures a sample complexity bound independent of logS and A,
details are presented in section 3.

1.2 Related Work

Multi-Agent Markov Game. There exist plenty
of prior works in Multi-Agent Games, which offer wide
exploration of different algorithms under different set-
tings. Zhang et al. (2020b); Liu et al. (2021) pro-
vide model-based algorithms under different sampling
protocols, while exponential growth on the number of
agents (Πi∈[m]Ai) are induced in the sample complex-
ity. Bai et al. (2020); Song et al. (2021); Jin et al.
(2021b); Mao et al. (2022) circumvent the curse of
multi-agency via decentralized algorithms but return
the non-Markov policies. Daskalakis et al. (2022) pro-
pose an algorithm producing Markov policies, which
only depend on current state information, but at the
cost of higher sample complexity. In the tabular multi-
agent game, Li et al. (2022) provide the first algo-
rithm for learning the ε-NE in two players zero-sum
game and ε-CCE in multi-player general-sum game
with minimax optimal sample complexity bound un-
der the random access model.

Function Approximation in RL. The function
approximation framework has been widely applied in
single-agent RL with large state and action spaces
(Zanette et al., 2020; Jin et al., 2020; Yang and Wang,
2020; Jin et al., 2021a; Wang et al., 2020; Du et al.,
2021; Foster et al., 2021). The same framework has
also been generalized to Markov games (Xie et al.,
2020; Chen et al., 2021; Jin et al., 2022; Huang et al.,
2021; Ni et al., 2022) in a centralized manner, i.e.,
they approximate the joint Q function defined on
S ×

∏
i∈[m]Ai, which results in the complexity of

the considered function class inherently depend on

∏
i∈[m] Ai. In contrast, we consider the function ap-

proximation in a decentralized manner as in Cui et al.
(2023); Wang et al. (2023) to get rid of the curse of the
multi-agency.

RL under Local Access Model. Single-agent RL
with linear function approximation under the local ac-
cess model has been well investigated in previous works
(Li et al., 2021; Wang et al., 2021; Weisz et al., 2021;
Yin et al., 2022; Hao et al., 2022; Weisz et al., 2022).
Yin et al. (2022); Hao et al. (2022) propose provably
efficient algorithms for single-agent learning under the
linear realizability assumption. Their algorithm de-
sign and analysis rely on the concept of the core set
and the construction of virtual algorithms, which we
have generalized in our paper to the multi-agent set-
ting using a decentralized approach. The only work
considering multi-agent learning under local access, to
our knowledge, is Tkachuk et al. (2023). They consider
the cooperative multi-agent learning but with global lin-
ear function approximation. They focus on designing
sample efficient algorithms for learning the globally op-
timal policy with computational complexity scales in
Poly(maxi Ai, d) instead of Poly(ΠiAi, d) under the ad-
ditive decomposition assumption on the global Q func-
tion. In contrast, our work addresses the learning CCE
of general-sum Markov games with independent func-
tion approximation in a decentralized manner. It’s im-
portant to highlight that while the general-sum game
encompasses the cooperative game as a particular in-
stance, the CCE policy might not always align with the
global optimal policy. This distinction complicates a
direct comparison between our results and those pre-
sented in Tkachuk et al. (2023). Lastly, we would like

RL in Markov Games with Independent Function Approximation

to point out that the computational complexity of our
algorithm also scales in Poly(maxi Ai, d). This is di-
rectly inferred from our algorithm design detailed in
Section 3.

Recent Refined Sample Complexity Bounds un-
der Online Access After the submission of our pa-
per, a recent and independent work by Dai et al. (2024)
studied the same problem in the online access setting
and achieved significant improvements in the sample
complexity bounds originally presented by Cui et al.
(2023) and Wang et al. (2023). By utilizing tools
developed for the single-agent setting in Dai et al.
(2023) and refining the AVLPR scheme of Wang et al.
(2023), Dai et al. (2024) demonstrated that it is possi-
ble to obtain a sample complexity bound of the order
Õ(m

4d5H6 log S
ε2). Notably, Dai et al. (2024) achieved a

similar sample complexity bound as our results under
a weaker access model than ours, where the depen-
dency on ε is optimal, no polynomial dependency in
A is incurred, and only logarithmic dependency on S
is present. Refining both our results and those of Dai
et al. (2024) to achieve bounds completely independent
of the state space size S, while maintaining favorable
dependencies on A and ε, remains a challenging task
and is left as a valuable direction for future research.

2 Preliminaries

Notation For a positive integer m, we use [m] to
denote {1, . . . ,m}. We write a ≲ b or a = Õ(b) to de-
note a ≤ Cpolylog

(
A,m, ε−1,H, log(1/δ)

)
· b for some

absolute constant C. We use ∥·∥2 and ∥·∥∞ to denote
the ℓ2 and ℓ∞ norm. Given a finite set I, we denote
Unif(I) the uniform distribution over I.

2.1 Markov Games

We consider the finite horizon general-sum Markov
games (S,H, {Ai}mi=1, {Ph}Hh=1, {rh,i}

H,m
h,i=1). Here, S

is the state space, H denotes the time horizon, and
Ai stands for the action space of the i-th player.
We let A =

∏m
i=1Ai be the joint action space and

a = (a1, a2, · · · , am) ∈ A represent the joint action.
Given s ∈ S and a ∈ A, Ph(·|s,a) denotes the transi-
tion probability and rh,i(s,a) ∈ [0, 1] denotes the de-
terministic reward received by the i-th player at time-
step h. We denote S := |S|, Ai := |Ai|, A := maxi Ai

the cardinality of state and action spaces. Throughout
the paper, we assume the considered Markov games al-
ways start at some fixed initial state s1.1

1This assumption can be easily generalized to the set-
ting where the initial state is sampled from some fixed dis-
tribution µ, as in Cui et al. (2023); Jin et al. (2021b).

Markov Policy. In this work, we consider the learn-
ing of Markov policies. A Markov policy selects action
depending on historical information only through the
current state s and time step h. The Markov policy of
player i can be represented as πi := {πh,i}h∈[H] with
πh,i : S → ∆(Ai). The joint policy of all agents is
denoted by π = (π1, . . . , πm). For a joint policy π, we
denote π−i the joint policy excluding the one of player
i. For π′

i : S×[H]→ ∆(Ai), we use π′
i×π−i to describe

the policy where all players except player i execute the
joint policy π−i while player i independently deploys
policy π′

i.

Value function. For a policy π, the value function
V π
h,i : S → R of the i-th player under a Markov policy

π at step h is defined as

V π
h,i(s) = E

[H∑
t=h

rt,i(st,at)|sh = s
]
, ∀s ∈ S, (1)

where the expectation is taken over the state transition
and the randomness of policy π. The V π

h,i satisfies the
Bellman equation:

V π
h,i(s) = Ea∼π[Q

π
h,i(s,a)],

Qπ
h,i(s,a) : = rh,i(s,a) + PhV

π
h+1,i(s,a),

(2)

where PhV
π
h+1,i(s,a) := Es′∼Ph(·|s,a)[V

π
h+1,i(s

′)].

Given other players acting according to π−i, the best
response policy of the i-th player is the policy indepen-
dent of the randomness of π−i achieving V

†,π−i

h,i (s) :=

maxπ′
i
V

π′
i×π−i

h,i (s). With the dynamic satisfied similar
to (2),

V
†,π̃−i

h,i (s) = max
a

{
r
π̃h,−i

h,i (s, a) + Pπ̃−i

h V
†,π̃−i

h+1,i (s, a)
}
,

and Pπ̃−i

h V (s, a) := Ea−i∼π̃−i
[Es′∼Ph(·|s,a,a−i)[V (s′)]].

Nash equilibrium(NE). A product Markov policy
π = π1 × · · · × πm is a Markov Nash equilibrium at
state s1 if V π

1,i(s1) = V
†,π−i

1,i (s1), ∀i ∈ [m].

Coarse correlated equilibrium(CCE). A joint
Markov policy π is a Markov CCE at a state s1 if
V π
1,i(s1) ≥ V

†,π−i

1,i (s1), ∀i ∈ [m]. In this paper, we study
the efficient learning of an ε-Markov CCE policy π sat-
isfying:

max
i∈[m]
{V †,π−i

1,i (s1)− V π
1,i(s1)} ≤ ε. (3)

Obviously, for general-sum Markov games, a Markov
NE is also a Markov CCE. Further more, in two player
zero-sum games, NE and CCE are equivalent. For
multi-player general-sum Markov games, computing
the NE is statistically intractable. Therefore, we re-
sort to the weaker and more relaxed equilibrium CCE,

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

which can be calculated in polynomial computational
time for general-sum Markov games Papadimitriou
and Roughgarden (2008). Still, it might be challeng-
ing for finding such an optimal relaxed equilibrium.
We consider the approximated sub-optimal notation,
ε-Markov CCE. In this work, our goal is to compute
an ε-Markov CCE for the game with as few samples
as possible.

2.2 RL with Different Sampling Protocols

Given Markov Games, the learner does not have access
to the underlying transition probabilities {Ph} and the
reward functions {rh,i}, but is assumed access to a
random simulator. Whenever the learner queries the
simulator with (s,a, h) ∈ S × A × [H], he receives an
independent sample s′ drawn from Ph(·|s,a). Based
on the accessible range of state-action pairs using a
simulator, we clarify three different sampling protocols
typically used in RL as in Yin et al. (2022):

Online Access. The learner can only interact with
the simulator (environment) in real-time, and the state
can be either reset to an initial state or transit to the
next state given the current state and an action.

Local Access. The learner can query the simulator
with any previously visited state paired with an arbi-
trary action.

Random Access. The learner can query the simu-
lator with arbitrary state-action pairs. Note that the
random access model is often referred to as the gener-
ative model in the RL literature (Zhang et al., 2020a;
Li et al., 2022, 2020).

The online access protocol imposes the least stringent
requirement for accessing the simulator, whereas ran-
dom access is the most restrictive assumption. The
local access assumption, which is the central focus of
this paper, is stronger than the online access protocol
but more practical than the random access assumption.
It has been successfully applied in the design of large-
scale RL algorithms for practical problems, as demon-
strated by previous studies (Yin et al., 2023; Tavakoli
et al., 2020; Ecoffet et al., 2019; Lan et al., 2023). In
this paper, we show that the local access assumption
can lead to improved sample complexity bounds com-
pared to the online access setting.

2.3 Independent Function Approximation

Throughout this paper, we make the following assump-
tion about the Markov Games:

Assumption 1 (ν-misspecified independent linear
MDP). Given a policy class Π of interest, each player
i is able to access a feature map ϕi : S × Ai → Rd

with maxs∈S,a∈Ai∥ϕi(s, a)∥2 ≤ 1. And there exists
some ν > 0 so that for any h ∈ [H] and V : S →
[0,H + 1− h],

sup
π∈Π

min
∥θ∥2≤H

√
d

∥∥Qπ−i,V
h,i (·, ·)− ϕi(·, ·)⊤θ

∥∥
∞ ≤ ν. (4)

where Q
π−i,V
h,i (s, a) := Ea−i∼πh,−i(·|s)

[
rh,i(s, a,a−i) +

Es′∼Ph(·|s,a,a−i)[V (s′)]
]

is the marginal Q function as-
sociated with V .

Assumption 1 asserts that for any i ∈ [m] and π ∈ Π,
if all the other players act according to π−i, then the i-
th player’s environment is approximately linear MDP.
This assumption extends the widely used linear MDP
assumption in single-agent RL to multi-agent settings.

Compared to the centralized approximation approach
used in prior works (Chen et al., 2021; Xie et al., 2020;
Cisneros-Velarde and Koyejo, 2023), which employs
a d ∝ S

∏m
i=1 Ai-dimensional linear function class to

approximate a global Q-function for tabular Markov
games, the independent approximation framework pre-
sented in Assumption 1 allows for the representation
of the same environment with individual Q-functions
of dimensions d ∝ SA. This assumption avoids the
need for the considered function class to have com-
plexity proportional to the exponential of the number
of agents.

As in Cui et al. (2023); Wang et al. (2023), we re-
strict (4) to a particular policy Π. As discussed in Ap-
pendix D of Wang et al. (2023), if (4) holds with ν = 0
for all Π, then the MG is essentially tabular. Since our
algorithm design does not require prior knowledge of
Π , we defer the discussion of the policy class Π con-
sidered in this paper in Appendix A.

3 Algorithm and Guarantees for
Independent Linear Markov Games

In this section, we present the Lin-Confident-FTRL al-
gorithm for learning ε-CCE with local access to the
simulator. We then provide the sample complexity
guarantee for this algorithm.

3.1 The Lin-Confident-FTRL Algorithm

We now describe the Lin-Confident-FTRL algorithm
(Algorithm 2).

Our algorithm design is based on the idea that each
agent maintains a core set of state-action pairs. The
algorithm consists of two phases: the policy learn-
ing phase and the rollout checking phase. In the
policy learning phase, each agent performs decentral-
ized policy learning based on his own core set. In the

RL in Markov Games with Independent Function Approximation

Algorithm 1: Explore(s, h)
Input: state s, time-step h
for i = 1 to m do

while maxa∈Ai
ϕi(s, a)

⊤Λ−1
h,iϕi(s, a) > τ do

âi = argmaxa∈Ai
ϕi(s, a)

⊤Λ−1
h,iϕi(s, a)

Dh,i ← Dh,i ∪ {(s, âi)}
Λh,i ← Λh,i + ϕi(s, âi)ϕi(s, âi)

⊤

end
Ch,i ← {s ∈ S : maxa∈Ai

ϕ(s, a)⊤Λ−1
h,iϕ(s, a) ≤

τ}// the well-covered state set
end
Ch ← ∩iCh,i

rollout checking phase, the algorithm performs rollout
with the learned policy to ensure the trajectory of the
policy is well covered within the core set of each player.
We will provide a detailed explanation of these two
phases in Sections 3.2 and 3.3, respectively.

Before the policy learning phase, the m players draw
a joint trajectory of states s1, . . . , sH of length H by
independently sampling actions following a uniform
policy. Each player then initializes distinct core sets
{Dh,i}Hh=1 with this trajectory through an exploration
subroutine described below (Algorithm 1).

Core set expansion through an exploration
subroutine. During the Explore subroutine
at time h with input state s, each agent i itera-
tively appends state action pairs (s, a) to its core
set Dh,i and update Λh,i until the coverage condition
maxa∈Ai

ϕi(s, a)
⊤Λ−1

h,iϕi(s, a) ≤ τ is met at state s.
Here τ is a predetermined threshold and Λ−1

h,i is the
precision matrix corresponding to Dh,i.

Given Λh,i, we define

Ch,i := {s ∈ S : max
a∈Ai

ϕi(s, a)
⊤Λ−1

h,iϕi(s, a) ≤ τ} (5)

as the set of well-covered states for agent i at step
h. We refer Ch := ∩iCh,i as the confident state set
for all agents. Note that for the implementation of
the algorithm, it is not necessary to compute Ch. We
introduced it merely for the sake of describing the algo-
rithm conventionally. In fact, the only operation that
involves Ch is to determine whether a state s belongs
to it, and this can be done using solely the information
from Λh,i.

During the subsequent policy learning and rollout
checking phases, whenever a state outside the confi-
dent set is encountered, the exploration subroutine will
be triggered to expand the core set and the learning
process will be restarted. Actually we have the follow-
ing result regarding the cardinality of Dh,i:
Lemma 1 (Yin et al. (2022)). For each i and h, the

Algorithm 2: Lin-Confident-FTRL
Initialize Global variables:
CH+1 = S, Ch = ∅, ∀h ∈ [H] and

V̂h,i = H + 1− h, V̂ †
h,i = H + 1− h,Dh,i = ∅,

Λh,i = λI, π1
h,i(·|s) = Unif(Ai), ∀s, i, h.

Sample a trajectory {s1, · · · , sH} of length H
with policy π1

h,i

for h = 1 to H do
Explore(sh, h) //See Algorithm 1

end
//Policy Learning Phase
for h = H to 1 do

Success ← Multi-Agent-Learning(h) .//See
Algorithm 3

if Success = False then
Back to Line 5 //Restart the loop from
h = H.

end
end
π̂h ← 1

K

∑K
k=1 π

k
h,1 × · · · × πk

h,m, ∀h ∈ [H].
//Rollout Checking Phase
Success ← Policy Rollout(π̂, s1, N)//See
Algorithm 5

if Success = False then
Return to Line 5

end
for i ∈ [m] do

for h = H to 1 do
Success ← Single-Agent-Learning(h, i,
π̂h,−i).//See Algorithm 6

if Success = False then
Back to Line 5

end
end

end
for i ∈ [m] do

Success ← Policy Rollout(π̂†
i × π̂−i, s1, N)

if Success = False then
Return to Line 5

end
end
return {π̂h}h∈[H]

size of the core set Dh,i will not exceed

Cmax :=
e

e− 1

1 + τ

τ
d
(
log(1 +

1

τ
) + log(1 +

1

λ
)
)

As a corollary, both the number of calls to the Ex-
plore subroutine and the number of restarts are upper-
bounded by mHCmax.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Algorithm 3: Multi-Agent-Learning
Input: time-step h
for k = 1 to K do

for i = 1 to m do
for (s̄, ā) ∈ Dh,i do

(r, s′)← local sampling(h, i, s̄, ā, πk
h,−i)

//See Algorithm 4
if s′ /∈ Ch+1 then

Explore(s′, h+ 1)
return False

end
Compute qkh,i(s̄, ā) = r + V̂h+1,i(s

′).
end
Update Qk

h,i(s, a) as in (6).
Q̄k

h,i(s, a)← k−1
k Q̄k−1

h,i (s, a) + 1
kQ

k
h,i(s, a).

πk+1
h,i (a|s)← exp(ηkQ̄

k
h,i(s,a))∑

a′ exp(ηkQ̄k
h,i(s,a

′))
.

end
end
//Value estimation of V π̂

h,i with
π̂h = 1

K

∑K
k=1 π

k
h,1 × · · · × πk

h,m

for i = 1 to m do
Update V̂h,i(s) as in (7)

end
return True

Algorithm 4: Local Sampling(h, i, s, a, π−i)

Draw an independent sample from the simulator:

s′ ∼ Ph(·|s, a,a−i),

where a−i ∼ πh,−i

return (rh,i(s, a,a−i), s
′) // the reward &

transition pair given the sampled actions.

3.2 Policy Learning Phase

After all agents have constructed the initial core sets
based on the sampled trajectory, they proceed to the
policy learning phase by executing a multi-agent learn-
ing subroutine(Algorithm 3) recursively from h = H
to h = 1. To address the issue of multi-agency, we
have incorporated the adaptive sampling strategy pro-
posed in Li et al. (2022), which operates under random
access, into this subroutine. We have modified this ap-
proach by restricting the sampling to the core set of
each agent i instead of all S×Ai pairs. This is because
our algorithm operates under local access and the core
set provides enough information for efficient learning
without revisiting unnecessary states and actions.
Multi-Agent Learning Subroutine. At the k-th
iteration of Algorithm 3, each agent i employs the lo-
cal sampling subroutine (Algorithm 4) over his core

Algorithm 5: Policy Rollout
Input: rollout policy π, initial state s1, rollout
times N

for n ∈ [N] do
Set s′ = s1
for h = 1, . . . , H do

Sample a ∼ πh(s
′), s′ ∼ Ph(·|s′,a).

if s′ /∈ Ch+1 then
Explore(s′, h+ 1)
return False

end
end

end
return True

set, which returns a reward-state pair (r, s′). This
design ensures that qkh,i := r + V̂h+1,i(s

′) provides a

one-step estimation of Qπk
−i,V̂h+1,i

h,i (s, a). If the estima-
tors qkh,i(s̃, ã) are collected for all (s̄, ā) ∈ Dh,i without
restart, we proceed to update Qk

h,i via least square re-
gression over the collected data:

Qk
h,i(s, a) = ϕi(s, a)

⊤Λ−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)q
k
h,i(s̃, ã) (6)

and take policy iteration using the FTRL update (Lat-
timore and Szepesvári, 2020), which has been widely
adopted in the multi-agent game to break the curse of
multi-agency (Li et al., 2022; Jin et al., 2021b; Song
et al., 2021). After K epochs, we obtain final policy
{πk

h,i}Kk=1 and the estimated value

V̂h,i(s) = min

{
1

K

K∑
k=1

⟨πk
h,i, Q

k
h,i(s, ·)⟩, H − h+ 1

}
(7)

under π correspondingly.

3.3 Rollout Checking Phase

If the policy π̂ is learned without any restarts, then
the Algorithm 2 will execute the final rollout check-
ing procedure (Algorithm 5) to determine whether to
output the learned policy π̂ or not. Given any joint
policy π, the rollout subroutine draws N trajectories
by employing π for N epochs. Whenever an uncertain
state is met during the rollout routine, the algorithm
will restart the policy learning phase with the updated
confident set.

Necessity of rollout checking. The rollout check-
ing is necessary because the policy learning phase
only considers information within Ch, while the per-
formance of a policy is determined by all the states
encountered in its trajectory. Intuitively, the rollout
subroutine ensures that the trajectory generated by

RL in Markov Games with Independent Function Approximation

Algorithm 6: Single-Agent-Learning
Input : time-step h,agent i, policy π−i

for (s̄, ā) ∈ Dh,i do
for k = 1 to K do

(r, s′)← local sampling(h, i, s̄, ā, π−i) //See
Algorithm 4

if s′ /∈ Ch+1 then
Explore(s′, h+ 1)
return False

end
Compute qkh,i(s̄, ā) = r + V̂ †

h+1,i(s
′).

end
end
Q̂†

h,i(s, a)←
1
Kϕi(s, a)

⊤Λ−1
h,i

∑K
k=1

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)q
k
h,i(s̃, ã)

π̂†
h,i(a|s̃)← 1{a = argmaxQ†

h,i(s, ·)}
V̂ †
h,i(s)← maxa Q̂

†
h,i(s, a)

return True

the learned policy only contains states that are well
covered by core sets, with a high probability.

Although the aforementioned rollout operation ensures
that the trajectory of the joint policy π̂ lies within well-
covered states, this may not hold for best response
policies. Specifically, for every player i and their best
response policy π†

i given π̂−i, the trajectory of π†
i ×π̂−i

may lie outside of {Ch} with non-negligible probabil-
ity. This motivates us to perform additional rollout for
π†
i × π̂−i. Since π†

i is unknown without knowledge of
the underlying transition kernels, we perform a single-
agent learning subroutine to obtain an approximate
best response policy π̂†

i = {π̂†
h,i}h∈[H] and then take

rollout for π̂†
i × π̂−i. As shown in the proof, dealing

with these learned approximated best response policies
is sufficient to provide the CCE guarantee for Algo-
rithm 2.
Single-Agent Learning Subroutine. To learn the
best response for each agent i, we fix the other agents’
policies and reduce the problem to a single-agent learn-
ing task. Specifically, we use Algorithm 6 to perform
least squared value iteration backward in h. This
subroutine can be seen as a finite-horizon version of
the Confident-LSVI algorithm proposed in Hao et al.
(2022) for single-agent learning under the local access
model. Similar to other routines, the learning process
restarts when encountering a new uncertain state.

3.4 Theoretical Results

Now we state the theoretical result of Algorithm 2,
whose proof is deferred to Appendix C.
Theorem 1. Under Assumption 1, Algorithm 2

with N,K, τ, λ = Poly(log(S), d,H, ε−1, A), ηk =
Õ(kmin{

√
log(S)/d+ ν, 1})]−1Poly(K, d,H)) returns

an (ε + 3ν
√
dH)-Markov CCE policy with probability

at least 1− δ with
i)

Õ

(
m2d3H6

ε2
min

{
d−1logS,A

})
query of samples under the local access model when
min

{
d−1logS,A

}
≤ ε−2,

ii)
Õ

(
m2d5H14ε−6

)
query of samples under the local access model when
min

{
d−1logS,A

}
> ε−2.

The detail of all parameter settings are leaved in Ap-
pendix C.
When compared to previous works operating under on-
line access, Cui et al. (2023) attains (ε + νH)-CCE
with Õ(d4H10m4ε−4) samples. Meanwhile, Wang et al.
(2023) achieves ε-CCE with Õ(d4H6m2 maxi A

5
i ε

−2)
samples under the realizability assumption (ν =
0). In the scenario where min{d−1 logS,A} ≤
ε−4H6, our result improves the dependency on pa-
rameters d,H,m,maxi Ai, and ε. Conversely, in sce-
narios with extremely large S,A values, our bound
Õ(m2d5H14ε−6) fall short of those in Cui et al. (2023).

Tighter Complexity Bound with Random Ac-
cess. Since the policy output by Lin-Confident-
FTRL is only updated based on the information of
the shared confident state set, in the analysis of the al-
gorithm, we need to construct virtual algorithms that
connect to Lin-Confident-FTRL on the confident state
and have strong guarantees outside the set. Note that
the virtual algorithms are solely intended for analyti-
cal purposes and will not be implemented under the
local access model. Unlike prior works on single-agent
RL (Yin et al., 2022; Hao et al., 2022), where an ideal
virtual algorithm is constructed using population val-
ues of Q functions, we develop our virtual algorithms
in an implementable manner under the random access
model. As a bonus of our virtual algorithm analysis,
we derive an algorithm that can operate directly under
the random access model with a tighter sample com-
plexity. We would state the result formally as follows:
Theorem 2. Under Assumption 1, there ex-
ists a decentralized algorithm under random ac-
cess model that returns a joint policy achieving
(ε + 3ν

√
dH)-CCE with probability at least 1 −

δ and Õ(min{ε−2dH2, log(S)
d , A}d2H5mε−2) sample

complexity bound. The details of the algorithm design
are leaved in Appendix D.
Under the more restrictive random access protocol,
Theorem 2 suggests that there is an algorithm with a

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

more precise dependency on all parameters compared
to previous results. This proposed algorithm can be
viewed as an analogue to Algorithm 2. However, due
to the relaxed sampling protocol, there’s no need for
restarts, which results in a savings of a factor mdH
when {log(S)/d,A} < ε−2 and a savings of ε−2mdH
when {log(S)/d,A} ≥ ε−2. We conjecture that even
under the local access protocol, a more refined algorith-
mic design can avoid this additional restart cost. One
possible approach might be to incorporate the Confi-
dent Approximate Policy Iteration method from Weisz
et al. (2022) into our setting. This remains an avenue
for future exploration. Lastly, note that in the tab-
ular case, with modifications to the FTRL step-size
and value estimation formula, the algorithm proposed
in Appendix D coincides with the algorithm proposed
in Li et al. (2022), which achieves the minimax optimal
sample complexity.

Sample Complexity without the knowledge of
ν. While our selection of the FTRL stepsize ηk in
Theorem 1 requires prior knowledge of the misspeci-
fication error ν. When ν is unknown, we can select
ηk = Õ(kK−1/2H

√
d) in Algorithm 2. Then the al-

gorithm is still guaranteed to output a (ε + 3ν
√
dH)-

Markov CCE with Õ(m2d3H6ε−2) samples.

Decentralized Implementation and Communi-
cation Cost. While we describe Algorithm 2 and
its subroutines in a centralized manner, we remark
that it can be implemented in a decentralized manner
with limited communication. More precisely, during
the running of the algorithm, each agent only need
to observe its own rewards and actions. And com-
munication between agents only occurs during the ini-
tialization procedure and every time a restart occurs.
We will discuss the decentralized implementation in
Appendix B and show that the total communication
complexity is bounded by Õ(mdH), which is identical
to that of the PReFI algorithm proposed in Cui et al.
(2023) and the AVPLR algorithm proposed in Wang
et al. (2023).2

4 Conclusion

In this work, we have considered multi-agent Markov
games with independent linear function approxima-
tion within both the random and local access mod-
els. Our proposed algorithm, Linear-Confident-FTRL,
effectively mitigates the challenges associated with
multi-agency and circumvents the dependency on the
action space for regimes where S ≲ edmaxi Ai . Addi-
tionally, our theoretical analysis has lead to the devel-

2We remark here both Cui et al. (2023) and Wang et al.
(2023) also propose other fully decentralized algorithms,
but with worse sample complexity bound.

opment of a novel algorithm that offers enhanced sam-
ple complexity bounds for independent linear Markov
games in the random access model. Several compelling
questions remain open for exploration:

The first is to investigate the independent function ap-
proximation setting under weaker realizability assump-
tions. Second, designing an algorithm to attain O(ε−2)
sample complexity without polynomial dependency on
the action space A and logarithmic dependency on the
state space S remains an unresolved challenge and an
interesting direction for future research.

Acknowledgements

Jian-Feng Cai is partially supported by Hong
Kong Research Grant Council(RGC) GRFs 16310620,
16306821, and 16307023, and Hong Kong Innovation
and Technology Fund MHP/009/20. Jiheng Zhang is
supported by RGC GRF 16214121. Yang Xiang is
supported by the Project of Hetao Shenzhen-HKUST
Innovation Cooperation Zone HZQB-KCZYB-2020083.
Yang Wang is supported by RGC CRF 8730063 and
Hong Kong Center of AI, Robotics and Electronics
(HK CARE) for Prefabricated Construction.

References

Bai, Y., Jin, C., and Yu, T. (2020). Near-optimal
reinforcement learning with self-play. arXiv preprint
arXiv:2006.12007.

Brown, N. and Sandholm, T. (2019). Superhuman ai
for multiplayer poker. Science, 365(6456):885–890.

Chen, F., Mei, S., and Bai, Y. (2022). Unified algo-
rithms for rl with decision-estimation coefficients:
No-regret, pac, and reward-free learning. arXiv
preprint arXiv:2209.11745.

Chen, Z., Zhou, D., and Gu, Q. (2021). Almost op-
timal algorithms for two-player markov games with
linear function approximation. arXiv e-prints, pages
arXiv–2102.

Cisneros-Velarde, P. and Koyejo, O. (2023). Finite-
sample guarantees for nash q-learning with linear
function approximation. ArXiv, abs/2303.00177.

Cui, Q., Zhang, K., and Du, S. S. (2023). Breaking
the curse of multiagents in a large state space: Rl
in markov games with independent linear function
approximation. arXiv preprint arXiv:2302.03673.

Dai, Y., Cui, Q., and Du, S. S. (2024). Refined
sample complexity for markov games with indepen-
dent linear function approximation. arXiv preprint
arXiv:2402.07082.

RL in Markov Games with Independent Function Approximation

Dai, Y., Luo, H., Wei, C.-Y., and Zimmert, J.
(2023). Refined regret for adversarial mdps with
linear function approximation. arXiv preprint
arXiv:2301.12942.

Daskalakis, C., Golowich, N., and Zhang, K. (2022).
The complexity of markov equilibrium in stochastic
games. arXiv preprint arXiv:2204.03991.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G.,
Sun, W., and Wang, R. (2021). Bilinear classes: A
structural framework for provable generalization in
rl. In International Conference on Machine Learn-
ing, pages 2826–2836. PMLR.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F.
(2019). Is a good representation sufficient for sam-
ple efficient reinforcement learning? arXiv preprint
arXiv:1910.03016.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. (2019). Go-explore: a new ap-
proach for hard-exploration problems. ArXiv,
abs/1901.10995.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin,
A. (2021). The statistical complexity of interactive
decision making. arXiv preprint arXiv:2112.13487.

Gao, B. and Pavel, L. (2017). On the properties
of the softmax function with application in game
theory and reinforcement learning. arXiv preprint
arXiv:1704.00805.

Hao, B., Lazic, N., Yin, D., Abbasi-Yadkori, Y., and
Szepesvari, C. (2022). Confident least square value
iteration with local access to a simulator. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 2420–2435. PMLR.

Huang, B., Lee, J. D., Wang, Z., and Yang, Z. (2021).
Towards general function approximation in zero-sum
markov games. arXiv preprint arXiv:2107.14702.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford,
J., and Schapire, R. E. (2017). Contextual decision
processes with low bellman rank are pac-learnable.
In International Conference on Machine Learning,
pages 1704–1713. PMLR.

Jin, C., Liu, Q., and Miryoosefi, S. (2021a). Bellman
eluder dimension: New rich classes of rl problems,
and sample-efficient algorithms. Advances in neural
information processing systems, 34:13406–13418.

Jin, C., Liu, Q., Wang, Y., and Yu, T. (2021b). V-
learning–a simple, efficient, decentralized algorithm
for multiagent rl. arXiv preprint arXiv:2110.14555.

Jin, C., Liu, Q., and Yu, T. (2022). The power of ex-
ploiter: Provable multi-agent rl in large state spaces.
In International Conference on Machine Learning,
pages 10251–10279. PMLR.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020).
Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning
Theory, pages 2137–2143. PMLR.

Lan, L.-C., Zhang, H., and Hsieh, C.-J. (2023). Can
agents run relay race with strangers? generaliza-
tion of RL to out-of-distribution trajectories. In The
Eleventh International Conference on Learning Rep-
resentations.

Lattimore, T. and Szepesvári, C. (2020). Bandit algo-
rithms.

Li, G., Chen, Y., Chi, Y., Gu, Y., and Wei, Y. (2021).
Sample-efficient reinforcement learning is feasible for
linearly realizable mdps with limited revisiting. Ad-
vances in Neural Information Processing Systems,
34:16671–16685.

Li, G., Chi, Y., Wei, Y., and Chen, Y. (2022).
Minimax-optimal multi-agent rl in markov games
with a generative model. In Advances in Neural In-
formation Processing Systems.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2020).
Breaking the sample size barrier in model-based re-
inforcement learning with a generative model. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H., editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 12861–
12872. Curran Associates, Inc.

Liu, Q., Yu, T., Bai, Y., and Jin, C. (2021). A sharp
analysis of model-based reinforcement learning with
self-play. In International Conference on Machine
Learning, pages 7001–7010. PMLR.

Mao, W., Yang, L. F., Zhang, K., and Baar, T. (2022).
On improving model-free algorithms for decentral-
ized multi-agent reinforcement learning. arXiv
preprint arXiv:2110.05707.

Matignon, L., Jeanpierre, L., and Mouaddib, A.-I.
(2012). Coordinated multi-robot exploration un-
der communication constraints using decentralized
markov decision processes. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 26, pages 2017–2023.

Ni, C., Song, Y., Zhang, X., Jin, C., and Wang,
M. (2022). Representation learning for general-
sum low-rank markov games. arXiv preprint
arXiv:2210.16976.

Papadimitriou, C. H. and Roughgarden, T. (2008).
Computing correlated equilibria in multi-player
games. J. ACM, 55(3).

Shalev-Shwartz, S., Shammah, S., and Shashua, A.
(2016). Safe, multi-agent, reinforcement learning
for autonomous driving (2016). arXiv preprint
arXiv:1610.03295.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Silver, D., Schrittwieser, J., Simonyan, K.,
Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017).
Mastering the game of go without human knowledge.
nature, 550(7676):354–359.

Song, Z., Mei, S., and Bai, Y. (2021). When can we
learn general-sum markov games with a large num-
ber of players sample-efficiently? arXiv preprint
arXiv:2110.04184.

Tavakoli, A., Levdik, V., Islam, R., Smith, C. M., and
Kormushev, P. (2020). Exploring restart distribu-
tions. arXiv: Learning.

Tkachuk, V., Bakhtiari, S. A., Kirschner, J., Jusup,
M., Bogunovic, I., and Szepesvári, C. (2023). Effi-
cient planning in combinatorial action spaces with
applications to cooperative multi-agent reinforce-
ment learning. arXiv preprint arXiv:2302.04376.

Wang, R., Salakhutdinov, R. R., and Yang, L. (2020).
Reinforcement learning with general value func-
tion approximation: Provably efficient approach via
bounded eluder dimension. Advances in Neural In-
formation Processing Systems, 33:6123–6135.

Wang, Y., Liu, Q., Bai, Y., and Jin, C. (2023). Break-
ing the curse of multiagency: Provably efficient de-
centralized multi-agent rl with function approxima-
tion. arXiv preprint arXiv:2302.06606.

Wang, Y., Wang, R., and Kakade, S. (2021). An expo-
nential lower bound for linearly realizable mdp with
constant suboptimality gap. Advances in Neural In-
formation Processing Systems, 34:9521–9533.

Weisz, G., Amortila, P., Janzer, B., Abbasi-Yadkori,
Y., Jiang, N., and Szepesvári, C. (2021). On query-
efficient planning in mdps under linear realizability
of the optimal state-value function. In Conference
on Learning Theory, pages 4355–4385.

Weisz, G., György, A., Kozuno, T., and Szepesvári, C.
(2022). Confident approximate policy iteration for
efficient local planning in q-realizable mdps. arXiv
preprint arXiv:2210.15755.

Wen, Z. and Van Roy, B. (2017). Efficient reinforce-
ment learning in deterministic systems with value
function generalization. Mathematics of Operations
Research, 42(3):762–782.

Xie, Q., Chen, Y., Wang, Z., and Yang, Z.
(2020). Learning zero-sum simultaneous-move
markov games using function approximation and
correlated equilibrium. In Conference on learning
theory, pages 3674–3682. PMLR.

Yang, L. and Wang, M. (2020). Reinforcement learn-
ing in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Ma-
chine Learning, pages 10746–10756. PMLR.

Yin, D., Hao, B., Abbasi-Yadkori, Y., Lazić, N., and
Szepesvári, C. (2022). Efficient local planning with
linear function approximation. In International
Conference on Algorithmic Learning Theory, pages
1165–1192. PMLR.

Yin, D., Thiagarajan, S., Lazic, N., Rajaraman, N.,
Hao, B., and Szepesvari, C. (2023). Sample effi-
cient deep reinforcement learning via local planning.
ArXiv, abs/2301.12579.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brun-
skill, E. (2020). Learning near optimal policies with
low inherent bellman error. In International Con-
ference on Machine Learning, pages 10978–10989.
PMLR.

Zhang, K., Kakade, S., Basar, T., and Yang, L.
(2020a). Model-based multi-agent rl in zero-sum
markov games with near-optimal sample complex-
ity. In Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M., and Lin, H., editors, Advances in Neural
Information Processing Systems, volume 33, pages
1166–1178. Curran Associates, Inc.

Zhang, K., Kakade, S., Basar, T., and Yang, L.
(2020b). Model-based multi-agent rl in zero-sum
markov games with near-optimal sample complexity.
Advances in Neural Information Processing Systems,
33:1166–1178.

RL in Markov Games with Independent Function Approximation

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]
(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.

[Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Not Applicable]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Not Applicable]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random

seed after running experiments multiple times). [Not Applicable]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud

provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Not Applicable]
(b) The license information of the assets, if applicable. [Not Applicable]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

A Discussion on Policy Class

As pointed in Appendix D of Wang et al. (2023), if the Assumption 1 holds for all possible policy π, then the
underlying game must be essentially tabular game. Thus it would be necessary to discuss the range of policies
where our assumption holds. Actually, to ensure Theorem 2 holds, we need only the Assumption 1 holds for the
policy class defined as following:

Π =

{ m∏
i=1

πi : πi(s, a) ∝ exp(−ηϕi(s, a)
⊤θi) : η ≥ η0, θi ∈ Rd

}
(8)

The above soft-max policy class is similar to those considered in Cui et al. (2023), and it also contains the argmax
policy considered in Wang et al. (2023) as η → +∞. However, we would remark that while the considered policy
class are similar, the independent linear MDP assumption made in our Assumption 1 is strictly stronger than
the assumptions made in Cui et al. (2023) and Wang et al. (2023).

On the other hand, to ensure the result in Theorem 1 holds, we need Assumption 1 holds for the following class,
which is a bit complex than (8):

Π =

{
m∏
i=1

πi : πi(s, a) ∝
{
exp(−ηϕi(s, a)

⊤θi), s ∈ Ci
exp(−ηϕi(s, a)

⊤θ′i), s /∈ Ci
: η ≥ η0, θi, θ

′
i ∈ Rd, Ci ⊂ S

}
(9)

The class defined in (9) can be seen as an extension of (8) in the sense that when we divide the state space into
two non-overlapping subsets, the policy is a soft-max policy over each subset. Although the policies generated
by our main algorithm always lie in (8), our results in the local access setting require Assumption 1 to hold over
(9) due to technical reasons in our analysis. We believe that this assumption can be weakened, which we leave
as a future direction.

B Discussion on the Communication Cost

To discuss the communication cost, we would present the decentralized implementation of Algorithm 2. During
the implementation, only the knowledge of {|Dh,i|}h∈[H],i∈[m] are need to known to each learner.

• At the beginning of the algorithm, each agent independently keep the coreset Dh,i = ∅ and share the
same random seed.

• When the algorithm is restarted, each agent will share the coreset size {Dh,i}h∈[H],i∈[m]. Then for each
agent j, until some agent j meets a new state s′ /∈ Ch,j at some h, each agent can play action only with the
knowledge of {|Dh,i|}i∈[m],h∈[H] as the following:

– To independently implement the line 7 to line 12 of the Algorithm 2, it is sufficient to implement
Algorithm 3 independently. In the inner loop of Algorithm 3 with the loop-index k, i, s̄, ā, the j-th
agent play πk

h,j(·|s̄) when i ̸= j and play ā when i = j. When i = j, the j-th agent will also update his
policy and Q,V functions as line 12 to line 19 in Algorithm 3.

– Line 13 can be implemented independently since they have communicated the shared random seed.
– To implement Line 15 of the algorithm, each agent j just needs to play 1

K

∑K
k=1 π

k
h,i(·|s′) with the

shared random seed for N epoches.
– To implement the loop in Line 19 to Line 26 with loop index i and inner loop index s̄, ā, k in Algorithm 6,

the agent j play action 1
K

∑K
k′=1 π(·|s̄) if i ̸= j and play ā if i = j. When i = j, the j-th agent will also

update his policy and Q,V functions as line 11 to line 13 in Algorithm 5.
– The policy rollout loop in Line 28 of Algorithm 2 can be implemented in a similar way as in Line 15.

• During the algorithm, if some agent j firstly meet some s′ /∈ Ch+1,j, he will send the restarting
signal to each agents, after receiving such signal, each agent take the explore procedure in Algorithm 1
independently, take restart the learning procedure.

In the above procedure, the communication only occurs in the initialization and restarting, thus is at most
Õ(mdH) times.

RL in Markov Games with Independent Function Approximation

Algorithm 7: Lin-Confident-FTRL-Virtual
Initialize Global variables: FirstMeet = True, CH+1 = S, Ch = ∅, ∀h ∈ [H] and

Ṽh,i = H + 1− h, Ṽ †
h,i = H + 1− h,Dh,i = ∅,

Λh,i = λI, ∀s, i, h.

Sample the same trajectory {s1, · · · , sH} of length H and obtain the same initialized core sets as Line 2–4
from Algorithm 2

//Policy Learning Phase
for l = 1 to mHCmax do

FirstMeet = True //The l-th epoch correspondes the l-th restart of Algorithm 2
for h = H to 1 do

Multi-Agent-Learning-Virtual(h) .//See Algorithm 8
end
π̃h ← 1

K

∑K
k=1 π̃

k
h,1 × · · · × π̃k

h,m, ∀h ∈ [H].
//Rollout Checking Phase
Policy-Rollout-Virtual(π̃, s1, N)//See Algorithm 9
for i ∈ [m] do

for h = H to 1 do
Single-Agent-Learning-Virtual(h, i, π̃h,−i).//See Algorithm 10

end
end
for i ∈ [m] do

Policy-Rollout-Virtual(π̃†
i × π̃−i, s1, N)

end
return {π̃h}h∈[H]

end

C Proof of Theorem 1

C.1 The Virtual Algorithm

As demonstrated by Hao et al. (2022) in the single-agent case, the core-set-based update only guarantees perfor-
mance within the core sets. However, it is essential to consider the information outside the sets for comprehensive
analysis. To address this, we introduce a virtual algorithm, Lin-Confident-FTRL-Virtual (Algorithm 7), which
employs the same update as Algorithm 2 within the core sets and also provides good performance guarantees
outside them. It is important to note that this virtual algorithm is solely for analytical purposes and will not be
implemented in practice. We explain how the virtual algorithm is coupled with the main algorithm and provide
additional comments below.

No restart but update of the coreset We run Algorithm 7 for mHCmax epochs. During each epoch, the
virtual algorithm employs similar subroutines to the Algorithm 2 except that it does not halt and restart when
encountering a new state s′ not in Ch during the iteration. Instead, it continues the K-step iteration and returns
a policy. Upon initially encountering such a state s′, the algorithm explores the state and add a subset of {s′}×A
to the core sets for use in the next epoch.
Coupled Simulator The virtual algorithm is coupled with the main algorithm in the following way: before
the discovery of a new state in each epoch, the simulator in the virtual algorithm generates the same action from
random policies and the same trajectory of transition as those of Algorithm 2. This coupled dynamic, combined
with the condition that core sets are updated only upon the initial encounter with a new state, ensures that at
the start of the l-th restart, the core sets of Algorithm 2 are identical to those of the l-th epoch of the virtual
algorithm. Additionally, since the virtual Q function is updated in the same manner as the main algorithm for
states in core sets, the virtual policy in the l-th epoch is equivalent to the main policy in core sets at the l-th
restart before encountering the first uncertain state in that epoch. In particular, there exists some 1 ≤ τ ≤ Cmax

such that the main policy is identical to the virtual policy for every h and s ∈ Ch.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Virtual policy iteration outside the core sets Besides the core sets, the virtual algorithm maintains in
addition a collection of complementary sets D̃h,i \Dh,i satisfying the confident state set of (D̃h,i \Dh,i)∪Dh,i is S.
Obviously D̃h,i is also measurable with respect to the information collected up to finishing l-th epoch. The virtual
algorithm can query the unvisited states on D̃h,i \ Dh,i, which implies that the virtual algorithm has random
access to the simulator. The virtual algorithm samples over D̃h,i \ Dh,i and perform least square regression to
update Q functions and virtual policies for states outside Ch. Note again that although the virtual algorithm is
assumed random access to the simulator, it serves only as a means for analysis and is never implemented.

Algorithm 9: Policy-Rollout-Virtual
Input:rollout policy π, initial state s1, rollout times N
for n ∈ [N] do

Set s′ = s1
for h = 1, . . . , H do

if FirstMeet = True then
Obtain the same (a, s′) as the sampled pair from Line 5 of Algorithm 5 within the same
restarting epoch of Algorithm 2

if s′ /∈ Ch+1 then
Explore(s′, h+ 1)
FirstMeet = False

end
end
else

Sample a ∼ πh(s
′), s′ ∼ Ph(·|s′,a).

end
end

end

C.2 Analysis of the Virtual Algorithm

For any 1 ≤ ℓ ≤ mHCmax, denote Fℓ−1 the σ-algebra generated by all actions and transitions before the ℓ-th
epoch. If it holds that conditioned on Fℓ−1, the policy {π̃ℓ

h}h∈[H] outputted by the ℓ-th epoch satisfies

P
(
V

†,π̃ℓ
−i

1,i − V π̃ℓ

1,i ≳ Hν
√
d+H2

√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1)

)
+ γH2

√
2 logAi

K

)
≤ δ

mHCmax
. (10)

Then it holds that

P
(
V

†,π̃ℓ
−i

1,i − V π̃ℓ

1,i ≳ Hν
√
d+H2

√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1) +

)
+ γH2

√
2 logAi

K
, ∃1 ≤ ℓ ≤ mHCmax

)
≤E[

mHCmax∑
ℓ=1

1{V †,π̃ℓ
−i

1,i − V π̃ℓ

1,i ≳ Hν
√
d+H2

√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1)

)
+ γH2

√
2 logAi

K
}]

=E[
mHCmax∑

ℓ=1

E[1{V †,π̃ℓ
−i

1,i − V π̃ℓ

1,i ≳ Hν
√
d+H2

√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1)

)
+ γH2

√
2 logAi

K
}|Fℓ−1]] ≤ δ.

Then Let H2
√
τ
(√ log(S)

K ∧
√
d(A

K ∧ 1) + γH2
√

2 logAi

K ≲ ε, we have with probability at least 1− δ,

V
†,π̃ℓ

−i

1,i − V π̃ℓ

1,i ≤ ε+ 3Hν
√
d, 1 ≤ l ≤ mHCmax.

where the coefficient 3 for Hν
√
d is from combining (11) and (20). And we select corresponding parameters K, τ

here for H2
√
τ
(√ log(S)

K ∧
√
d(A

K ∧ 1) + γH2
√

2 logAi

K ≲ ε.

RL in Markov Games with Independent Function Approximation

Algorithm 8: Multi-Agent-Learning-Virtual
Input:time-step h
Initialize: D̃h,i, Λ̃h,i = Λh,i, i ∈ [m]
for i = 1 to m do

while max(s̃,a)∈S×Ai
ϕi(s̃, a)

⊤Λ̃−1
h,iϕi(s̃, a) > τ do

(ŝ, âi) = argmax(s̃,a)∈S×Ai
ϕi(s̃, a)

⊤Λ̃−1
h,iϕi(s̃, a)

D̃h,i ← D̃h,i ∪ {(ŝ, âi)}
Λ̃h,i ← Λ̃h,i + ϕi(s̃, âi)ϕi(s̃, âi)

⊤

end
end
for k = 1 to K do

for i = 1 to m do
for (s̄, ā) ∈ Dh,i do

if FirstMeet = True then
Obtain the same (r, s′) as the sampled pair from Line 5 of Algorithm 3 within the same
restarting epoch of Algorithm 2

if s′ /∈ Ch+1 then
Explore(s′, h+ 1)
FirstMeet = False

end
end
else

(r, s′)← local sampling(h, i, s̄, ā, π̃k
h,−i)

end
Compute qkh,i(s̄, ā) = r + Ṽh+1,i(s

′).
end
Q̃k

h,i(s, a)← ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)q
k
h,i(s̃, ã).

Q̄k
h,i(s, a)← k−1

k Q̄k−1
h,i (s, a) + 1

k Q̃
k
h,i(s, a).

π̃k+1
h,i (a|s)← exp(ηkQ̄

k
h,i(s,a))∑

a′ exp(ηkQ̄k
h,i(s,a

′))
.

end
for i = 1 to m do

for (s̄, ā) ∈ D̃h,i \ Dh,i do
(r, s′)← local sampling(i, s̄, ā, π̃k

h) //See Algorithm 4
Compute qkh,i(s̄, ā) = r + Ṽh+1,i(s

′).
end
Q̃k

h,i(s, a)← ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈D̃h,i

ϕi(s̃, ã)q
k
h,i(s̃, ã) for s ∈ S \ Ch.

Q̄k
h,i(s, a)← k−1

k Q̄k−1
h,i (s, a) + 1

k Q̃
k
h,i(s, a). for s ∈ S \ Ch.

π̃k+1
h,i (a|s)← exp(ηkQ̄

k
h,i(s,a))∑

a′ exp(ηkQ̄k
h,i(s,a

′))
for s ∈ S \ Ch.

end
end
//Value estimation of Ṽ π̃

h,i with π̃h = 1
K

∑K
k=1 π̃

k
h,1 × · · · × π̃k

h,m

for i = 1 to m do
Ṽh,i(s)← min

{
1
K

∑K
k=1⟨π̃k

h,i, Q̃
k
h,i(s, ·)⟩,H − h+ 1

}
end

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Algorithm 10: Single-Agent-Learning-Virtual
Input : time-step h,agent i, policy π−i

// Also inherit the coresets Dh,i, D̃h,i from Algorithm 8
for (s̄, ā) ∈ Dh,i do

for k = 1 to K do
if FirstMeet = True then

Obtain the same (r, s′) as the sampled pair from Line 3 of Algorithm 6 within the same
restarting epoch of Algorithm 2

if s′ /∈ Ch+1 then
Explore(s′, h+ 1)
FirstMeet = False

end
end
else

(r, s′)← local sampling(h, i, s̄, ā, π−i) //See Algorithm 4
end
Compute qkh,i(s̄, ā) = r + Ṽ †

h+1,i(s
′).

end
end
Q̃†

h,i(s, a)←
1
Kϕi(s, a)

⊤Λ−1
h,i

∑K
k=1

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)q
k
h,i(s̃, ã)

π̃†
h,i(a|s̃)← 1{a = argmaxQ̃†

h,i(s, ·)}
Ṽ †
h,i(s)← maxa Q̃

†
h,i(s, a)

repeat the loop in line 2 with D̃h,i \ Dh,i and update Q̃†
h,i, π̃

†
h,i, Ṽ

†
h,i using the collected data as in line 17 to

line 19 over s ∈ S \ Ch.

When min{d−1 logS,A} ≤ ε−2, select K = Õ
(
H4dε−2 min{d−1 logS,A}

)
, τ = 1, then it holds

H2
√
τ
(√ log(S)

K
∧
√

d(
A

K
∧ 1) + γH2

√
2 logAi

K
≲ ε+ cHν

√
d.

The corresponding query of samples is m2H2KC2
max = Õ

(
m2H6d3ε−2 min{d−1 logS,A}

)
.

When min{d−1 logS,A} > ε−2, select K = Õ
(
H4dε−2

)
, τ = Õ

(
H−4ε2d−1

)
, then it holds

H2
√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1) + γH2

√
2 logAi

K
≤ H2

√
τd+ γH2

√
2 logAi

K

≲ H2
√
τd+H2

√
d

K

≲ ε.

And the corresponding query of samples is m2H2KC2
max = Õ

(
m2H14d5ε−6

)
.

Thus it is sufficient to prove (10) for every fixed ℓ. For simplicity of the notation, we omit the index ℓ in the
followed analysis.

C.2.1 Proof of (10)

We recall the following notations:

V π̃
h,i = Ea∼π̃[Q

π̃
h,i(s,a)],

V
†,π̃−i

h,i (s) = max
a

{
r
π̃h,−i

h,i (s, a) + Pπ̃−i

h V
†,π̃−i

h+1,i (s, a)
}
, with V

†,π̃−i

H+1,i = 0

P
π̃−i

h V (s, a) = Ea−i∼π̃−i
[Es′∼Ph(·|s,a,a−i)[V (s′)]]

r
π̃h,−i

h,i (s, a) = Ea−i∼π̃h,−i(·|s)
[
rh,i(s, a,a−i)

]
,

RL in Markov Games with Independent Function Approximation

Ṽh,i(s) = min

{
1

K

K∑
k=1

Ea∼π̃k
h,i

[Q̃k
h,i(s,a)],H − h+ 1

}
,

Q
π̃k
h,−i,Ṽh+1,i

h,i (s, a) = Ea−i∼π̃k
h,−i(·|s)

[
rh,i(s, a,a−i) + Es′∼Ph(·|s,a,a−i)[Ṽh+1,i(s

′)]
]

We begin with the following decomposition for each h ∈ [H]:

V
†,π̃−i

h,i − V π̃
h,i = V

†,π̃−i

h,i − V π̃
h,i ± Ṽh,i

= V
†,π̃−i

h,i − Ṽh,i︸ ︷︷ ︸
I
(1)
h,i

+ Ṽh,i − V π̃
h,i︸ ︷︷ ︸

I
(2)
h,i

.

We deal with I
(1)
h,i and I

(2)
h,i separately in the following two subsections:

Lemma 2. For every i ∈ [m], h ∈ [H], we have, with high probability,

I
(1)
1,i ≲ H2

√
τ log(1/δ)

K
min{d, logS}+ 2Hν

√
d+ γH2

√
2 logAi

K
. (11)

Lemma 3. For every i ∈ [m], h ∈ [H], we have, with high probability,

I
(2)
1,i ≲ Hν

√
d+H2

√
τ
(√ log(S)

K
∧
√

d(
A

K
∧ 1)

)
. (12)

C.2.2 Proof of Lemma 2

Proof. We would bound I
(1)
h,i by taking backward induction on h:

Firstly we have I
(1)
H+1,i = 0 by definition, now suppose it holds for h+ 1 that with probability at least 1− δh+1,

I
(1)
h+1,i ≤ zh+1,i

for some zh+1,i ≥ 0,

then we have

V
†,π̃−i

h,i (s) = max
a

{
r
π̃h,−i

h,i (s, a) + Pπ−i

h V
†,π̃−i

h+1,i (s, a)
}

≤ max
a

{
r
π̃h,−i

h,i (s, a) + Pπ−i

h Ṽh+1,i(s, a)
}
+ zh+1,i

Now if we denote

ζh,i(s, a) :=
∣∣rπ̃h,−i

h,i (s, a) + PhṼh+1,i(s, a)−
1

K

K∑
k=1

Q̃k
h,i(s, a)

∣∣,
then it holds by induction assumption that with probability at least 1− δh+1

V
†,π̃−i

h,i (s) ≤ max
a

1

K

K∑
k=1

Q̃k
h,i(s, a) + max

a
ζh,i(s, a) + zh+1,i

≤ Ṽh,i(s) + Reg(FTRL) + max
a

ζh,i(s, a) + zh+1,i,

with

Reg(FTRL) := 1

K
max
a′

(K∑
k=1

Q̃k
h,i(s, a

′)−
K∑

k=1

Ea∼π̃k
h,i

[Q̃k
h,i(s, a)]

)
For Reg(FTRL) we have the following lemma:

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Lemma 4. For γ := min{1+
√
τ log(SA/δ)+ ν

√
d,
√
d}, we have with probability at least 1− δ, it holds for any

s ∈ S that

Reg(FTRL) ≲ γH

√
2 logAi

K
.

Now it remains to bound ζh,i:

When s ∈ Ch, we have

1

K

K∑
k=1

Q̃k
h,i(s, a)

=
1

K

K∑
k=1

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)q
k
h,i(s̃, ã)

=
1

K

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)
[K∑
k=1

Q
π̃k
h,−i,Ṽh+1,i

h,i (s̃, ã))
]
+ J1︸︷︷︸

Martingale Concentration

=
1

K

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)ϕi(s̃, ã)
⊤

K∑
k=1

θ
π̃k
h,−i,Ṽh+1,i

h,i + J1︸︷︷︸
Martingale Concentration

+ J2︸︷︷︸
Misspecfic Error

=
1

K

K∑
k=1

ϕi(s, a)
⊤θ

π̃k
h,−i,Ṽh+1,i

h,i + J1︸︷︷︸
Martingale Concentration

+ J2︸︷︷︸
Misspecfic Error

+ J3︸︷︷︸
Incurred by λ

=
1

K

K∑
k=1

Q
π̃k
h,−i,Ṽh+1,i

h,i (s, a) +O(ν) + J1︸︷︷︸
Martingale Concentration

+ J2︸︷︷︸
Misspecfic Error

+ J3︸︷︷︸
Incurred by λ

where

J1 =
1

K

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)
[K∑
k=1

(qkh,i(s̃, ã)−Q
π̃k
h,−i,Ṽh+1,i

h,i (s̃, ã)))
]

J2 =
1

K

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)
[K∑
k=1

(Q
π̃k
h,−i,Ṽh+1,i

h,i (s̃, ã))− ϕi(s̃, ã)
⊤θ

π̃k
h,−i,Ṽh+1,i

h,i)
]

J3 = − 1

K

K∑
k=1

λϕi(s, a)
⊤Λ−1

h,iθ
π̃k
h,−i,Ṽh+1,i

h,i ,

with

θ
π̃k
h,−i,Ṽh+1,i

h,i = argmin∥θ∥2≤H
√
d∥Q

π̃k
h,−i,Ṽh+1,i

h,i − ϕi(·, ·)⊤θ∥∞.

Now we aim to control J1, J2, J3 separately:

Bounding J1 For J1, we have the following Lemma:

Lemma 5. With probability at least 1− δ, it holds that

J1 ≲ H

√
τ log(1/δ)

K
min{d, logS}.

Bounding J2 For J2, we have by the Assumption 1,

|J2| ≤ |ϕi(s, a)
⊤

∑
s̃,ã∈Dh,i

Λ−1
h,iϕi(s̃, ã) · ν|

RL in Markov Games with Independent Function Approximation

≤
√
|Dh,i|

∑
(s̃,ã)∈Dh,i

|ϕi(s, a)⊤Λ
−1
h,iϕi(s̃, ã)|2 · ν

≲ ν
√
d.

Bounding J3 For J3, we have it holds straightforwardly that

|J3| ≤ H
√
τλd

In addition, noticing that for s /∈ Ch, by our design of virtual algorithm , it holds that√
|D̃h,i| ≲

√
d

τ
, ∥ϕi(s, a)∥2Λ̃−1

h,i

≤ τ, ∀s /∈ Ch

thus our arguement when s ∈ Ch(including the proof of Lemma 5) still holds by replacing Dh,i,Λ
−1
h by D̃h,i, Λ̃

−1
h .

Finally, selecting λ = λ0 := 1/KdH2, and by the induction assumption on (h + 1)-th step, we have with
probability at least 1− (δh+1 + δ),

zh = zh+1 +O(H

√
τ log(1/δ)

K
min{d, logS}+ γH

√
2 logAi

K
) + 2ν

√
d (13)

Thus (13) recursively with zH+1 = δH+1 = 0 leads to with probability at least 1−Hδ,

I
(1)
1,i ≲ H2

√
τ log(1/δ)

K
min{d, logS}+ γH2

√
2 logAi

K
+ 2Hν

√
d

C.2.3 Proof of Lemma 3

We would also bound I
(2)
h,i via backward induction on h:

Firstly, we have I
(2)
H+1,i = 0 by definition, now suppose it holds for h+ 1 that with probability at least 1− δh+1,

∥I(2)h+1,i∥∞ ≤ ξh+1,

then we have for h-th time-step, for every s ∈ Ch,

1

K

K∑
k=1

Eai∼π̃k
h,i

[
Q̃k

h,i(s, ai)
]

=
1

K

K∑
k=1

Eai∼π̃k
h,i

[〈
ϕi(s, ai),Λ

−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)
(
rki,h(s̃, ã) + Ṽh+1,i(s

k
s̃,ã)

)〉]

=
1

K

K∑
k=1

Eai∼π̃k
h,i

[
ϕi(s, ai)

⊤Λ−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)Q
π̃k
h,−i,Ṽh+1,i

h,i (s̃, ã)
)]

︸ ︷︷ ︸
G1

+
1

K

K∑
k=1

Eai∼π̃k
h,i

[
ϕi(s, ai)

⊤Λ−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)εk(s̃, ã)

]
︸ ︷︷ ︸

G2

.

with

εk(s̃, ã) :=
(
rki,h(s̃, ã) + Ṽh+1,i(s

k
s̃,ã)

)
−Q

π̃k
h,−i,Ṽh+1,i

h,i (s̃, ã)
)
.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

where rki,h(s̃, ã), s
k
s̃,ã denote the r, s′ obtained by local sampling(h, i, s̃, ã, π̃k

h,−i).

Now we would discuss G1, G2 separately:

Bounding G1:
By Assumption 1 and the induction assumption on h+ 1, we have

G1 =
1

K

K∑
k=1

Eai∼π̃k
h,i

[
ϕi(s, ai)

⊤Λ−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)Q
π̃k
h,−i,Ṽh+1,i

h,i (s̃, ã)
)]

=
1

K

K∑
k=1

Eai∼π̃k
h,i

[Q
π̃k
h,−i,Ṽh+1,i

h,i (s, ai)] + Õ(ν
√
d).

Where in the last equation we used the similar argument as in bounding J2, J3 in previous section.

Now noticing that with probability at least 1− δh+1,

|Qπ̃k
h,−i,Ṽh+1,i

h,i (s, a)−Q
π̃k
h,−i,V

π̃
h+1,i

h,i (s, a)| ≤
∫
|Ṽh+1,i(s

′)− V π̃
h+1,i(s

′)|dPπ̃k
h,−i

h (s′|s, a)

≤ ξh+1,

we have with probability at least 1− δh+1,

|G1 − V π̃
h,i(s)| ≤

1

K

K∑
k=1

Eai∼π̃k
h,i

[|Qπ̃k
h,−i,Ṽh+1,i

h,i (s, ai)−Q
π̃k
h,−i,V

π̃
h+1,i

h,i (s, ai)|] + Õ(ν
√
d)

≤ ξh+1 + Õ(ν
√
d).

Bounding G2:

We have following lemma regarding the upper bound of |G2| :
Lemma 6. With probability at least 1− δ, it holds that

|G2| ≲ H

√
τ min

{
log(S/δ)

K
, d
(
1 ∧A/K

)
·
}
.

Proof of Lemma 6. For any fixed s̃ ∈ Ch we have denoted Fk(s̃, ã) the filtration generated by the information
before taking the k-th sampling on s̃, ã, then for

Z̃k(s̃, ã) := Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)q
k
h,i(s̃, ã),

it holds that

E[Z̃k(s̃, ã)|Fk(s̃, ã)] = Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)
(
r
π̃k
h,−i

h,i (s̃, ã) + Pπ̃k
h,−i

h Ṽh+1,i(s̃, ã)
)
,

and |Z̃k(s̃, ã)| ≤ Hmaxa|ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)| ≤ Hτ almost surely. Moreover, notice that

Var[Z̃k(s̃, ã)|Fk(s̃, ã)] ≤ E[Z̃k(s̃, ã)
2|Fk(s̃, ã)] ≤ H2|Ea∼π̃k

h,i
[ϕi(s, a)]

⊤Λ−1
h,iϕi(s̃, ã)

∣∣2,
thus applying Freedman’s inequality as in Li et al. (2020) leads to with probability at least 1− δ,

1

K

∑
(s̃,ã)∈Dh,i

K∑
k=1

Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− Pπ̃k
h,−i

h Ṽh+1,i(s̃, ã))
]

=
1

K

∑
(s̃,ã)∈Dh,i

K∑
k=1

(
Z̃k(s̃, ã)− E[Z̃k(s̃, ã)|Fk(s̃, ã)]

)

RL in Markov Games with Independent Function Approximation

≲H

K

(√√√√ K∑
k=1

∑
(s̃,ã)∈Dh,i

|Ea∼π̃k
h,i

[ϕi(s, a)]⊤Λ
−1
h,iϕi(s̃, ã)

∣∣2 log(Kd/δ) + τ log(Kd/δ)

)

≲H

√
τ

K
log(Kd/δ) +

Hτ

K
log(Kd/δ)

the last line is by

K∑
k=1

∑
(s̃,ã)∈Dh,i

|Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)
∣∣2

=

K∑
k=1

∑
(s̃,ã)∈Dh,i

Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)ϕi(s̃, ã)
⊤Λ−1

h,iEa∼π̃k
h,i

[ϕi(s, a)]

≤
K∑

k=1

Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iEa∼π̃k
h,i

[ϕi(s, a)]

≤Kτ

Now taking union bound over all s ∈ Ch, we get with probability at least 1− δ,

|G2| ≲ H

√
τ log(S/δ)

K
. (14)

On the other hand, we have

∣∣ 1
K

∑
(s̃,ã)∈Dh,i

K∑
k=1

Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− Pπ̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∣∣

≤
√
τ

K

K∑
k=1

∥∥ ∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− Pπ̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∥∥

Λ−1 .

Now for each k, consider the ϵ0-net Nϵ of Bd, then it holds that with probability at least 1− δ,∥∥ ∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

πk
h,−i

h,i (s̃, ã)− Pπk
h,−i

h Ṽh+1,i(s̃, ã))
]∥∥

Λ−1

≤ sup
g∈Nϵ

g⊤Λ−1/2
∑

(s̃,ã)∈Dh,i

ϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

πk
h,−i

h,i (s̃, ã)− Pπk
h,−i

h Ṽh+1,i(s̃, ã))
]
+ ϵ0H

√
τ |Dh,i|

≤H
√
log(|Nϵ0 |/δ) + ϵ0H

√
τ |Dh,i|.

Now letting ϵ0 = O(
√

1
Kτ |Dh,i|) and noticing that log|Nϵ0 | = Õ(d), we have it holds with probability at least

1− δ that

|G2| ≲ H

√
τ
[
log(|Nϵ0 |/δ) +

1

K

]
= Õ(H

√
τd) (15)

Finally, if we consider the metric over S:

D(s, s′) := max
a
∥ϕ(s, a)− ϕ(s′, a)∥

then if we consider the minimal ϵ cover Nϵ of F , it holds trivially that

|ND(S; ϵ)| ≤ |Nϵ|A (16)

by {ϕ(s, a)a∈A : s ∈ S} ⊂ FA and the fact
∣∣N∥·∥2,∞(FA; ϵ)

∣∣ ≤ |Nϵ|A.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Now for any s ∈ Ch, consider its best approximation s̄ ∈ ND(S; ϵ), then it holds that

∣∣ 1
K

∑
(s̃,ã)∈Dh,i

K∑
k=1

Ea∼π̃k
h,i

[ϕi(s, a)]
⊤Λ−1

h,iϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− P
π̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∣∣

≤
∣∣ 1
K

∑
(s̃,ã)∈Dh,i

K∑
k=1

Ea∼π̃k
h,i

[ϕi(s̄, a)]
⊤Λ−1

h,iϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− P
π̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∣∣

+
∣∣ 1
K

K∑
k=1

(Ea∼π̃k
h,i

[ϕi(s̄, a)]− Ea∼π̃k
h,i

[ϕi(s, a)])Λ
−1

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− P
π̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∣∣.

(17)

In particular, noticing that by D(s, s̄) ≤ ϵ, we have

Ea∼π̃k
h,i

[ϕi(s, a)]

=
∑
a

π̃k
h,i(a|s)ϕi(s, a)

=
∑
a

π̃k
h,i(a|s̄)ϕi(s̄, a) + [

∑
a

π̃k
h,i(a|s)−

∑
a

π̃k
h,i(a|s̄)]ϕi(s, a) +

∑
a

π̃k
h,i(a|s̄)[ϕi(s̄, a)− ϕi(s, a)].

Now by

∥
∑
a

π̃k
h,i(a|s̄)[ϕi(s̄, a)− ϕi(s, a)]∥ ≤ D(s, s̄) ≤ ϵ

and

∥[
∑
a

π̃k
h,i(a|s)−

∑
a

π̃k
h,i(a|s̄)]ϕi(s, a)∥

≤max
a
∥ϕi(s, a)∥ ·

∑
a

|π̃k
h,i(a|s)− π̃k

h,i(a|s̄)|

≤∥SoftMax
(
Q̄k

h,i(·, s), ηk)− SoftMax
(
Q̄k

h,i(·, s̄), ηk
)
∥1

≤ηk∥Q̄k
h,i(·, s)− Q̄k

h,i(·, s̄)∥∞,

where in the last line we have used the explicit formula of Jacobian of Soft-Max function in Gao and Pavel (2017)
and the following inequality:

∥ση

(
z)− ση

(
z′)∥1 = ∥⟨Dσλ(ξ)(z − z′)∥1

≤ ∥z − z′∥∞
∑
i,j

|Dσλ(ξ)|i,j

≤ η∥z − z′∥∞.

and

∥Q̄k
h,i(·, s)− Q̄k

h,i(·, s̄)∥∞ ≤ max
k
∥Qk

h,i(·, s)−Qk
h,i(·, s̄)∥∞

≤ max
a
∥ϕi(s, a)− ϕi(s̄, a)∥2∥θ̂∥2

≤ D(s, s̄)O(Hd/λ)

we get
∥Ea∼π̃k

h,i
[ϕi(s̄, a)]− Ea∼π̃k

h,i
[ϕi(s, a)]∥Λ−1 ≲ ϵ

√
K/λ.

with proper choice of ϵ.

Applying Freedman’s inequality in the last line of (17), we have then with probability at least 1− δ,

∣∣ 1
K

∑
(s̃,ã)∈Dh,i

K∑
k=1

Ea∼π̃k
h,i

[ϕi(s̄, a)]
⊤Λ−1

h,iϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− Pπ̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∣∣

RL in Markov Games with Independent Function Approximation

+O
(
ϵH

√
τ/λ

)
.

Thus it suffice to control the deviation over the first term with fixed s̄ ∈ ND
ϵ . Using exactly the same arguement

as in establishing (14), we have for every s̄, it holds that

∣∣ 1
K

∑
(s̃,ã)∈Dh,i

K∑
k=1

Ea∼π̃k
h,i

[ϕi(s̄, a)]
⊤Λ−1

h,iϕi(s̃, ã)
[
(qkh,i(s̃, ã)− r

π̃k
h,−i

h,i (s̃, ã)− Pπ̃k
h,−i

h Ṽh+1,i(s̃, ã))
]∣∣ ≲ H

√
τ

K
log(1/δ),

then taking union bound over s̄ ∈ ND
ϵ and let ϵ =

√
λ/K leads to

|G2| ≲ H

√
τdA

K
. (18)

Now combining (14),(15),(18) leads to the desired result.

Combining our bounds on I
(1)
h,i and I

(2)
h,i , we get then

ξh ≤ ξh+1 + Õ

(
ν
√
d+H

√
τ
(√ log(S)

K
∧
√

d(
A

K
∧ 1)

))
(19)

Applying (19) recursively with ξH+1 = 0 leads to

ξ1 ≲ Hν
√
d+H2

√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1)

)
(20)

Combining (11) and (20) together leads to

|V †,π̃−i

1,i − V π̃
1,i| ≲ Hν

√
d+H2

√
τ
(√ log(S)

K
∧
√
d(

A

K
∧ 1)

)
That provides the CCE guarantee of every epoch of the virtual algorithm.

C.3 Analysis of the Single Agent Learning Subroutine

We would show that for each agent i, the single agent learning subroutine is provable to output an approximation
of the best-response policy when other agents are playing according to π̃−i:
Lemma 7. With probability at least 1− δ, we have Algorithm 10 returns a policy π̃†

i so that

V
†,π̃−i

h,i − V
π̃†
i×π̃−i

h,i ≲ H2

√
τ min{logS, d}

K
+ νH

√
d.

Proof. As in proof of (10), we have for every h,

V
†,π̃−i

h,i − V
π̂†
i×π̃−i

h,i = V
†,π̃−i

h,i − Ṽ †
h,i︸ ︷︷ ︸

:=J
(1)
h,i

+ Ṽ †
h,i − V

π̂†
i×π̃−i

h,i︸ ︷︷ ︸
:=J

(2)
h,i

For J
(1)
h,i , we have

V
†,π̃−i

h,i (s) = max
a

{
r
π̃−i

h,i (s, a) + Pπ−i

h,i V
†,π̃−i

h+1,i (s, a)
}

≤ max
a

{
r
π̃−i

h,i (s, a) + Pπ−i

h,i Ṽ
†
h+1,i(s, a)

}
+max

s

(
V

†,π̃−i

h+1,i (s)− Ṽ †
h+1,i(s, a)

)

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

≤ Ṽ †
h,i(s) +

(
max

a

{
r
π̃−i

h,i (s, a) + Pπ−i

h,i Ṽ
†
h+1,i(s)

}
− Ṽ †

h,i(s)
)
+max

s

(
V

†,π̃−i

h+1,i (s)− Ṽ †
h+1,i(s)

)
≤ Ṽ †

h,i(s) + max
a

{
r
π̃−i

h,i (s, a) + Pπ−i

h,i Ṽ
†
h+1,i(s, a)− Q̃†

h,i(s, a)
}
+max

s

(
V

†,π̃−i

h+1,i (s, a)− Ṽ †
h+1,i(s)

)
Now we can bound

max
s,a

{
r
π̃−i

h,i (s, a) + Pπ−i

h,i Ṽ
†
h+1,i(s, a)− Q̃†

h,i(s, a)
}

using the property of coreset and the martingale concentration argument as in bounding J1, J2, J3 in section C.2.2,
we have then with probability at least 1− δ,

max
s

J
(1)
h,i (s) ≤ max

s
J
(1)
h+1,i(s) + Õ(H

√
τ min{d, logS}

K
+ ν
√
d) ≲ H2

√
τ min{d, logS}

K
+ νH

√
d, ∀h ∈ [H].

For J
(2)
h,i , noticing that

|Ṽ †
h,i(s)− V

π̃†
i×π̃−i

h,i (s)| = Ṽ †
h,i(s)−

(
r
π̃−i

h,i (s, π̃
†
i (s)) + Pπ̃−i

h,i V
π̃†
i×π̃−i

h+1,i (s, π̃†
i (s))

)
≤

∣∣Q̃†
h,i(s, π̃

†
i (s))−

(
r
π̃−i

h,i (s, π̃
†
i (s)) + Pπ̃−i

h,i Ṽ
†
h+1,i(s, π̃

†
i (s))

)∣∣+max
s
|Ṽ †

h+1,i(s)− V
π̃†
i×π̃−i

h+1,i (s)|

≤ max
s,a

∣∣Q̃†
h,i(s, a)−

(
r
π̃−i

h,i (s, a) + Pπ̃−i

h,i Ṽ
†
h+1,i(s, a)

)∣∣+max
s
|Ṽ †

h+1,i(s)− V
π̃†
i×π̃−i

h+1,i (s)|.

Then similar to J
(1)
h,i , we get

max
s

J
(2)
h,i (s) ≤ max

s
J
(2)
h+1,i(s) + Õ(H

√
τ min{d, logS}

K
+ ν
√
d) ≲ H2

√
τ min{d, logS}

K
+ νH

√
d, ∀h ∈ [H].

C.4 Analysis of the Main Algorithm

Now we would derive the ε-CCE guarantee of the main algorithm by bridging its performance to the virtual
algorithm.

Firstly, at the last round of the main algorithm(means it succesfully returns the policy without restarting), the
outputed policy π̂ at every s ∈ Cℓh has the same performance as the τ -th virtual algorithm for some 1 ≤ τ ≤ L,
for which we denote by π̃. In particular, since (s0, a) ∈ Cτ1 for all a ∈ A by definition, we have then by the union
bound arguement, with high probability

V
†,π̃−i

1,i (s0)− V π̃
1,i(s0) ≤ ε+ cνH

√
d, ∀i ∈ [m].

Now we still need to bridge V
†,π̃−i

1,i (s0) to V
†,π̂−i

1,i (s0) and V †,π̃
1,i (s0) to V π̂

1,i(s0). To do that, we define another
virtual algorithm(called quasi algorithm) that nearly same as the algorithm in section C.1, except that for all
s ∈ S, we learn all π̄ from previously defined V̂h+1,i for every h, i. Since this algorithm also coupled with the
main algorithm, we have its output policy at τ -th epoch is same as the main algorithm at every s ∈ S. Thus
for every h, i, s, a we have

Qπ̂
h,i(s, a) = Qπ̄

h,i(s, a).

Thus we need only provide the guarantee of the quasi algorithm:

At every epoch of the Quasi algorithm, for each agent i and its core-set Dh,i, consider the N reward paths
{r̄h,i,n(s̃, ã)} generated in the second last uncertainty check loop, then we have by i.i.d. concentration it holds
w.h.p.

|V π̄
1,i(s0)−

1

N

N∑
n=1

r̄h,i,n(s̃, ã)| ≲
H√
N

.

RL in Markov Games with Independent Function Approximation

Taking union bounds over epochs, we have the result holds for every epoch. By the same argument, such result
also holds for the quasi algorithm.

Now if we consider the τ -th epoch, we have then∣∣V π̂
1,i(s0)− V π̃

1,i(s0)
∣∣ ≲ H√

N
. (21)

Combining (21) with the ε-CCE guarantee of π̃, we have

|V π̂
1,i(s0)− V

†,π̃−i

1,i (s0)| ≤ ε+ c
(
νH
√
d+

H√
N

)
Now it is sufficient to bridge V

†,π̃−i

1,i (s0) with V
†,π̂−i

1,i (s0), to do that, we consider another virtual algorithm, called
the virtual-II algorithm, its operation on learning π̂ is same as the quasi algorithm, the main difference is its
single-agent learning procedure: for each i, h, it maintains a complementary core dataset D̃h,i in the same way
as the virtual I algorithm, and taking LSVI using the collected complementary data for s /∈ Ch while do the
same LSVI as the main algorithm for s ∈ Ch. Applying Lemma 7 leads to the following error guarantee for every
epoch output policy of the virtual-I, virtual-II algorithm:

|V π̃†
i×π̃−i

1,i (s0)− V
†,π̃−i

1,i (s0)| ≤ ε+ cνH
√
d, |V π̂†×π̂−i

1,i (s0)− V
†,π̂−i

1,i (s0)| ≤ ε+ cνH
√
d. (22)

On the other hand, the last rollout procedure for every i guarantees at the τ -th epoch,

|V π̂†,i

1,i (s0)− V π̃†,i

1,i (s0)| ≤
H√
N

(23)

Combining (22) and (23), we have |V †,π̃−i

1,i (s0) − V
†,π̂−i

1,i (s0)| ≲ ε + H√
N
. That then leads to the desired bound

|V π̂
1,i(s0)− V

†,π̂−i

1,i (s0)| ≲ ε+ H√
N

+ cνH
√
d. Finally letting N ≍ H2/ε2 leads to the desired result.

D Results under the Random Access Model

D.1 Algorithm under the Random Access Model

We propose the algorithm under the random access model in Algorithm 11 and make several remarks.
Remark 1. When letting βh,i = 0 and αk = 1

k , the update formulas of Q̂h,i and V̂h,i is same as those in
Algorithm 3 and Algorithm 8.
Remark 2. Compared with the algorithm under the local access model, Algorithm 11 doesn’t contain the Policy-
Rollout subroutine(Line 15 to Line 18 and Line 27 to Line 32) in Algorithm 2. The main reason is that the
random access protocol makes the algorithm easy have high confidence to all states after the exploration phase in
line 2.
Remark 3. When we consider the tabular case, i.e. ϕi(s, a) = es,a ∈ RSAi , Algorithm 11 with

λ = 0, τ = 1, αk =
cα logK

k − 1 + cα logK
, βi,h = cb

√
log3(

KS
∑

i Ai

δ

KH

K∑
k=1

αK
k

{
Varπk

i,h(·|s
(
qki,h(s, ·)

)
+H

}
with

αk
i = αi

k∏
j=i+1

(1− αj) if 0 < i < k, αk
i = αk if i = k

recovers the algorithm proposed in Li et al. (2022). They have shown that such selection of parameter allows the
algorithm to learn a ε-CCE with Õ(

H4S
∑

i Ai

ε2) sample complexity.

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

Algorithm 11: Linear Game Random Access
Input : learning rates {αk} and {ηk+1}
for i = 1 to m do

select Di ⊂ S ×Ai, i ∈ [m] such that

max
s,a

ϕi(s, a)
(∑
s̄∈Ci

∑
ā∈Ai

ϕi(s̄, ā)ϕi(s̄, ā)
⊤ + λI

)−1
ϕi(s, a) < τ, ∀i ∈ [m].

end
for h = H to 1 do

for k = 1 to K do
for i = 1 to m do

for (s, a) ∈ Di do
(r, s′)← local sampling(i, s, a, πk

h,−i) Compute qkh,i(s, a) = r + V̂h+1,i(s
′).

end

θk = argminθ

∑
(s,a)∈Di

|qkh,i(s, a)− ⟨ϕi(s, a), θ⟩|22 + λ∥θ∥22

Qk
h,i(s, a) = ⟨ϕi(s, a), (1− αk)θ

k−1 + αkθ
k⟩.

πk+1
h,i (ai|s) =

exp(ηk+1Q
k
h,i(s, ai))∑

a′ exp(ηk+1Qk
h,i(s, a

′))
, ∀s ∈ S.

end
end
for i = 1 to m do

V̂h,i(s) = min

{
K∑

k=1

αK
k ⟨πk′

h,i, q
k′

h,i(s, ·)⟩+ βh,i(s),H − h+ 1

}
, ∀s ∈ S.

end
end
return π̂h,i :=

∑K
k=1 α

K
k πk

h,i.

D.2 Proof of Theorem 2

Firstly, we would note that when β = 0, Algorithm 11 is nearly same as the Algorithm 8 despite a slight difference
on the construction of the coreset Dh,i. And during the proof of Lemma 2 and Lemma 3, the only property we
have required for the Dh,i can be summarized as the following:

|Dh,i| ≲
d(1 + τ)

τ
, sup

s,a
ϕi(s, a)(

∑
s̄,ā∈D⟨,⟩

ϕ(s̄, ā)ϕ(s̄, ā)⊤ + λI)−1ϕi(s, a) < τ.

And such property is straightforward to verify for Dh,i ≡ Di. Thus the analysis in Appendix C.2 and the result
in (10) can be applied for Algorithm 11. To prove Theorem 2, it suffice to specify the selection of parameters
based on (10):

1. When min{d−1 logS,A} ≤ ε−2: letting

K = Õ(H4dε−2 min{d−1 logS,A}), τ = 1

leads to the ε + cν
√
dH-CCE guarantee, in this case, the total sample complexity is given by Õ(KmdH) =

Õ(ε−2H5d2mmin{d−1 logS,A}).

2. When min{d−1 logS,A} > ε−2 : letting

K = Õ(H4dε−2), τ = Õ(H−4ε2d−1)

RL in Markov Games with Independent Function Approximation

leads to the ε + cHν
√
d-CCE guarantee, in this case, the total sample complexity is given by Õ(KmdH/τ) =

Õ(ε−4H9d3).

Combining the sample complexity of this two cases leads to the Õ(min{ε−2dH4, d−1 logS,A}d2H5mε−2) sample
complexity result.

E Proof of Auxiliary Results

E.1 Proof of Lemma 4

Proof. We recall the following standard regret result of FTRL Lattimore and Szepesvári (2020):

Lemma 8. For a sequence {yt}Tt=1 ∈ [0, 1]A and the policy sequence generated by

πt+1,a ∝ exp(−η
t∑

k=1

yka)

with η =
√

2 log(A)/T , it holds that

max
a

1

T

T∑
t=1

(
⟨πt, yt⟩ − yta

)
≤

√
2
logA

T

Now since it holds the following lemma regarding the bound of Qk
h,i:

Lemma 9. With probability at least 1− δ, we have

max
s,a
|Q̃k

h,i(s, a)| ≲ Hmin{
√
d, 1 +

√
log(SA/δ) + ν

√
d}.

Proof of Lemma 9. Denote

θ
πk
h,−i,Ṽh+1,i

h,i := argmin∥θ∥2≤H
√
d∥ϕi(s, a)

⊤θ −Q
π̃k
−i,h,Ṽh+1,i

h,i ∥∞

1. When s ∈ Ch:

Q̃k
h,i(s, a) = ϕi(s, a)

⊤Λ−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)q
k
h,i(s̃, ã)

= ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)[q
k
h,i(s̃, ã)± ϕi(s̃, ã)

⊤θ
πk
h,−i,Ṽh+1,i

h,i]

= Q
πk
−i,h,Ṽh+1,i

h,i (s, a) + ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)[q
k
h,i(s̃, ã)− ϕi(s̃, ã)

⊤θ
πk
h,−i,Ṽh+1,i

h,i] +O(ν +H
√
τλd)

= Q
πk
−i,h,Ṽh+1,i

h,i (s, a) +O(ν
√
d log d+H

√
τ log(1/δ))

= O
(
H(1 +

√
τ log(1/δ)) + ν

√
d log d

)
,

Where the last second line is by

ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)[q
k
h,i(s̃, ã)− ϕi(s̃, ã)

⊤θ
πk
h,−i,Ṽh+1,i

h,i]

=ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)
[
Q

πk
−i,h

h,i (s̃, ã)− ϕi(s̃, ã)
⊤θ

πk
h,−i,Ṽh+1,i

h,i︸ ︷︷ ︸
νk
h,i(s̃,ã)

+ qkh,i(s̃, ã)−Q
πk
−i,h

h,i (s̃, ã)︸ ︷︷ ︸
µk
h,i(s̃,ã)

]
and

|ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)ν
k
h,i(s̃, ã)| ≤

√ ∑
s̃,ã∈Dh,i

[ϕi(s, a)⊤Λ
−1
h,iϕi(s̃, ã)]2

√
|Dh,i|ν

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

≲
√
τ ·

√
d log d

τ
ν.

and with probability at least 1− δ,

|ϕi(s, a)
⊤Λ−1

h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)µ
k
h,i(s̃, ã)| ≤ H

√ ∑
s̃,ã∈Dh,i

[ϕi(s, a)⊤Λ
−1
h,iϕi(s̃, ã)]2 log(1/δ)

≲ H
√
τ log(1/δ).

That for any fixed (s, a) ∈ Ch ×Ai, with probability at least 1− δ,

|Q̃k
h,i(s, a)| ≤ c

[
H(1 +

√
τ log(SA/δ)) + ν

√
d log d

]
On the other hand, we have the following determinstic bound:

Q̃k
h,i(s, a) = ϕi(s, a)

⊤Λ−1
h,i

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)q
k
h,i(s̃, ã)

≤ H
√
|Dh,i| ·

√ ∑
s̃,ã∈Dh,i

[ϕi(s, a)⊤Λ
−1
h,iϕi(s̃, ã)]2

≲ H
√
d.

Thus for any fixed (s, a) ∈ Ch ×Ai, with probability at least 1− δ,

|Q̃k
h,i(s, a)| ≲ Hmin{1 +

√
τ log(1/δ)) + ν

√
d,
√
d}

2. When s /∈ Ch:

By our construction of D̃h,i, Λ̃
−1
h in the virtual algorithm, it holds that√

|D̃h,i| ≲
√
d/τ , ∥ϕi(s, a)∥Λ̃−1

h,i
≤ τ, ∀s /∈ Ch

thus our argument when s ∈ Ch still holds by replacing Dh,i,Λ
−1
h by D̃h,i, Λ̃

−1
h .

i.e. for any fixed (s, a) /∈ Ch ×Ai, with probability at least 1− δ,

|Qk
h,i(s, a)| ≲ Hmin{1 +

√
τ log(1/δ)) + ν

√
d,
√
d}

Now, taking union bound on (s, a), we have with probability at least 1− δ,

|Qk
h,i(s, a)| ≲ Hmin{1 +

√
τ log(SA/δ) + ν

√
d,
√
d}.

Denote γ := min{1 +
√

τ log(SA/δ) + ν
√
d,
√
d}, by Lemma 9 we have there exists some absolute number c > 0

so that with probability at least 1− δ,

ỹk(s, a) :=
cHγ −Qk

h,i(s, a)

2cHγ
∈ [0, 1] ∀(s, a) ∈ S ×Ai.

Now by Lemma 8, for the policy sequence generated by

πk,a(a|s) ∝ exp(−η
k∑

t=1

ỹt(s, a)) ∝ exp(
η

2cHγ

k∑
t=1

Q̃k
h,i(s, a)) ∝ exp(ηk

˜̄Qk
h,i(s, a)) (24)

RL in Markov Games with Independent Function Approximation

with η =
√
2 log(Ai)/K, it holds that

max
a

1

K

K∑
k=1

(
⟨πk(·|s), ỹk(s, a)⟩ − ỹk(s, a)

)
≤

√
2
logAi

K
(25)

Multiplying 2cγ to both sides of (25) and noticing that the iteration formula in (25) is exactly the formula for
updating π̃k

h,i in Algorithm 8, we get with probability at least 1− δ,

1

K

K∑
k=1

Ea∼πk
h,i

[Q̃k
h,i(s, a)] ≤

1

K
min
a

K∑
k=1

Q̃k
h,i(s, a) + 2cγH

√
2 logAi

K
,

That leads to the desired result.

E.2 Proof of Lemma 5

Proof of Lemma. For any s, a we have denote Fk(s̃, ã) the filtration genearted by the information before taking
the k-th time sampling on s̃, ã, then for

Zk(s̃, ã) := ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)q̄
k
h,i(s̃, ã),

it holds that E[Zk(s̃, ã)|Fk(s̃, ã)] = ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)
(
r
πk
h,−i

h,i (s̃, ã) + Pπk
h,−i

h V̂h+1,i(s̃, ã)
)
, and |Zk(s̃, ã)| ≤

H|ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)| a.s., thus applying Azuma-Hoeffding’s inequality leads to with probability at least 1− δ,

1

K

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)
[K∑
k=1

(q̄kh,i(s̃, ã)− r
πk
h,−i

h,i (s̃, ã)− Pπk
h,−i

h V̂h+1,i(s̃, ã))
]

=
1

K

∑
(s̃,ã)∈Dh,i

K∑
k=1

(
Zk(s̃, ã)− E[Zk(s̃, ã)|Fk(s̃, ã)]

)

≲H

K

√√√√ ∑
(s̃,ã)∈Dh,i

K∑
k=1

|ϕi(s, a)⊤Λ
−1
h,iϕi(s̃, ã)|2 log(1/δ).

On the other hand, we have

∑
(s̃,ã)∈Dh,i

K∑
k=1

|ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)|2 =
∑

(s̃,ã)∈Dh,i

K∑
k=1

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)ϕi(s̃, ã))
⊤Λ−1

h,iϕi(s, a)

≤
K∑

k=1

ϕi(s, a)
⊤Λ−1

h,iϕi(s, a)

≤Kτ.

Taking union bound over Ch ×Ai leads to with probability at least 1− δ,

J1 ≲ H

√
τ log(SA/δ)

K
, ∀(s, a) ∈ S ×Ai. (26)

On the other hand, we have it holds for all (s, a) that

J1 =
1

K

∑
(s̃,ã)∈Dh,i

ϕi(s, a)
⊤Λ−1

h,iϕi(s̃, ã)
[K∑
k=1

(qkh,i(s̃, ã)−Q
πk
h,−i,Ṽh+1,i

h,i (s̃, ã))
]

Junyi Fan, Yuxuan Han, Jialin Zeng, Jianfeng Cai, Yang Wang, Yang Xiang, Jiheng Zhang

≤ 1

K
∥ϕi(s, a)∥Λ−1

h,i

∥∥ ∑
(s̃,ã)∈Dh,i

K∑
k=1

ϕi(s̃, ã)
(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)∥∥

Λ−1
h,i

≤
√
τ

K

∥∥ ∑
(s̃,ã)∈Dh,i

K∑
k=1

ϕi(s̃, ã)
(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)∥∥

Λ−1
h,i

.

Now noticing that

∥∥ ∑
(s̃,ã)∈Dh,i

K∑
k=1

ϕi(s̃, ã)
(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)∥∥

Λ−1
h,i

=
∥∥ K∑

k=1

∑
(s̃,ã)∈Dh,i

Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)∥∥

2

= sup
∥v∥2=1

K∑
k=1

∑
(s̃,ã)∈Dh,i

v⊤Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)
.

Denote SH = {g ∈ Rd : ∥g∥2 = 1} , then for any fixed g ∈ SH, we have by Azuma-Hoeffding inequality, with
probability at least 1− δ,

K∑
k=1

∑
(s̃,ã)∈Dh,i

g⊤Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)

≲H

√√√√ K∑
k=1

∑
(s̃,ã)∈Dh,i

(g⊤Λ
−1/2
h,i ϕi(s̃, ã))2 log(1/δ) ≤ H

√
K log(1/δ).

If we consider the minimal ϵ-net Nϵ of SH, i.e.

∀g ∈ SH, ∃g0 ∈ Nϵ such that ∥g − g0∥2 ≤ ϵ.

In particular for any g, g′ ∈ SH, we have

K∑
k=1

∑
(s̃,ã)∈Dh,i

(g − g′)⊤Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)

≲∥g − g′∥HH

√√√√Kd

K∑
k=1

∑
(s̃,ã)∈Dh,i

ϕi(s̃, ã)Λ
−1
h,iϕi(s̃, ã)

≲∥g − g′∥HHK
√
d.

That implies for any g ∈ SH, there exists some g0 ∈ Nϵ so that

K∑
k=1

∑
(s̃,ã)∈Dh,i

g⊤Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)

=

K∑
k=1

∑
(s̃,ã)∈Dh,i

g⊤0 Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)
+O(ϵHK

√
d).

Thus setting ϵ = ϵ0 := 1√
K

and taking union bound over Nϵ leads to with probability at least 1− δ,

sup
v∈Sd−1

K∑
k=1

∑
(s̃,ã)∈Dh,i

v⊤Λ
−1/2
h,i ϕi(s̃, ã)

(
qkh,i(s̃, ã)−Q

πk
h,−i,Ṽh+1,i

h,i (s̃, ã)
)

RL in Markov Games with Independent Function Approximation

≲H
√
K
[
log(|Nϵ0 |/δ) + d

]
.

≲H
√
K
[
d log(1/δ)

]
That leads to another bound of J1: with probability at least 1− δ,

J1 ≲ H

√
τ
d log(1/δ)

K
(27)

Combining (27) and (26) together leads to the desired result for s ∈ Ch.

