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Abstract

The energy landscape of high-dimensional
non-convex optimization problems is crucial
to understanding the e↵ectiveness of mod-
ern deep neural network architectures. Re-
cent works have experimentally shown that
two di↵erent solutions found after two runs
of a stochastic training are often connected
by very simple continuous paths (e.g., linear)
modulo a permutation of the weights. In this
paper, we provide a framework theoretically
explaining this empirical observation. Based
on convergence rates in Wasserstein distance
of empirical measures, we show that, with
high probability, two wide enough two-layer
neural networks trained with stochastic gra-
dient descent are linearly connected. Addi-
tionally, we express upper and lower bounds
on the width of each layer of two deep neural
networks with independent neuron weights to
be linearly connected. Finally, we empirically
demonstrate the validity of our approach by
showing how the dimension of the support
of the weight distribution of neurons, which
dictates Wasserstein convergence rates is cor-
related with linear mode connectivity.

1 INTRODUCTION AND
RELATED WORK

Training deep neural networks on complex tasks is a
high-dimensional, non-convex optimization problem.
While stochastic gradient-based methods (i.e., SGD
and its derivatives) have proven highly e�cient in find-
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ing a local minimum with low test error, the loss land-
scape of deep neural networks (DNNs) still contains
numerous open questions. In particular, Goodfellow
et al. [2014] try to find ways to connect two local
minima reached by two independent runs of the same
stochastic algorithm with di↵erent initialization and
data orders. This problem has applications in diverse
domains such as model averaging [Izmailov et al., 2018,
Rame et al., 2022, Wortsman et al., 2022], loss land-
scape study [Gotmare et al., 2018, Vlaar and Frankle,
2022, Lucas et al., 2021], adversarial robustness [Zhao
et al., 2020] or generalization theory [Pittorino et al.,
2022, Juneja et al., 2022, Lubana et al., 2023].

An answer to this question is the mode connectivity

phenomenon. It suggests the existence of a continuous
low-loss path connecting all the local minima found by
a given optimization procedure. The mode connectiv-
ity phenomenon has extensively been studied in the
literature [Goodfellow et al., 2014, Keskar et al., 2016,
Sagun et al., 2017, Venturi et al., 2019, Neyshabur
et al., 2020, Tatro et al., 2020, Yunis et al., 2022,
Zhou et al., 2023b] and non-linear connecting paths

have been evidenced for DNNs trained on MNIST and
CIFAR10 by Freeman and Bruna [2016], Garipov et al.
[2018], Draxler et al. [2018].

(Linear) mode connectivity. Formally, let A :=
f̂(., ✓A) and B := f̂(., ✓B) two neural networks shar-
ing a common architecture f̂ . They are parametrized
by ✓A and ✓B after training those networks on a data
distribution P with loss L, i.e. by minimizing E(✓) :=
E(x,y)⇠P [L(f̂(x, ✓), y)] over ✓. Let p be a continuous
path connecting ✓A and ✓B , i.e. a continuous func-
tion defined on [0, 1] with p(0) = ✓A and p(1) = ✓B .
Frankle et al. [2020] initially identified the problem of
linear mode connectivity and defined the error barrier
height [Frankle et al., 2020, Entezari et al., 2021] of
p as supt2[0,1] E (p(t))� ((1� t)E (✓A) + tE (✓B)). The
two found solutions ✓A and ✓B are said to be mode

connected if there is a continuous path with zero error
barrier height connecting them. Furthermore if p is
linear, that is p(t) = (1 � t)✓A + t✓B , ✓A and ✓B are
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Figure 1: Permuting the neurons in the hidden layer
of network B to align them on network A

said to be linearly mode connected (LMC).

Permutation invariance. Recently, Singh and
Jaggi [2020], Ainsworth et al. [2022] highlighted the
fact that the units in a hidden layer of a given model
can be permuted while preserving the network’s func-
tionality. Figure 1 shows how one can permute the hid-
den layer of a two-layer network to match a di↵erent
target network without changing the source function.
From now on, we will understand LMC modulo

permutation invariance, i.e. two networks A,B are
said to be linear mode connected whenever there exists
a permutation of neurons in each hidden layer of net-
work B such that the linear path in parameter space
between network A and B permuted has low loss.

Linear mode connectivity up to permutation.

Singh and Jaggi [2020] proposed to use optimal trans-
port (OT) theory to find soft alignment providing a
“good match” (in a certain sense) between the neu-
rons of two trained DNNs. Furthermore, the authors
propose ways to fusion the aligned networks together
in a federated learning context with local-steps.
Ainsworth et al. [2022] further experimentally studied
linear mode connectivity between two pre-aligned
networks. The authors first align network B’s weights
on the weights of network A before connecting both of
them by a linear path in the parameter space. They
notably achieved zero-loss barrier for two trained
Resnets with SGD on CIFAR10. Moreover, their
experiments strongly suggest that the error barrier on
a linear path gets smaller for wider networks, with a
detrimental e↵ect of big depth.

Prior theoretical explanations. A recent work by
Kuditipudi et al. [2019] shows that dropout stable net-
works (i.e. networks that are functionally stable to the
action of randomly setting a fraction of their weights
and normalizing the others) exhibit mode connectiv-
ity. Shevchenko and Mondelli [2020] use a mean field
viewpoint to show that wide two-layer neural networks
trained with SGD are dropout stable and hence show

(non-linear) mode connectivity for two-layer neural
networks in the mean field regime (i.e. one single wide
hidden layer). Finally Entezari et al. [2021] show that
two-layer neural networks exhibit linear mode connec-
tivity up to permutation at initialization for param-
eters initialized following uniform independent distri-
bution properly scaled. They highlight that this result
could be extended to networks trained in the Neural
Tangent Kernel regime where parameters stay close to
initialization [Jacot et al., 2018].

Contributions. This paper aims at building theo-
retical foundations on the phenomenon of linear mode
connectivity up to permutation. More precisely, we
theoretically prove this phenomenon arises naturally
on multi-layer perceptrons (MLPs), which goes beyond
two-layer networks on which theoretical works focused
so far. We also provide a new e�cient way to find the
right permutation to apply on the units of a neural
network’s layer. The paper is organized as follow:

• In Section 3, we focus on two-layer neural networks
in the mean field regime. While Shevchenko and
Mondelli [2020] proved non-linear mode connectiv-
ity in this setting; we go further by proving linear

mode connectivity up to permutation. Moreover, we
provide an upper bound on the minimal width of the
hidden layer to guarantee linear mode connectivity.

• In Section 4, we use general OT theory to exhibit
tight asymptotics on the minimal width of a multi-
layer perceptron (MLP) to ensure LMC.

• In Section 5, we apply our general results to net-
works with parameters following sub-Gaussian dis-
tribution. Our result holds for deep networks, gener-
alizing the result of Entezari et al. [2021] with bet-
ter bounds. We shed light on the dependence in
the dimension of the underlying distributions of the
weights in each layer and explain how it connects
with previous empirical observations [Ainsworth
et al., 2022]. Using a model of approximately low
dimensional weight distribution as a proxy of sparse
feature learning, we yield more realistic bounds on
the architectures of DNNs to ensure linear mode
connectivity. We therefore, show why LMC is pos-
sible after training and how it depends on the com-
plexity of the task. Finally we unify our framework
with dropout stability.

• In Section 6, we validate our theoretical framework
by showing how the implicit dimension of the weight
distribution is correlated with linear mode connec-
tivity for MLPs trained on MNIST with SGD and
propose a new weight matching method.
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2 PRELIMINARIES AND
NOTATIONS

Notations. Let two multilayer perceptrons (MLP) A
and B with the same depth L+1 (L hidden layers), an
input dimension m0, intermediate widths m1, ...,mL

and an output dimension mL+1. Given 2(L + 1)
weights matrices W 1,...,L+1

A,B , and a non-linearity �, we
define the neural network function of network A by
f̂A (respectively f̂B): 8x 2 Rm0 ,

f̂A(x) := f̂(x; ✓A) := WL+1
A �

�
WL

A . . .�(W 1
Ax)

�
(1)

To W `
A 2 Mm`,m`�1(R) we associate µ̂A,` the

empirical measure of its rows [W `
A]i: 2 Rm`�1 :

1
m`

Pm`

i=1 �[W `
A]i: which belongs to the space of prob-

ability measures P1(Rm`�1), where [W `
A]i: is the i-

th row of the matrix and � denotes the Dirac mea-
sure. Note that [W `

A]i: is also the weights vector of
the i-th neuron of the layer ` of network A. Given
an equi-partition1 I

`�1 = {I`�1
1 , ...I`�1

m̃`�1
} of [m`�1]

we denote W I`�1

A 2 Mm`,m̃`�1(R) the matrix issued
from W `

A where we have summed the columns being
in the same set of the partition I

`�1. In that case
µ̂I`�1

A 2 P1

�
Rm̃`

�
denotes the associate empirical mea-

sure of its rows.

Denote �`
A(x) := �

�
W `

A . . .�(W 1
Ax)

�
(respectively

�`
B) the activations of neurons at layer ` of network A

on input x. The data x follows a distribution P in Rm0 .

Given permutations matrices ⇧` 2 Sm` ,
2 ` = 1, . . . , L

of each hidden layer of network B, the weight ma-
trix at layer ` of the permuted network B is W̃ `

B :=
⇧`W `

B⇧
T
`�1 and its new activation vector is �̃`

B(x) :=
⇧`�`

B(x). Finally, 8t 2 [0, 1] we define Mt the con-
vex combination of network A and B permuted, with
weights matrices tW `

A +(1� t)W̃ `
B and �`

Mt
its activa-

tions at layer `.

Preliminaries. We consider networks A and B to
be independently chosen from the same distribution Q
on parameters. This is coherent with considering two
networks initialized independently or trained indepen-
dently with the same optimization procedure (§3). We
additionally suppose the choice of A and B to be in-
dependent of the choice of x ⇠ P , which is valid when
evaluating models on test data not seen during train-
ing. We denote EQ,EP ,EP,Q expectations with re-
spect to the choice of the networks, the data, or both.

To show linear mode connectivity of networks A and B

1All subsets have the same number of elements
2We use interchangeably Sm to denote the space of per-

mutations of {1, . . . ,m} and the corresponding space of
permutations matrices. Given ⇡ 2 Sm its corresponding
permutation matrix ⇧ is defined as ⇧ij = 1 () ⇡(i) = j.

we will show the existence of permutations ⇧1, ...,⇧L

of layers 1, ..., L that align the neurons of network B on
the closest neurons weights of network A at the same
layer as shown in Figure 1. In other words, we want to
find permutations that minimize for each layer ` 2 [L]
the norm kW `

A � ⇧`W `
B⇧

T
`�1k2. Recursively on `, we

solve the following optimization problem:

⇧` = argmin
⇧2Sm`

kW `
A �⇧W `

B⇧
T
`�1k

2
2

= argmin
⇡2Sm`

1

m`

mX̀

i=1

k[W `
A]i: � [W `

B⇧
T
`�1]⇡i:k

2
2

(2)

For each layer, the problem can be cast as finding a
pairing of weights neurons [W `

A]i: and [W `
B⇧

T
`�1]⇡i: to

minimize the sum of their Euclidean distances. It is
known as the Monge problem is the optimal transport
literature Peyré et al. [2019]. More precisely Equa-
tion (2) can be formulated as finding an optimal trans-
port plan corresponding to the Wasserstein distance
between the empirical measures of the rows of W `

A and
W `

B⇧
T
`�1. We provide more details about this connec-

tion between Equation (2) and optimal transport in
Appendix B.2. In the following, the p�Wasserstein
distance will be denoted Wp(·, ·) and defined with the
underlying distance k · k2 unless expressed otherwise.

By controlling the cost in Equation (2) at every layer,
we show that the permuted s of networks A and B
are approximately equal. Linearly interpolating both
networks will therefore keep activations of all hidden
layers unchanged except the last layer which acts as a
linear function of the interpolation parameter t 2 [0, 1].

3 LMC FOR TWO-LAYER NNs IN
THE MEAN FIELD REGIME

We will first study linear mode connectivity between
a pair of two-layer neural networks independently
trained with SGD for the same number of steps.

3.1 Background on the Mean Field Regime

We will use some notations from Mei et al. [2019] and
consider a two-layer neural network,

f̂N (x; ✓) =
1

N

NX

i=1

�⇤(x; ✓i) (3)

parametrized by ✓i = (ai, wi) 2 R ⇥ Rd and
where �⇤(x; ✓i) = ai�(wix). The parameters
evolve as to minimize the following regularized cost
RN (✓) = E(x,y)⇠P [(y � f̂N (x;✓))2] + �k✓k22. Define
noisy regularized stochastic gradient descent (or
noiseless regularization-free when � = 0, ⌧ = 0) with



Proving Linear Mode Connectivity of Neural Networks via Optimal Transport

step size sk, and i.i.d. Gaussian noise gk ⇠ N (0, Id):

✓k+1
i = (1� 2�sk)✓

k
i (SGD)

+ 2sk(yk � f̂N (xk; ✓
k))r✓�⇤(xk; ✓

k
i ) +

q
2sk⌧
d gki

It will be useful to consider ⇢kN := 1
N

PN
i=1 �✓k

i
the

empirical distribution of the weights after k SGD steps.
Indeed some recent works [Chizat and Bach, 2018, Mei
et al., 2018, 2019] have shown that when setting the
width N to be large and the step size sk to be small,
the empirical distribution of weights during training
remains close to an empirical measure drawn from the
solution of a partial di↵erential equation (PDE) we
explicit in Appendix C.1. Especially, the parameters�
✓ki , i 2 [N ]

 
evolve approximately independently.

3.2 Proving LMC in the mean field setting

Define respectively the alignment of a neuron function
on the data and the correlation between two neurons:

V (✓1) := av(w) := �EP [y�⇤(x; ✓1)]

U(✓1, ✓2) := a1a2u(w1, w2) := EP [�⇤(x; ✓1)�⇤(x; ✓2)] .

and we for " > 0 fixed we note the step size

sk = "⇠(k") (4)

where ⇠ is a positive scaling function. The underlying
training time up to step kT is defined as T :=

PkT

k=1 sk.
We now state the standard assumptions to work on the
mean field regime [Mei et al., 2019],

Assumption 1. The function t 7! ⇠(t) is bounded

Lipschitz. The non-linearity � is bounded Lipschitz

and the data distribution has a bounded support. The

functions w 7! v(w) and (w1, w2) 7! u(w1, w2) are dif-

ferentiable, with bounded and Lipschitz continuous gra-

dient. The weights at initialization ✓0i are i.i.d. with

distribution ⇢0 which has bounded support.

Assumption 1 imposes that the step size is of order
O(") and its variations are of order O("2). Constant
step size " will work. Bounded non-linearity include
arctan and sigmoid but excludes ReLU. While it is a
standard assumption in mean field theory ([Mei et al.,
2018, 2019]), we mention in §C that this assumption
can be relaxed by the weaker assumption that the non-
linearity stays small on some big enough compact set.

The second assumption is technical and only used for
studying noisy regularized SGD.

Assumption 2. V, U are four times continuously dif-

ferentiable and r
k
1u(✓1, ✓2) is uniformly bounded for

0  k  4.

The following theorem states that two wide enough
two-layer neural networks trained independently with

SGD exhibit, with high probability, a linear connection
of the prediction modulo permutations for all data.

Theorem 3.1. Consider two two-layer neural

networks as in Equation (3) trained with equa-

tion SGD with the same initialization over the

weights independently and for the same under-

lying time T . Suppose Assumptions 1 and 2

to hold. Then 8�, err, 9Nmin such that if N �

Nmin, 9"max(N) such that if "  "max(N) in

Equation (4), then with probability at least 1� �
over the training process, there exists a permu-

tation of the second network’s hidden layer such

that for almost every x ⇠ P :

|tf̂N (x; ✓A) + (1� t)f̂N (x; ✓B)

� f̂N (x; t✓A + (1� t)✓̃B)|  err , 8t 2 [0, 1] .

Remark. Assumption 2 is not used when studying
noiseless regularization-free SGD (� = 0, ⌧ = 0).

Corollary 3.2. Under assumptions of

Theorem 3.1, 8�, err > 0, 9N 0
min, 8N �

N 0
min, 9"

0
max(N), 8"  "0max(N) in Equation (4),

then with probability at least 1 � � over the

training process, there exists a permutation of

the second network’s hidden layer such that

8t 2 [0, 1]:

EP

⇥�
f̂N (x; t✓A + (1� t)✓̃B)� y

�2⇤
 err

+ EP

⇥
t(f̂N (x; ✓A)� y)2 + (1� t)(f̂N (x; ✓B)� y

�2⇤

Discussion. Two wide enough two-layer neural net-
works wide enough trained with SGD are therefore
Linear Mode Connected with an upper bound on the
error tolerance we explicit in Appendix C. We have
extensively used the independence between weights in
the mean field regime to apply OT bounds on con-
vergence rates of empirical measures. To go beyond
the two-layer case, we will need to make such an as-
sumption on the distribution of weights. Note that
this is true at initialization and after training for two-
layer networks. Studying the independence of weights
in the multi-layer case is a natural avenue for future
work, already studied in ?.

4 GENERAL STRATEGY FOR
MULTI-LAYER NETWORKS

We now build the foundations to study the case of
multi-layer neural networks (see Equation (1)).
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We first write one formal property expressing the ex-
istence of permutations of neurons of network B up to
layer ` such that the activations of network A, network
B permuted and the mean network Mt are close up to
layer `. This property is trivially satisfied at the input
layer. We then show that under two formal assump-
tions on the weights matrices of networks A and B,
this property still hold at layer `+ 1.

4.1 Formal Property at layer `

Let " > 0,m` � m̃l and m`+1 � m̃`+1. Assume
m`
m̃`

, m`+1

m̃`+1
2 N to simplify technical details but this

hypothesis can easily be removed.

Property 1. There exists two constants
¯
E`, E`

such that given weight matrices up to layer

`, W 1,··· ,`
A,B ,W 1,··· ,`

B one can find ` permuta-

tions ⇧1, · · · ,⇧` of the neurons in the hidden

layers 1 to ` of network B, an equi-partition

I
` = {I`1, . . . , I

`
m̃`

}, and a map
¯
�`(x) 2 Rn

such that

8k 2 [m̃`] , 8i, j 2 I`k,
¯
�`
i(x) =

¯
�`
j(x) such that:

EP,Qk
¯
�`(x)k22 

¯
E`m`

EP,Qk�
`
A(x)�

¯
�`(x)k22  E`m`

EP,Qk�̃
`
B(x)�

¯
�`(x)k22  E`m`

EP,Qk�
`
Mt

(x)�
¯
�`(x)k22  E`m` , 8t 2 [0, 1],

This property not only requires proximity between ac-
tivations �`

A(x), �̃
`
B(x) at layer ` but requires the exis-

tence of a vector
¯
�`(x) whose coe�cients in the same

groups of the partition I
` are equal, and therefore lives

in a m̃`. It bounds the size of the function space avail-
able at layer ` and hence allows to use an e↵ective
width m̃` independent of the real width m`, which can
be much larger. It is crucial in order to show LMC for
neural networks of constant width across layers. The
introduction of such a map

¯
�`(x) is non trivial and

is an important contribution since it allows to extend
results of Entezari et al. [2021] beyond two layers.

4.2 Assumptions on the weight distribution

We now make an assumption on the empirical distri-
bution of the weights µ̂A,`+1 at layer `+ 1 of W `+1

A .

Assumption 3. There exists an integer m̃`+1 such

that for all equi-partiton I
`
of [m`] with m̃` sub-sets,

there exists a random empirical measure µ̂m̃`+1 inde-

pendent of A and B composed of m̃`+1 vectors in Rm` ,

such that EQ[W2
2 (µ̂

I`

A,`+1, µ̂
I`

m̃`+1
)]  C1.

This assumption requires that the empirical distribu-
tion with m`+1 points of the neurons’ weights of net-
work A at layer `+ 1 can be approximated by an em-
pirical measure with a smaller m̃`+1 number of points.

Note that it implies proximity in Wasserstein distance
between µ̂I`

A and µ̂I`

B by a triangular inequality.

We finally assume some central limit behavior when
summing the errors made for each neuron of layer `.

Assumption 4. There exists a constant C2 such that

8X 2 Rml we have:

max
�
EQ[kW

`+1
A Xk

2
2],EQ[kWm̃l+1Xk

2
2]
 

 C2
m`+1

m`
kXk

2
2

Finally, we consider the following assumption on the
non-linearity, verified for example by pointwise ReLU.

Assumption 5. � is pointwise, 1-Lipschitz, �(0) = 0.

4.3 Propagating Property 1 to layer `+ 1

We state now how Property 1 propagates throughout
the layers using Assumptions 3 to 5 with new param-
eters

¯
E`+1, E`+1. We give a proof in Appendix B.6.

Lemma 4.1. Let ` 2 {0, · · · , L�1} and suppose

Property 1 to hold at layer ` and Assumptions 3

to 5 to hold, then Property 1 still holds at the next

layer with m̃`+1 given in Assumption 3 and

¯
E`+1 = C2¯

E`

E`+1 = 2C2E` + 2C1m̃`¯
E`

5 LMC FOR RANDOM
MULTI-LAYER NNs

We will make the following assumption on the em-
pirical distribution of neurons weights µ̂A,`, µ̂B,` of
W `

A,W
`
B at layer `.

Assumption 6 (Independence of neurons weights).
µ̂A,`, µ̂B,` correspond to two i.i.d drawings of vectors

with distribution µ` i.e., µ̂A,`, µ̂B,` have the law of
1
m`

Pm`

i=1 �xi where xi ⇠ µ` i.i.d.

Assumption 6 is verified for example at initialization
but more generally when weights do not depend too
much one of each other. This case still holds for wide
two-layer neural networks trained with SGD and is at
the heart of the proof of Theorem 3.1.

5.1 Showing LMC for multilayer MLPs

under Gaussian distribution

We first examine the case µ` = N

⇣
0,

Im`�1

m`�1

⌘
. We

moreover assume that the input data distribution has
bounded second moment: EP [kxk22]  m0.
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Our strategy detailed in Appendix B.7 consists in
showing that wide enough such networks will satisfy
Assumptions 3 and 4 with well controlled constants
C1, C2. We can then apply Lemma 4.1 successively L
times to get the following lemma:

Lemma 5.1. Under normal initialization of the

weights, given " > 0, if m0 � 5, there exists

minimal widths m̃1, . . . , m̃L such that if m1 �

m̃1, . . . ,mL � m̃L, Property 1 is verified at the

last hidden layer L for
¯
EL = 1, EL = "2. More-

over, 8` 2 [L], 9T` which does only depend on

L, ` such that one can define recursively m̃` as

m̃0 = m0 and

m̃` = Õ

✓
T`

"

◆m̃`�1

Discussion. The hypothesis m0 � 5 is technical
and could be relaxed at the price of slightly changing
the bound on m̃1. Lemma 5.1 shows that given two
random networks whose widths m` is larger than m̃`,
we can permute neurons of the second one such that
their activations at layer ` are both close to the one
of the networks on a linear path in parameter’s space.

As " goes to 0, the width of the layer `+ 1 must scale

at least as
�
1
"

�m̃`�1 . This is a fundamental bound due
to the convergence rate in Wasserstein distance of em-
pirical measures. It imposes a recursive exponential
growth in the width needed with respect to depth.
This condition appears excessive as compared to the
typical width of neural networks used in practice. We
highlight here that Ainsworth et al. [2022] empirically
demonstrates that networks at initialization do not ex-
hibit LMC and that the loss barrier is erased only after
a su�cient number of SGD steps.

5.2 Showing Linear Mode Connectivity

We make the following assumption on the loss function
to show LMC from Lemma 5.1.

Assumption 7. 8y 2 RmL+1 , the loss L(·, y) is con-

vex and 1-Lipschitz.

We finally prove the following bound on the loss of the
mean network Mt in Appendix B.8:

Theorem 5.2. Under normal initialization of

the weights, for m1 � m̃1, · · · ,mL � m̃L as de-

fined in Lemma 5.1, m0 � 5, and under Assump-

tion 7 we know that 8t 2 [0, 1], with Q-probability

at least 1��Q, there exists permutations of hidden

layers 1, . . . , L of network B that are independent

of t, such that:

EP

h
L

⇣
f̂Mt(x), y

⌘i
 tEP

h
L

⇣
f̂A(x), y

⌘i
+

(1� t)EP

h
L

⇣
f̂B(x), y

⌘i
+

4
p
mL+1

�2Q
"

Discussion. The minimal width at layer ` needed for
Theorem 5.2 is recursively m̃l ⇠ "�m̃l�1 . Applied to
randomly initialized two-layer networks, we need a hid-
den layer’s dimension of "�m0 as opposed to Entezari
et al. [2021] which prove a bound of "�(2m0+4).

5.3 Tightness of the bound dependency with

respect to the error tolerance

We discuss here the tightness of the minimal width
m̃` we require in Lemma 5.1 with respect to the error
tolerance ". The recursive exponential growth of the

width in the form m̃` ⇠
�
1
"

�m̃`�1 is a consequence of
the convergence rate of Wasserstein distance of empir-
ical measures in dimension m̃`�1 at the rate 1/m̃`�1.
Theorem 5.3 provides a corresponding lower bound
which shows that this recursive exponential growth

is tight at the precise rate
�
1
"

�m̃`�1 (just take n =

m̃`�1, m = m̃`, µ = µ`, x = �`�1
A (x),WA,B = W `

A,B).
A proof is given in Appendix B.11.

Theorem 5.3. Let n � 1, x ⇠ P 2 P1(Rn) and

µ 2 P(Rn) such that
dµ

dLeb  F1. Suppose ⌃ =
E[xxT ] is full rank n. Let m � 1 and WA,WB 2

Mm,n(R) whose rows are drawn i.i.d. from µ.
Then, there exists F0 such that

EWA,WB [ min
⇧2Sm

EP k(WA�⇧WB)xk
2
2] � F0

✓
1

m

◆2/n

Remark 1. Using an e↵ective width m̃`�1 smaller
and independent of the real width m`�1 allows to
show LMC for networks of constant hidden width
m1 = m2 = . . . = mL as soon as they verify
m1 � m̃1, . . . ,mL � m̃L where m̃1, . . . , m̃L are defined
in Lemma 5.1. Without this trick, we need a recursive
exponential growth of the real width m` ⇠

�
1
"

�m`�1 .

Remark 2. Motivated by the fact that feature learn-
ing may concentrate the weight distribution on low
dimensional sub-space, we could extend our proofs
to the case where the underlying weight distribution
has a support with smaller dimension to get recursive
bounds no longer at rate m̃`�1 but at a smaller one.
Note this is unlikely to happen as we expect the ma-
trix of weight vectors of a given layer to be full rank.
Therefore, we study in the next section the case when
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this matrix is approximately low rank, or equivalently
when the weight distribution is concentrated around a
low dimensional approximated support.

5.4 Approximately low dimensional

supported measures

For the sake of clarity, assume from now on that the
layer ` � 1 of network A has been permuted such
that for I

`�1 = {I`�1
1 , . . . , I`�1

m̃`�1
} (given in Prop-

erty 1) we have I`�1
1 = {1, . . . , p`�1}, . . . , I

`�1
m̃`�1

=
{m`�1 � p`�1 + 1, . . . ,m`�1} with p`�1 = m`�1/m̃`�1}.
This assumption is mild since we can always consider
a permuted version of network A without changing the
problem.

Motivated by the discussion in Appendix B.9.1 we con-
sider the model where the weights at layer ` are ini-
tialized i.i.d. multivariate Gaussian µ` = N (0,⌃`�1)
with

⌃`�1 := Diag
⇣
�`
1Ip`�1 ,�

`
2Ip`�1 , . . . ,�

`
m̃`�1

Ip`�1

⌘

with 1
m`�1

m̃`�1

k`�1
� �`

1 � �`
2 � . . . � �`

m̃`�1
with

k`�1  m̃`�1 an approximate dimension of the sup-
port of the underlying weights distribution. Note that
to balance the low dimensionality of the weights dis-
tribution, we have replaced the upper-bound on the
eigenvalues 1

m̃`�1
by the greater value 1

m`�1

m̃`�1

k`�1
to

avoid vanishing activations when ` grows which would
have made our result vacuous.

The following assumption states that the weights dis-
tribution µI`�1

` at layer ` considered in P1(Rm̃`�1)
(with the operation explicited in Section 2) is approx-
imately of dimension k`�1 = em̃`�1. The approxima-
tion becomes more correct as ⌘ ! 0.

Assumption 8 (Approximately low-dimensionality).

9⌘, e 2 (0, 1), 8` 2 [L],

r
Pm̃`�1

j=k`�1
�`
j

4
qPk`�1

j=1 �`
j

 ⌘, k`�1

m̃`�1
= e

Theorem 5.4. Under Assumptions 7 and 8,

given " > 0, if em0 � 5 there exists minimal

widths m̃1, . . . , m̃L such that if ⌘�k0 � m1 �

m̃1, . . . , ⌘�kL�1 � mL � m̃L, Property 1 is veri-

fied at the last hidden layer L for
¯
EL = 1, EL =

"2. Moreover, 8` 2 [L], 9T 0
` which does only de-

pend on L, e, `, such that one can define recur-

sively m̃` as

m̃` = Õ

✓
T 0
`

"

◆k`�1

= Õ

✓
T 0
`

"

◆em̃`�1

where m̃0 = m0. Moreover there exists permuta-

tions of hidden layers 1, . . . , L of network B s.t.

8t 2 [0, 1], with Q-probability at least 1� �Q:

EP

h
L

⇣
f̂Mt(x), y

⌘i
 tEP

h
L

⇣
f̂A(x), y

⌘i

+ (1� t)EP

h
L

⇣
f̂B(x), y

⌘i
+

4
p
mL+1p
e�2Q

"

Discussion. We give a proof in Appendix B.10. For
⌘ small enough, the distribution of weights is approxi-
mately lower dimensional. It yields faster convergence
rates until m becomes exponentially big in ⌘. This
prevents the previous recursive exponential growth of
width with respect to depth, though asymptotically,
we recover the same rates as in Theorem 5.2. The
smaller e, the lower dimensional are the distributions,
and the less the width needs to grow when " ! 0. The
problem in that model is that the constant T 0

i explodes
if e ! 0, which prevents using a model with fixed k`
across the layers for the weight distribution. We want
to highlight here that the proof can be extended to
such a case, but we need to assume that the constant
C2 is bounded and not depending on e across the lay-
ers in Lemma 4.1 (recall that with our proof, we had
C2 = 1

e ). This assumption seems coherent because the
average activations don’t explode across layers in the
model. Assuming this, the bound we obtain for m̃` in
Theorem 5.4 is completely independent on m̃`�1, and
there is no recursive exponential growth in the width
needed across the layers. We give a more explicit dis-
cussion in Appendix B.12.

5.5 LMC for sub-Gaussian distributions

Still under the setting of Assumption 6 assume that
the underlying distribution µ` verifies for each layer
` 2 [L+1]: if X ⇠ µ` then, 8j 6= k 2 [ml�1], Xj qXk.
Moreover 8i 2 [m̃`�1], 8j, k 2 I`�1

i ,

E[X2
j ] = E[X2

k ] = �`
i

Finally suppose the variables are sub-Gaussian i.e.,
9K > 0, 8i 2 [m̃`�1], 8j 2 I`�1

i , 8c > 0,

P(|Xj | � c)  2 exp(�
c2

K�`
i

)

We explain in Appendix B.13 why both Theorem 5.2
(in the case �`

1 = . . . = �`
m̃l�1

= 1/m`�1) and Theo-
rem 5.4 hold with mild modifications in the constants.

It extends our previous result considerably to LMC
for any large enough networks whose weights are i.i.d.
and whose underlying distribution has a sub-Gaussian
tail (for example uniform distribution).
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5.6 Link with dropout stability

In Appendix B.14, we build a first step towards uni-
fying our study with the dropout stability viewpoint
[Kuditipudi et al., 2019, Shevchenko and Mondelli,
2020] by showing in a simplified setting how networks
become dropout stable in the same asymptotics on the
width as the one needed in our Theorem 5.2.

6 EXPERIMENTS

Our previous study shows the influence of the dimen-
sion of the underlying weight distribution on LMC
e↵ectiveness. Based on this insight we develop a
new weight matching method at the crossroads be-
tween previous naive weight matching (WM) and ac-
tivation matching (AM) methods [Ainsworth et al.,
2022]. Given n training points xi, i 2 [n], denote
Z`
A 2 Mm`,n(R) (respectively Z`

B) the activations
�`
A(xi) for the n data points xi. Further denote
⌃`

A := 1
nZ

`
A[Z

`
A]

T
⇡ EP

⇥
�`
A(x)[�

`
A(x)]

T
⇤
. We aim

at finding for each layer ` the optimal permutation ⇧
minimizing the cost (respectively for naive WM, our
new WM method and AM):

min
⇧2Sm`

��W `
A �⇧W `

B⇧
T
`�1

��2
2
, (Naive WM)

min
⇧2Sm`

��W `
A �⇧W `

B⇧
T
`�1

��2
2,⌃`�1

A
, (WM (ours))

min
⇧2Sm`

��Z`
A �⇧Z`

B

��2
2
, (AM)

where k · k2,⌃`�1
A

is the norm3 induced by the scalar

product (X,Y ) 7! tr(X⌃`�1
A Y T ). We both theoreti-

cally support the gain of our method in Theorem D.2
and empirically verify that this method constantly
and substantially outperforms naive Weight Matching
across di↵erent learning rates when training with SGD.

We train a three hidden layer MLP of width 512 on
MNIST with learning rates varying between 10�4

and 10�1 across 4 runs. We plot on Figure 2b the
approximate dimension of the considered covariance
matrix for each matching method: W `

A[W
`
A]

T for
WM (naive), W `

A⌃
`�1
A [W `

A]
T for WM (ours) and ⌃`

A
for AM (see §D.2). Our code is available at https:

//github.com/damienferbach/OT_LMC/tree/main.

3Semi-norm in full generality (if ⌃`�1
A is not full rank)

(a) Mean test loss of the trained networks A and B and
error barrier on the linear path Mt, t 2 [0, 1] across di↵er-
ent learning rate values for each matching problem.

(b) Approximate dimension Dim(S) := tr(S)2/tr(S2) of the
matrices considered in the matching problems at each
layer.

Figure 2: Statistics of the average network M over the
linear path between networks A and B using respectively
weight matching (blue), weight matching using covari-
ance of activations and activations (green), and activation
matching (orange)

We see on Figure 2 the detrimental e↵ect of high ap-
proximate dimension on LMC e↵ectiveness, therefore
validating our theoretical approach. Note that for a
learning rate of 10�1 the correlation is less clear but
a trend is visible on decreasing dimension for naive
WM as it performs better (and increasing dimension
for AM and our WM method as it performs compar-
atively less well). An alternative would be to use a
proxy taking the diameter of the distributions into ac-
count (and not only the dimension of their support).
Finally, experiments on Adam lead to less clear results
that we did not report as more experimental investi-
gation is needed. In particular, understanding the im-
pact of the optimizer on the independence of weights
during training is crucial, as it is a central assumption
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in our study.

7 DISCUSSION

Optimal transport serves as a good framework to
study linear mode connectivity of neural networks.
This paper uses convergence rates of empirical mea-
sures in Wasserstein distance to upper bound the test
error of the linear combination of two networks in
weight space modulo permutation symmetries. Our
main assumption is the independence of all neuron’s
weight vectors inside a given layer. This assumption
is trivially true at initialization but remains valid for
wide two-layers networks trained with SGD. We ex-
perimentally demonstrate the correlation between the
dimension of the underlying weight distribution with
LMC e↵ectiveness and design a new weight matching
method that significantly outperforms existing ones.
A natural direction for future work is to focus on
the behaviour of the weights distribution inside each
layer of DNNs and their independence. Moreover,
extending our results to only assuming approximate
independence of weights is a natural direction as it
seems a more realistic setting.
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A EXTENDED RELATED WORK

Frankle et al. [2020] were the ones to coin the term Linear Mode Connectivity and the first to recognize the
importance of this structure. Notably, they studied this structure through its connections with pruning and the
lottery ticket hypothesis [Frankle and Carbin, 2018, Malach et al., 2020, Pensia et al., 2020, Ferbach et al., 2022].

It is worth noting that some recent works in the literature study linear mode connectivity specifically in a layer-
wise manner, especially due to the permutation symmetries we described in section 1. For example, Zhou et al.
[2023b], Adilova et al. [2023] both study the e↵ect of layer-wise averaging when connecting two deep neural
networks. This is aligned with our theoretical study since we recursively align deep networks layer after layer.

The mode connectivity framework has been used as a tool to better understand the similarity between two
models or the e↵ect of a training procedure on the trained model. For example, Lubana et al. [2023] introduces
mechanistic similarity to quantify how two models react to the same alteration of the data in latent space. They
show relations between mode connectivity and mechanistic similarity. Especially they prove that if two models
cannot be linear mode connected, then they are mechanistically dissimilar. Moreover, Mirzadeh et al. [2020]
use the mode connectivity framework to study whether continual and sequential learning (two di↵erent training
procedure for multitask learning) are converging to a similar solution. Finally, Qin et al. [2022] explores mode
connectivity of pretrained langage models, especially how hyper-parameters a↵ect mode connectivity and how
mode connectivity evolves during training.

Computational optimal transport has been leveraged by Singh and Jaggi [2020], Akash et al. [2022] to find
paths between two models in parameter space. The latter formulates the model fusion problem as a Wasserstein
barycenter problem.

Past works have studied mode connectivity through the lens of model averaging with applications in federated
learning [Yurochkin et al., 2019, Wang et al., 2020]. Zhou et al. [2023a] studies the e↵ect of data heterogeneity
in federated learning on mode connectivity of global modes.

B PROOFS AND DETAILS ABOUT OPTIMAL TRANSPORT THEORY FOR
LMC

B.1 Background on optimal transport and convexity lemma

Optimal transport is a mathematical framework that aims at quantifying distances between distributions. We
refer to the books Villani et al. [2009] and Peyré et al. [2019] (focused on computational aspects and applications
to data science) for an extensive overview of this topic.

Definition B.1 (Wasserstein distance [Villani et al., 2009]). Let (X , d) a Polish metric space, p 2 [1,1).
8µ, ⌫ 2 P1(X ), define the p-Wasserstein distance between µ and ⌫ by:

Wp(µ, ⌫) =

✓
inf

⇡2⇧(µ,⌫)

Z

X 2

dp(x, y)d⇡(x, y)

◆1/p

Recall that ⇧(µ, ⌫) denotes the set of coupling between µ and ⌫, i.e.,

⇡ 2 ⇧(µ, ⌫) , ⇡ 2 P1(X
2) with marginals µ, ⌫

This defines a distance and especially it satisfies the triangular inequality. Moreover we state a Jensen type
inequality proved in Villani et al. [2009]:

Lemma B.2 (Convexity of the optimal cost (Theorem 4.8 in Villani et al. [2009])). Let d : Rn
⇥ Rn

! R+ a

distance and for p 2 [1,1), Wp : P1(Rn)2 ! R+ its associate Wasserstein distance. Let (⇥,�) be a probability

space and µ✓, ⌫✓ two measurable functions on that space taking values in P1(Rn). Then,

W
p
p

✓Z

⇥
µ✓�(d✓),

Z

⇥
⌫✓�(d✓)

◆


Z

⇥
W

p
p (µ✓, ⌫✓)�(d✓)

Proof. To apply Theorem 4.8 in Villani et al. [2009], we just need to notice that dp(·, ·) is continuous, dp(·, ·) � 0
and the associated optimal cost functional is Wp

p (·, ·).
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B.2 Validity of the OT viewpoint: Birkho↵ ’s theorem

We have motivated in Section 2 the following minimization problem (Equation (2)):

⇧` = argmin
⇧2Sm`

kW `
A �⇧W `

B⇧
T
`�1k

2
2

= argmin
⇡2Sm`

1

m`

mX̀

i=1

k[W `
A]i: � [W `

B⇧
T
`�1]⇡i:k

2
2

Since LMC e↵ectiveness will be related to the e↵ectiveness of this optimization problem, we want to quantify
the minimization error:

min
⇧2Sm`

kW `
A �⇧W `

B⇧
T
`�1k

2
2

We highlight the similarity with previous Definition B.1. The main di↵erence being that the latter minimizes
the cost among all couplings ⇡ 2 ⇧(µ, ⌫) between the two distributions, especially transport plans that can split
mass. Permutation must be on the other hand seen as Monge maps, i.e. deterministic maps. This ambiguity is
solved with the following lemma:

Lemma B.3 (Proposition 2.1 in Peyré et al. [2019]). Let m,n integers and x1, ..., xm, y1, ..., ym, 2m points of

Rn
. Let µ̂m = 1

m

Pm
i=1 �xi , ⌫̂m = 1

m

Pm
i=1 �yi their associated empirical measures. Consider d : Rn

⇥Rn
! R+ a

distance function and for p 2 [1,1),Wp its associated Wasserstein distance. Then one has:

Wp := inf
⇡2⇧(µ̂m,⌫̂m)

✓Z

Rn⇥Rn

d(x, y)pd⇡(x, y)

◆ 1
p

= min
⇡2Sm

 
1

m

mX

i=1

d(xi, y�i)
p

! 1
p

Proof. ⇧(µ̂m, ⌫̂m) is the convex envelope of its extremal points which are described by permutations by Birkho↵’s
theorem. Moreover,

⇡ 2 P1(Rn
⇥ Rn) !

Z
d(x, y)pd⇡(x, y)

is linear and therefore its infimum is attained on one extremal point of ⇧(µ̂m, ⌫̂m)

This lemma implies equality between the Wasserstein distance between two empirical measures and the minimum
cost over the set of permutations. We can therefore restrict our study to permutations while still using tools
from general optimal transport theory and convergence rates of empirical measures in Wasserstein distance.

B.3 Technical lemmas

The following lemma will be very useful in the following and shows that Binomial variables are concentrated
around their expectation.

Lemma B.4 (Hoe↵ding inequality for Binomial variables). Let B p
2 ,m

⇠ B(p2 ,m) a binomial variable with p 2

[0, 1]. Then,

P(
B p

2 ,m

m
� p)  exp(�

p2m

2
)

Proof: This is a simple application of Hoe↵ding concentration inequality [Phillips, 2012] since a Binomial variable
is a sum of independent Bernoulli variables.

Lemma B.5. Let a, b > 0 such that a + b = 1 and let µ1, µ2, ⌫1, ⌫2 2 P1(X ) with (X , d) a Polish space. Then,

8p 2 [1,1):

W
p
p (aµ1 + bµ2, a⌫1 + b⌫2)  aWp

p (µ1, ⌫1) + bWp
p (µ2, ⌫2) (5)
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Proof. Just apply Lemma B.2 with µ⇥, ⌫⇥ such that P ((µ⇥, ⌫⇥) = (µ1, ⌫1)) = a and P ((µ⇥, ⌫⇥) = (µ2, ⌫2)) =
b.

Lemma B.6 (Hölder, Remark 6.6 in Villani et al. [2009]). Let (X , d) a Polish space, let p, q 2 [1,1] such that

p  q:
8µ, ⌫ 2 P1(X ), Wp  Wq (6)

Proof. Just apply Hölder’s inequality.

B.4 Definitions and technical lemma on packing numbers

Let n 2 N⇤, S ⇢ Rn and d(·, ·) a distance of Rn. We recall the definitions of packing numbers and covering
numbers as well as two lemmas stated and proved in Wu [2016]:

Definition B.7 ("-covering number [Weed and Bach, 2019]). The "-covering of a set S denoted N"(S) is the

minimum number m of closed balls B1, . . . , Bm of radius " such that S ⇢
Sm

i=1 Bi.

Definition B.8 ("-packing number). The "-packing number of a set S denoted P"(S) is the maximum number

m of distinct points ✓1, ..., ✓m 2 S such that 8i 6= j, k✓i � ✓jk > ".

Lemma B.9. If the distance d(·, ·) comes from a norm, (d(x, y) = kx�yk), denoting Lebn the Lebesgue measure

in Rn
we have: 8S ⇢ Rn, 8" > 0,

N"(S) 
Lebn(S + B(0, "/2))

Lebn(B(0, "/2))

Proof. We prove first N"(S)  P"(S). Indeed considering m = P"(S) and ✓1, . . . , ✓m associated, we know by
definition of the "-packing number that 8✓ 2 S, 9i 2 [m] such that k✓i�✓k  ". This shows that S ⇢

Sm
i=1 B(✓i, ")

Now, on the other hand, we know that all balls B(✓i,
"
2 ) are disjoint and

Sm
i=1 B(✓i,

"
2 ) ⇢ S + B(0, "/2). This

yields the result by a volume (i.e., Lebesgue measure) argument.

Lemma B.10. If the distance d(·, ·) comes from a norm, (d(x, y) = kx� yk) we have: 8S ⇢ Rn, 8" > 0,

N"(S) �

✓
1

"

◆n
Lebn(S)

Lebn(B(0, 1))

Proof. Notice that given a covering
SN"(S)

i=1 B(xi, ") � S, by a volume argument we get

Lebn(S)  "nN"(S)Lebn(B(0, 1))

where we have used homogeneity of the norm.

B.5 Lemmas on convergence rates of empirical measures

This section is devoted to proving convergence rates in Wasserstein distance of empirical measure towards the
underlying distribution whose points are drawn. More precisely, given µ 2 P1(Rn) a probability measure on an
euclidean space and p 2 [1,1), we will focus on bounding the quantity E

⇥
W

p
p (µ̂m, µ)

⇤
as m grows, where µ̂m is

a random empirical measure i.e., µ̂m = 1
m

Pm
i=1 �xi where xi

i.i.d.
⇠ µ.

We will first prove the following lemma:

Lemma B.11. Consider Xn ⇠ N
�
0, In

n

�
a random variable whose law is parametrized by n 2 N⇤

. There exists

a universal constant D0 such that

8n 2 N⇤, 8c > 1,E[kXnk
2
2 | kXnk2 > c]  D0c

2

Jensen inequality implies:

8n 2 N⇤, 8c > 1,E[kXnk2; | kXnk2 > c] 
p
D0c
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Proof. We write

E[kXnk
2
2|kXnk2 > c] =

R +1
c r2rn�1e�

r2n
2 dr

R +1
c rn�1e�

r2n
2 dr

 4c2 +
1X

m=2

R (m+1)c
mc r2rn�1e�

r2n
2 dr

R 2c
c rn�1e�

r2n
2 dr

 4c2 +
1X

m=2

R 1
0 ((m+ 1)c)n+1e�

((m+t)c)2n
2 cdt

R 1
0 cn�1e�

((1+t)c)2n
2 cdt

But, 8t 2 [0, 1], 8m � 2,

((m+ 1)c)n+1e�
((m+t)c)2n

2

cn�1e�
((1+t)c)2n

2

 c2(m+ 1)n+1e�
c2n
2 (m2�1)

 c2(2m)2ne�
c2n
2 (m2�1)

 c2e
�n

✓
c2

2 (m2�1)�2 log(2m)

◆

It is clear that uniformly in n,
P1

m=2 c
2e

�n

✓
c2

2 (m2�1)�2 log(2m)

◆

���!
c!1

0 which proves the lemma.

We will now prove a bound on the rate of convergence in Wasserstein distance of an empirical measure to the
underlying distribution when this one has a bounded support. Denote Bk

2 (0, r) the euclidean ball centered around
0 of radius r in dimension k.

Lemma B.12. Let µ 2 P1(Rn) be a measure whose support is included in B
n
2

�
0, 1

12

�
⇢ Rn

with n � 5 Then,

8m � 1 we have

E[W2
2 (µ̂m, µ)]  D1

✓
1

m

◆2/n

Where D1 = 272
⇣
2 + 1p

3�1

⌘

Proof. We know from Lemma B.9 that when considering k ·k2 the distance for defining covering number, 8"0  1
6 :

N"0(B
n
2 (0, 1/12)) =

 
1
12 + "0

2
"0

2

!n



✓ 1
6 + "0

"0

◆n

 (3"0)�n

and therefore also when "0  1
27 Applying Proposition 15 from Weed and Bach [2019] we get that that since

Supp(µ) ⇢ B
n
2 (0, 1/12) ⇢ B

n
2 (0, 1/12) + B

n
2 (0, ") for any " > 0, if n � 5,

8m � 1,E[W2
2 (µ̂m, µ)]  272

✓
2 +

1
p
3� 1

◆✓
1

m

◆2/n

as well as if n � 3,

8m � 1,E[W1(µ̂m, µ)]  27

✓
2 +

1
p
3� 1

◆✓
1

m

◆1/n

We can prove the same kind of inequality when µ concentrates mass around an approximately low dimensional
set.



Proving Linear Mode Connectivity of Neural Networks via Optimal Transport

Lemma B.13. Let µ 2 P1(Rn) be a measure whose support is included in B
k
2 (0, 1/12) ⇥ B

n�k
2 (0, r) with k � 5.

Then, 8m  (3r)�k
we have

E[W2
2 (µ̂m, µ)]  D1

✓
1

m

◆2/k

where D1 = 272
⇣
2 + 1p

3�1

⌘

Proof. This is the same proof as before, just notice that Supp(µ) ⇢ B
k
2 (0, 1/12)⇥{0}n�k+B

n
2 (0, r) and as before:

N"0(B
k
2 (0, 1/12)⇥ {0}n�k)  N"0(B

k
2 (0, 1/12))  (3"0)�k (7)

if "0  1
27 .

We will now extend our results to unbounded variables very concentrated around bounded sets, beginning with
multivariate normal random variable.

Lemma B.14. Consider a centered multivariate normal distribution µ on Rn
with covariance matrix

Diag(�1, . . . ,�n) where
1
n � �1 � . . . � �n � 0. There exists two universal constants D2, E2 such that

8n � 5, 8m 2 N⇤
, if m � En

2 then,

E[W2
2 (µ̂m, µ)] 

D2

n
log(m)

✓
1

m

◆2/n

In that case,

E[W1(µ̂m, µ)] 

p
D2
p
n

p
log(m)

✓
1

m

◆1/n

Proof. We will use previous Lemma B.12. The problem is that it applies only for a bounded distribution.
Therefore we will have to bound the mass of a multivariate Gaussian outside of a euclidean ball. We will prove
the lemma for �1 = ... = �n = 1

n by noticing that it extends for smaller eigenvalues by rescaling the axis.

Let f 2 (0, 1), c > 0, X ⇠ µ.

Lemma 1 from Weed and Bach [2019] tells us:

P
 
kXk

2
2 � c2

nX

i=1

�i

!
 e�

c2

4

Noticing
Pn

i=1 �i  1 and taking c = 2

r
log
⇣

1
f

⌘
we get that:

P(kXk
2
2 � c2)  f

Using Lemma B.4 with p = 2f we get that with probability at least 1� exp(�2f2m), a fraction at least 1� 2f
of vectors xi lies in B2(0, c). We denote Hf this event such that P(Hf ) � 1� exp(�2f2m).

Further denote I the corresponding set of indices for xi, µ̂m,I =
P

i2I �xi

|I| and µ̂m,Ic =
P

i/2I �xi

|Ic| . Finally for a

Borel set U ⇢ Rn denote µ|U the renormalized restricted measure µ on U : µ|U = 1
µ(U)µ1U

We will now consider two cases:
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1st case We consider the case |I|
m  µ(B(0, c)) and denote Case1 this set.

In that case, we can write using Lemma B.5:

8
>><

>>:

W
2
2 (µ̂m, µ) 

|I|
mW

2
2 (µ̂m,I , µ|B2(0,c)) +

|Ic|
m W

2
2

✓
µ̂m,Ic ,

µ|B2(0,c)� |I|
m µ|B2(0,c)

|Ic|
m

◆

W1(µ̂m, µ) 
|I|
mW1(µ̂m,I , µ|B2(0,c)) +

|Ic|
m W1

✓
µ̂m,Ic ,

µ|B2(0,c)� |I|
m µ|B2(0,c)

|Ic|
m

◆

By previous Lemma B.12, we know the existence of D1 such that if n � 5:

E
⇥
W

2
2 (µ̂m,I , µ|B2(0,c))

⇤
 D1(12c)

2

✓
1

|I|

◆2/n

 (144D1)c
2

 
1

|I|
mm

!2/n

Therefore we get since 2
n  1 and |I|

n  1:

E

|I|

m
W

2
2 (µ̂m,I , µ|B2(0,c))

�
 (144D1)c

2

✓
1

m

◆2/n

We know from Lemma B.11 the existence of a universal constantD0 such that: 8c � 1,E[kXk
2
2|kXk2 � c]  D0c2.

Using a triangular inequality

E
⇥
W

2
2 (µ̂m,Ic , µ|B2(0,c)c)

⇤
 4D0c

2

Finally, conditioned on the event Hf and that we are in Case1, we get that if c � 1:

8
<

:
E[W2

2 (µ̂m, µ)|Hf
T
Case1]  (144D1)c2

�
1
m

�2/n
+ 8fD0c2

c = 2
q
log( 1f )

2nd case We consider the case |I|
m > µ(B2(0, c)) and denote Case2 this set.

In that case, we denote I 0 ⇢ I taken randomly uniformly, such that |I 0| = max
�
k � 1, k

m  µ(B(0, c))
 

and
denote µ̂m,I0 the renormalized empirical measure with points in I 0 and µ̂m,I

T
I0c the renormalized empirical

measure with points in I
T
I 0c.

We can write:

W
2
2 (µ̂m, µ) 

|I 0|

m
W

2
2 (µ̂m,I0 , µ|B2(0,c)) +

|I|� |I 0|

m
W

2
2 (µ̂m,I

T
I0c , µ|B2(0,c)c)

+

✓
µ
�
B2(0, c)

�
�

|I 0|

m

◆
W

2
2 (µ̂m,I

T
I0c , µ|B2(0,c)) +

|Ic|

m
W

2
2

�
µ̂m,Ic , µ|B2(0,c)c

�

Provided fm > 1, we know that |I0|
m � 1� 3f .

We can repeat all the previous arguments and get that if c � 1 and m:

8
<

:
E[W2

2 (µ̂m, µ)|Hf
T
Case2]  (144D1)c2

�
1
m

�2/n
+ 16fD0c2

c = 2
q

log( 1f )

Finally,
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E[W2
2 (µ̂m, µ)]  P(Hf )E[W2

2 (µ̂m, µ)|Hf ] + (1� P(Hf ))E[W2
2 (µ̂m, µ)|Hc

f ]

We can easily bound as before E[W2
2 (µ̂m, µ)|Hc

f ]  4D0c2

which yields finally:

E[W2
2 (µ̂m, µ)]  (144D1)4 log(

1

f
)

✓
1

m

◆2/n

+ 16fD04 log(
1

f
) + 2 exp(�f2m)4D04 log(

1

f
)

Taking f =
�

1
m

�2/n
we get

E[W2
2 (µ̂m, µ)] 

1152D1

n
log(m)

✓
1

m

◆2/n

+D0
128

n
log(m)

✓
1

m

◆2/n

+
64

n
exp(�m1�4/n) log(m)

Note now that there exists a universal constant C > 0 such that 8n � 5, 8m � 1:

exp(�m1�4/n)  exp(�m1/5)  C

✓
1

m

◆2/5

 C

✓
1

m

◆2/n

Finally we get the existence of universal constants D2, E2 such that if
�

1
m

�2/n


1
E2

2
(to ensure c � 1 take for

example E2 = exp( 14 )),

E[W2
2 (µ̂m, µ)] 

D2

n
log(m)

✓
1

m

◆2/n

To prove the second part of the lemma just apply Lemma B.6 and Jensen inequality.

We can finally extend Lemma B.13 to unbounded distributions as we just extended Lemma B.12 to unbounded
distributions.

Lemma B.15. Let �1 � . . . � �n and µ = N (0,Diag((�i)ni=1)), with k � 5. Suppose 1 �
Pk

i=1 �i. Denote

⌘ =
pPn

i=k+1 �i

4
pPk

i=1�i

. We know the existence of two universal constants D0
2, E

0
2 such that if ⌘�k

� m � E0k
2 , then:

E[W2
2 (µ̂m, µ)] 

D0
2

k
log(m)

✓
1

m

◆2/k

]

In that case,

E[W1(µ̂m, µ)] 

p
D0

2
p
k

p
log(m)

✓
1

m

◆1/k

]

Proof. We will follow the same steps as previously. Let X ⇠ µ and denote
¯
X = (X1, . . . , Xk) 2 Rk, X̄ =

(Xk+1, . . . , Xn) 2 Rn�k.

P
 
k
¯
Xk

2
2 � c2

kX

i=1

�i

!
 e�

c2

4

P
 
kX̄k

2
2 � c2

nX

i=k+1

�i

!
 e�

c2

4
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Take c = 2
q
log( 2f ). Then, by the same arguments as before, using Lemma B.4 and union bounds, with

probability at least 1 � 2 exp(�f2m/2) a fraction at least 1 � 2f of points xi are in Bc := Bk(0, c
qPk

i=1 �i) ⇥

Bn�k(0, c
qPn

i=k+1 �i). We denote Hf such an event and I such a set of indices.

By using Lemma B.13, we know that in that case we can bound

E
⇥
W

2
2 (µ̂m,I , µ|Bc

)|Hf

⇤


0

@12c

vuut
kX

i=1

�i

1

A

2

C1

✓
1

m

◆2/k

 (12c)2C1

✓
1

m

◆2/k

if m 

✓
3
pPm

i=k+1 �i

12
pPk

i=1 �i

◆�k

where we have used
Pk

i=1 �i  1.

Moreover, we know that

E

2

4kXk
2
2|X /2 B

k
2 (0, c

vuut
kX

i=1

�i)⇥ B
n�k
2 (0, c

vuut
nX

i=k+1

�i)

3

5  E

2

4k
¯
Xk

2
2|¯
X /2 B

k
2 (0, c

vuut
kX

i=1

�i)

3

5

+ E

2

4kX̄k
2
2|X̄ /2 B

n�k
2 (0, c

vuut
nX

i=k+1

�i)

3

5

 D0c
2

kX

i=1

�i +D0c
2

nX

i=k+1

�i

 2D0c
2

kX

i=1

�i

 2D0c
2

We just need to di↵erentiate the same two cases as in the proof of Lemma B.14 to get that finally, if m ✓pPm
i=k+1 �i

4
pPk

i=1 �i

◆�k

we can bound as before, with c = 2
q

log( 2f ):

E[W2
2 (µ̂m, µ)]  (12c)2C1

✓
1

m

◆2/k

+ 16f ⇤ 4C0c
2 + 2 exp(�

f2m

2
) ⇤ 4 ⇤ 2C0c

2

Taking f =
�

1
m

�2/k
, we see as before the existence of E0

2, D
0
2 such that if E0k

2  m  ⌘�k then,

E[W2
2 (µ̂m, µ)] 

D0
2

k
log(m)

✓
1

m

◆2/k

We choose E0
2 =

p

2e�1/4 such that c > 1 , 2
q

log( 2f ) > 1 , 2
r
log( 2

( 1
m )2/k

) > 1 , m >
p

2e�1/4
k

For the second part of the lemma, apply Lemma B.6 and Jensen inequality.

B.6 Proof of Lemma 4.1
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Lemma 4.1. Let ` 2 {0, · · · , L� 1} and suppose Property 1 to hold at layer ` and Assumptions 3 to 5 to

hold, then Property 1 still holds at the next layer with m̃`+1 given in Assumption 3 and

¯
E`+1 = C2¯

E`

E`+1 = 2C2E` + 2C1m̃`¯
E`

Proof. We know from Assumption 3 the existence of a random empirical measure with m̃l+1 points µ̂m̃l+1 such

that E[W2
2 (µ̂

I`

A , µ̂I`

m̃l+1
)]  C1. Therefore by using Lemma B.3 and a carefully chosen permutation, we can

consider the (random) matrix Wm̃l+1 associated to W `+1
A such that E[kW I`

m̃l+1
�W I`

A k
2
2]  C1m`+1. Note that

since Wm̃`+1 comes from an empirical measure with only m̃`+1 points one can denote I
`+1 = {I`+1

1 , . . . , I`+1
m̃`+1

}

the (random) equi-partition of [m`+1] delimiting its equal rows. In the same way, since A and B have the
same weights distribution, we can find a permutation ⇧`+1 of the layer ` + 1 of network B such that denoting
W̃ `+1

B = ⇧`+1W
`+1
B ⇧T

` and taking expectations over the choice of the weights matrices, we have E[kW̃ `+1
B �

Wm̃`+1k
2
2]  m`+1C1. Consider W

`+1
Mt

= tW `+1
A + (1� t)W̃ `+1

B and denote
¯
�`+1(x) = �(Wm̃`+1

¯
�`(x)),�`+1

A (x) =

�(W `+1
A �`

A(x)),�
`+1
B (x) = �(W `+1

B �`
B(x)),�

`+1
Mt

(x) = �(W `+1
Mt

�`
Mt

(x)). It is clear that 8k 2 [m̃`+1], 8i, j 2

I`+1
k ,

¯
�`+1
i (x) =

¯
�`+1
j (x) by definition of the choice of the equi-partition I

`+1.

We will finally denote
¯
�0`+1(x) 2 Rm̃`+1 ,

¯
�0`(x) 2 Rm̃` the vectors

¯
�`+1(x),

¯
�`(x) where we have kept only one

index in each of the elements of the partitions respectively I
`+1, I`.

Moreover using that the non-linearity is pointwise 1-Lipschitz and �(0) = 0,

E[k
¯
�`+1(x)k22]  EP,Q[E[kWm̃`+1

¯
�`(x)k22|

¯
�`(x)]]  EP,Q[C2

m`+1

m`
k
¯
�`(x)k22]  m`+1C2¯

E`

which yields
¯
E`+1 = C2¯

E` where we have used Assumption 4.

Then

EP,Q[k�
`+1
A (x)�

¯
�`+1(x)k22]  EP,Q[kW

`+1
A �`

A(x)�Wm̃`+1
¯
�`(x)k22

 2EP,Q[kW
`+1
A (�`

A(x)�
¯
�`(x))k22 + k(W `+1

A �Wm̃`+1)
¯
�`
k
2
2]

 2m`+1C2E` + 2EP,Q[k(W
I`

A �W I`

m̃ )
¯
�0`

k
2
2]

 2m`+1C2E` + 2EP,Q[k(W
I`
A �W I`

m̃`+1
)k22]EP,Qk

¯
�0`

k
2
2]

 2m`+1C2E` + 2m`+1C1
m̃`

m`
EP,Qk

¯
�`(x)k22

 2m`+1C2E` + 2m`+1C1m̃`¯
E`

where we have used (W `+1
A �Wm̃`+1)

¯
�`(x) = (W I`

A �W I`

m̃`+1
)
¯
�0` and k

¯
�0`(x)k22 = m̃`

m`
k
¯
�`(x)k22.

We do the same computations for EP,Q[k�
`+1
B (x)�

¯
�`+1(x)k22].

Finally,

EP,Q[k�
`+1
Mt

(x)�
¯
�`+1(x)k22]  tEP,Q[kW

`+1
A �`

Mt
(x)�Wm̃`+1

¯
�`(x)k22] + (1� t)EP,Q[kW

`+1
B �Mt(x)�Wm̃`+1

¯
�`(x)k22]

 2C2E`m`+1 + 2C1m̃`¯
E`m`+1

where we have used convexity for the first inequality and then the same proof as above for both terms. This
yields E`+1 = 2C2E` + 2C1m̃`¯

E`.
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B.7 Proof of Lemma 5.1

Lemma B.16 (Version of Assumption 3 for normal distribution). Consider µ` 2 P1(Rm`�1) a multivariate

Gaussian distribution with covariance matrix ⌃` = Diag(�`
1Ip`�1 , . . . ,�

`
m̃`

Ip`�1) where p`�1 = m`�1

m̃`�1
. Suppose

that
1

m`�1
� �`

1,� . . . � �`
m̃`�1

with m̃`�1 � 5. Then, there exists two universal constants D3, E3 such that

8m̃` � E
m̃`�1

3 there exists a random empirical measure µ̂m̃ with only m̃` points such that 8m` � m̃`

E[W2
2 (µ̂

I`�1

A , µ̂I`�1

m̃`
)] 

D3

m̃`�1
log(m̃`)

✓
1

m̃`

◆2/m̃`�1

In that case:

E[W1(µ̂
I`�1

A , µ̂I`�1

m̃`
)] 

p
D3

p
m̃`�1

p
log(m̃`)

✓
1

m̃`

◆1/m̃`�1

Proof. We know that the distribution on the rows of W I`�1

A in Rm̃`�1 is multivariate Gaussian with covariance

matrix
Im̃`�1

m̃`�1
since each parameters is obtained by summing the p`�1 corresponding parameters of the row of

W `
A which has covariance matrix

Im`�1

m`�1
by hypothesis. Therefore using Lemma B.14, we know the existence of

constants D2, E2 such that if m` � E
m̃`�1

2 , E[W2
2 (µ̂

I`�1

A , µI`�1

` )]  D2
m̃`�1

log(m`)
⇣

1
m`

⌘2/m̃`�1

.

Therefore considering µ̂m̃` with the same law but only a fixed number m̃` of elements, we get for m` � m̃`:

E[W2
2 (µ̂

I`�1

A , µI`�1

` )] 
D2

m̃`�1
log(m`)

✓
1

m`

◆2/m̃`�1


D2

m̃`�1
log(m̃`)

✓
1

m̃`

◆2/m̃`�1

E[W2
2 (µ̂

I`�1

m̃`
, µI`�1

` )] 
D2

m̃`�1
log(m̃`)

✓
1

m̃`

◆2/m̃`�1

Indeed, the first inequality can be obtained by noticing that
⇣
x 7! log(x)

�
1
x

�2/m̃`�1

⌘
is decreasing for x �

p
e
m̃`�1

and hence one can just increase the constant E3 considered: taking E3 = max{
p
e, E2} and D3 = 4D2, by

triangular inequality,

E[W2
2 (µ̂

I`�1

A , µ̂I`�1

m̃`
)]  2

⇣
E[W2

2 (µ̂
I`�1

A , µI`�1

` )] + E[W2
2 (µ̂

I`�1

m̃`
, µI`�1

` )]
⌘


D3

m̃`�1
log(m̃`)

✓
1

m̃`

◆2/m̃`�1

For the second part of the lemma, just apply Lemma B.6 and Jensen inequality.

Lemma B.17 (Version of Assumption 4 for normal variable). 8X 2 Rm`�1 we have:

E[kW `
AXk

2
2] 

m`

m`�1
kXk

2
2

E[kWm̃`Xk
2
2] 

m`

m`�1
kXk

2
2

Proof. First, given X 2 Rm`�1 , 8i 2 [m`], (W `
AX)i =

Pm`�1

j=1 (W `
A)i,jXj where (W `

A)i,j are iid following

N (0, 1
m`�1

). Therefore, 8i 2 [m`],E[(W `
AX)2i ] =

1
m`�1

kXk
2
2. Finally,

E[kW `
AXk

2
2] =

mX̀

i=1

E[(W `
AX)2i ] =

m`

m`�1
kXk

2
2
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Since the weight matrix associated to µ̂m̃` denoted W 0
m̃`

2 Mm̃`,m`�1(R) has only m̃` raws, we have expanded
it to a matrix Wm̃` 2 Mm`,m`�1(R) by cloning raws in the same element of the partition I

` given by the pairing

between µ̂I`

A , µ̂I`

m̃`�1
that minimizes the Wasserstein distance. Since W 0

m̃`
2 Mm̃`,m`�1(R) built in the proof of

Lemma B.16 has the same law on raws µ` as W `
A,W

`
B but with only m̃` raws, we can use what preceeds to get:

8X 2 Rm`�1 ,E[kW 0
m̃`

Xk
2
2] 

m̃`

m`�1
kXk

2
2

Noting that kWm̃`Xk
2
2 = m`

m̃`
kW 0

m̃`
Xk

2
2, we get

8X 2 Rm`�1 ,E[kWm̃`Xk
2
2] 

m`

m`�1
kXk

2
2

which concludes the proof of the lemma.

Having the two assumptions we need, we can prove Lemma 5.1.

We recall it here:

Lemma 5.1. Under normal initialization of the weights, given " > 0, if m0 � 5, there exists minimal

widths m̃1, . . . , m̃L such that if m1 � m̃1, . . . ,mL � m̃L, Property 1 is verified at the last hidden layer L
for

¯
EL = 1, EL = "2. Moreover, 8` 2 [L], 9T` which does only depend on L, ` such that one can define

recursively m̃` as m̃0 = m0 and

m̃` = Õ

✓
T`

"

◆m̃`�1

Proof. From Ex⇠P [kxk22]  m0 we get immediately Property 1 at the input layer with
¯
E0 = 1, E0 = 0.

By the recursive relation of Lemma 4.1 and using Lemmas B.16 and B.17, we get Property 1 at each hidden
layer ` 2 [L] with m̃` to be chosen later with m` � m̃` � min{5, E

m̃l�1

3 } and:

8
<

:
¯
E` = 1

E` =
P`

i=1 2
`+1�iD3 log(m̃i)

⇣
1
m̃i

⌘2/m̃i�1

¯
Ei�1

Therefore, just take 8i 2 [L], log(m̃i)
⇣

1
m̃i

⌘ 2
m̃i�1

 "2 1
2L+1�iL , i.e.

m̃i = Õ

✓
Ti

"

◆m̃i�1

where Ti =
p

2L+1�iL and the notation Õ(·) hides logarithmic terms.

In that case,

(
¯
EL = 1

EL = "2

B.8 Proof of Theorem 5.2

We prove here Theorem 5.2 that we recall:
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Under normal initialization of the weights, for m1 � m̃1, . . . ,mL � m̃L as defined in Lemma 5.1, m0 �

5, and under Assumption 7 we know that 8t 2 [0, 1], with Q-probability at least 1 � �Q, there exists
permutations of hidden layers 1, . . . , L of network B that are independent of t, such that:

EP

h
L

⇣
f̂Mt(x), y

⌘i
 tEP

h
L

⇣
f̂A(x), y

⌘i
+ (1� t)EP

h
L

⇣
f̂B(x), y

⌘i
+

4
p
mL+1

�2Q
"

Proof. Under assumptions of Lemma 5.1, given A,B, we know the existence of (random) permutations of the
hidden layers ⇧1, . . . ,⇧L such that for 1  `  L, denoting Mt the mean network of weight matrix at layer `:
tW `

A + (1� t)⇧`W `
B⇧

T
`�1 we know the existence of

¯
�L : Rm0 ! RmL such that:

EP,Q[k�
L
Mt

(x)� �L
A(x)k

2
2]  "2mL

EP,Q[k�
L
Mt

(x)� �L
B(x)k

2
2]  "2mL

Then, by convexity, we get at the last layer:

EP,Q[k
�
tWL+1

A + (1� t)WL+1
B ⇧T

L

�
]�L

Mt
(x)� tWL+1

A �L
A(x)� (1� t)WL+1

B ⇧T
L�

L
B(x)k

2
2]

 tE[kWL+1
A (�L

Mt
(x)� �L

A(x))k
2
2]

+ (1� t)E[kWL+1
B ⇧T

L(�
L
Mt

(x)� �L
B(x))k

2
2]]

 "2mL+1

Finally, by Jensen inequality,

E[k
�
tWL+1

A + (1� t)WL+1
B ⇧T

L

�
]�L

Mt
(x)� tWL+1

A �L
A(x)� (1� t)WL+1

B ⇧T
L�

L
B(x)k2] 

p
mL+1"

Therefore, we get by applying two successive Markov lemma, that with probability at least 1��Q over the choice
of the networks A,B:

Ex⇠P [k
�
tWL+1

A + (1� t)WL+1
B ⇧T

L

�
]�L

Mt
(x)� tWL+1

A �L
A(x)� (1� t)WL+1

B ⇧T
L�

L
B(x)k2] 

p
mL+1"
⇣

�Q
2

⌘2

Indeed remember that we have introduced an intermediate random measure µ̂m̃` which the permutations depend
on and that intervenes in the expectation.

Using convexity of the loss and 1-Lipschitzness we get for all t 2 [0, 1] that with probability at least 1� �Q over
the choice of the networks A,B:

Ex⇠P [L(fMt(x), y)]  tE[L(fA(x), y)] + (1� t)E[L(fB(x), y)] +
4
p
mL+1"

�2Q

B.9 Approximately low dimensional underlying weights distribution

B.9.1 Motivation on the structure of the covariance matrix

Remind that we are given a partition of the input layer of the weights [m`�1] in m̃`�1 di↵erent groups of the
same size I

`�1 = {I`�1
1 , ..., I`�1

m̃`�1
}. Suppose we have already permuted the first layer of network A and B we

can suppose that I`�1
1 = {1, . . . , p`�1}, . . . where p`�1 := m`�1

m̃`�1
. We want a covariance matrix that respects the
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fact that incoming neurons in a given group behave the same. Therefore the covariance matrix must be invariant
under the permutations of indices inside a set of the equi-partition. We will write the Kroenecker product ⌦.

Lemma B.18. To respect symmetries of the incoming layer, the covariance matrix of weights is necessarily of

the form

⌃` = D` ⌦ Ip`�1 +B` ⌦ 1p`�1

where D` 2 Mm̃`�1(R) is diagonal, B` 2 Sm̃`�1(R) is symmetric.

Proof. Denoting the matrix of covariances by blocks like:

⌃` =

0

BB@

A11 A12 ... A1m̃`�1

A21 A22 ... A2m̃`�1

... ... ... ...
Am̃`�11 Am̃`�12 ... Am̃`�1m̃`�1

1

CCA

we get the relation 8⇧1, ...,⇧m̃`�1 2 Sp`�1 permutation matrices, denoting ⇧ = Diag(⇧1, . . . ,⇧m̃`�1)

⌃` = E
⇥
XXT

⇤
= E

⇥
(⇧X)(⇧X)T

⇤
= ⇧⌃⇧T = Diag(⇧1, ...,⇧m̃`�1)⌃Diag(⇧T

1 , ...,⇧
T
m̃`�1

)

Evaluating this relation for any ⇧1,⇧2, ...,⇧m̃`�1 we get 8⇧1 2 Sp`�1 ,⇧1A11⇧T
1 = A11 and therefore A11 is of

the form d11Ip`�1 + b111p`�1 .

We do the same for Aii, i � 2.

Moreover we get for A12 that:

8⇧1,⇧2 2 Sp`�1 ,⇧1A12⇧
T
2 = A12

which brings that A12 is of the form b121p`�1 . We do the same for all Aij where i 6= j. This concludes the proof.

Finally by summing over columns inside the partition we get:

⌃I`�1

` = p`�1D` + p2`�1B`

The model that we chose in Section 5.4 is a particular case that corresponds to choosing D` = Diag(�`
1, ...,�

`
m̃`�1

)
and B` = 0. This is not the most general since it implies independence between weights coming from di↵erent
groups but is su�cient to show the influence of low feature dimensionality on LMC e�ciency.

B.9.2 Non diagonal model

A natural direction is to consider the case where the matrix B` is non zero. Since ⌃I`�1

` is symmetric positive,
one can orthogonally change the basis where it becomes diagonal. The arguments to prove Assumption 3 remains
unchanged since they rely exclusively on the eigenvalues of ⌃I`�1

` .

However one important point to check, is about Assumption 4. Indeed having covariance between weights of
a given block implies that the errors at all neurons of a given layer may sum up. Take for example X =
(1, . . . , 1)T , D` = 0, B` = 1m̃`�1 . In the general case, the constant C2 in Assumption 4 will be a depending on the
matrix B` and therefore potentially on the dimension. We propose a way to address this issue in Appendix B.12.

B.10 Proof of Theorem 5.4

Lemma B.19 (Version of Assumption 3 for approximately low dimensional distribution). Denote µ` the law of

a multivariate normal distribution of covariance matrix Diag(�`
1Ip`�1 , . . . ,�

`
m̃`�1

Ip`�1) where p`�1 = m`�1

m̃`�1
and

1
k`�1

� �`
1 . . . � �`

m̃`�1
. Let k`�1 � 5 and denote ⌘ :=

qPm
i=k`�1+1 �`

i

4

qPk`�1
i=1 �`

i

.
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There exists two universal constants D0
3, E

0
3 such that 8m̃` � 1 such that E

0k`�1

3  m̃`  ⌘�k`�1 , there exists a

random empirical measure µ̂m̃` with only m̃` points such that 8m` � 1 such that m̃`  m`  ⌘�k`�1 we have:

E[W2
2 (µ̂

I`�1

A , µ̂I`�1

m̃`
)] 

D0
3

k`�1
log(m̃`)

✓
1

m̃`

◆2/k`�1

Proof. We do exactly the same as for the proof of Lemma B.16, i.e. a triangular inequality but now we use rate
of convergence of empirical measures in Wasserstein distance with approximately low dimensional support as
expressed in Lemma B.15.

Lemma B.20 (Version of Assumption 4 for approximately low dimensional distribution). Denote µ` the law of

a multivariate normal distribution of covariance matrix Diag(�`
1Ip`�1 , . . . ,�

`
m̃`�1

Ip`�1) where p`�1 = m`�1

m̃`�1
and

1
k`�1

� �`
1 . . . � �`

m̃`�1
. 8X 2 Rm`�1 we have:

E[kW `
AXk

2
2] 

m̃`�1

k`�1
kXk

2
2

E[kW `
m̃`

Xk
2
2] 

m̃`�1

k`�1
kXk

2
2

Proof. Just notice that �1 
1

k`�1
and repeat the same steps as in the proof of Lemma B.17.

We will now re-state and prove Theorem 5.4:

Theorem B.21. Under Assumptions 7 and 8, given " > 0, if em0 � 5 there exists minimal widths

m̃1, . . . , m̃L such that if ⌘�k0 � m1 � m̃1, . . . , ⌘�kL�1 � mL � m̃L, Property 1 is verified at the last hidden

layer L for
¯
EL = 1, EL = "2. Moreover, 8` 2 [L], 9T 0

` which does only depend on L, e, `, such that one can

define recursively m̃` as

m̃` = Õ

✓
T 0
`

"

◆k`�1

= Õ

✓
T 0
`

"

◆em̃`�1

where m̃0 = m0. Moreover 8t 2 [0, 1], with Q-probability at least 1��Q, there exists permutations of hidden

layers 1, . . . , L of network B s.t.,

EP

h
L

⇣
f̂Mt(x), y

⌘i
 tEP

h
L

⇣
f̂A(x), y

⌘i
+ (1� t)EP

h
L

⇣
f̂B(x), y

⌘i
+

4
p
mL+1p
e�2Q

"

Proof. We just need to prove the first part of the theorem as proving the similarity of loss is exactly the same
as in the proof of Theorem 5.2 when we have proved that Property 1 holds at layer L with EL = "2. The only
change comes from the constant C2 in Lemma B.20 which is not 1 anymore but 1

e , hence the additional factor e.

To prove Property 1 at layer L with EL = "2 we just combine L di↵erent times the two previous lemma
Lemmas B.19 and B.20 and Lemma 4.1.

Lemma B.20 brings that at layer ` the constant C2 is m̃`�1

k`�1


1
e by Assumption 8

Moreover, Lemma B.19 brings that at each layer `, C1 = D0
3

k`�1
log(m̃`)

⇣
1
m̃`

⌘2/k`�1

It brings:

8
<

:
¯
Ei+1 = 1

e ¯
Ei

Ei+1 = 2
eEi + 2D0

3
ki

log(m̃i+1)
⇣

1
m̃i+1

⌘2/ki

m̃i¯
Ei

From there we see that if we have chosen at each layer
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D0
3 log(m̃i+1)

✓
1

m̃i+1

◆2/ki

=

q
L2L�i+1

eL

"2

if

m̃i = Õ

✓
T 0
i

"

◆em̃i�1

where Õ(·) hides logarithmic terms and we define T 0
i =

q
D0

3e
L

L2L�i+1

B.11 Proof of Theorem 5.3

Theorem 5.3. Let n � 1, x ⇠ P 2 P1(Rn) and µ 2 P(Rn) such that
dµ

dLeb  F1. Suppose ⌃ = E[xxT ] is
full rank n. Let m � 1 and WA,WB 2 Mm,n(R) whose rows are drawn i.i.d. from µ. Then, there exists

F0 such that

EWA,WB [ min
⇧2Sm

EP k(WA �⇧WB)xk
2
2] � F0

✓
1

m

◆2/n

Proof. First since ⌃ is full rank we see that when writing ⌃ = ODOT where OOT = Iñ, the problem is equivalent
to consider the matrices WAO,WBO and ⌃ = D. In that case, the raws of WA,WB are still i.i.d. and follow the
same law as µ modulo a non-degenerated dilatation. We can then still assume dµ

dLeb  F1 for a certain constant
F1.

Let ⌧ = 1
2 . 8S ⇢ Rn a Borel set such that µ(S) � 1 � ⌧ , we know that Leb(S) � 1�⌧

F1
. In that case, applying

Lemma B.10 we get N"(S) �
�
1
"

�n 1�⌧
F1

Leb(B2(0,1)
. Denote F2 =

✓
1�⌧
F1

Leb(B2(0,")

◆1/n

. Using notations of Weed and Bach

[2019] we get N"(µ, ⌧) �
�
F2
"

�n
.

Applying Proposition 6 from Weed and Bach [2019] we get that

W
2
2 (µ̂A, µ) � F3

✓
1

m

◆2/n

Finally noticing that EWB [µ̂B ] = µ and applying Lemma B.2, we get that:

EWA,WB [W
2
2 (µ̂A, µ̂B)] � EWA [W

2
2 (µ̂A,EWB [µ̂B ])] � F3

✓
1

m

◆2/n

Finally, remark that sinc ⌃ = D = Diag(�1, . . . ,�ñ) and noting �(⌃) = min{di, 1  i  n} > 0 the smallest
eigenvalue of ⌃,

EWA,WB [ min
⇧2Sm

Ex⇠P k(WA �⇧WB)xk
2
2]  EWA,WB [ min

⇧2Sm

Ex⇠P tr((WA �⇧WB)
T (WA �⇧WB)D)]

� �(⌃)EWA,WB [ min
⇧2Sm

Ex⇠P k(WA �⇧WB)k
2
2]

� �(⌃)F3

✓
1

m

◆2/n
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B.12 Discussion about a model with no growth in the width needed

For proving Theorem 5.4, we have used constants C1, C2 in Lemma 4.1 given by Lemmas B.19 and B.20. However
we would like to highlight that Lemma B.20 is very sub-optimal, though it can not really be improved in the
general case. Indeed, 1

e` grows to infinity while E[k�`(x)k22] is supposed to remain bounded for 1  `. Therefore
from now on suppose that we have the following version of Lemma B.22:

Lemma B.22 (Extending Assumption 4 for approximately low dimensional distribution). Denote µ` the law of

a multivariate normal distribution of covariance matrix Diag(�`
1Ip`�1 , . . . ,�

`
m̃`�1

Ip`�1) where p`�1 = m`�1

m̃`�1
and

1
k`�1

� �1
1 . . . � �`

m̃`�1
. Suppose we have:

E[kWA(�
`�1
B (x)� �`�1

A (x)k22] 
m`

m`�1
E[k�`�1

B (x)� �`�1
A (x)]k22

Notice that it is equivalent to making an assumption on the distribution of �`�1
B (x) � �`�1

A (x) which must not
put too much mass on the worst case coordinates (�`

i for i small).

In that case, adapting the proof as in Theorem 5.4, we could get an inequality on m̃i of the form

m̃i = Õ

✓
T 00
i

"

◆ki�1

where T 00
i is independent of e which lead to controlled bounds as L ! 1 (without the exponent em̃i as in

Theorem 5.4).

B.13 Extension of Theorems 5.2 and 5.4 to sub-Gaussian variables

Still under the setting of Assumption 6, suppose now that at a given layer `, all the parameters of W `
A are

still drawn independently but no longer from N (0, 1
m`�1

) Instead we assume that the underlying distribution µ`

verifies for each layer ` 2 [L+ 1]: if X ⇠ µ` then, 8j 6= k 2 [ml�1], Xj qXk. Moreover 8i 2 [m̃`�1], 8j, k 2 I`�1
i ,

E[X2
j ] = E[X2

k ] = �`
i

Finally suppose the variables are sub-Gaussian i.e., 9K > 0, 8i 2 [m̃`�1], 8j 2 I`�1
i , 8c > 0,

P(|Xj | � c)  2 exp(�
c2

K�`
i

)

Further suppose that we are in the setting of Theorem 5.2 (The case of Theorem 5.4 is treated similarly):
1

m`�1
� �`

1 � . . .�m̃`
`�1

.

It is clear that Lemma B.17 is still valid for a constant C2 = 1, the proof being exactly the same.

We therefore just need to prove Lemma B.16 for C1 to be determined. To prove Lemma B.16, one just needs an
equivalent of Lemma B.14 for sub-Gaussian variables. To prove Lemma B.14, recall that we have used the fact
that a normal distribution doesn’t put to much mass outside of a ball of radius c when c grows logarithmically.

More precisely we have used the property, that if X ⇠ N (0,
Iml�1

ml�1
), then:

8c > 1,P(kXk
2
2 � c2)  e�

c2

4

In our case, for a sub-Gaussian distribution, we know the existence of a constant K such that 8c > 0:

P(|Xj | � c)  2 exp(�
c2

K�`
i

)
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Therefore, by plugging this into the proof, and scaling parameter c by
p
K, we get exactly the same version of

Lemma B.16 for sub-Gaussian variable, with di↵erent constants scaled by a factor
p
K.

Propagating Property 1 with the recurrence formula of Lemma 4.1 we get LMC for networks with sub-Gaussian
distributions in the same form as for normal variables.

Remark Finally notice that results for sub-Gaussian variables can be extended in the same way to variables
whose tail decreses su�ciently fast (exponentially, polynomially, etc...). The assymptotics of the tail will a↵ect
the convergence rate in Wasserstein of the corresponding empirical measure.

B.14 Link with dropout stability

We relate now our previous study to a line of work exploring mode connectivity through dropout stability.

Kuditipudi et al. [2019] define "-dropout stable networks, as networks f̂(·; ✓) as defined in Equation (1) for which
there exists in each layer ` 2 [L], a subset of at most m`

2 of neurons (i.e., rows of the weight matrix W `) such that
after renormalizing each layer, the expected loss of the new network increases by no more than " with respect
to the original loss. Kuditipudi et al. [2019] shows that two "-dropout stable networks are mode connected
(with error barrier height ") and Shevchenko and Mondelli [2020] uses this result to show that two wide enough
two-layer neural networks trained with SGD are mode connected (where the continuous path may be non-linear).

Recall that we have shown in Section 3 the stronger statements that two such networks are in the same local
minima modulo permutation symmetries. However, note that Shevchenko and Mondelli [2020] don’t allow
permutations of neurons). We discuss here how to embrace in the same view our framework with dropout
stability results, showing how networks with independent neuron’s weights become dropout stable in the same
asymptotics of large width than the condition of Lemma 5.1.

Consider the simplified setting of a 1-hidden layer neural network with 1-Lipschitz activation where the weights
of the second layer are fixed to 1

N : f̂(x; ✓) = 1
N

PN
i=1 �(wix) where wi = Wi: 2 Rd is the i� th row of the weight

matrix W . Suppose that wi are sampled independently from a sub-Gaussian distribution and the data follows
a distribution (x, y) ⇠ P with Supp(P ) ⇢ B2(0, 1). Denote A =

⇥
N
2

⇤
. Dropout stability can be quantified by

controlling the error between the correctly renormalized network with weights in A and the original one,

E
"�����

2

N

X

i2A
�(wix)�

1

N

NX

i=1

�(wix)

�����

#
 W1(W

A,WAc

) (8)

where we have denotedWA (respectivelyWAc

) the matrixW where we have kept only the rows inA (respectively
(Ac)). The right hand term can be connected to convergence rates of empirical measure (Lemma B.16 and the
extension to sub-Gaussian distribution discussed in Appendix B.13):

W1(W
A,WAc

) ⇡

✓
1

N

◆1/d

In a nutshell, showing that previous Equation (8) is tight would provide a formal connection between dropout
stability and our results. It is an interesting direction for future work and note that it has strong connections
with the dual expression of the Wasserstein 1 distance.

In that case, the bound on the dropout error evolves as
�

1
N

�1/d
, as for the linear mode connectivity error. Hence

networks become dropout stable in the same asymptotics as to exhibit linear mode connectivity.

This is consistent with the idea that LMC requires the information to be distributed evenly among neurons
without any neuron responsible for the particular behavior of one layer. This is similar to the intuitive requirement
for dropout stability.
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C PROOF OF LMC FOR TWO-LAYER NEURAL NETWORKS IN THE
MEAN FIELD REGIME

C.1 Description of the mean field regime

When training a two-layer neural network with fixed input and output dimensions but with a very wide hidden
layer using SGD, the parameters of each neuron can be seen as particles evolving independently one from each
other: the dynamic of each neuron’s weights depends only on the average distribution of the weights and itself.

The main object of study is therefore the empirical distribution of the neurons weights in the intermediate layer

after k Stochastic Gradient Descent (SGD) steps. We denote it ⇢(N)
k = 1

N

PN
i=1 �✓k

i
where ✓ki = (wk

i , a
k
i ) 2 Rd+1.

Multiple works [Chizat and Bach, 2018, Mei et al., 2018, 2019] show that if the hidden layer’s width N is big,

the learning rate sk is small and setting T =
Pk

i=1 si a time re-normalization after k steps, then ⇢(N)
k can be

well approximated by ⇢t which follows the following partial di↵erential equation (PDE):

@t⇢t = 2⇠(t)r✓ · (⇢tr✓ (✓; ⇢t)),  (✓; ⇢t) = V (✓) +

Z
U(✓, ✓̃)⇢t(d✓̃)

V (✓) = �E[y�⇤(x; ✓)], U(✓1, ✓2) = E[�⇤(x; ✓1)�⇤(x; ✓2)]

Here ⇠(t) represent a scaling of the learning rate where sk = "⇠(k"). U(✓1, ✓2) represents a correlation between
neurons. V (✓) is an energy quantifying the alignment of a neuron function with the data. In the following, as
in Mei et al. [2019] we will work with ⇠ = 1

2 a constant step size function. As in Mei et al. [2019], we highlight
that the proof remains valid under Assumption 1.

When considering noisy SGD, the limit PDE becomes:

@t⇢t = 2⇠(t)r✓ · (⇢t(✓)r✓ �(✓; ⇢t)) + 2⇠(t)⌧d�1�✓⇢t

 �(✓; ⇢) =  (✓; ⇢) +
�

2
k✓k22

The crucial point about the mean field view is to show that the empirical distribution of parameters is well
enough approximated by ⇢t. Then the study of the neural network can be reduced to the study of the partial
di↵erential equation. For example global convergence of the test loss results can be deduced as in Chizat and
Bach [2018]. This view is also convenient to get insights of typical behaviours of the dynamics while smoothing
the e↵ects of local minima [Mei et al., 2019]. In our case, the mean field view allows us to use convergence results
in Wasserstein distance of empirical measures towards the underlying distribution. We can then show Linear
Mode Connectivity for two-layer neural networks independently trained in the mean field regime.

C.2 Proving LMC for noiseless regularization-free SGD

To prove our results we have to show that the empirical distribution of weights can be well approximated by the
solution of the mean field PDE. To achieve this, Mei et al. [2019] introduce four intermediate dynamics that stay
close one of each other.

First note that our Assumption 1 implies Assumptions 1 to 4 of Mei et al. [2019]. Especially the non-linearity
being Lipschitz implies its gradient distribution on the data is bounded and hence sub-Gaussian.

C.2.1 Intermediate dynamics

Mei et al. [2019] introduce 4 di↵erent intermediate dynamics between the empirical distribution of weights
optimized by SGD and the solution of the PDE that we recall here:

Nonlinear dynamics

Let consider ✓̄ti with initialization ✓̄0i ⇠ ⇢0 i.i.d. and which follows the dynamics
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✓̄ti = ✓̄0i + 2

Z t

0
⇠(s)G(✓̄si ; ⇢s)ds

or equivalently

d

dt
✓̄ti = �2⇠(t)


rV (✓̄ti) +

Z
r1U(✓̄ti , ✓)⇢t(d✓)

�

where G(✓; ⇢) = �r (✓; ⇢). An important fact is that ✓̄ti is random because of the random initializa-
tion. Moreover its law at time t is ⇢t. It corresponds to the evolution of particles under a velocity field
�2⇠(t)

⇥
rV (✓̄ti) +

R
r1U(✓̄ti , ✓)⇢t(d✓)

⇤
which depends only on the position of the optimized particle and the

overall distribution of all particles.

Particle Dynamics

Let
¯
✓ti have the same initialization as the nonlinear dynamics

¯
✓0i = ✓̄0i , and

¯
⇢(N)
t = 1

N

PN
i=1 �

¯
✓t
i
denote the

empirical distribution of
¯
✓ti . Then the particle dynamics is given by:

¯
✓ti = ¯

✓0i + 2

Z t

0
⇠(s)G(

¯
✓si ;

¯
⇢(N)
s )ds

or equivalently

d

dt¯
✓ti = �2⇠(t)

2

4rV (
¯
✓ti) +

1

N

NX

j=1

r1U(
¯
✓ti ,¯

✓tj)

3

5

Gradient descent dynamics

Let ✓̃ki with initialization ✓̃0i = ✓̄0i following the dynamics:

✓̃ki = ✓̃0i + 2"
k�1X

l=0

⇠(l")G(✓̃li; ⇢̃
(N)
l )

or equivalently:

✓̃k+1
i = ✓̃ki � 2sk

2

4rV (✓̃ki ) +
1

N

NX

j=1

r1U(✓̃ki , ✓̃
k
j )

3

5

Stochastic Gradient Descent Dynamics

Consider ✓ki with initialization ✓0i = ✓̄0i following the dynamics:

✓ki = ✓0i + 2"
k�1X

l=0

⇠(l")Fi(✓
l; zl+1)

or equivalently

✓k+1
i = ✓ki � 2skFi(✓

k; zk+1)

where Fi(✓k; zk+1) = (yk+1 � ŷk+1)r✓�⇤(xk+1; ✓ki ), zk = (xk, yk) and ŷk+1 = 1
N

PN
j=1 �⇤(xk+1; ✓kj ).

One can use Proposition 26,28,29 from Mei et al. [2019] to show the following lemma:
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Lemma C.1. Consider a two-layer neural network trained with noiseless regularization-free SGD for an

underlying time T . Then under Assumption 1, there exists constants K and K0 such that, if " 

min
n

1
K0eK0(1+T )3

, 1
K0(d+log(N)+z2)eK0(1+T )3

o
, then with probability at least 1� 3e�z2

we have:

max
k2[0,T/"]

TN
max
i2[N ]

k✓ki � ✓̄k"i k2  KeK(1+T )3 1
p
N

[
p

log(NT ) + z]

+KeK(1+T )2T "+KeK(1+T )2Tp"[
p

d+ log(N) + z]

Proof. This is direct application from Proposition 26,28,29 from Mei et al. [2019] by doing two union bounds
and two triangular inequalities.

We moreover recall that as highlighted in Mei et al. [2019], {✓̄ti , 1  i  N} are independent from each other and
each follows the distribution ⇢t when initialized i.i.d. as ⇢0. Therefore, when considering two two-layer neural
networks initialized randomly as ⇢0 and trained for the same underlying time T with noiseless regularization-free
SGD, we know from the previous lemma that the parameters of both networks are close to two samples from ⇢t.

C.2.2 Proof of Theorem 3.1 in the case of noiseless regularization-free SGD

We now prove Theorem 3.1 in case of noiseless regularization-free SGD.

Theorem 3.1. Consider two two-layer neural networks as in Equation (3) trained with equation SGD

with the same initialization over the weights independently and for the same underlying time T . Suppose

Assumptions 1 and 2 to hold. Then 8�, err, 9Nmin such that if N � Nmin, 9"max(N) such that if " 

"max(N) in Equation (4), then with probability at least 1 � � over the training process, there exists a

permutation of the second network’s hidden layer such that for almost every x ⇠ P :

|tf̂N (x; ✓A) + (1� t)f̂N (x; ✓B)

� f̂N (x; t✓A + (1� t)✓̃B)|  err , 8t 2 [0, 1] .

Proof. We know from Lemma C.1 that with probability at least 1 � 3e�z2

, if " 

min
n

1
K0eK0(1+T )3

, 1
K0(d+log(N)+z2)eK0(1+T )3

o
,

max
k2[0,T/"]

TN
max
i2[N ]

k✓kA,i � ✓̄k"A,ik2  KeK(1+T )3 1
p
N

[
p
log(NT ) + z]

+KeK(1+T )2T "+KeK(1+T )2Tp"[
p
d+ log(N) + z]

which means that ✓A,i is close to the non linear dynamics which are samples from ⇢t. By a union bound, with

probability 1� 6e�z2

this is true for both networks A and B.

Denoting as before ✓A,i = (wA,i, aA,i) 2 Rd+1 (respectively ✓B,i), AA = (aA,1, . . . , aA,N ) (respectively AB) and
WA 2 MN,d(R) the concatenation of vectors wA,i 2 Rd (respectively WB). Given t 2 [0, 1], we aim at finding a
permutation ⇧ 2 SN of the second network’s hidden layer to get ✓̃B = (ÃB , W̃B) = (AB⇧T ,⇧WB) bounding

|tf̂(x; ✓A) + (1� t)f̂(x; ✓B)� f̂(x; t✓A + (1� t)✓̃B)|

=
1

N
|tAA�(WAX) + (1� t)ÃB�(W̃BX)� (tAA + (1� t)ÃB)�((tWA + (1� t)W̃B)X)| (9)

 t

����
AA

N
(�(WAX)� �((tWA + (1� t)W̃B)X))

����+ (1� t)

�����
ÃB

N
(�(W̃BX)� �((tWA + (1� t)W̃B)X))

�����

 tkAAk1
k�(WAX)� �((tWA + (1� t)W̃B)X)k1

N
+ (1� t)kÃBk1

k�(W̃BX)� �((tWA + (1� t)W̃B)X)k1
N
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Both terms k�(WAX)��((tWA+(1�t)W̃B)X)k1

N and k�(W̃BX)��((tWA+(1�t)W̃B)X)k1

N can be bounded.

Indeed, first using lemma 22 from Mei et al. [2019] and that from Assumption 1 Supp(⇢0) is bounded, we get
that

Supp(⇢t) ⇢ B2(0,K((1 + T 2)T ) + 1)

is bounded with a diameter depending only on the initialization Supp(⇢0) and underlying time T .

Therefore we can apply Theorem 1 from Weed and Bach [2019] and get for s > d the existence of a constant C
such that with probability at least 1� �

2 , there exists a permutation � 2 SN such that by considering k · k1 as a
distance for the Wasserstein:

W1(µ̂A, µ̂B) =
1

N

NX

i=1

k✓̄A,i � ✓̄B,�ik1 
C

�
N�1/s

Note that, while C is independent of N , it depends on the distribution ⇢t and therefore on d, diam(Supp(⇢t))
(i.e., T ) and on the constants from Assumption 1.

Recall that we suppose the data distribution P bounded and denote Supp(P ) ⇢ [�Hx, Hx]d ⇥ [�Hy, Hy].

Therefore, we get that with probability at least 1� �
2 � 6e�z2

:

8X 2 [�Hx, Hx]
d,

k�(WAX)� �((tWA + (1� t)W̃B)X)k1
N

 g2(T, z, �, N, ") (10)

:= L�

 
Hx

C

�
N� 1

s + 2Hx

p

d


KeK(1+T )3

p
N

[
p
log(NT ) + z] +KeK(1+T )2T "+KeK(1+T )2Tp"[

p
d+ log(N) + z]

�!

and same for the other term:

8X 2 [�Hx, Hx]
d,

k�(W̃BX)� �((tWA + (1� t)W̃B)X)k1
N

 g2(T, z, �, N, ")

Using lemma 20 from Mei et al. [2019] we know that 8i 2 [N ], āTi  K(1+T ) for a certain constant K. Therefore

we can bound kAAk1, kABk1  g1(T, z,N, ") := K(1 + T ) +KeK(1+T )3 1p
N
[
p
log(NT ) + z] +KeK(1+T )2T "+

KeK(1+T )2Tp"(
p
d+ log(N) + z).

Taking z =
q
log
�
12
�

�
, we have shown the existence of a permutation � with probability at least 1� � such that

almost surely on the choice of x ⇠ P and 8t 2 [0, 1], we have:

|tf̂(x; ✓A) + (1� t)f̂(x; ✓B)� f̂(x; t✓A + (1� t)✓̃B)|  g1(T, z,N, ")g2(T, z, �, N, ")



✓
K(1 + T ) +KeK(1+T )3 1

p
N

[
p
log(NT ) + z] +KeK(1+T )2T "+KeK(1+T )2Tp"(

p
d+ log(N) + z)

◆

⇣
L�(Hx

C

�
N� 1

s + 2Hx

p

d(KeK(1+T )3 1
p
N

[
p
log(NT ) + z]

+KeK(1+T )2T "+KeK(1+T )2Tp"(
p
d+ log(N) + z)))

⌘

For fixed T, � and z =
q
log
�
12
�

�
, denote err(N, ") the right hand term.

It is clear that:
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8err > 09Nmin8N � Nmin9"max(N)8"  "max(N), err(N, ")  err

This brings the first part of the theorem.

Discussion: Let’s look more closely at the term KeK(1+T )3 1p
N
[
p

log(NT ) + z] + KeK(1+T )2T " +

KeK(1+T )2Tp"(
p
d+ log(N) + z)) from Mei et al. [2019] which comes from the mean field approximation.

When taken alone, this term yields an error which is independent of the input dimension d, since taking N large
leads to small error (provided " is small). However, here the growth of the hidden layer N depends on the input
dimension d through the exponent s > d⇤1(µ) (with d⇤1(µ)  d) using notations from Weed and Bach [2019]. This
is due to Wasserstein convergence rates of empirical measures in dimension d. Without any further assumption
on the weight distribution or precise study of the PDE we have to consider that Supp(µ)) has dimension d. To
remove this dependence, one could study a precise model for the data and look more closely at the PDE evolution
to better understand the support of the distribution ⇢t.

To prove the second part of the theorem, first notice that as already mentioned, kAAk1, kABk1  g1(T, z,N, ").
Moreover, the data distribution is bounded and the weights of the first layer of the approximating PDE live in
a bounded set thanks to Appendix C.2.2. It brings the existence of a constant K(T ) such that:

8t  T, 8w 2 Supp(⇢(t)), 8X 2 Supp(P ), |w.x|  K(T )

Using we see that if "  min{ 1
K0eK0(1+T )3

, 1
K0(d+log(N)+z2)eK0(1+T )3

}, with probability at least 1 �
�
2 , setting

z =
q

12
�

max
k2[0,T/"]

TN
max
i2[N ]

|wk
A,ix|  Hx

p

d(KeK(1+T )3

1
p
N

[
p
log(NT ) + z] +KeK(1+T )2T "+KeK(1+T )2Tp"(

p
d+ log(N) + z)) +K(T )

Up to changing previousNmin, "max, we can suppose that 8N � Nmin, 8"  "max(N), KeK(1+T )3 1p
N
[
p
log(NT )+

z] +KeK(1+T )2T "+KeK(1+T )2Tp"(
p

D + log(N) + z)  1

Therefore, since the data distribution is bounded we know that there exists a constant K(T ) such that if
N � Nmin, "  "max(N), P � almost-surely:

8
><

>:

|y|  K(T )

|f̂(x : ✓A)|  K(T )

|f̂(x : ✓B)|  K(T )

We make a general assumption on the loss of the form: 8y 2 R(x ! L(x, y)) is convex and 8K >
0, 9CK , 8x1, x2, y 2 [�K,K], |L(x1, y) � L(x2, y)|  CK |x1 � x2|2. In particular this is true for the square
loss.

Combining convexity of the loss, the first part of the theorem already proved and Lipschitzness on a compact
domain of the loss, we get the second part of the theorem with a term CK(T )err instead of err. To solve this,

just consider min
n

err
CT

, err
o
in the first part of the theorem.

We have supposed in the beginning that the non-linearity was bounded. But the previous study shows that
with probability at least 1 � �, |wA,ix| is upper bounded for all i during the training up to time T by some
constant depending only on T, � provided N � Nmin, "  "max(N) Therefore assuming that the non-linearity is
bounded on a big enough compact set is enough to get the the result since it doesn’t change the dynamics of the
parameters considered. However the size of this set is not made explicit here.
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C.3 Proving LMC for general SGD

We will now study LMC of neural networks trained under general SGD using Theorem 4 part B from Mei et al.
[2019]. The study is very similar to the case of noiseless SGD and will yield similar results.

More precisely in that case the PDE writes as:

@t⇢t = 2⇠(t)r✓ · (⇢t(✓)r✓ �(✓; ⇢t)) + 2⇠(t)⌧d�1�✓⇢t

 �(✓; ⇢) =  (✓; ⇢) +
�

2
k✓k22

Notice that our Assumptions 1 and 2 imply assumptions 1 to 6 in Mei et al. [2019].

C.3.1 Intermediate dynamics for general SGD

Mei et al. [2019] define as before intermediate dynamics:

Non linear dynamics

Let consider ✓̄ti with initialization ✓̄0i ⇠ ⇢0 i.i.d. which follows the dynamics

✓̄ti = ✓̄0i + 2

Z t

0
⇠(s)G(✓̄si ; ⇢s)ds+

Z t

0

p
2⇠(s)⌧d�1dWi(s)

where G(✓; ⇢) = �r �(✓; ⇢). An important fact is that ✓̄ti is random because of the random initialization and its
law at time t is ⇢t. It corresponds to the evolution of particles under a field which depends only on the position
of the optimized particle and the overall distribution of all particles plus and a di↵usion term.

Particle Dynamics

Let
¯
✓ti with initialization

¯
✓0i = ✓̄0i with the following dynamics where

¯
⇢(N)
t = 1

N

PN
i=1 �

¯
✓t
i
denote the empirical

distribution of
¯
✓ti .

¯
✓ti = ¯

✓0i + 2

Z t

0
⇠(s)G(

¯
✓si ;

¯
⇢(N)
s )ds+

Z t

0

p
2⇠(s)⌧d�1dWi(s)

Gradient descent dynamics

Let ✓̃ki with initialization ✓̃0i = ✓̄0i with the following dynamics:

✓̃ki = ✓̃0i + 2"
k�1X

l=0

⇠(l")G(✓̃li; ⇢̃
(N)
l ) +

Z k"

0

p
2⇠([s])⌧d�1dWi(s)

Stochastic Gradient Descent Dynamics

Consider ✓ki with initialization ✓0i = ✓̄0i that follows:

✓ki = ✓0i + 2"
k�1X

l=0

⇠(l")Fi(✓
l; zl+1) +

Z k"

0

p
2⇠([s])⌧d�1dWi(s)

where Fi(✓k; zk+1) = ��✓ki + (yk+1 � ŷk+1)r✓i�⇤(xk+1; ✓ki ), zk = (xk, yk) and ŷk+1 = 1
N

PN
j=1 �⇤(xk+1; ✓kj )

As before we first control the distance between noisy SGD and non linear dynamics with the following lemma:

Lemma C.2. Consider a two-layer neural network with notations as before trained with noisy SGD for an

underlying time T . Assume T � 1. Then under assumptions Assumptions 1 and 2, there exists a constant K
such that with probability at least 1� 3e�z2

we have:
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max
k2[0,T/"]

TN
max
i2[N ]

k✓ki � ✓̄k"i k2  Kee
KT [

p
log(N)+z2][

p
d log(N) + z3 + log3/2(NT )]/

p

N

+Kee
KT [

p
log(N)+z2][log(N(T/" _ 1)) + z4]

p
"

+Kee
KT [

p
log(N)+z2][

p

d log(N) + z3 + log3/2(N)]
p
"

Proof. Just apply proposition 47,49,50 from Mei et al. [2019].

We moreover recall here Lemma 9 from Mei et al. [2019] which bounds the value of the second layer coe�cients
At = (at1, . . . , a

t
N ).

Lemma C.3 (Lemma 19 in Mei et al. [2019]). There exists a constant K such that with probability at least

1� e�z2

we have

sup
t2[0,T ]

kAt
k1  KeKT [

p
log(N) + z]

C.3.2 Proof of Theorem 3.1 in the case of noisy regularized SGD

We can now prove LMC for two two-layer networks trained with general SGD:

Theorem 3.1. Consider two two-layer neural networks as in Equation (3) trained with equation SGD

with the same initialization over the weights independently and for the same underlying time T . Suppose

Assumptions 1 and 2 to hold. Then 8�, err, 9Nmin such that if N � Nmin, 9"max(N) such that if " 

"max(N) in Equation (4), then with probability at least 1 � � over the training process, there exists a

permutation of the second network’s hidden layer such that for almost every x ⇠ P :

|tf̂N (x; ✓A) + (1� t)f̂N (x; ✓B)

� f̂N (x; t✓A + (1� t)✓̃B)|  err , 8t 2 [0, 1] .

Proof. We follow the same steps as before. Recall that the data distribution is bounded: Supp(P ) ⇢ [�Hx, Hx]d⇥
[�Hy, Hy].

The problem is that due to the stochasticity added in the noisy SGD, Supp(⇢t) is not necessarily bounded
anymore. However, using step 3 of the proof of lemma 41 in Mei et al. [2019] and the fact that the initial
distribution ⇢0 has bounded support (sub-Gaussian would be enough), the distribution of weights of the first
layer at time T is sub-Gaussian.

Indeed if ✓̄ti ⇠ ⇢t and ⇢0 is bounded or sub-Gaussian, we get the existence of K such that:

P(k✓̄Ti k22 � KeKT (1 + z)
p

T )  e�z2

which proves that ⇢T is sub-Gaussian.

We could adapt the proof done in Lemma B.14 for Gaussian variable to sub-Gaussian variable to show the
existence of constants (Lemma B.14 dealt with W

2
2 but can be extended to W1 because Proposition 15 of Weed

and Bach [2019] is valid for any W
p
p ) D

0
2, E

0
2 depending only on the constant K of sub-Gaussianity of the previous

distribution, and hence independent of N such that by considering the norm k ·k2, we can still bound for m � E
0d
2

E[W1(µ̂A, µ̂B)] 

r
D0

2

d
log(N)

✓
1

N

◆1/d
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Therefore, with probability at least 1� �
2 � 6e�z2

:

8X 2 [�Hx, Hx]
D,

k�(WAX)� �((tWA + (1� t)W̃B)X)k1
N

 g2(T, ", N, �)

:= L�Hx

p

d
1

�

r
D0

2

d
log(N)N�1/d

+ 2L�Hx

p

d(Kee
KT [

p
log(N)+z2][

p
d log(N) + z3 + log3/2(NT )]/

p

N

+Kee
KT [

p
log(N)+z2][log(N(T/" _ 1)) + z4]

p
"

+Kee
KT [

p
log(N)+z2][

p

d log(N) + z3 + log3/2(N)]
p
")

and same for the second term. We moreover have, using Lemmas C.2 and C.3 that with probability at least
1� 2e�z2

:

max{kAAk1, kABk1}  g1(T, z,N, ")

:= KeKT [
p
log(N) + z] +Kee

KT [
p

log(N)+z2][
p
d log(N) + z3 + log3/2(NT )]/

p

N

+Kee
KT [

p
log(N)+z2][log(N(T/" _ 1)) + z4]

p
"

+Kee
KT [

p
log(N)+z2][

p

d log(N) + z3 + log3/2(N)]
p
"

Taking z =
q
log
�
16
�

�
such that 8e�z2

= �
2 we get that with probability at least 1� �:

|tf̂(x; ✓A) + (1� t)f̂(x; ✓̃B)� f̂(x; t✓A + (1� t)✓̃B)|  g1(T, z,N, ")g2(T, z,N, ")

As before, for fixed T, �, denote err(N, ") the left hand term.

It is clear that:

8err > 09Nmin8N � Nmin9"min(N)8"  "min(N), err(N, ")  err

Therefore, sending N ! 1, " ! 0 brings immediately the first part of the theorem.

To get the second part of the theorem, we do the same procedure as for noiseless regularization-free SGD.

Namely, with probability 1� � we have both:

(
P � almost surely, |tf̂(x; ✓A) + (1� t)f̂(x; ✓B)� f̂(x; t✓A + (1� t)✓̃B)|  err

max{kAAk1, kABk1}  g1(T,N, z, ")

Up to changing Nmin, "max(N) we can suppose that 8N � Nmin, 8"  "max(N), we have

Kee
KT [

p
log(N)+z2][

p
d log(N) + z3 + log3/2(NT )]/

p

N

+Kee
KT [

p
log(N)+z2][log(N(T/" _ 1)) + z4]

p
"

+Kee
KT [

p
log(N)+z2][

p

d log(N) + z3 + log3/2(N)]
p
"  1

which brings
g1(T,N, z, ")  KeKT [

p
log(N) + z] + 1
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Appendix C.3.2, boundness of the activation, boundness of the input distribution (x, y) ⇠ P by assumption
imply the existence of K 0 such that 8t 2 [0, 1], P�almost-surely and for N large enough,

8
>>><

>>>:

|f̂(x; ✓A)|  K 0
⇣
KeKT [

p
log(N) + z]

⌘

|f̂(x; ✓B)|  K 0
⇣
KeKT [

p
log(N) + z]

⌘

|y|  Hy  K 0
⇣
KeKT [

p
log(N) + z]

⌘

Using convexity and Lipschitzness of the squared loss on compact domains we get the existence (and this
is a su�cient condition for the loss function with convexity) of Lip : R+ ! R+ such that: 9L1, L2, 8H 2

R+, Lip(H)  L1 + L2 exp(H), 8x1, x2, y 2 [�H,H], |L(x1, y)� L(x2, y)|  Lip(H)|x1 � x2| and such that with
probability at least 1� �:

E[L(f̂(x; t✓A + (1� t)✓̃B), y)]  Lip(K 0
⇣
KeKT [

p
log(N) + z] + 1

⌘
)g1(T, z, ", N)g2(T, z, ", N)

Plugging this back and with the exact same discussion as before we get 9Nmin8N � Nmin9"max8"  "max,

E[L(f̂(x; t✓A + (1� t)✓̃B), y)]  err + tE[L(f̂(x; ✓A), y)] + (1� t)E[L(f̂(x; ✓B), y)]

To get both part 1 and 2 of the theorem at the same time we just have to reconsider the max of both Nmin and
the min of both "max.

C.4 On the satisfiability of our assumptions

Assumption 1 and 2 are non-trivial but standard in the mean field literature. They are made to ensure that the
optimization of the two-layer neural networks happens in the mean-field regime. Indeed, as explained above the
weights are then approximately indepedent and we can leverage Wasserstein convergence bounds of empirical
measure to prove linear mode connectivity. We used conventioanl assumptions from the mean-field litterature
(e.g. see assumptions A1 to A6 in Mei et al. [2019], A1 to A4 in Mei et al. [2018]). u, v, U, V are implicitly defined
but once the non-linearity and the data distribution are fixed, u, v, U, V are fully determined as functions of the
parameters. Checking their derivability can be done using usual rules for derivation under the integral sign if
the non-linearity is smooth. A particular case is to consider a two-layer network, with a sigmöıd activation, a
bounded data distribution and a bounded uniform initialization over the parameters. We additionally mention
that a lot of works empirically evidence the validity of the mean-field framework, hence we feel validating our
approach. In the case of mltilayer networks, the main assumption is the independence of weights inside each layer
(Assumption 6). Multiple recent works address this question by using a mean field view for multi-layer networks
with bounds on the width needed during optimization with SGD (e.g. Th. 15 in Nguyen and Pham [2023]).
Finally, we believe our results could be extended to approximated independence of weights with an additional
error term for the error barrier on a linear path corresponding to the approximated independence. Quantifying
the impact of correlation between weights constitutes a very interesting avenue for future work.

D EXPERIMENTS

D.1 Experiment on CIFAR10

We compared activation and weight matching methods on the CIFAR10 dataset for a VGG16 model. Our
experiment again shows the correlation between small approximate dimension of the support of the weight
distribution and LMC e↵ectiveness hence supporting our main theoretical study. As it is non trivial to compute
the covariance of the input with convolutional layers as it is a high dimensional tensor we left the alternative
weight matching methods as a future work. Providing a scalable technique to estimate such a covariance for
CNNs is a an interesting research direction beyond the scope of this paper.
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(a) Mean test loss of the trained networks A and B and
error barrier on the linear path Mt, t 2 [0, 1] across di↵er-
ent learning rate values for each matching problem.

(b) Approximate dimension Dim(S) := tr(S)2/tr(S2) of the
matrices considered in the matching problems at each
layer.

Figure 3: Statistics of the average network M over the linear path between networks A and B using respectively weight
matching (blue) and activation matching (orange)

D.2 Details about our new weight matching method

Until now we have studied the influence of the dimension of the support of the underlying distribution of weights
on the convergence rate in Wasserstein distance of the corresponding empirical measure. An interesting question
is to look at the influence of the distance used to define the Wasserstein distance.

More precisely, consider a single layer of two networks A,B with input X 2 Rn and matrix weights WA,B 2

Mm,n(R). Consider that the input data follows a distribution P with EP [XXT ] = ⌃

The underlying method that we use in our proof and which is the one referred to as weight matching method
in Ainsworth et al. [2022] consists in minimizing the distances for the euclidean norm between weights matrices,
i.e. to find:

argmin
⇧2Sm

kWA �⇧WBk2

This is equivalent to finding:

argmin
⇧2Sm

r
1

m
kWA �⇧WBk

2
2} = argmin

⇡2Sm

vuut 1

m

mX

i=1

kWA,i: �WB,⇡i:k
2
2

We get an expected square error between network A and network B permuted at the output layer of:

E
⇥
kWAX �⇧WBXk

2
2

⇤
= (WA �⇧WB)⌃(WA �⇧WB)

T = kWA �⇧WBk
2
2,⌃

where k · k2,⌃ is the semi-norm coming from (X,Y ) ! XT⌃Y which is a symmetric positive bilinear product
since ⌃ is symmetric positive (and a norm when ⌃ is definite positive i.e., when Span(Supp(P )) = Rn).

Minimizing the cost kWA �⇧WBk2 contributes to minimizing the expected squared error kWA �⇧WBk
2
2,⌃ but

it appears more natural to directly minimize the cost kWA �⇧WBk
2
2,⌃.

As explained in Theorem D.2 below, we can directly link the approximate dimension of the underlying covariance
matrix of each method with the decay rate of LMC error barrier. The underlying covariance matrix of each
method is W `

A[W
`
A]

T for WM (naive), W `
A⌃

`�1
A [W `

A]
T for WM (ours) and ⌃`

A for AM.

Indeed,
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• for naive weight matching, each row of WA,WB follows a distribution with covariance matrix W `
A[W

`
A]

T ,

• for weight matching (ours), the optimization problem can be seen (Lemma D.1) as for naive weight matching
but with covariance matrix W `

A⌃
`�1
A [W `

A]
T ,

• for activation matching, each row of Z`
A follows a distribution with covariance matrix ⌃`

A.

D.3 Gain of our new weight matching method

This section is motivated by the following question:

What is the gain of optimizing directly the cost kWA �⇧WBk2,⌃ when ⌃ is low dimensional?

For example, let’s suppose that ⌃ = Diag(1, 1, 0, ..., 0) and hence the support of X is two dimensional. Suppose
moreover that WA and WB are as in Section 5.1 initialized i.i.d. with a distribution N (0, In

n ) on the weights.

Hence we have seen before that kWA � W̃Bk2 ⇠
�

1
m

�1/n
. Since the minimization procedure is unaware of the

structure of ⌃ it is clear by symmetry that
q

kWA,1: � W̃B,1:k
2
2 + kWA,2: � W̃B,2:k

2
2 ⇠

q
2
n

�
1
m

�1/n
. Therefore

the convergence is still as
�

1
m

�1/n
. However if we had first aimed at minimizing kWA �⇧WBk2,⌃ it is clear that

the problem becomes two dimensional and hence argmin⇧2Sm
kWA � ⇧WBk2,⌃ ⇠

�
1
m

�1/2
which is extremely

faster when n is large.

We want to apply this idea to our setting where we suspect the distribution of activations at each layer to be
low dimensional. We now prove the following lemma:

Lemma D.1. Let WA,WB 2 Mm,n(R) satisfy Assumption 6 with underlying distribution µ and let ⌃ 2 Mn(R).
Write ⌃ = O

p
⌃

2
OT

where O is orthogonal and
p
⌃ is diagonal. Then we get the equivalence between optimiza-

tion problems:

E

min
⇧2Sm

kWA �⇧WBk
2
2,⌃

�
= E


min
⇧2Sm

kŴA �⇧ŴBk
2
2

�
(11)

where ŴB , ŴB satisfy Assumption 6 with underlying distribution f⇤µ the image measure of µ by f : X 7!

O
p
⌃OTX

Proof. Just notice that 8⇧ 2 Sm

kWA �⇧WBk
2
2,⌃ = tr[(WA �⇧WB)O

p

⌃OT (O
p

⌃OT )T (WA �⇧WB)
T ]

and do the change of variable ŴA = WAO
p
⌃OT (repectively ŴB)

Theorem D.2. Consider X 2 Rn
⇠ P 2 P1(Rn) such that EP [XXT ] = ⌃ = Diag(1, . . . , 1, 0, . . . , 0), rank(⌃) =

ñ  n and WA,WB random weight matrices satisfying Assumption 6 with underlying distribution N
�
0, In

n

�

Denote ⇧1,⇧2 2 Sm random permutations that minimize the respective costs kWA�⇧WBk2 and kWA�⇧WBk2,⌃

Then we have:

E
⇥
kWA �⇧1WBk

2
2,⌃

⇤
= ⌦̃

 ✓
1

m

◆2/n
!

E
⇥
kWA �⇧2WBk

2
2,⌃

⇤
= ⌦̃

 ✓
1

m

◆2/ñ
!

E[kWA �⇧1WBk
2
2,⌃] = Õ

 ✓
1

m

◆2/n
!

E[kWA �⇧2WBk
2
2,⌃] = Õ

 ✓
1

m

◆2/ñ
!
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Proof. Using Lemma D.1, we see that bounds 2 and 4 are just corollaries of Lemma B.16 and theorem 5.3.

To show bounds 1 and 3 just notice that:

⇧1 = argmin
⇧2Sm

kWA �⇧WBk2

is almost surely unique.

By symmetry of the problem and Theorem 5.3 we therefore see that 8i 2 [n]:

Ek[WA �⇧1WB ]:ik
2
2 =

1

n
EkWA �⇧1WBk

2
2 = ⌦̃

 ✓
1

m

◆2/n
!

Finally noticing that ⌃ = Diag(1, . . . , 1, 0, . . . , 0) we get by summing:

E
⇥
kWA �⇧1WBk

2
2,⌃

⇤
=

ñ

n
⌦̃

 ✓
1

m

◆2/n
!

= ⌦̃

 ✓
1

m

◆2/n
!

Similarly, exploiting a.s. uniqueness of ⇧1 and symmetry across dimensions, we get the third inequality.


