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Abstract

In a well-calibrated risk prediction model, the
average predicted probability is close to the
true event rate for any given subgroup. Such
models are reliable across heterogeneous pop-
ulations and satisfy strong notions of algo-
rithmic fairness. However, the task of au-
diting a model for strong calibration is well-
known to be difficult—particularly for ma-
chine learning (ML) algorithms—due to the
sheer number of potential subgroups. As
such, common practice is to only assess cali-
bration with respect to a few predefined sub-
groups. Recent developments in goodness-
of-fit testing offer potential solutions but are
not designed for settings with weak signal
or where the poorly calibrated subgroup is
small, as they either overly subdivide the
data or fail to divide the data at all. We
introduce a new testing procedure based on
the following insight: if we can reorder ob-
servations by their expected residuals, there
should be a change in the association be-
tween the predicted and observed residuals
along this sequence if a poorly calibrated sub-
group exists. This lets us reframe the prob-
lem of calibration testing into one of change-
point detection, for which powerful methods
already exist. We begin with introducing a
sample-splitting procedure where a portion of
the data is used to train a suite of candidate
models for predicting the residual, and the
remaining data are used to perform a score-
based cumulative sum (CUSUM) test. To
further improve power, we then extend this
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adaptive CUSUM test to incorporate cross-
validation, while maintaining Type I error
control under minimal assumptions. Com-
pared to existing methods, the proposed pro-
cedure consistently achieved higher power in
empirical analyses.

1 INTRODUCTION

Calibration is a fundamental measure of model relia-
bility: a risk prediction model is called “calibrated” or
“reliable” for a subgroup if the average predicted prob-
ability corresponds to the observed event rate [Foster
and Vohra, 1998]. When decisions are made using ab-
solute risk thresholds—as is common in medicine [Goff
et al., 2014]—calibration directly impacts the utility
of a model [Van Calster and Vickers, 2015]. How-
ever, machine learning (ML) algorithms are typically
trained to optimize average performance and can be
poorly calibrated in particular subgroups [Chatterjee
et al., 2016, Barda et al., 2021], leading to concerns
regarding their robustness and fairness. In fact, per-
formance can be particularly low for subgroups de-
fined by interactions of multiple variables (e.g. race
and gender), an issue known as intersectionality [Buo-
lamwini and Gebru, 2018]. Ideally, a risk prediction
model is “strongly” calibrated, in that it is calibrated
for all individuals or, equivalently, all possible sub-
groups [Van Calster et al., 2016, Zhao et al., 2020].

Unfortunately, achieving or even verifying strong cali-
bration is challenging due to the curse of dimensional-
ity: as the number of variables grows, the subgroups—
and thus the number of observations per subgroup—
get smaller. As such, much of previous research has
been focused on “moderate” calibration, where the
subgroups are defined as observations with similar risk
predictions [Cox, 1958, Brown et al., 1975, Tsiatis,
1980, Hawkins, 1991, Hosmer et al., 1997, Hosmer and
Hjort, 2002, Lin et al., 2002, Widmann et al., 2019,
DiCiccio et al., 2020, Hudson et al., 2021, Lee et al.,
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2022, Glaser et al., 2023].1 These methods are widely
used among practitioners, given their ease of use and
applicability to small datasets. With the recent inter-
est in algorithmic fairness and model reliability, many
recent works have sought to achieve stronger forms of
calibration, either by identifying subgroups that re-
quire revision [Chung et al., 2019, Eyuboglu et al.,
2022] or revising the model directly [Hebert-Johnson
et al., 2018, Kim et al., 2019, Luo et al., 2022]. How-
ever, these methods are either meant to be exploratory
or only provide statistical guarantees when the num-
ber of observations is sufficiently large. The minimum
sample size is typically at least tens or even hundreds
of thousands of observations, which is unrealistic in
many settings.

Rather than tackling the difficult task of subgroup
identification or model revision, we instead consider
the problem of testing if there exists any poorly cal-
ibrated subgroup. This is much more feasible in set-
tings with limited data or lower signal-to-noise ratios,
and still answers the important yes/no question “Is
this ML algorithm reliable for everyone?” Moreover,
the answer to this question can help decide if more
sophisticated data-hungry procedures are necessary.

We formalize this as the following hypothesis test. For
binary classification tasks, we represent a random ob-
servation from the population by a random vector X ∈
Rd and binary random variable Y . Let p̂ : X 7→ [0, 1]
be the risk prediction algorithm and p0 : X 7→ [0, 1] be
the true event rate (i.e. p0(x) = Pr(Y = 1|X = x))
over some domain X ⊆ Rd. For some pre-specified
tolerance level δ ≥ 0, define the poorly calibrated sub-
group as Aδ = {x ∈ X : |p̂(x)− p0(x)| > δ} . The hy-
pothesis test checks if the set Aδ is too large, i.e.

H0 : Pr (X ∈ Aδ) ≤ ϵ

H1 : Pr (X ∈ Aδ) > ϵ
(1)

from some minimally acceptable prevalence ϵ ≥ 0.
Prior works have primarily tested the special case
where d = 1 and ϵ = δ = 0 [Hudson et al., 2021]. For
instance, tests for moderate calibration often consider
the strict null hypothesis H0 : E[Y = 1|p̂(x) = q] = q
for all q ∈ [0, 1], which corresponds to representing
each observation by its predicted probability. How-
ever, the strict null can be rejected even if model mis-
calibration is not practically significant, so interpreta-
tion of such tests can be challenging. It is not clear
how to extend these works to settings with δ > 0 or
for much larger d.

Recent advancements in the goodness-of-fit (GOF)

1Here we follow the calibration hierarchy defined in
[Van Calster and Vickers, 2015]. Note that some works re-
fer to “moderate calibration” in this hierarchy as “strong
calibration.”

testing literature provide potential solutions [Janková
et al., 2020, Zhang et al., 2021]. Although GOF tests
technically answer a different question from (1), one
could consider extending the methods proposed in
these works to test for strong calibration. The main
idea in these works is to break the curse of dimen-
sionality using sample-splitting: they use one parti-
tion of the data to train a model of the residuals and
the remaining partition to test for GOF with respect
to the learned residual model. The difference between
[Janková et al., 2020] and [Zhang et al., 2021] is pri-
marily in the second step. The former assesses the
association between the predicted and observed resid-
uals with respect to the entire population through a
score test. The latter bins observations with similar
predicted residuals and performs a Chi-squared test.

In settings where only a small subgroup is miscali-
brated, it is critical that we reduce any wastage of
power. The aforementioned GOF tests were not de-
signed for this setting, so their power for detecting
miscalibration in subgroups is limited. [Janková et al.,
2020] calculates the average score, which overlooks
variation across subgroups. [Zhang et al., 2021] bins
observations into subgroups, but no information is bor-
rowed across bins and the procedure is highly sensitive
to the number of bins; the procedure may accidentally
divide the poorly calibrated subgroup, thereby reduc-
ing its power to detect miscalibration. In addition,
these works only use random forests (RFs) to model
the residuals but, as we show later, RFs are weak
at extracting the remaining signal after a tree-based
model is fitted to the data. Instead, it is important to
consider a diverse pool of candidate residual models.
Also, these tests only perform a single sample-split. To
extend these procedures to use cross-validation (CV),
one must account for the correlation between residual
models trained across folds. Finally, to tune hyperpa-
rameters of the residual model, both procedures per-
form further splitting of the training data. This is not
only noisy in small sample sizes but also computation-
ally expensive when combined with CV.

We introduce a more powerful testing procedure for
strong calibration motivated with the following in-
sight: if observations are ordered by their predicted
residuals, we expect the association between the ob-
served and predicted residuals to drop somewhere
along this sequence if a poorly calibrated subgroup
exists. Our key contributions are (i) we show how re-
framing the problem of detecting a poorly calibrated
subgroup into that of changepoint detection substan-
tially improves power because the changepoint struc-
ture closely mimics the true subpopulation structure;
(ii) we demonstrate how additional gains in power
and computational efficiency can be made by fitting
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a pool of candidate residual models and performing
a suite of structural change tests; (iii) we incorpo-
rate CV to further improve power, while maintain-
ing Type I error control under much weaker assump-
tions than prior works; and (iv) we provide visualiza-
tion tools to aid model diagnosis. In experiments, the
proposed procedure significantly outperforms existing
methods. Code for reproducing all experiments is
available at https://github.com/jjfeng/testing_

strong_calibration.

1.1 Other related works

In the Introduction, we already discussed how this
work relates to prior works on testing model calibra-
tion. Here we discuss some other related areas.

Multicalibration. Given an ML algorithm, mul-
ticalibration methods introduce post-hoc updates to
achieve calibration across a rich collection of sub-
groups, typically using a boosting-type procedure
[Hebert-Johnson et al., 2018, Kim et al., 2019, Gopalan
et al., 2023, Globus-Harris et al., 2023]. To prevent
overfitting, these methods typically leverage differen-
tial privacy methods and/or split the data into many
partitions. As such, these methods require immense
sample sizes [Barda et al., 2021, Kim et al., 2022].
In contrast, this paper is concerned with testing for
the existence of a poorly calibrated subgroup, which
is much more feasible in settings with limited data or
lower signal-to-noise ratios.

Individual/metric fairness. Strong calibration of
an ML algorithm can be viewed as a generalization of
predictive parity for binary classifiers [Mitchell et al.,
2021], which is only one approach to measuring model
fairness. Other common measures of algorithmic fair-
ness are concerned with statistical parity or balance
of error rates between subgroups [Hardt et al., 2016,
Mitchell et al., 2021]. Similar to the critiques of mod-
erate calibration, group-wise equality in error rates has
been critized for being too coarse [Dwork et al., 2012].
Recent works aim for individual or metric fairness to
ensure similar performance between similar individuals
[Ilvento, 2020, Ruoss et al., 2020] and respective hy-
pothesis tests have been developed [Xue et al., 2020,
Maity et al., 2021]. However, unlike the proposed pro-
cedure, these methods assume a similarity metric is
known a priori, which corresponds to prespecifying the
subgroup structure.

Conformal inference. Recent works have high-
lighted how the coverage rate guarantees from confor-
mal inference procedures can be used to calibrate risk
prediction algorithms [Vovk et al., 2020, Marx et al.,
2022]. Ordinary conformal inference procedures only
guarantee marginal coverage rates [Vovk et al., 2005],

which satisfy notions of weak calibration [Van Calster
et al., 2016]. More recent works have extended these
methods to provide guarantees with respect to pre-
defined subgroups [Vovk, 2013, Lei and Wasserman,
2014, Romano et al., 2020] and weighted neighbor-
hoods [Guan, 2023]. Taking such guarantees to the
limit, [Foygel Barber et al., 2021] proved that it is im-
possible for a non-trivial procedure to guarantee uni-
form conditional coverage rates. Our ability to test
for strong calibration does not contradict this impos-
sibility result and provides instead a complementary
(and perhaps more positive) result. Because hypothe-
sis tests start from the angle of “innocent until proven
guilty,” we can at least determine if there is sufficient
evidence that a given model fails to satisfy strong cal-
ibration.

Distributionally robust optimization (DRO).
DRO methods aim to train models that minimize
the worst-case performance over some set of distribu-
tional perturbations [Ben-Tal et al., 2013, Duchi and
Namkoong, 2021, Duchi et al., 2022]. Based on these
ideas, recent works propose to estimate the worst-
case performance of a given ML algorithm over all
subgroups with size ϵ > 0 and even provide confi-
dence intervals [Subbaswamy et al., 2021, Li et al.,
2021]. Nevertheless, to achieve valid statistical infer-
ence, these methods require much larger sample sizes, ϵ
to be bounded away from zero, and the error model to
converge at a fast enough rate. In contrast, our pro-
posed procedure is suitable for smaller sample sizes,
can test for arbitrarily small subgroups, and provides
Type I error control under much weaker assumptions.

2 METHOD

For ease of exposition, we begin with the one-sided
testing problem where we replace Aδ with the one-
sided violation set Aδ,> = {x ∈ X : p0(x)− p̂(x) > δ}.
The first step is to reformulate the hypothesis test as
a score test. In the main text of this paper, we focus
on the test where ϵ = 0. In the Appendix, we describe
how the proposed procedure can be easily extended to
address non-zero ϵ.

Let H+ be the class of bounded non-negative real-
valued functions. For a given h ∈ H+, define a working
model for the structural change of the log odds (logit)
to be

logit (p(X;h)) := logit(p̂δ(X)) + θh(X), (2)

where p̂δ(X) = [p̂(X) + δ][0,1] and q 7→ [q][0,1] is a

projection into the range of valid probabilities [0, 1].
The gradient of the log likelihood, also known as the
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score, at θ = 0 is equal to

ℓ̇(Y |X;h) =
∂

∂θ
log p(Y |X;h)

∣∣∣∣
θ=0

= (Y − p̂δ(X))h(X).

In the set Aδ,>, the expected score E[ℓ̇(Y |X;h)|X] is
positive if h(X) is positive. Outside of this set, the
expected score is non-positive. As such, we will refer
to h as a detector. We can rewrite the one-sided hy-
pothesis test in terms of the maximum expected score
over detectors in H+, i.e.

H0,> : sup
h∈H+

E [(Y − p̂δ(X))h(X)] ≤ 0

H1,> : sup
h∈H+

E [(Y − p̂δ(X))h(X)] > 0.
(3)

In practice, it is computationally infeasible to test the
entire setH+. Instead, we will generate a subset Ĥ+ ⊆
H+ to replace H+ in (3), resulting in a restricted score
test. Thus a procedure with Type I error control for a
restricted score test also satisfies Type I error control
for (3).

In the following sections, we introduce the testing pro-
cedure using single sample-split, extend it to incorpo-
rate CV, and finally extend it to the two-sided setting.

2.1 Sample-splitting

Suppose the audit data are composed of indepen-
dent and identically distributed (IID) observations
with variables Xi ∈ X and binary outcome Yi for
i = 1, · · · , n. The outline for the sample-splitting pro-
cedure is as follows. Let the first n1 observations form
a training partition and the remaining n2 = n − n1

observations form a test partition. Using the training
data, we generate a set of candidate detectors Ĥ+,Λ

across different hyperparameter settings Λ. Using the
test data, the test statistic is defined as the maximum
empirical score over the set of candidate detectors, i.e.

T̂
(split)
n,> = sup

h∈Ĥ+,Λ

1

n2

n∑
i=n1+1

(Yi − p̂δ(Xi))h(Xi). (4)

We reject the null hypothesis if T̂
(split)
n,> exceeds critical

value τα defined in the theorem below. Proofs for all
the theoretical results are in the Appendix.

Theorem 1. Let Y ∗
i be the binary random variable

with probability p̂δ(Xi). By setting τα to be the 1 − α
quantile of

T
∗(split)
> = sup

h∈Ĥ+,Λ

1

n2

n∑
i=n1+1

(Y ∗
i − p̂δ(Xi))h(Xi), (5)

the Type I error of the sample-splitting test is con-
trolled at level α.

Based on the theorem, we may use a simple Monte
Carlo procedure to calculate τα which provides
assumption-free, finite-sample Type I error control, in
contrast to existing tests for model calibration. In par-
ticular, we construct bootstrap datasets b = 1, · · · , B,

where the outcomes Y
∗(b)
i are resampled with probabil-

ity p̂δ(Xi), the probability distribution at the bound-
ary of the null hypothesis space. Then the critical
value is set to the 1−α quantile of the the bootstrapped
test statistics.

Given the Type I error guarantee, the next question
is how to construct a set of detectors to maximize
power (= 1−Type II error). As motivation, suppose
we were only allowed to generate a single detector h.
Per [Vaart, 1998], the local asymptotic power of the
test with respect to h is determined by the ratio

E [(Y − p̂δ(X))h(X)]√
Var ((Y − p̂δ(X))h(X))

. (6)

Let g0(X) = p0(X) − p̂δ(X) denote the expected
residuals. Given the constraint that detectors must
be non-negative, the numerator is maximized by
g0(X)1{g0(X) ≥ 0}. To maximize the ratio, we can
tune over the broader class of detectors h0,γ(X) =
g0(X)1{g0(X) > γ} for γ ≥ 0, which also reflects
our interest in observations with the largest values of
g0(X). This family of detectors also has a practical
advantage. Because g0 is unknown and we threshold
on the estimated residuals in practice, the expected
score will be large for some choice of γ as long as the
estimated residual model is able to isolate some subset
of observations with large expected residuals.

Given this motivation, we propose the following proce-
dure for generating detectors. Suppose one has a set of
candidate algorithms (e.g., random forests and neural
networks) indexed by the set of hyperparameters Λ.
For each λ ∈ Λ, we fit a residual model ĝλ,n by train-
ing a regression model to predict the conditional mean
of ϵ = Y − p̂(X) given X using the training partition.
We then construct the set of detectors

Ĥ+,Λ =
{
ĥλ,γ,n : γ ≥ 0, λ ∈ Λ

}
(7)

where ĥλ,γ,n = ĝλ,n(X)1{ĝλ,n(X) > γ}. The test
statistic can now be rewritten as

T̂
(split)
n,> = max

λ∈Λ
max
γ≥0

1

n2

n∑
i=n1+1

(Yi − p̂δ(Xi)) ĥλ,γ,n(Xi)︸ ︷︷ ︸
Score-based CUSUM

.

Notice that the inner summation corresponds exactly
to the score-based cumulative sum (CUSUM) test
statistic, which is typically used to detect changepoints
along a single axis [Gombay, 2003, 2017, Feng et al.,
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Figure 1: Summary of the procedure for the one-sided test. After training residual models, observations in
the test partition are ordered by their predicted residuals. The poorly calibrated subgroup is detected using a
changepoint test, as visualized in a control chart (right). The test statistic is the maximum cumulative score
across all residual models (red star). The two-sided test orders observations by the absolute predicted residuals.

2022a]. So our procedure can be viewed as perform-
ing changepoint detection along data-adaptively de-
fined axes {ĝλ,n : λ ∈ Λ}, where the null hypothesis
is that the mean score is uniformly non-positive when
observations are ordered by their predicted residuals
from largest to smallest and the alternative is that the
mean scores are positive prior to some changepoint
γ and non-positive thereafter. Through this data-
adaptive ordering, we expect the observed residuals
with large positive values to aggregate at the begin-
ning of this sequence as long as the residual model cor-
rectly identifies some region where the expected resid-
uals E[Y −f̂(X)|X] indeed attain large positive values.
Thus, the sequence of observed versus predicted resid-
uals should initially be positively correlated, and the
correlation should drop to zero outside of the correctly
identified subset of poorly calibrated observations.

Leveraging this connection with the changepoint liter-
ature, we can visualize the test using “control charts,”
which are typically used to visualize changepoint de-
tection procedures along a single dimension (Figure 1)
[Montgomery, 2013, Feng et al., 2022b]. Under the
alternative, when we plot the cumulative sum of the
scores with respect to a residual model (X-axis can
be interpreted as the index of the ordered observa-
tion or quantile of the predicted residual), we expect
to observe a steady accumulation of positive residu-
als, resulting in a pronounced peak. The location of
this peak indicates the size of the subgroup: an early
peak means the identified subgroup is small whereas
a very late peak means that the identified subgroup is
large. Large positive slopes correspond to subgroups
where the model is very poorly calibrated, whereas
flat or negative slopes correspond to subgroups where
model calibration is mostly within the desired toler-
ance. Thus the shape of the curve provides insight into
the nature of the poorly calibrated subgroup. As the
strong calibration test fits a suite of candidate residual
models, we plot a curve for each residual model, and
the maximum value attained across all curves corre-
sponds to the test statistic.

Finally, one may ask (i) how many candidate residual
models should one fit and (ii) how much data should
one dedicate to training the residual models? These

questions concern two tradeoffs. More residual mod-
els increase our chance of finding a changepoint but
require more stringent multiplicity correction. Also,
allocating more data to training can increase the ac-
curacy of the residual models but reduces the sample
size available for testing. We clarify the answer to
these two questions in the following result. Note that
ck denote positive constants that depend on the vari-
ability of the residuals, the residual model classes, and
their learning rates.

Theorem 2. Suppose there is some γ ≥ 0 such that

Ψγ = E [(Y − p̂δ(X))h0,γ(X)] > 0.

Consider any ω ≤ 1 and λ ∈ Λ. For a sufficiently
large n1 such that

Ψγ − c1n
−ω/2
1 ≥ c2

√
log(|Λ|(n2 + 1)/α)

n2
,

statistical power Pr
(
T̂

(split)
n,> > τα | S(n1)

λ,ω

)
conditional

on the event

S(n1)
λ,ω =

{
E
∥∥∥h0,γ(X)− ĥλ,γ,n(X)

∥∥∥2 ≤ c3n
−ω
1

}
(8)

is lower bounded by

1−exp

−
n2(Ψγ−c1n

−ω/2
1 −c2

√
log(|Λ|(n2+1)/α)/n2)

2

2c3

,

where |Λ| is the number of hyperparameters.

Note that condition (8) is satisfied by any ML al-
gorithm with a sufficiently fast convergence rate for
appropriately chosen hyperparameters λ. Thus, the
lower bound above states that the number of hyper-
parameters impacts power only through a logarith-
mic term, which justifies our approach of testing a
suite of residual models. In contrast, existing meth-
ods test only a single residual model [Janková et al.,
2020, Zhang et al., 2021], which is tuned using CV
within the training partition. In settings with limited
amounts of audit data, CV tends to overfit and select
a suboptimal detector, leading to lower power. More-
over, this procedure is very computationally expensive
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when combined with CV, because one would have to
perform CV within CV.

Second, the lower bound grows much faster with the
amount of test data than with the amount of training
data. This highlights an interesting “phase change” in
how much data one should allocate to training versus
testing. One should allocate just enough training data
so that (8) is satisfied with high probability (note that
many ML algorithms have convergence rates of this
form) and dedicate the rest to testing.

While Theorem 2 provides valuable intuition for how
different hyperparameters of the procedure affect the
power of the overall test, the constants in the bounds
make it difficult to translate the results into practice.
In the following section, we side-step the challenge of
determining the optimal sample-splitting ratio by ex-
tending the procedure via cross-validation.

2.2 K-fold Cross-validation

We now extend the above procedure to use CV. This
not only reduces the sensitivity of the procedure to
the exact choice for the sample-splitting ratio but also
improves power. The technical challenge is how to
maintain Type I error control, despite the correlation
between estimators across folds. Prior works provide
only ad-hoc solutions [Zhang et al., 2021] or assume
estimators converge to the oracle sufficiently fast Sub-
baswamy et al. [2021]. Here we present a procedure
that requires very minimal assumptions.

We extend the sample-splitting procedure as follows.
Partition the audit data into folds Vk for k = 1, . . . ,K.

For each λ ∈ Λ, let ĝ
(−k)
λ,n denote the estimated resid-

ual model using data in all but the k-th fold for
k = 1, . . . ,K. The CV test statistic is defined as

T̂
(CV )
n,> =supλ∈Λ,γ≥0

1
|Vk|

∑K
k=1

∑
(Xi,Yi)∈Vk

(Yi−p̂δ(Xi))ĥ
(−k)
λ,γ,n(Xi).

(9)

To establish Type I error control, we only require the
weak assumption of uniform convergence.

Assumption 1. For a given λ and γ, define h̄λ,γ,n

as the average detector estimated from K − 1 folds
of a dataset with n observations. That is, h̄λ,γ,n =

E
[
ĝ
(−1)
λ,n (X)1

{
ĝ
(−1)
λ,n (X) ≥ γ

}]
, where the expectation

is with respect to the estimated residual models. Sup-
pose that

sup
λ∈Λ,γ≥0

∥∥∥h̄λ,γ,n − ĥ
(−1)
λ,γ,n

∥∥∥
2
→p 0. (10)

Under this assumption, we prove that one can essen-
tially treat the estimated residual models as fixed and
use the same Monte Carlo procedure as before to cal-
culate the critical value. The only difference is that

we control the Type I error rate asymptotically, rather
than in finite samples.

Theorem 3. Suppose Assumption 1 holds. Define Y ∗
i

using the definition in Theorem 1 and T
∗(CV )
> using

(9) but replace Yi with Y ∗
i . If τα is set to the 1 − α

quantile of T
∗(CV )
> , the Type I error of the CV test is

asymptotically controlled at level α.

2.3 Extension to the two-sided test

Finally, we extend the procedure to test the two-sided
null hypothesis. The key difference is that we now
order observations by the magnitude of the predicted
residuals, rather than their predicted residuals them-
selves. For ease of exposition, we only describe the
sample-splitting procedure for the two-sided setting.
The same ideas are used to extend the CV procedure.

Following the same logic as before, we begin with re-
stating the two-sided hypothesis test in terms of a
score test. Let H refer to the set of bounded func-
tions, removing the prior restriction of non-negativity.
For a given h, the working model for structural change
is now logit(p(X;h)) = logit(p̂δ sign(h))+θh(X), where
sign(h(X)) is the sign of h(X) and zero if h(X) = 0,
and p̂δ sign(h)(X) = [p̂(X) + δ sign(h(X))][0,1]. Thus

we can reframe (1) as

H0 : sup
h∈H

E
[(
Y − p̂δ sign(h)

)
h(X)

]
≤ 0

H1 : sup
h∈H

E
[(
Y − p̂δ sign(h)

)
h(X)

]
> 0.

(11)

As before, we will instead perform a restricted score
test by generating candidate detectors given a set
of hyperparameters Λ. More specifically, for each
λ ∈ Λ, we fit residual models ĝλ,n(X) that estimate
p0(X) − p̂δ(X) if p0(X) > p̂δ(X), p0(X) − p̂−δ(X) if
p0(X) < p̂−δ(X), and zero otherwise. We then gener-

ate detectors ĥλ,γ,n(x) = ĝλ,n(X)1 {|ĝλ,n(X)| ≥ γ} for
γ ≥ 0. Consequently, the test statistic in the two-sided
setting is the maximum of the score-based CUSUM
statistics where observations are ordered by the abso-
lute predicted residuals, i.e.

T̂ (split)
n =maxλ∈Λ,γ≥0

∑n
i=n1+1

(
Yi−p̂δ sign(hλ,γ,n)(Xi)

)
ĥλ,γ,n(Xi).

(12)

To calculate the critical value, we must modify the
Monte Carlo procedure. Unlike the one-sided set-
ting, it is no longer straightforward to determine the
null distribution whose test statistic is stochastically
largest, because estimated models may disagree on the
sign of the expected residual. As such, we set the crit-
ical value to the quantile of a modified statistic that
upper bounds (12). More specifically, for each X, we
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sample two binary outcomes with marginal probabil-
ities p̂δ(X) and p̂−δ(X). For each model ĝλ,n, we
calculate a “bounding” CUSUM statistic by select-
ing the outcome generated with probability p̂δ(X) if
the predicted residual is positive and p̂−δ(X) if the
predicted residual is negative. The modified statis-
tic is the maximum of these bounding CUSUM statis-
tics. This procedure, formally described below, en-
sures finite-sample Type I error control.

Theorem 4. Let Ui for i = 1, . . . , n be IID stan-
dard uniform random variables. Define Y ∗

i,λ =

1 {Ui ≤ p̂(Xi) + δ sign(ĝλ,n(Xi))} . Define T ∗(split) us-
ing (12) but replacing Yi with Y ∗

i,λ. Set the critical

value τα to the 1 − α quantile of T ∗(split). For the
two-sided hypothesis test, the sample-splitting proce-

dure that rejects the null when T̂
(split)
n > τα controls

the Type I error at level α.

2.4 Variable importance plots

In addition to control charts, we can use variable im-
portance (VI) plots to gain insight into potential rea-
sons for model miscalibration. Here we consider a sim-
ple procedure using permutation VI to compute how
important each variable is for detecting a poorly cal-
ibrated subgroup. (Future work may consider more
sophisticated VI measures such as using Shapley val-
ues [Lundberg and Lee, 2017, Williamson and Feng,
2020].) For each variable, we permute its values and
calculate the change in the test statistic. The impor-
tance of that variable is defined as the drop in the test
statistic, where a larger drop indicates a more impor-
tant variable. We emphasize that this definition of VI
is not the same as ordinary VI measures that quantify
how useful a variable is to a model’s average perfor-
mance. Ordinary VI measures describe the majority
group and are not meant to characterize poorly cali-
brated subgroups.

3 SIMULATIONS

3.1 Setup

We begin with a simulation study comparing the pro-
posed cross-validated procedure (AdaptScoreCUSUM)
to existing tests for model calibration: the Hosmer-
Lemeshow test (ChiSq) [Lemeshow et al., 2013], a
score test based on Platt scaling (Score) [Platt, 1999],
a score test based on the multicalibration proce-
dure in [Kim et al., 2019] (Multicalib), an adap-
tive Chi-squared test that extends [Zhang et al., 2021]
(AdaptChiSq), and an adaptive score test that extends
[Janková et al., 2020] (AdaptScoreSimple). As shown
in Table 1 of the Appendix, the procedures can be cat-
egorized based on whether they use prespecified versus

adaptively-defined axes and whether they run imple-
ment Chi-squared versus score tests. All the tests that
consider data-adaptive axes are assessing for strong
calibration, while all the tests along prespecified axes
assess for moderate calibration. We include the latter
as they are commonly used in practice, even though
they assess for a weaker form of calibration.

The three comparator score tests can be viewed as
special cases of our procedure. Score implements a
score-based CUSUM test with respect to the logis-
tic recalibration model (2) along the prespecified axis
logit(p̂(X)). This test is not data-adaptive, so it does
not require sample-splitting. Multicalib fits candi-
date residual models after performing a single split of
the data and only considers detectors with thresholds
fixed at γ = 0. AdaptScoreSimple further implements
CV, so it is almost the same as ours except that the
threshold is fixed at γ = 0. For the Chi-squared tests,
we divided the data into 2 versus 10 bins. (Perfor-
mance for other bin numbers was similar or worse.)
Because Chi-squared tests are traditionally designed
to test hypotheses with a tolerance of δ = 0, we mod-
ified the test statistic to test non-zero tolerances.

For tests that prespecify axes, we follow standard
practice and use the single axis p̂(X). For the data-
adaptive tests, the procedures were unified under our
framework to make them as comparable as possible.
Residual models were fit using RFs and kernel logis-
tic regression across various hyperparameter settings.
The detectors used as input X and p̂(X). CV-based
tests used 4 folds and single-split procedures reserved
25% of the data for testing. All methods used the
proposed Monte Carlo procedure to calculate critical
values and control Type I error.

Covariates X ∈ R10 were independently sampled from
Uniform[−5, 5]. The outcome is sampled with the
log odds as (0.6x0 + 0.4x2 + 0.2x3)1{max(x1,−x2) ≥
−2}+0.2x11{max(x1,−x2) < −2}. The Appendix in-
cludes additional simulation details and results, as well
as a simulation study verifying Type I error control.

We test the two-sided null hypothesis (1) with ϵ = 0 for
two algorithms: a logistic regression model (LR) that
incorrectly assumes the logit is linear with respect to
X and an RF. The RF is not misspecified but may
converge slowly to the true risk. For tolerance levels
δ = 0.025, 0.05, and 0.075, the poorly calibrated sub-
groups had prevalences 0.6, 0.5, and 0.3 for LR and
0.8, 0.5, and 0.3 for RF, respectively.

3.2 Results

AdaptScoreCUSUM consistently outperformed other
methods across all settings (Figure 2). Tests that
prespecified the axis performed the worst. Adaptive
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Figure 2: Testing for strong calibration of a misspecified logistic regression model (top) and a random forest
model (bottom) across tolerance levels δ. Power is plotted against audit dataset sizes n on the left, where 95%
confidence intervals are given by the shaded areas. Variable importance plots are on the right. Results are from
100 simulation replicates.

score-based tests attained much higher power than
adaptive chi-squared tests, doubling it in certain set-
tings. This improvement is particularly evident at
higher tolerance levels, where the poorly calibrated
subgroup is smaller and it becomes even more im-
portant to extract as much signal from the data as
possible. AdaptScoreCUSUM offered the biggest im-
provements over AdaptScoreSimple in smaller sample
sizes, where the residual models can be quite inaccu-
rate. Thus the detectors used in AdaptScoreSimple

with γ fixed to zero have difficulty isolating regions
with poor calibration.

When auditing the LR model using AdaptScoreCUSUM,
the test statistic was maximized by the RF-based de-
tector in a majority of the cases. This is unsurprising,
given that the subgroup structure in simulated data
matches the structure learned by recursive partition-
ing. Moreover, the VI plots show that the detectors
correctly recovered the misspecified subgroup, as vari-
ables p̂(x), and x1, x2 were assigned the highest im-
portance. In contrast, when auditing the RF model,
the AdaptScoreCUSUM test statistic was typically max-
imized by kernel LR. This illustrates how RFs are not
very powerful for detecting miscalibration of an RF,
because we have already extracted most of the signal
from the data using recursive partitioning. Kernel LR
uses an entirely different approach, so it is better at
extracting the remaining signal. From the associated
VI plots, we see that x1, x2, p̂(x), and x3 are now the
most important for detecting poor calibration. This
likely reflects the fact that kernel LR converges faster
than RF to the true probabilities in certain regions.

4 EMPIRICAL EXPERIMENTS

We now compare the procedures for auditing two bi-
nary classifiers trained on real-world data. The first
model is an RF that predicts risk of 30-day unplanned
readmission given data from the Electronic Health
Records (EHR) from the Zuckerberg San Francisco
General Hospital. We audit the model for strong cal-
ibration with respect to the demographic variables.
The second model is a neural network (NN) that pre-
dicts whether social media comments are toxic, given
data from the CivilComments dataset [Borkan et al.,
2019] and embeddings extracted using a BERT model
[Reimers and Gurevych, 2019]. We audited for strong
calibration with respect to the demographic identities
of each comment as well as the extracted embeddings.
To differentiate between over- and under-estimation of
the true risk, we tested the two one-sided null hypothe-
ses separately. Additional details of the data analyses
are in the Appendix.

Figure 3 shows that AdaptScoreCUSUM consistently
achieved higher power than the other procedures. It
detected over-estimation of the risk in the readmis-
sion model and under-estimation in the toxic comment
classifier. There was only moderate evidence of mis-
calibration in the other direction for the two models.
In the control chart for the readmission model, the cu-
mulative scores increase for a short period and drop
thereafter. This suggests that only a small subgroup
is miscalibrated. In contrast, the control chart for the
toxic comment classifier steadily trends upwards, sug-
gesting that miscalibration is quite widespread.

VI plots provide further insight into the characteris-
tics of the miscalibrated subgroups. For both models,
the most important variable for identifying miscalibra-
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(a) 30-day unplanned readmission model

(b) Toxic comment classifier

Figure 3: Auditing prediction models for strong cal-
ibration with tolerance δ = 0.05. Top: Statistical
power across audit dataset sizes n. Bottom left: Ex-
ample control chart plotting cumulative score. Bottom
right: importance of the top 10 variables

tion was the predicted risk from the model itself. The
second most important variables for the readmission
model and the toxic comment classifier were the num-
ber of patient contacts a patient had at the hospital
(a good proxy for the social and medical needs of a
patient) and whether the comment related to black
identities, respectively. These results were further ver-
ified when we plotted calibration curves of the two
models, stratified by the top variables (Figure 5 of the
Appendix).

5 DISCUSSION

We have presented an adaptive score-based CUSUM
procedure for testing if a given ML algorithm is poorly
calibrated for some subgroup. The procedure is mo-
tivated by the idea that one can transform the prob-
lem of subgroup detection into the problem of change-
point detection by ordering observations by their pre-
dicted residuals. Along this sequence, we expect to
see a change in the association between the observed
and predicted residuals. This changepoint formulation
lets us fully leverage the natural ordering of the data
and the information learned by the estimated residual
models, and avoid unnecessary binning of the data.
As shown in the empirical experiments, the procedure
consistently outperforms existing methods. The ac-
companying control charts and VI plots can also help
users understand when a model is unreliable and in-
form model revision efforts.

Future work includes extending the current method to
other types of outcomes (e.g. categorical and continu-
ous) and non-tabular data. In addition, strong calibra-
tion is only one measure of fairness and only quantifies
statistical bias, i.e. when the model fails to align with
the data. This is separate from societal bias, which
describes when the data fails to align with the desired
state of the world. Different notions of fairness are use-
ful in different contexts, so future investigations may
consider how the proposed method can be extended to
audit models for societal biases as well.
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A EXTENSION: TESTING NONZERO ϵ

To test for poorly calibrated subgroups with some minimum prevalence ϵ > 0, the only modification needed is
to constrain the set of detectors to those for which

E [1{h(X) > 0}] > ϵ. (13)

So we can use essentially the same sample-splitting or CV procedure, except we only consider thresholds γ for
which the corresponding detector satisfies (13).

B PROOFS

Below we present proofs for all the theoretical results in the main manuscript. We use ck to denote positive
constants.

Proof of Theorem 1

Proof. It suffices to prove that conditional on the training data, the test statistic for the distribution with
conditional probabilities equal to p̂δ stochastically dominates the test statistic for any other distribution under
the null with conditional probabilities equal to p0. To do this, we use a coupling argument.

Given any x, we can generate binary random variables (RVs) Y and Ỹ where Pr(Y = 1|x) = p0(x), Pr(Ỹ = 1|x) =
p̂δ(x), and Y ≤ Ỹ as follows. First, sample a standard uniform random variable U . Then let Y = 1{U ≤ p0(x)}
and Ỹ = 1{U ≤ p̂δ(x)}. As such, the above conditions are satisfied.

Using this procedure, we can generate coupled outcomes for observations in the test partition (i.e. i = n1 +
1, · · · , n). Consequently, the test statistics on the coupled test data must satisfy

T̂ (split)
n = sup

h∈Ĥ+,Λ

1

n2

n∑
i=n1+1

(Yi − p̂δ(Xi))h(Xi) ≤ T̃ (split)
n = sup

h∈Ĥ+,Λ

1

n2

n∑
i=n1+1

(Ỹi − p̂δ(Xi))h(Xi).

As such, T̂
(split)
n stochastically dominates T̃

(split)
n .

Proof for Theorem 2

Proof. Below, we use the Pn1+1:n and P to denote the empirical average over the test data split and the
expectation, respectively.

We begin with determining the minimum value of τα to control Type I error. In particular, we must perform a
multiplicity correction to account for the multiple residual models being tested. By a union bound, we have that

Pr

(
max

h∈Ĥ+,Λ

(Pn1+1:n − P) (Y − p̂δ(X))h(X) > τα

)
(14)

≤ |Λ|max
λ∈Λ

Pr

(
sup
γ≥0

(Pn1+1:n − P) (Y − p̂δ(X))ĝλ,n(X)1 {ĝλ,n ≥ γ} > τα

)
. (15)

Applying Theorem 4.10 in [Wainwright, 2019], we have for any λ ∈ Λ and b ≥ 0 that

Pr

(
sup
γ≥0

(Pn1+1:n − P) (Y − p̂δ(X))ĝλ,n(X)1 {ĝλ,n ≥ γ} > 2Rλ + b

)
≤ exp

(
−n2b

2

2c21

)
(16)

where Rλ is an upper-bound of the Rademacher complexity for the function class{
x 7→ ĥλ,γ,n(x) = ĝλ,n(x)1 {ĝλ,n(x) ≥ γ} : γ ≥ 0

}
.
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Because the set of functions {x 7→ 1{ĝλ,n(x) > γ} : γ ≥ 0} has VC dimension 1, we have by an application of
Lemma 4.14 in [Wainwright, 2019] that

Rλ ≤ c2

√
log(n2 + 1)

n2
. (17)

Plugging (17) and (16) into (15), we find that by setting

τα ≥ c3

√
log(|Λ|(n2 + 1)/α)

n2
, (18)

controls the finite-sample Type I error at level α.

Now suppose n1 is chosen so that Ψγ − c3n
−ω/2
1 ≥ τα. Note that by Cauchy Schwarz, we have that∣∣∣P [((Y − p̂δ(X))

(
ĥλ,γ,n(X)− h0,γ(X)

)]∣∣∣ ≤ c4

√
P
∥∥∥ĥλ,γ,n(X)− h0,γ(X)

∥∥∥2.
So conditional on the set S(n1)

λ,ω , the difference in the expected score is no greater than c5n
−ω/2
1 for some c5 > 0.

Because ((Y − p̂δ(X))h0,γ(X) is sub-gaussian, we have by Chernoff’s bound that

Pr
(
T̂ (split)
n < τα|S(n1)

λ,ω

)
≤Pr

(
(Pn1+1:n − P) (Y − p̂δ(X)) ĥλ,γ,n(X) + P (Y − p̂δ(X))

(
ĥλ,γ,n(X)− h0,γ(X)

)
< τα −Ψγ

)
≤ exp

−
n2

(
Ψγ − c5n

−ω/2
1 − τα

)2
c6

 .

Plugging in (18) to the above expression gives us our desired result.

Proof of Theorem 3

Proof. We will use Pn,k to denote the empirical mean with respect to fold k for k = 1, · · · ,K and Pn,−k denote
the mean with respect to data from all but the kth fold. Consider the decomposition

√
n


Pn,1 (Y − p̂δ(X)) ĥ

(−1)
λ,γ,n(X)

...

Pn,K (Y − p̂δ(X)) ĥ
(−K)
λ,γ,n(X)

 =
√
n

Pn,1 (Y − p̂δ(X)) h̄λ,γ,n(X)
...

Pn,K (Y − p̂δ(X)) h̄λ,γ,n(X)

 (19)

+
√
n


(Pn,1 − P) (Y − p̂δ(X))

(
ĥ
(−1)
λ,γ,n(X)− h̄λ,γ,n(X)

)
...

(Pn,K − P) (Y − p̂δ(X))
(
ĥ
(−K)
λ,γ,n(X)− h̄λ,γ,n(X)

)
 (20)

+
√
n


P (Y − p̂δ(X))

(
ĥ
(−1)
λ,γ,n(X)− h̄λ,γ,n(X)

)
...

P (Y − p̂δ(X))
(
ĥ
(−K)
λ,γ,n(X)− h̄λ,γ,n(X)

)
 . (21)

First, we show that (21) is equal to zero. To see this, we have by the law of iterated expectations that

P (Y − p̂δ(X))
(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)
= Pn,−k

[
P [Y − p̂δ(X) | X]

(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)]
, (22)

where we marginalize over data in the kth fold. By the definition of h̄λ,γ,n, we have that P[ĥ(−k)
λ,γ,n(X)−h̄λ,γ,n(X) |

X = x] = 0 for all x if we marginalize over all but the kth fold data (i.e. the data used to learn ĥ
(−k)
λ,γ,n). So the

right hand side of (22) is equal to zero.
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Next, we show that (20) is op(1). Because the class of detectors varies across n, we will apply Theorem 19.28
in [Vaart, 1998], which is a generalization of Donsker’s theorem that allows the indexing class to vary over n.

To apply this result, note that the Lindeberg condition is satisfied, as residuals and detectors in the set ĤΛ are
bounded. In addition, the bracketing entropy requirements are also satisfied. Thus we have that the stochastic
process {

(λ, γ) 7→
√
n (Pn,k − P) (Y − p̂δ(X))

(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)}
(23)

converges to a mean-zero Gaussian process with covariance function Σ((λ1, γ1), (λ2, γ2)) equal to

lim
n

Cov
(
(Y − p̂δ(X))

(
ĥ
(−k)
λ1,γ1,n

(X)− h̄λ1,γ1,n(X)
)
, (Y − p̂δ(X))

(
ĥ
(−k)
λ2,γ2,n

(X)− h̄λ2,γ2,n(X)
))

. (24)

By Assumption 1, (24) converges to zero. Thus we have that

√
n


(Pn,1 − P) (Y − p̂δ(X))

(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)
...

(Pn,K − P) (Y − p̂δ(X))
(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)
 = op(1) (25)

Combining the above results, we have established that

sup
λ,γ

√
n

(
K∑

k=1

Pn,k (Y − p̂δ(X)) ĥ
(−k)
λ,γ,n(X)−

K∑
k=1

Pn,k (Y − p̂δ(X)) h̄λ,γ,n(X)

)
= op(1). (26)

Having established that the remainder terms (20) and (21) are negligible, we can use the same arguments used
to prove Theorem 1 to prove that the setting the critical value τα to the 1− α quantile of

T
∗(CV,oracle)
n,> := sup

λ∈Λ,γ≥0

1

|Vk|

K∑
k=1

∑
(Xi,Y ∗

i )∈Vk

(
Y ∗
i − f̂δ(Xi)

)
h̄λ,γ,n(Xi), (27)

where Y ∗
i is a resampled binary RV that is equal to one with probability p̂δ(Xi), controls the Type I error

asymptotically.

In practice, h̄λ,γ,n is unknown. So instead, we calculate the quantile for T
∗(CV )
n,> , which plugs in the estimated

detectors instead. To prove that this plug-in approach maintains asymptotic Type I error control, we must

show that the difference between T
∗(CV )
n,> and T

∗(CV,oracle)
n,> is asymptotically negligible. Let P∗

n,k denote the
empirical mean in the k-th fold with respect to the resampled outcomes (Y ∗

1 , · · · , Y ∗
n ). Similarly, let P∗ denote

the expectation with respect to the distribution with conditional probability equal to p̂δ. Consider the following
decomposition for each k = 1, · · · ,K:

√
nP∗

n,k

(
Y ∗ − f̂δ(X)

)(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)
=

√
n
(
P∗
n,k − P∗) (Y ∗ − p̂δ(X))

(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)
(28)

+
√
nP∗ (Y − p̂δ(X))

(
ĥ
(−k)
λ,γ,n(X)− h̄λ,γ,n(X)

)
. (29)

Using the same arguments as above, we have that (28) is op(1) by Theorem 19.28 in [Vaart, 1998] and (29)
is equal to zero. Summing these results over all k, we have established that the scaled difference between the

calculated and oracle test statistic 1√
n

(
T

∗(CV )
n,> − T

∗(CV,oracle)
n,>

)
is op(1). Therefore, by Slutsky’s theorem, the

1− α quantile for T
∗,(CV )
n controls the Type I error at the desired rate.

Proof of Theorem 4

Proof. We again use a coupling argument to prove that the modified statistic stochastically dominates the test
statistic under any distribution p0 satisfying the null hypothesis. In particular, consider the sampling procedure
where U is a standard uniform RV, Y = 1{U ≤ p0(X)}, Y (−1) = 1{U ≤ p̂−δ(X)}, and Y (1) = 1{U ≤ p̂δ(X)}.
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Chi-squared tests Score-based tests
Prespecified axis • Hosmer-Lemeshow: ChiSq • Score test for Platt scaling: Score
Data-adaptive axes • Based on [Zhang et al., 2021]:

AdaptChiSq

• Based on [Kim et al., 2019]:
Multicalib

• Based on [Janková et al., 2020]:
AdaptScoreSimple

• Proposed: AdaptScoreCUSUM

Table 1: Categorization of existing and proposed testing procedures

Thus the conditional probabilities Pr(Y = 1|X), Pr(Y (−1) = 1|X), and Pr(Y (1) = 1|X) are p0(X), p̂−δ(X), and
p̂δ(X), respectively. Also, for any h and i, we have that(

Y − p̂δ sign(ĥλ,γ,n)
(X)

)
ĥλ,γ,n(X) ≤

(
Y (sign(ĥλ,γ,n)) − p̂δ sign(ĥλ,γ,n)

(X)
)
ĥλ,γ,n(X). (30)

So if we use this procedure to resample the binary outcomes for the test partition, we would have that

max
λ∈Λ,γ≥0

n∑
i=n1+1

(
Yi − p̂δ sign(ĥλ,γ,n)

(Xi)
)
ĥλ,γ,n(Xi) ≤ max

λ∈Λ,γ≥0

n∑
i=n1+1

(
Y (sign(ĥλ,γ,n)) − p̂δ sign(ĥλ,γ,n)

(Xi)
)
ĥλ,γ,n(Xi).

(31)

This implies our desired result.

C ADDITIONAL SIMULATION DETAILS

For the residual models, we fit random forests and kernel logistic regression using the scikit-learn package
[Pedregosa et al., 2011]. We tuned the following hyperparameters for RF: maximum number of features p = 5
versus p = 10 and max depth of 4 versus 8. For kernel logistic regression, we used an approximation of the
polynomial kernel with degree two and subsequently fit a ridge-penalized logistic regression model, where we
considered a regularization factor of C = 1000, 100, and 10.

D SIMULATION STUDY OF TYPE I ERROR CONTROL

The goal of this simulation is to analyze the Type I error of the score-test in finite samples. We test for strong
calibration with tolerance δ = 0.025. For the original ML algorithm, we train a logistic regression model using
10,000 observations generated with the conditional log odds as

logit(porig(X)) = 0.6x1 + 0.4x2 + 0.2x3.

For the audit data, we simulated outcomes where the conditional probabilities were porig + 0.025 to maximize
Type I error. This simulation also reflects situations where ML algorithm is developed for one context and
deployed in another, and one is interested in knowing if the ML algorithm is miscalibrated in some subgroup in
the new target population.

We perform a one-sided test to determine if the predicted risks are under-estimates and a two-sided test. We
implement the CV-based testing procedures for which we have only established asymptotic control of the Type I
error rate. We do not include results from the single sample split, since we proved that it provides finite sample
control of the Type I error rate. The critical values were set to target a Type I error rate of 0.1. Recall that
the one-sided test calculates the critical value by sampling from the single worst-case null distribution, whereas
the two-sided test relies on sampling upper bounds of the test statistic. As such, we expect the observed Type
I error rate to be lower (i.e. more conservative) for the two-sided test than the one-sided test. A total of 100
simulation replicates were run.

As shown in Figure 4, we observe that Type I error is controlled across a variety of audit dataset sizes, including
n = 100. So, even though our procedure only guarantees finite sample error rate control for the sample-splitting
version, we are able to maintain Type I error control for small sample sizes even in the CV version because the
assumptions needed for the CV procedure are very weak.
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Figure 4: Simulation study of Type I error control. Note that the x–axis is shown on the log scale. Shaded areas
correspond to 95% confidence intervals.

(a) Readmission model (b) Toxic comment model

Figure 5: Calibration plots, stratified by most important demographic variables

E ADDITIONAL DATA ANALYSIS DETAILS

ZSFG dataset details: This is a private dataset provided by ZSFG under IRB approval. The entire dataset is
composed of 88400 patients. For each replicate, we randomly selected 22,000 patients to train an RF to predict
30-day unplanned readmission risk and randomly selected n = 2000, 4000, 8000 observations for testing strong
calibration. Use of this dataset was approved by the ZSFG Institutional Review Board.

Civil Comments dataset details: This public dataset [Borkan et al., 2019] is composed of 440,000 comments.
For each replicate, we randomly selected 8000 comments to train a dense neural network and randomly selected
n = 2000, 4000, 6000 observations to audit for strong calibration.


