
The Risks of Recourse in Binary Classification

Hidde Fokkema Damien Garreau Tim van Erven
Korteweg-de Vries Institute for Mathematics

University of Amsterdam
h.j.fokkema@uva.nl

CAIDAS
University of Würzburg

damien.garreau@uni-wuerzburg.de

Korteweg-de Vries Institute for Mathematics
University of Amsterdam
tim@timvanerven.nl

Abstract

Algorithmic recourse provides explanations that
help users overturn an unfavorable decision by
a machine learning system. But so far very lit-
tle attention has been paid to whether providing
recourse is beneficial or not. We introduce an ab-
stract learning-theoretic framework that compares
the risks (i.e., expected losses) for classification
with and without algorithmic recourse. This al-
lows us to answer the question of when providing
recourse is beneficial or harmful at the population
level. Surprisingly, we find that there are many
plausible scenarios in which providing recourse
turns out to be harmful, because it pushes users to
regions of higher class uncertainty and therefore
leads to more mistakes. We further study whether
the party deploying the classifier has an incentive
to strategize in anticipation of having to provide
recourse, and we find that sometimes they do, to
the detriment of their users. Providing algorithmic
recourse may therefore also be harmful at the sys-
temic level. We confirm our theoretical findings
in experiments on simulated and real-world data.
All in all, we conclude that the current concept
of algorithmic recourse is not reliably beneficial,
and therefore requires rethinking.

1 Introduction
Machine learning (ML) models are increasingly being used
to make consequential decisions in areas such as finance
(Mukerjee et al., 2002), healthcare (Begoli et al., 2019;
Grote and Berens, 2020), and hiring (Nabi and Shpitser,
2018; Schumann et al., 2020). When these decisions are
unfavorable to the people they affect, algorithmic recourse
provides explanations and recommendations to favorably
change their situation (Karimi et al., 2022). For instance,
when an individual is denied a bank loan, they might like to
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know the reasons and in particular what they can do to get a
loan in the future.

A prominent approach to providing recourse is via coun-
terfactual explanations, which suggest how the individual
should change their features in order to flip the decision
of the ML model (Wachter et al., 2017; Ustun et al., 2019;
Joshi et al., 2019). Originally, counterfactuals were chosen
to minimize the distance between the original and the new
features (Wachter et al., 2017), but more recently attention
has also been paid to generating realistic suggestions which
are actionable and lie on the data manifold (Ustun et al.,
2019; Joshi et al., 2019). In addition, various types of robust-
ness have been studied, including to random perturbations
(Virgolin and Fracaros, 2023; Dominguez-Olmedo et al.,
2022; Pawelczyk et al., 2022b), to data shifts (Rawal et al.,
2020; Dutta et al., 2022), or to the case that the counter-
factual might not be perfectly implementable (Artelt et al.,
2021). It has further been recognized that providing re-
course has consequences at the population level, because it
changes the distribution of the data. These consequences
have been studied in the context of fairness for subgroups
(Gupta et al., 2019) and with respect to social segregation
(Gao and Himabindu, 2023), but so far there has been no
work that studies the consequences of providing recourse
for classification accuracy.

To see why accuracy matters, consider again the loan exam-
ple mentioned above. If a person is able to repay a loan they
got through recourse, then recourse has been beneficial. But
if they end up defaulting on their payment, then recourse
has actually been harmful, both for the user and the lending
institution. Providing recourse in a way that undermines
the accuracy of the ML model in determining which users
are likely to default, can therefore be dangerous. In fact,
the bank loan example above, which is standard in the re-
course literature, is also used as a motivating example in
the context of strategic classification. There, it is seen as a
significant risk that loan applicants might try to game the
system by changing their features to flip the class without
actually improving their true creditworthiness (Brown et al.,
2022; Perdomo et al., 2020; Milli et al., 2019).
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Figure 1: Left panel: Initial situation, the ML model clas-
sifies individual with starting features x0 either negatively
(in blue) or positively (in red). Its risk is denoted by RP (f).
Points classified negatively are given the opportunity to
move to the decision boundary (yellow dotted arrows). Right
panel: The points close enough to the boundary accept re-
course and move towards the decision boundary. The risk
with recourse, RQf

(f), is then higher, because at the deci-
sion boundary the uncertainty about the true class is max-
imal, and the points that accepted recourse are now more
likely to be misclassified.

Main Contributions In this work, we study the effects
of recourse on the classification accuracy at the popula-
tion level. All our results are obtained in the context of
a new learning-theoretic framework, which we introduce
in Section 2. Accuracy is measured by the risk, which is
the expected loss of a given classifier. When recourse is
provided, it changes the distribution of the data, and hence
the risk. We are primarily interested in whether recourse
makes the risk go up or down. To answer this question
it matters how the class probabilities of the users change
upon receiving recourse. We distinguish between the com-
pliant case, in which these class probabilities truly improve,
and the defiant case, in which the class probabilities do not
improve at all (for instance because the users are trying to
game the system). In Section 3 we show that, if the classifier
is optimal without recourse, then recourse will be harmful,
because it increases the risk both for the compliant and for
the defiant case. The reason is that recourse pushes users
towards the decision boundary, where the class uncertainty
is higher, which therefore leads to more mistakes. See Fig-
ure 1 for an illustration. Section 4 extends these results to
probabilistic classifiers that are only near-optimal, which
allows for estimation errors, and to surrogate losses like,
e.g., the cross-entropy loss. In Section 5 we recognize that
the party deploying the classifier may strategically choose
their classifier in order to minimize the resulting risk af-
ter providing recourse. We obtain separate results for the
defiant and compliant cases, which show that there is an
incentive to preemptively undo the effect of recourse. For
the defiant case, this makes the risks with and without re-
course identical, so implementing recourse only places a
burden on all parties, without any resulting advantage. For
the compliant case, the risk with recourse does decrease, so

this is the only case where we do observe an advantage to
providing recourse. Finally, in Section 6 we corroborate our
theoretical results by experiments, in which we observe the
risk increase for a large majority of the experiments both on
synthetic data and on real data. We also provide the code
that produced the results of our experiments as a GitHub
repository.1

Not Reliably Beneficial In summary, our findings show
that there are many common cases in which recourse is
harmful, because it leads to worse classification accuracy.
This suggests that instead of debating how to provide re-
course, we should rethink whether the current approach to
recourse is desirable at all. Notably, there is no escape by
pointing to exceptions in which recourse is beneficial, e.g.,
our results on strategic classification for the compliant case,
or by pointing to specific examples where it is beneficial in
practice: if recourse is not reliably beneficial nearly all the
time, then it is not suitable to be broadly adopted.

1.1 Further Related Work
Causality and Algorithmic Recourse The difference be-
tween the defiant and the compliant case has already been
noted in the causal algorithmic recourse community. This
has lead to counterfactual methods with guarantees for ac-
tual improvement of the class probabilities, which ensure
that we are closer to the compliant case König et al. (2021);
König et al. (2023). However, our results show that, even
in the fully compliant case, recourse may still be harmful.
Such unexpected harmful effects of well-intended interven-
tions have also been found in the context of fairness (Liu
et al., 2018). More generally, it has been pointed out that
users can only act on counterfactual recommendations if
these take the causal relation between the user’s actions
and their features into account (Karimi et al., 2021). Our
framework is general enough to express such causal inter-
ventions, because they only affect the risk via their effect on
the distribution of the data.

Strategic Classification Strategic classification considers
the effect of deploying a classifier in an environment with
strategic players, who want to change their features in order
to influence how they are classified (Hardt et al., 2016; Lev-
anon and Rosenfeld, 2021; Miller et al., 2020; Tsirtsis et al.,
2019; Yatong Chen, 2021). This makes the distribution of
the data dependent on f as well, because the behavior of
the players depends on the classifier f . The more abstract
setting in which there can be any dependence between f and
the data distribution, has been studied under the heading of
performative prediction (Perdomo et al., 2020; Mofakhami
et al., 2023). Our results about strategizing in Section 5
are a special case of strategic classification, in which the
behavior of the players is guided by the recourse mechanism.
In contrast to previous results that mostly considered how
to minimize the risk in f while taking the dependence of f

1github.com/HiddeFok/consequences-of-recourse
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on the distribution into account, our aim is to quantify the
difference in the risk when we compare the settings with
and without recourse.

2 Framework and Main Definitions
In this section we formalize the effect of recourse by com-
paring the risk in the situation without recourse to the risk
with recourse applied.

2.1 General Framework
We consider binary classification, in which users with corre-
sponding features x from a closed, convex domain X ⊆ Rd

will be classified into classes Y = {−1,+1}. We assume a
model f : X → Ŷ has already been trained. This may be
a deterministic classifier, with Ŷ = {−1,+1}, or a proba-
bilistic classifier, with Ŷ = [0, 1], for which f(x) represents
the probability that x should be classified as +1. The er-
ror of a prediction ŷ ∈ Ŷ with respect to the true label
y ∈ Y is measured by a loss function ℓ : Ŷ × Y → R.
For instance, for deterministic predictions ŷ ∈ {−1,+1},
the 0/1 loss is ℓ(ŷ, y) = 1{ŷ ̸= y}, and, for probabilistic
predictions ŷ ∈ [0, 1], the log loss or cross-entropy loss is
ℓ(ŷ, y) = 1

2 (1 + y) ln 1
ŷ + 1

2 (1− y) ln 1
1−ŷ .

In the absence of recourse, the data will consist of pairs
(X0, Y ) from X × Y with distribution P , and the quality
of f is evaluated by its risk

RP (f) = E
(X0,Y )∼P

[ℓ(f(X0), Y )].

(Risk without Recourse)
A classifier f∗

P ∈ argminf RP (f), which minimizes the
risk, is called Bayes-optimal. For instance, for 0/1 loss,
f∗
P (x0) = sign(P (Y = 1|X0 = x0)− 1

2 ) is Bayes-optimal.
Throughout the paper, we take the sign function sign(z) to
be +1 if z ≥ 0 and −1 for z < 0.

When we add recourse to the mix, a user first arrives with
feature vector X0, which is drawn according to the marginal
distribution of P on X . Then, depending on the original
features X0, the specifics of the recourse protocol, and the
model f , the user’s features are transformed into new fea-
tures X ∈ X . Here, X may be a deterministic function
of X0, but in general it can also depend on X0 in a non-
deterministic way if the recourse protocol is randomized or
when the user’s response to recourse is not fully predictable.
Finally, a label Y is generated, and we let Qf denote the
resulting distribution of (X0, X, Y ). The resulting risk is
then measured under the marginal distribution of (X,Y )
under Qf :

RQf
(f) = E

(X,Y )∼Qf

[ℓ(f(X), Y )]. (Risk with Recourse)

Thus, the marginal distribution of X0 under Qf is always
the same as under P . Note further that f influences the
risk with recourse in two ways: directly via its predictions
f(X) and indirectly via its effect on the distribution Qf .

Except for Section 5 we will think of f as fixed, and we will
simplify notation by writing Q instead of Qf .

As motivated in the introduction, we care about the accuracy
of classifiers at the population level. This is measured by
the risk, so we will say that recourse is beneficial if the
risk under Q is smaller than the risk under P , and harmful
otherwise.

2.2 Specializing the Framework

The framework above is so general that it can represent
any mechanism for providing recourse. In order to say
something concrete, we have to specialize it further.

Effect on the Label Distribution Naively, we might
expect that changing the user’s features from X0 to X
would also change their label distribution from P (Y |X0)
to P (Y |X), but what actually happens depends on the un-
derlying causal effect of providing recourse (Miller et al.,
2020; König et al., 2023), and in general any effect on the
label distribution is possible. We will focus on two extreme
cases which differ in whether individuals fully comply with
or fully defy this naive expectation:

(Compliant) Q(Y | X0, X) = P (Y | X). The change in
features causes a true change in label proba-
bility.

(Defiant) Q(Y | X0, X) = P (Y | X0). The user only
changes their features, without altering their
label probability.

We state all our results in terms of these two extreme cases.
However, those results can easily be generalized to an in-
termediate setting by taking a convex combination of the
compliant and defiant measure. The convex combination
would then carry over towards the theoretical results.

The defiant case has also been referred to as “gaming”2

(König et al., 2023; Perdomo et al., 2020). It is illustrated
well by the following example by König et al. (2023): con-
sider a classifier which classifies whether a patient is in-
fected with Covid based on their symptoms. Then, taking
cough drops to suppress coughing may change the classifica-
tion without changing the true probability of being infected.
This behaviour could also appear when there is no recourse
considered. In that case, we assume that it is already mod-
elled in the distribution P . In our setting, the act of giving
recourse is what gives the users the opportunity to “game”
the system, when they were not before. It should not come
as a complete surprise that our results show that the risk in-
creases when giving recourse in the defiant case. The more
surprising conclusions are that even in the compliant case it
is possible to observe a risk increase and that strategizing

2We avoid this terminology in the context of algorithmic re-
course, because users may follow a recourse recommendation in
good faith and still not change their label probability.
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against the risk increase in the defiant case comes with its
own negative consequences.

Recourse Mechanism We will think of class +1 as be-
ing favorable to the users, while class −1 is undesirable
to them. For instance, +1 might represent a bank loan be-
ing granted, while −1 means that the loan application is
rejected. Whenever a user with features X0 is classified
as f(X0) = −1 by a deterministic classifier, they may re-
quest recourse. Many prominent approaches (Wachter et al.,
2017; Ustun et al., 2019; Karimi et al., 2020; Pawelczyk
et al., 2022a) to algorithmic recourse provide the user with
a counterfactual explanation XCF

0 = φ(X0) which is the
solution to an optimization problem of the form

XCF
0 ∈ argmin

z∈X : f(z)=+1

c(X0, z), (1)

where c(x0, z) models the cost for the user of moving from
x0 to z. This can describe many different cost mechanisms,
and can even be used to express constraints like monotonic-
ity in an Age feature or consistency with a causal model,
by assigning large cost to any z that violates the constraints.
For the optimization problem in (1) to be well-defined, we
need to assume that the set

{x ∈ X | f(x) = +1} is closed. (2)

A consequence of this, is that a point on the decision bound-
ary of a classifier will be classified as class +1. So, in order
for f∗

P to satisfy this condition for 0/1 loss, it matters that
we defined sign(0) = +1 above. For many of our results,
we will further assume that for any points x0 and x the
cost

z 7→ c(x0, z) increases monotonically on
the line segment from x0 to x,

(3)

which means that larger changes require more effort from
the user. Under this assumption, φ always maps users x0

in the negative class to the decision boundary; for users
in the positive class, recourse does not do anything and
φ(x0) = x0. (See Lemma 6 in Appendix A.) If the user
implements the counterfactual explanation exactly, then
X = XCF

0 , but they might also deviate from it in a stochastic
way, which would make X a noisy approximation of XCF

0

(Pawelczyk et al., 2022b). For simplicity, we will focus on
the noiseless case with X = XCF

0 . We do explicitly take into
account the fact that not all users might receive recourse and
that each user has a choice in whether to implement it. Let
B ∈ {0, 1} be an indicator variable for whether recourse
is received and implemented, with conditional probability
Pr(B = 1 | X0) = r(X0). It then follows that

X = (1−B)X0 +BXCF
0 = (1−B)X0 +Bφ(X0) .

Note that, when f(X0) = +1, we always have X = X0 ir-
respective of B, because φ(X0) = X0 as mentioned above.
Some examples of possible r functions are:

• r(x0) = 1. All users implement recourse;

• r(x0) = 1{∥x0 − φ(x0)∥ ≤ D} for some D > 0.
Only those users within distance D of the decision
boundary implement recourse;

• r(x0) = e−
∥x0−φ(x0)∥2

2σ2 for some σ2 > 0. All users
implement recourse with some probability and that
probability is exponentially decreasing in the squared
distance they have to cover, with a bandwidth σ2.

More Complex Counterfactuals In our setting, we define
a counterfactual explanation to be a solution to an optimiza-
tion problem (1). In accordance with the early counterfac-
tual methods developed in (Wachter et al., 2017; Karimi
et al., 2020; Laugel et al., 2018). For the Compliant case,
some of the recent counterfactual methods (Laugel et al.,
2019; Kanamori et al., 2020; Parmentier and Vidal, 2021)
can have more complex cost functions, with the goal of
generating more realistic, feasible and robust counterfac-
tuals. These methods produce counterfactuals that do not
lie on the decision boundary, but may lie further into the
positive class. For these methods, the cost function still has
a component that depends on the Euclidean distance. The
other component of the cost function depends on something
called the outlier score, which indeed does not satisfy our
requirement in Equation (3). However, depending on how
these terms are balanced, the counterfactual point will still
be close to the decision boundary, so the setting can still be
approximated by the cases that we study.

Moreover, these methods are not designed to pay attention
to the class probability P (Y = +1|X), which is crucial to
circumvent our result, and may therefore still produce coun-
terfactuals for which P (Y = +1|X) ≈ 1

2 . For instance, the
methods in (Kanamori et al., 2020; Parmentier and Vidal,
2021) do pay attention to the marginal distribution of X ,
but not to P (Y = +1|X). Consequently, all current ro-
bustness metrics or outlier metrics that do not increase the
risk after providing recourse will do so by luck, but not by
design.

We also like to remark that the results of the Defiant case will
hold, whatever the cost function may be. This is because the
conditional probability of being in the positive class does
not change in that setting.

3 Risk Increase for the Bayes-Optimal
Classifier

In this section we present our first main result, which relates
the risk with recourse under Q to the risk without recourse
under P . The result implies that the risk with recourse is
larger, because recourse will move data from a region where
the prediction is relatively certain, for example P (Y =
−1|X0) = 0.9, to the decision boundary, where things are
the least certain, because P (Y = +1|X) = 1/2. We also
illustrate this in an example with Gaussian data. The proofs
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+1 correct
−1 correct
+1 wrong
−1 wrong

R̂P (f
∗
P ) = 0.11 R̂Q(f

∗
P ) = 0.30

Figure 2: Left: Bayes classifier, original predictions; Right:
predictions after providing recourse in the compliant case.

and additional details for the example in this section can be
found in Appendix B.
Theorem 1 (Bayes-Optimal Classifier Risk Increase).
Let ℓ be the 0/1 loss, and assume the setting of Section 2.2
(i.e., (1), (2), (3)). Suppose that P (Y = 1|X0 = x) = 1

2
for all x on the decision boundary of f∗

P . Then

(a) For the defiant case,

RQ(f
∗
P ) = P (B = 1, f∗

P (X0) = −1, Y = −1)

− P (B = 1, f∗
P (X0) = −1, Y = +1) (4)

+RP (f
∗
P )

≥ RP (f
∗
P );

(b) For the compliant case,

RQ(f
∗
P ) =

1
2P (B = 1, f∗

P (X0) = −1)

− P (B = 1, f∗
P (X0) = −1, Y = 1) (5)

+RP (f
∗
P )

≥ RP (f
∗
P ).

Both inequalities are strict if P (B = 1, f∗
P (X0) = −1) >

0, i.e., if the probability of recourse in the negative class is
non-zero.

Theorem 1 gives an explicit expression for the risk with
recourse when f∗

P is the Bayes classifier for P . Under very
general conditions, it shows that providing recourse always
increases the risk, for any recourse probability function r
and any monotonically increasing cost function c!

3.1 Gaussian Example
We proceed with a simple example that can be analyzed
in closed form and plotted visually. We assume the data
is generated as follows. Let P (X0 | Y = y) be N (µ,Σ)
for y = +1 and N (ν,Σ) for y = −1 for positive defi-
nite Σ, with equal prior class probabilities P (Y = −1) =
P (Y = +1) = 1

2 . For simplicity, we will assume that
∥µ∥Σ−1 = ∥ν∥Σ−1 , where ∥µ∥2Σ−1 =

〈
µ,Σ−1µ

〉
and set

θ := Σ−1(µ−ν). Then, the optimal classifier is known to be
f∗
P (x0) = sign(x⊤

0 θ), and the Bayes risk can be expressed
in terms of the distribution function Φ of a standard normal
distribution: RP (f

∗
P ) = Φ(− 1

2∥µ−ν∥Σ−1). For Euclidean

cost c(x0, z) = ∥x0 − z∥, providing recourse boils down
to projecting onto the hyperplane {x ∈ X | x⊤θ = 0}
and this projection can be expressed analytically by a linear
transformation φ(x0) =

(
I − θθ⊤

∥θ∥2

)
x0.

We see the effect of providing recourse on the data dis-
tribution and the risk for the compliant case in Figure 2.
We have taken µ = (+1,+1)⊤, ν = (−1,−1)⊤ and
Σ = ( 1 0.5

0.5 1 ), and set r(x0) = 1. In this case, RP (f
∗
P ) =

Φ(− 1
2∥µ − ν∥Σ−1) ≈ 0.1. The figure also shows empiri-

cally that the risk increases, which matches the prediction by
Theorem 1 that RQ(f

∗
P ) =

1
4+

1
2Φ(− 1

2∥µ−ν∥Σ−1) ≈ 0.31.
The defiant case is not shown, because it would result in a
similar picture, but with RQ(f

∗
P ) =

1
2 .

4 Risk Increase for Probabilistic
Classifiers

In practice, we do not have direct access to the Bayes-
optimal classifier and the classifier is learned from data.
In this section, we therefore drop the requirement that the
classifier is exactly Bayes-optimal. We will further consider
probabilistic classifiers g : X → [0, 1]. Thresholding g then
leads to a binary classifier f(x) = sign(g(x) − 1

2 ). We
will compare the risk with recourse to the risk without re-
course, first for the 0/1 loss and then for a class of surrogate
losses that includes the cross-entropy loss. The assump-
tions we make differ, but in both cases the conclusion is
that the risk with recourse exceeds the risk without recourse
when g is sufficiently accurate. The proofs for this section
are presented in Appendix C.

4.1 Risk Increase for the 0/1 loss
We again focus on the 0/1 loss first. We can handle the defi-
ant case without further assumptions. But for the compliant
case we require that g is highly accurate in the sense that
its decision boundary is close to Bayes-optimal. A simple
sufficient requirement would be that there exists ε ≥ 0 such
that

∣∣ 1
2 − P (Y = 1 | X0 = x)

∣∣ ≤ ε (A)
for all x such that g(x) = 1/2.

This gives a uniform control over deviations anywhere along
the decision boundary of g. At the cost of a slightly more
complicated condition, this uniform bound can be relaxed
to an average under the distribution over the points from
the negative class that get mapped to the decision boundary
of g:

∫

{x0:g(x0)<1/2}

| 12 − P (Y = 1 | X = φ(x0))|P (dx0) ≤ ε.

(B)
Assuming g is continuous, it will equal g(x) = 1/2 for
all points x on its decision boundary. When φ maps all
points x0 from the negative class to the decision boundary
of g, it follows that (A) implies (B).
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R̂P (f) = 0.09 R̂Q(f) = 0.30 R̂P (f) = 0.19 R̂Q(f) = 0.26 R̂P (f) = 0.13 R̂Q(f) = 0.33

Figure 3: From left to right: Moons, Circles and Gaussian datasets. The left image for each shows the classifications with
gradient boosted trees; the right image shows the effect of giving recourse.

We are now ready to derive an analogous result to Theo-
rem 1:
Theorem 2 (Probabilistic Classifier Risk Increase, 0/1
loss). Let ℓ be the 0/1 loss. Let g : X → [0, 1] be
a continuous, probabilistic classifier, and define f(x) =
sign(g(x)− 1

2 ). Assume (1), (2), (3) from Section 2.2. Then,

(a) For the defiant case,

RQ(f) = P (B = 1, f(X0) = −1, Y = −1)

− P (B = 1, f(X0) = −1, Y = +1) (6)
+RP (f).

Moreover, RQ(f) ≥ RP (f) if and only if

P (Y = −1 | B = 1, f(X0) = −1) ≥ 1
2 . (7)

If we additionally assume that g satisfies (B) with 0 ≤ ε ≤
1
2 , then

(b) For the compliant case, RQ(f) is lower and upper
bounded by

( 12 ± ε)P (B = 1, f(X0) = −1)

+ P (f(X0) = +1, Y = −1) (8)
+ P (B = 0, f(X0) = −1, Y = 1).

Moreover, RQ(f) ≥ RP (f) if

P (Y = −1 | B = 1, f(X0) = −1) ≥ 1
2 + ε. (9)

Equations (7) and (9) express that the class −1 is actually
more likely (with a margin of ε) conditional on the set of
points in the negative class that accept recourse. This will
be satisfied when f is a reasonably accurate classifier. The
intuition is that in this case moving points to the decision
boundary is harmful, because they are more likely to be mis-
classified there. We also note that, for ε = 0, f will be equal
to the Bayes-optimal classifier, and the condition is always
satisfied, so we recover the conclusion from Theorem 1 that
the risk will always increase.

4.2 Risk Increase for Surrogate Losses
In this section, we investigate the scenario in which the
loss is not the 0/1 loss, but rather a surrogate loss. We

are primarily thinking of the cross-entropy loss, as defined
in Section 2, but our result also applies to any other loss
for probabilistic predictions ŷ ∈ [0, 1] which is such that
ℓ(1/2,−1) = ℓ(1/2,+1) is constant.
Theorem 3 (Probabilistic Classifier Risk Increase, Surro-
gate Loss). Let ℓ : [0, 1]×{−1,+1} → R be any loss such
that ℓ(1/2,−1) = ℓ(1/2,+1) = c for some constant c. Let
g : X → [0, 1] be a continuous, probabilistic classifier, and
define f(x) = sign(g(x) − 1

2 ). Further assume (1), (2),
(3) from Section 2.2. Then, both for the defiant and for the
compliant case, we have RQ(g) ≥ RP (g) if and only if

E
P

[
ℓ(g(X0), Y ) | f(X0) = −1, B = 1

]
≤ c. (10)

Condition 10 means that, on average over users from the
negative class who receive recourse, the loss should be
lower than the value of the loss at the decision boundary.
This means that g should be a reasonably accurate classifier,
which performs better on this group than simply predicting
1/2. But it is much weaker than requiring that g should be
close to Bayes-optimal, as we did in Theorems 1 and 2. We
can get away with this weaker requirement, because, at the
decision boundary, g(x) = 1/2 and therefore the loss is c
regardless of the underlying distribution of Y . This is also
the reason that the defiant and the compliant case coincide.

5 Strategic Classification
So far we have assumed that the classifier f was fixed, but
when the party deploying f knows in advance that they
will need to provide recourse, they have an incentive to
strategically choose f in order to minimize the resulting risk
under Q. In this section, we study the result of strategizing
for both the defiant and compliant scenario. Before present-
ing our results, we first introduce the part of the setup that
is common to both. At the end of the section, we reflect on
our findings in a short discussion.

5.1 Common Setup
Throughout this section we focus on binary classifiers
f : X → {−1,+1} with the 0/1 loss. And, since f is
now variable, we write Qf , φf and rf instead of Q, φ and r.
We assume that anyone either accepts or rejects recourse
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Figure 4: From left to right: Moons, Circles and Gaussian datasets. The left image for each shows the risk difference when
p ∈ [0, 1]; the right image shows the risk difference when σ2 ∈ [10−3, 101] on a logarithmic scale

deterministically, i.e., that rf (x0) ∈ {0, 1} for all x0. And
we also assume that the classifier f is selected from a re-
stricted class of functions F . For notational sake, define
φr
f (x0) = rf (x0)φf (x0) + (1 − rf (x0))x0. Under the

effect of recourse, F transforms into

Fr
φ := {x0 7→ f(φr

f (x0)) | f ∈ F} .

We say that F is invariant under recourse if, for any f ∈ F ,
there exists a unique f ′ ∈ F such that f ′ with recourse is
equivalent to f without recourse, i.e., f ′(φr

f (x0)) = f(x0)
for all x0. This implies, in particular, that Fr

φ = F . As
a concrete example, one can think of linear classification,
with recourse defined as bringing any point within distance
less than D > 0 of the decision boundary to the positive
class. In this example, shifting the original classifier by D
orthogonally to the decision boundary in the direction of
the positive class gives another equivalent classifier: it is
thus invariant under recourse. Details for this example and
another one are provided in Appendix D.

5.2 Defiant Case
In the defiant case, the setting above implies that providing
recourse does not change the risk:
Theorem 4 (Strategizing in the Defiant Case). Let ℓ be
the 0/1 loss, assume (1), (2), (3) from Section 2.2 with
r(x0) ∈ {0, 1} for all x0 ∈ X , and suppose F is invariant
under recourse. Then, providing recourse in the defiant
case does not change the risk when the party deploying the
classifier strategizes to minimize their risk over F:

min
f∈F

RQf
(f) = min

f∈F
RP (f) .

Intuitively, the reason is that in the defiant case it is strate-
gically optimal to maintain the original decision boundary,
because users do not really change upon receiving recourse.
This is possible when F is recourse invariant, because then
there is always a function available that compensates for
the effect of recourse. Recourse therefore has no effect
on the final decisions, but instead only places a burden on
users who have to implement it and on the party deploying
the classifier, which has to provide a recourse mechanism.

In this case, recourse therefore has only negative effects,
and may be considered harmful. We prove Theorem 4 in
Appendix D.

5.3 Compliant Case
In the compliant case, the situation is different and strategiz-
ing can actually improve the risk. We require the following
definition.
Definition 1. Suppose F is recourse invariant, and let
f ∈ argminf∈F RP (f) be a minimizer of the risk with-
out recourse. Let f ′ ∈ F be the (unique) classifier such that
f ′(φf ′(x0)) = f(x0) for all x0 ∈ X and define ∆ to be,

∆ := E
(X0,Y )∼P

[ℓ(f(X0), Y )]− E
(X0,Y )∼Qf′

[ℓ(f(X0), Y )] .

Here, the function f ′ compensates the effect of giving re-
course for the original classifier f , and it exists by recourse
invariance. The quantity ∆ measures the change in risk
when we fix the classifier to be f , but the data are either
generated by P (no recourse) or Qf ′ (recourse for the clas-
sifier f ′). Intuitively, ∆ measures the effect of recourse
on the distribution of users when the strategy is to choose
a function f ′ that compensates for the effect of recourse.
We generally expect recourse to move users further into
the positive class, and therefore to make it more certain
that their class label will indeed be Y = +1, which means
that ∆ would be positive. A detailed example is provided in
Appendix D.
Theorem 5 (Strategizing in the Compliant Case). Let ℓ
be the 0/1 loss, assume (1), (2), (3) from Section 2.2 and
suppose F is invariant under recourse. Let ∆ be as in
Definition 1. Then, the risk after providing recourse in the
compliant case can be bounded in terms of the risk without
recourse when the party deploying the classifier strategizes
to minimize their risk over F ,

min
f∈F

RQf
(f) ≤ RQf′ (f

′) = min
f∈F

RP (f)−∆,

where f ′ is as in Definition 1.

When ∆ is positive, this shows that providing recourse will
be beneficial. In Appendix D, we prove Theorem 5 and
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Table 1: Estimated risks on the Census dataset. Lower risk
in bold.

Wachter GS CoGS
RP RQ RP RQ RP RQ

LR 0.21 ± 0.03 0.30 ± 0.02 0.22 ± 0.02 0.33 ± 0.03 0.21 ± 0.02 0.35 ± 0.03
GBT 0.15 ± 0.01 0.05 ± 0.01 0.15 ± 0.02 0.17 ± 0.12 0.16 ± 0.02 0.35 ± 0.25
DT 0.25 ± 0.04 0.23 ± 0.05 0.24 ± 0.04 0.46 ± 0.19 0.24 ± 0.06 0.46 ± 0.11
NB 0.18 ± 0.02 0.76 ± 0.02 0.18 ± 0.02 0.77 ± 0.03 0.18 ± 0.03 0.81 ± 0.03
QDA 0.21 ± 0.02 0.76 ± 0.03 0.20 ± 0.02 0.75 ± 0.04 0.20 ± 0.02 0.81 ± 0.03
NN 1 0.16 ± 0.01 0.27 ± 0.11 0.16 ± 0.02 0.25 ± 0.06 0.16 ± 0.02 0.28 ± 0.06
NN 2 0.16 ± 0.02 0.32 ± 0.05 0.15 ± 0.02 0.31 ± 0.04 0.15 ± 0.02 0.35 ± 0.06
NN 3 0.16 ± 0.02 0.36 ± 0.07 0.16 ± 0.02 0.30 ± 0.06 0.16 ± 0.02 0.33 ± 0.06
NN 4 0.16 ± 0.01 0.38 ± 0.06 0.16 ± 0.02 0.34 ± 0.06 0.15 ± 0.02 0.38 ± 0.08
NN 5 0.16 ± 0.01 0.38 ± 0.06 0.16 ± 0.02 0.34 ± 0.05 0.15 ± 0.02 0.38 ± 0.08

expand the example of Section 3.1 by showing that ∆ > 0
in that case.

5.4 Discussion
We observe that both in the defiant and in the compliant case,
an appealing strategy for the party deploying the classifier
is to compensate for the effect of recourse by changing
their classifier in a way that maintains the original decision
boundary. This implies that all users get classified exactly
the same way as without recourse, and the only effect of
recourse is to change the conditional distribution of Y . For
instance, in a bank loan setting, the same customers would
get the loan, but some customers might be required to reduce
their probability of defaulting before getting it.

6 Experiments
In addition to our theoretical results, we perform several
experiments that showcase the possible increase in risk by
providing recourse. We conduct these on synthetic data
and real data. In both cases we generate Y according to
the compliant setting, and except if it is stated otherwise,
recourse is provided for all x0 that are classified as class −1.
Further details for all the experiments are available in Ap-
pendix E.

6.1 Synthetic Data
The synthetic data consist of the 3 datasets shown in Fig-
ure 3, all in 2 dimensions: a Moons dataset, which consists
of two translated semi-circles with Gaussian noise; a Circles
dataset, which consists of two nested circles with Gaus-
sian noise; and a final dataset consisting of 2 Gaussians
with different means and covariances. Counterfactuals for
c(x0, z) = ∥z−x0∥ were computed by a brute force search
to find the closest point z with f(z) = +1 from a dense
grid over X .

A summary of the estimated risks for a variety of classifiers
can be seen in Table 2. The experiments were also re-
peated 10 times to estimate confidence bounds for the risks.
We also performed experiments where not everyone accepts
the counterfactual. We distinguish between two cases. In
the first, everyone has the same probability r(x0) = p of
accepting the counterfactual. In the second case, the prob-
ability of accepting is determined by the distance towards

the counterfactual explanation. We choose to model this

probability as r(x0) = e−
1

2σ2 ∥x0−φ(x0)∥2

. These results
are summarised in the plots in Figure 4 and show that giv-
ing more points recourse, generally increases the risk. The
plots show the risk difference RQ −RP on the y-axis, and
either p or σ on the x-axis. We see a clear linear dependence
on p in the first case, which is predicted by our results. See
Appendix E.1.1 for a derivation of this fact.

Looking at Table 2, We observe that the risk increases in
all cases for the Moons and Gaussians dataset. With the
Circles dataset, most of the risks with recourse had a higher
mean, but the confidence bounds were overlapping. The
biggest exception was logistic regression on the Circles
dataset. Here, the risk decrease happens because logistic
regression has a linear decision boundary, which is severely
inappropriate for this data. Without recourse, almost half of
the class +1 is misclassified, because the linear boundary
cuts both circles. If the points of the outer circle, which are
of class −1, are projected onto this line, a large portion will
land inside the inner circle, where the conditional probability
of class +1 will be significantly larger than 1

2 .

6.2 Real Data

For the real datasets we use the Give me Credit, Census
Income, and Home Equity Line of Credit (HELOC) datasets,
from the CARLA Python package (Pawelczyk et al., 2021).
All features were normalized to [0, 1]. We compare various
classifiers, and 3 counterfactual methods: Wachter’s method
(Wachter et al., 2017), the Growing Spheres method (Laugel
et al., 2018), and Counterfactual Genetic Search (CoGS)
(Virgolin and Fracaros, 2023). The main challenge on real
data is that we do not have access to the true conditional dis-
tribution, P (Y | X). This distribution is needed to sample
Y after obtaining X = φ(X0) through recourse. To circum-
vent this issue we reserve a large portion of the data to train a
calibrated classifier for the conditional probabilities.

A summary of the estimated risks can be seen in Table 1,
which is shown here, and Tables 3 and 4 in Appendix E. Ev-
ery experiment was repeated 10 times to estimate confidence
bounds. For the Census and HELOC datasets, providing re-
course indeed increases the risk in most cases, as predicted
by our theoretical results, but in a small number of cases
the risk goes down. The exceptions may be explained if the
accuracy of the classifiers in class −1 is not significantly
better than random guessing, as required by (9). The third
dataset is the Credit data: in this case the classes are very
unbalanced (class −1 occurs only 7% of the time), and,
because we did not fully finetune the classifiers, several
of them perform worse than the 7% base error rate that
can be obtained by always predicting class +1. Since our
theoretical results only apply to high accuracy classifiers
(see again Equation 9), this leaves room for the possibility
that providing recourse might actually decrease the risk in
this case. The estimates in Table 3 indeed suggest that this
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Table 2: Estimated risks on synthetic data sets. Lower risk is bold.

Moons data Circles data Gaussians data
RP RQ RP RQ RP RQ

Logistic Regression (LR) 0.13 ± 0.01 0.32 ± 0.03 0.52 ± 0.02 0.36 ± 0.02 0.14 ± 0.01 0.35 ± 0.05
GradientBoostedTrees (GBT) 0.07 ± 0.03 0.25 ± 0.09 0.18 ± 0.02 0.27 ± 0.03 0.14 ± 0.02 0.35 ± 0.06
Decision Tree (DT) 0.09 ± 0.02 0.28 ± 0.08 0.19 ± 0.02 0.26 ± 0.04 0.14 ± 0.02 0.39 ± 0.08
Naive Bayes (NB) 0.13 ± 0.02 0.33 ± 0.03 0.16 ± 0.02 0.16 ± 0.03 0.16 ± 0.03 0.29 ± 0.03
QuadraticDiscriminantAnalysis (QDA) 0.13 ± 0.01 0.33 ± 0.04 0.16 ± 0.01 0.16 ± 0.03 0.13 ± 0.02 0.38 ± 0.05
Neural Network(4) (NN 1) 0.12 ± 0.04 0.27 ± 0.09 0.26 ± 0.22 0.27 ± 0.09 0.14 ± 0.02 0.37 ± 0.04
Neural Network(4, 4) (NN 2) 0.07 ± 0.07 0.25 ± 0.06 0.18 ± 0.01 0.23 ± 0.04 0.12 ± 0.00 0.40 ± 0.00
Neural Network(8) (NN 3) 0.07 ± 0.06 0.22 ± 0.04 0.17 ± 0.02 0.20 ± 0.02 0.13 ± 0.02 0.36 ± 0.04
Neural Network(8, 16) (NN 4) 0.03 ± 0.01 0.26 ± 0.03 0.17 ± 0.01 0.19 ± 0.04 0.13 ± 0.02 0.39 ± 0.04
Neural Netowrk(8, 16, 8) (NN 5) 0.03 ± 0.01 0.26 ± 0.03 0.17 ± 0.01 0.19 ± 0.04 0.13 ± 0.02 0.39 ± 0.04

is happening, but, unfortunately, because of the class im-
balance, the variance in our risk estimates is too large to
definitively confirm that this indeed occurs.

7 Conclusion
We demonstrated, analytically and empirically, that in many
cases the risk will increase when recourse is provided. This
implies that recourse can be harmful at the population level,
and therefore for a large group of users. In such cases, al-
ternative types of explanations might be called for. One
interesting alternative direction is the existing work on con-
testability, which addresses the question of whether an al-
gorithmic decision is correct according to common sense,
moral or legal standards (Freiesleben, 2022). As a possi-
bility for future work, our framework might be extended
by also accounting for the cost incurred by the users when
implementing recourse, e.g., by adding a scaled version of
c(X0, X) to RQ(f). Assuming positive costs, this would
make recourse even less appealing, and lead to the conclu-
sion that it is harmful in an even larger number of cases. An-
other extension, which would be more interesting to explore,
would be to apply our framework in cases where the users
and the party deploying the classifier have different loss
functions. Then the relation between f and Bayes-optimal
decisions for the user’s loss would be broken, which might
lead to different conclusions.
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A Proofs for Section 2

Recall that, for any x0 ∈ X , we choose

φ(x0) ∈ argmin
z∈X : f(z)=+1

c(x0, z) .

Lemma 6. Assume that {z ∈ X | f(z) = +1} is a closed
subset of Rd, and that the cost c satisfies Assumption (3).
Then φ(x0) belongs to the boundary of {z ∈ X | f(z) =
+1} for all x0 ∈ X such that f(x0) = −1 and φ(x0) = x0

if x0 belongs to {z ∈ X | f(z) = +1}.

Proof. First, we remark that c(x0, z) is minimized by z =
x0, whenever x0 ∈ {z ∈ X | f(z) = +1}, which shows
that φ(x0) = x0 for all x0 in {z ∈ X | f(z) = +1}.

Moving towards the case of x0 such that f(x0) = −1. Let
us set x1 = φ(x0) and A = {z ∈ X | f(z) = +1}.
By contradiction, assume that x1 does not belong to the
boundary of A. Since by construction x1 ∈ A, then we
must have x1 ∈ Ao, the interior of A. Consider the point x2

that lies on the line segment [x0, x] and on the boundary of
A. As c(x0, z) is increasing for z ∈ [x0, x] it must be that

c(x0, x2) < c(x0, x).

This contradicts the definition of x1 and concludes the proof.

Note, that the requirement on c can be further weakened by
assuming that there is a path between x0 and x such that
z 7→ c(x0, z) is increasing along this path. So, we do not
necessarily need straight line segments. The proof of this
statement is analogous to the proof of Lemma 6.

B Further Details for Section 3

Before we start the proof of the main result in Section 3,
we will introduce notation and some additional results. The

conditional distributions of Y given X0 will be denoted
by

p+(x) := P (Y = +1 | X0 = x)

= 1− P (Y = −1 | X0 = x) =: 1− p−(x).

Now, we will prove a general result about expressing the
risk under Q, of which Theorem 1 is a consequence. Ev-
ery expectation E will be with respect to P in this section.

Lemma 7. Let ℓ be a loss function with ℓ(y, y) = 0, and
assume the setting of Section 2.2 (i.e., (1), (2), (3)). Suppose
that P (Y = 1|X0 = x) = 1

2 for all x on the decision
boundary of f . Then

(a) For the defiant case,

RQ(f) = ℓ(1,−1)P (Y = −1)E [r(X0)|Y = −1]

+ E [(1− r(X0))ℓ(f(X0), Y )] ; (11)

(b) For the compliant case,

RQ(f) = ℓ(1,−1)E [r(X0)p−(φ(X0))] (12)
+ E [(1− r(X0))ℓ(f(X0), Y )] . (13)

Proof. Before distinguishing between the 2 cases, we ex-
pand the expression for the risk under Q as

RQ(f) =

∫

X 2×Y

ℓ(f(x), y)Q(dy | x, x0)Q(dx|x0)P (dx0)

=

∫

X×Y

r(x0)ℓ(f(φ(x0)), y)Q(dy | φ(x0), x0)P (dx0)

+

∫

X×Y

(1− r(x0))ℓ(f(x0), y)P (dy | x0)P (dx0)

= ℓ(1,−1)

∫

X

r(x0)Q(Y = −1 | φ(x0), x0)P (dx0)

(since f(φ(x0)) = 1)

+ E [(1− r(X0))ℓ(f(X0), Y )] .

We focus now on the integral in the first term.

Defiant Case: The first term in the expression in the above
display becomes

∫

X

r(x0)Q(Y = −1 | φ(x0), x0)P (dx0)

=

∫

X

r(x0)P (Y = −1 | x0)P (dx0)

= P (Y = −1)

∫

X

r(x0)P (dx0 | Y = −1)

= P (Y = −1)E [r(X0) | Y = −1] .
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Compliant Case: The first term now becomes
∫

X

r(x0)Q(dy | φ(x0), x0)P (dx0)

=

∫

X

r(x0)P (dy | φ(x0))P (dx0)

=

∫

X

r(x0)P (Y = −1 | φ(x0))P (dx0)

=

∫

X

r(x0)p−(φ(x0))P (dx0)

= E [r(X0)p−(φ(X0))] .

We are now ready to prove Theorem 1.
Theorem 1 (Bayes-Optimal Classifier Risk Increase).
Let ℓ be the 0/1 loss, and assume the setting of Section 2.2
(i.e., (1), (2), (3)). Suppose that P (Y = 1|X0 = x) = 1

2
for all x on the decision boundary of f∗

P . Then

(a) For the defiant case,

RQ(f
∗
P ) = P (B = 1, f∗

P (X0) = −1, Y = −1)

− P (B = 1, f∗
P (X0) = −1, Y = +1) (4)

+RP (f
∗
P )

≥ RP (f
∗
P );

(b) For the compliant case,

RQ(f
∗
P ) =

1
2P (B = 1, f∗

P (X0) = −1)

− P (B = 1, f∗
P (X0) = −1, Y = 1) (5)

+RP (f
∗
P )

≥ RP (f
∗
P ).

Both inequalities are strict if P (B = 1, f∗
P (X0) = −1) >

0, i.e., if the probability of recourse in the negative class is
non-zero.

Proof. For both cases, we will first prove the equality and
then show that the expectation is always non-negative for
the inequality. From those proofs it can be seen how the
strict inequality is derived. We apply Lemma 7 to both
cases. Remark that ℓ(1,−1) = ℓ(−1, 1) = 1 and rewrite
the common term as

E [(1− r(X0))ℓ(f
∗
P (X0), Y )]

= RP (f
∗
P )− E [r(X0)1 (f

∗
P (X0) ̸= Y )]

= RP (f
∗
P )− P (B = 1, f∗

P (X0) ̸= Y ). (14)

Defiant Case: In this case, we rewrite the first term in (11)
to get

P (Y = −1)E [r(X0)|Y = −1] = E [r(X0)1(Y = −1)] .
(15)

Combining expressions (14) and (15) gives the result,

RQ(f
∗
P ) = E [r(X0)(1(Y = −1)− 1(f∗

P (X0) ̸= Y ))]

+RP (f
∗
P ) (16)

= P (B = 1, Y = −1)− P (B = 1, f∗
P (X0) ̸= Y )

+RP (f
∗
P )

= P (B = 1, f∗
P (X0) = −1, Y = −1)

− P (B = 1, f∗
P (X0) = −1, Y = +1)

+RP (f
∗
P ).

It remains to show that the difference of the first two prob-
abilities is positive. We return to the formulation in terms
of expectations and indicator functions. We can rewrite the
indicator functions giving rise to those probabilities as

1(f∗
P (x0) = −1, y = −1)− 1(f∗

P (x0) = −1, y = 1)

= 1(f∗
P (x0) = −1)(1(y = −1)− 1(y = 1)).

The expectation in (16) now becomes
∫

X×Y

r(x0)(1(y = −1)− 1(f∗
P (x0) ̸= y))P (dx0, dy)

=

∫

{f∗
P=−1}×Y

r(x0)(1(y = −1) (17)

− 1(y = 1))P (dy | X = x)P (dx0)

=

∫

{f∗
P=−1}

r(x0)(p−(x0)− p+(x0))P (dx0). (18)

Now, by f∗
P being the Bayes optimal classifier we know that

p−(x0) ≥ p+(x0) for all x0 on {f∗
P = −1}. So, we see

that the integral in (17) is non-negative.

Compliant Case: We note that p+(φ(x0)) = p−(φ(x0)) =
1
2 for any x0 with f∗

P (x0) = −1, because those points are
projected onto the decision boundary by assumption (3) and
Lemma 6. The points on the decision boundary of the Bayes
classifier are exactly where the probability of being either
class is 1

2 , by assumption. The first expectation in (12) can
now be written as

E[r(X0)p−(φ(X0))] =
1
2E[r(X0)1(f

∗
P (X0) = −1)]

+ E[r(X0)p−(X0)1(f
∗
P (X0) = +1)]

= 1
2P (B = 1, f∗

P (X0) = −1)

+ P (B = 1, f∗
P (X0) = +1, Y = −1).

(19)

We note that the second probability in (19) cancels the sec-
ond probability (14) partly. First we write the latter proba-
bility as

P (B = 1, f∗
P (X0) ̸= Y )

= P (B = 1, f∗
P (X0) = 1, Y = −1)

+ P (B = 1, f∗
P (X0) = −1, Y = 1).
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Subtracting both probabilities gives

P (B = 1,f∗
P (X0) = 1, Y = −1)− P (B = 1, f∗

P (X0) ̸= Y )

= −P (B = 1, f∗
P (X0) = −1, Y = 1).

Substituting (19) and (14) into the expression for RQ(f
∗
P )

gives

RQ(f
∗
P ) = E [r(X0)p−(φ(X0))]

+ E [(1− r(X0))ℓ(f(X0), Y )]

= E [r(X0)p−(φ(X0))] +RP (f
∗
P )

− P (B = 1, f∗
P (X0) ̸= Y )

= 1
2P (B = 1, f∗

P (X0) = −1)

− P (B = 1, f∗
P (X0) = −1, Y = 1) +RP (f

∗
P ).

To derive the necessary inequality, we focus again on the
first two probabilities and write this explicitly as an integral.
This integral is given by

1
2P (B = 1,f∗

P (X0) = −1)

− P (B = 1, f∗
P (X0) = −1, Y = 1)

=

∫

{f∗
P=−1}

r(x0)(
1
2 − p+(x0))P (dx0)

≥ 0

Where we have used that the on the set {x0 ∈ X | f∗
P (x0) =

−1} it must be that p+(x0) ≤ 1
2 , because f∗

P is the Bayes
classifier.

The strict inequality follows by remarking that the difference
of the integrand in both integrals of the defiant and compliant
case will be strictly positive on some positive probability
set, if P (B = 1, f∗

P = −1) > 0.

B.1 Additional Details Gaussian Example in
Section 3.1

In Section 3.1 it is claimed that the Bayes risk can be written
as RP (f

∗
P ) = Φ(− 1

2∥µ− ν∥Σ−1). Here, we show this and
additionally derive the Bayes optimal classifier for general
µ, ν ∈ Rd.

The conditional distribution can be calculated explic-
itly. Let pµ(x) = e−

1
2 (x−µ)⊤Σ−1(x−µ) and pν(x) =

e−
1
2 (x−ν)⊤Σ−1(x−ν), then

P (Y = 1 | X0 = x)

=
P (Y = 1)pµ(x)

P (Y = 1)pµ(x) + P (Y = −1)pν(x)

=
1

1 + e−x⊤Σ−1(µ−ν)+ 1
2 (∥µ∥2

Σ−1−∥ν∥2
Σ−1 )

.

From this we see that for θ = Σ−1(µ − ν) and θ0 =
− 1

2 (∥µ∥2Σ−1 − ∥ν∥2Σ−1) the Bayes classifier is given by

f∗
P (x) = sign(x⊤θ + θ0). We can now calculate the Bayes

risk by first rewriting this risk as

RP (f
∗
P ) =

1
2P (f∗

P (X0) = −1 | Y = 1)

+ 1
2P (f∗

P (X0) = 1 | Y = −1)

= 1
2P (X⊤

0 θ + θ0 < 0 | Y = 1)

+ 1
2P (X⊤

0 θ + θ0 ≥ 0 | Y = −1). (20)

As X0 is Gaussian, conditional on Y , we know that
X⊤

0 θ + θ0 is also Gaussian. For Y = 1, we get N (µ⊤θ +
θ0, ∥θ∥2Σ−1) and for Y = −1 we get N (ν⊤θ+θ0, ∥θ∥2Σ−1).
Translating and rescaling allows us to rewrite the probabili-
ties in (20) in terms of the CDF Φ of the standard normal
distribution,

P (X⊤
0 θ + θ0 < 0 | Y = 1) = Φ

(−µ⊤θ − θ0
∥θ∥Σ−1

)

= Φ

(
−∥µ∥2Σ−1 + µ⊤Σ−1ν + 1

2 (∥µ∥2Σ−1 − ∥ν∥2Σ−1)

∥µ− ν∥Σ−1

)

= Φ

(− 1
2∥µ− ν∥2Σ−1

∥µ− ν∥Σ−1

)
= Φ(− 1

2∥µ− ν∥Σ−1).

Analogously, we would get

P (X⊤
0 θ + θ0 ≥ 0 | Y = −1) = Φ(− 1

2∥µ− ν∥Σ−1).

Combining the two probabilities gives the desired re-
sult.

C Proofs of Section 4
In this section we present all the previous and additional
results of Section 4.

C.1 Proof of Theorem 2

Theorem 2 (Probabilistic Classifier Risk Increase, 0/1
loss). Let ℓ be the 0/1 loss. Let g : X → [0, 1] be
a continuous, probabilistic classifier, and define f(x) =
sign(g(x)− 1

2 ). Assume (1), (2), (3) from Section 2.2. Then,

(a) For the defiant case,

RQ(f) = P (B = 1, f(X0) = −1, Y = −1)

− P (B = 1, f(X0) = −1, Y = +1) (6)
+RP (f).

Moreover, RQ(f) ≥ RP (f) if and only if

P (Y = −1 | B = 1, f(X0) = −1) ≥ 1
2 . (7)

If we additionally assume that g satisfies (B) with 0 ≤ ε ≤
1
2 , then

(b) For the compliant case, RQ(f) is lower and upper
bounded by

( 12 ± ε)P (B = 1, f(X0) = −1)

+ P (f(X0) = +1, Y = −1) (8)
+ P (B = 0, f(X0) = −1, Y = 1).
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Moreover, RQ(f) ≥ RP (f) if

P (Y = −1 | B = 1, f(X0) = −1) ≥ 1
2 + ε. (9)

Proof. Defiant Case: We again use Lemma 7 which gives
us

RQ(f) = P (Y = −1)E[r(X0) | Y = −1]

+ E[(1− r(X0)1(f(X0) ̸= Y )]

= P (Y = −1, B = 1) + P (f(X0) ̸= Y )

− P (f(X0) ̸= Y,B = 1)

= P (Y = −1, B = 1)− P (f(X0) ̸= Y,B = 1)

+RP (f)

= P (B = 1, f(X0) = −1, Y = −1)

− P (B = 1, f(X0) = −1, Y = +1)

+RP (f).

To derive the second claim, we upper bound RP (f) by
RQ(f). We see that the RP (f) term drops on both sides
and we are left with

P (B = 1,f(X0) = −1, Y = −1) ≤
P (B = 1, f(X0) = −1, Y = +1)

Conditioning on {B = 1, f(X0) = −1} and cancelling the
common terms gives us

P (Y = +1 | f(X0) = −1, B = 1)

≤ P (Y = −1 | f(X0) = −1, B = 1), ⇐⇒
P (Y = −1 | f(X0) = −1, B = 1) ≥ 1

2 .

Compliant Case: We apply Lemma 7. Note, that Assump-
tion B and Lemma 6 tell us that on the set {x0 ∈ X |
f(x0) = −1} we have that 1

2 − ε < p−(φ(X0)) ≤ 1
2 + ε

in expectation. For the first expectation we get the upper
bound

E [r(X0)p−(φ(X0))]

= E [r(X0)1{f(X0) = −1}p−(φ(X0))]

+ E [r(X0)1{f(X0) = 1}p−(X0)]

≤ ( 12 + ε)P (f(X0) = −1, B = 1)

+ P (f(X0) = 1, Y = −1, B = 1).

Analogously, for the lower bound we get

E [r(X0)p−(φ(X0))] ≥ ( 12 − ε)P (f(X0) = −1, B = 1)

+ P (f(X0) = 1, Y = −1, B = 1).

We write the second expectation as follows in this case,

E [(1− r(X0))ℓ(f(X0), Y )] = P (f(X0) ̸= Y,B = 0).

This leaves us with

RQ(f) ≤ ( 12 + ε)P (f(X0) = −1, B = 1)

+ P (f(X0) = 1, Y = −1, B = 1)

+ P (B = 0, f(X0) ̸= Y )

≤ ( 12 + ε)P (f(X0) = −1, B = 1)

+ P (f(X0) = 1, Y = −1)

+ P (f(X0) = −1, Y = 1, B = 0). (21)

Similarly, for the lower bound we get

RQ(f) ≥ ( 12 − ε)P (f(X0) = −1, B = 1)

+ P (f(X0) = 1, Y = −1)

+ P (f(X0) = −1, Y = 1, B = 0) (22)

Combining expressions (21) and (22) gives the desired lower
and upper bound.

We move to the second claim. This time, we upper bound
RP (f) by the derived lower bound. This gives us

P (Y = 1, f(X0) = −1)

≤ ( 12 − ε)P (f(X0) = −1, B = 1)

+ P (f(X0) = −1, Y = 1, B = 0) ⇐⇒
P (Y = 1, f(X0) = −1, B = 1)

≤ ( 12 − ε)P (f(X0) = −1, B = 1) ⇐⇒
P (Y = 1 | f(X0) = −1, B = 1)

≤ ( 12 − ε)P (Y = −1 | f(X0) = −1, B = 1)

The final inequality can be rewritten as

P (Y = −1 | f(X0) = −1, B = 1) ≥ ( 12 + ε).

C.2 Proof of Theorem 3

Theorem 3 (Probabilistic Classifier Risk Increase, Surro-
gate Loss). Let ℓ : [0, 1]×{−1,+1} → R be any loss such
that ℓ(1/2,−1) = ℓ(1/2,+1) = c for some constant c. Let
g : X → [0, 1] be a continuous, probabilistic classifier, and
define f(x) = sign(g(x) − 1

2 ). Further assume (1), (2),
(3) from Section 2.2. Then, both for the defiant and for the
compliant case, we have RQ(g) ≥ RP (g) if and only if

E
P

[
ℓ(g(X0), Y ) | f(X0) = −1, B = 1

]
≤ c. (10)

Proof. Let I = 1{f(X0) = −1, B = 1} be the indicator
for recourse in the negative class. Then, since φ(X0) lies
on the decision boundary (DB) when X0 is in the negative
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class,

RQ(g) = E
(X,Y )∼Q

[ℓ(g(X), Y )]

= E
(X0,Y )∼Q

[ℓ(g(φ(X0)), Y )I]

+ E
(X,Y )∼Q

[ℓ(g(X), Y )(1− I)]

= E
(X0,Y )∼Q

[ℓ(1/2, Y )I] (φ(X0) on the DB)

+ E
(X0,Y )∼P

[ℓ(g(X0), Y )(1− I)]

= cP (f(X0) = −1, B = 1) (by definition of c)
+ E

(X0,Y )∼P
[ℓ(g(X0), Y )(1− I)]

≥ E
P
[ℓ(g(X0), Y )I]

+ E
(X0,Y )∼P

[ℓ(g(X0), Y )(1− I)]

= RP (g),

where the inequality is equivalent to (10).

D Additional results and proofs for
Section 5

D.1 Examples of classifiers invariant under
recourse

Let us justify more rigorously the linear classifier example
introduced in Section 5. A visual representation describing
this example can be found in Figure 5.
Example 1. Consider the set of linear classifiers F =
{fθ,θ0(x) = sign(x⊤θ + θ0) | θ ∈ Rd, θ0 ∈ R} with the
convention that sign(z) = +1 for z ≥ 0 and sign(z) = −1
otherwise. If the recourse map is such that any point x0

within distance D > 0 of the decision boundary of fθ,θ0
gets mapped to the positive class, then this class is invariant
under recourse, because

fθ,θ′
0
(φ(fθ,θ′

0
, x0)) = fθ,θ0(x0) for all x0 ∈ X

when θ′0 = θ0−D∥θ∥. To see this, note that the (signed) dis-

tance from x0 to the decision boundary for fθ,θ′
0

is −x⊤
0 θ−θ′

0

∥θ∥ .
Hence the following are all equivalent:

fθ,θ′
0
(φ(fθ,θ′

0
, x0)) = +1

−x⊤
0 θ − θ′0
∥θ∥ ≤ D

x⊤
0 θ + θ′0 ≥ −D∥θ∥

x⊤
0 θ + θ0 ≥ 0

fθ,θ0(x0) = +1.

One can extend this idea to other geometrical shapes:
Example 2. Consider the spherical classifiers for which
fθ,b(x) = +1 if and only if ∥x − θ∥ ≥ b. Then the set
F = {fθ,b | θ ∈ Rd, b ∈ R+} is invariant under recourse

when the recourse map is again such that any point x0 in
the negative class that lies within distance D > 0 of the
decision boundary of fθ,b gets mapped to the positive class.
This follows because providing recourse has the effect of
effectively shrinking b by D, so we can undo this effect by
increasing b to b′ = b+D:

fθ,b′(φ(fθ,b′ , x0)) = fθ,b(x0) for all x0 ∈ X .

D.2 Proof of Theorem 4

Theorem 4 (Strategizing in the Defiant Case). Let ℓ be
the 0/1 loss, assume (1), (2), (3) from Section 2.2 with
r(x0) ∈ {0, 1} for all x0 ∈ X , and suppose F is invariant
under recourse. Then, providing recourse in the defiant
case does not change the risk when the party deploying the
classifier strategizes to minimize their risk over F:

min
f∈F

RQf
(f) = min

f∈F
RP (f) .

Proof. Note that in the defiant case Q(Y | X0) = P (Y |
X0) as

Q(Y | X0) =

∫

X

Q(Y,X = dx | X0)

=

∫

X

Q(Y | X = x,X0)Q(X = dx | X0)

= P (Y | X0)

∫

X

Q(X = dx | X0)

= P (Y | X0).

Using this we, we write

min
f∈F

RQf
(f) = min

f∈F
E

(X,Y )∼Qf

[ℓ(f(X), Y )]

= min
f∈F

E
(X0,Y )∼Qf

[ℓ(f(φf (X0)), Y )]

= min
f∈F

E
(X0,Y )∼P

[ℓ(f(φf (X0)), Y )]

(by defiant case)

= min
f∈Fr

φ

E
(X0,Y )∼P

[ℓ(f(X0), Y )]

(by definition of Fr
φ)

= min
f∈F

E
(X0,Y )∼P

[ℓ(f(X0), Y )]

(since F = Fr
φ)

min
f∈F

RQf
(f) = min

f∈F
RP (f) .

D.3 Explicit ∆ bound

Example 3. Let us further specialize the setting of Ex-
ample 1 to the task of distinguishing between two Gaus-
sians with different means µ, ν ∈ Rd and common pos-
itive definite covariance matrix Σ. That is, let P (Y =
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Figure 5: Left figure: Linear classifier with a shaded area to indicate where recourse is accepted. Right figure: The same
linear classifier but shifted towards the right in such a way that the effective decision boundary is the original decision
boundary.

−1) = P (Y = +1) = 1/2, and the data is distributed
according to P (X0|Y = +1) = N (µ,Σ) and P (X0|Y =
−1) = N (ν,Σ). Then f = fθ,θ0 for θ = Σ−1(µ− ν) and
θ0 = − 1

2 (µ+ ν)⊤Σ−1(µ− ν) is the Bayes optimal classi-
fier. See Section B.1 for a justification. The compensating
classifier is given by f ′ = fθ,θ′

0
for θ′0 = θ0 −D∥θ∥. Then

recourse for f ′ affects users in a band of width D∥θ∥ which
lies just in the positive class according to f :

A = {x : 0 ≤ x⊤θ + θ0 < D∥θ∥},

and

∆ =

∫

A

{
P (Y = −1 | X0 = x0)

− P (Y = −1 | X0 = φf ′(x0))
}
P (dx0)

=

∫

A

{
P (Y = −1 | X0 = x0)

− P

(
Y = −1 | X0 = x0 −

f ′(x0)

∥θ∥2 θ

)}
P (dx0).

Again by Section B.1, we can write the posterior distribution
as

P (Y = −1|X0 = x) =
1

1 + eθ⊤x+θ0
,

Now, we write

θ⊤φ(f ′, x0) + θ0 = θ⊤x0 + θ0 − (θ)⊤
(
f ′(x0)

∥θ∥2
θ

)

= θ⊤x0 + θ0 + 1 ,

since f ′(x0) = −1. Thus, θ⊤φf ′(x0) + θ > θ⊤x0 + θ0.
Since the mapping t 7→ 1/(1 + exp(t)) is decreasing, we
deduce that ∆ > 0 in this case.

D.4 Proof of Theorem 5

Theorem 5 (Strategizing in the Compliant Case). Let ℓ
be the 0/1 loss, assume (1), (2), (3) from Section 2.2 and

suppose F is invariant under recourse. Let ∆ be as in
Definition 1. Then, the risk after providing recourse in the
compliant case can be bounded in terms of the risk without
recourse when the party deploying the classifier strategizes
to minimize their risk over F ,

min
f∈F

RQf
(f) ≤ RQf′ (f

′) = min
f∈F

RP (f)−∆,

where f ′ is as in Definition 1.

Proof. As in the defiant case, the proof considers the strate-
gic choice f ′, which compensates for the effect of recourse
in order to maintain the same decision boundary as in the
case without recourse. The effect of recourse is then only
to change the distribution in a way that is captured by Defi-
nition 1. We first notice that minf∈F RQf

(f) ≤ RQf′ (f
′)

holds because f ′ ∈ F . We write

RQf′ (f
′) = E

(X,Y )∼Qf′
[ℓ(f ′(X), Y ))]

= E
(X0,Y )∼Qf′

[ℓ(f ′(φf ′(X0)), Y )]

= E
(X0,Y )∼Qf′

[ℓ(f(X0), Y )]

= E
(X0,Y )∼P

[ℓ(f(X0), Y )]−∆

(definition of ∆)

RQf′ (f
′) = min

f∈F
RP (f)−∆ .

E Details Experimental Setup
All the code to reproduce the experiments and figures in this
paper can be found in a GitHub repository.3 All experiments
were performed on a single 32-core CPU node (AMD Rome
7H12) with 64GB of RAM. For all experiments we used the

3github.com/HiddeFok/consequences-of-recourse

 https://github.com/HiddeFok/consequences-of-recourse
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following classifiers from the scikit-learn (version
1.0) library:

• LogisticRegression, with the default parame-
ters, except for class_weigt=’balanced’.

• GradientBoostingClassifier, with the de-
fault parameters, except for n_estimators=10 .

• DecisionTreeClassifier, with the default pa-
rameters, except for class_weigt=’balanced’
and max_depth=4.

• GaussianNB, with the default parameters.

• RandomForestClassifier, with the default pa-
rameters except for class_weigt=’balanced’,
max_depth=4 and n_estimators=10.

• QuadraticDiscrimantAnalysis, with the de-
fault parameters.

• MLPClassifier, with the default parameters and
hidden layers,
hidden_layer_sizes=(4,).

• MLPClassifier, with the default parameters and
hidden layers,
hidden_layer_sizes=(4, 4).

• MLPClassifier, with the default parameters and
hidden layers,
hidden_layer_sizes=(8,).

• MLPClassifier, with the default parameters and
hidden layers,
hidden_layer_sizes=(8, 16).

• MLPClassifier, with the default parameters and
hidden layers,
hidden_layer_sizes=(8, 16, 8).

For both the synthetic data experiments and real data exper-
iments, we repeated the experiments 10 times to estimate
confidence bounds. The result with the lower risk is written
in bold in the result tables. If the confidence bounds overlap
we make both results bold.

E.1 Synthetic Data

For each of the synthetic data experiments, we generated
5000 training samples and 1000 test samples with balanced
classes, i.e. P (Y = +1) = P (Y = −1) = 1

2 . Examples of
the results of these experiments can be found in Figures 6,
7, and 8.

Moons dataset The Moons dataset is acquired through
the make_moons function from scikit-learn. A data
point X0 is sampled by first discretizing [0, π) uniformly
and drawing one of these points U uniformly, without re-
placement. Then, sample ε ∼ N (0, σ2I2) and construct X0

by setting

X0 := s(U) + ε =

[
cos(U)
sin(U)

]
+ ε for Y = +1

X0 := c(U) + ε =

[
1− cos(U)
1− sin(U)

]
−
[
0
1
2

]
+ ε for Y = −1.

For our examples we selected σ = 0.2.

To re-sample the label Y after providing recourse we cal-
culate the conditional distribution of this model. Let, p be
the density of ε. Then, the density of X0 | Y = +1 and
X0 | Y = −1, denoted by g+ and g− respectively, is given
by

g+(x0) =
1

π

∫ π

0

p(x0 − s(u))du,

g−(x0) =
1

π

∫ π

0

p(x0 − c(u))du.

In our implementation this integral is approximated by
a Riemann sum. The conditional distribution now fol-
lows,

P (Y = 1 | X0 = x0)

=
g+(x0)P (Y = 1)

g+(x0)P (Y = 1) + g−(x0)P (Y = −1)

=
g+(x0)

g+(x0) + g−(x0)
.

Circles dataset The Circles dataset is acquired through
the make_circles function from scikit-learn. A
data point X is sampled by first discretizing [0, 2π) uni-
formly and drawing one of these points U uniformly, with-
out replacement. Then, sample ε ∼ N (0, σ2I2), set
λ ∈ (0, 1) and construct X by setting

X0 := λs(U) + ε = λ

[
cos(U)
sin(U)

]
+ ε for Y = +1

X0 := s(U) + ε =

[
cos(U)
sin(U)

]
+ ε for Y = −1.

For our examples we selected σ = 0.2 and λ = 0.6.

To re-sample the label Y after providing recourse we cal-
culate the conditional distribution of this model. Let, p be
the density of ε. Then, the density of X0 | Y = 1 and
X0 | Y = −1, denoted by g+ and g− respectively, is given
by

g+(x0) =
1

2π

∫ 2π

0

p(x0 − λs(u))du,

g−(x0) =
1

2π

∫ 2π

0

p(x0 − s(u))du.
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Table 3: Estimated risks on the Credit dataset. Lower
risk is bold.

Wachter GS CoGS
RP RQ RP RQ RP RQ

LR 0.17 ± 0.04 0.05 ± 0.02 0.17 ± 0.04 0.05 ± 0.01 0.17 ± 0.03 0.05 ± 0.01
GBT 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00
DT 0.27 ± 0.09 0.12 ± 0.18 0.23 ± 0.13 0.05 ± 0.01 0.23 ± 0.11 0.06 ± 0.01
NB 0.18 ± 0.27 0.06 ± 0.01 0.16 ± 0.17 0.06 ± 0.01 0.18 ± 0.37 0.06 ± 0.01
QDA 0.21 ± 0.39 0.07 ± 0.01 0.14 ± 0.14 0.06 ± 0.01 0.13 ± 0.15 0.07 ± 0.02
NN 1 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.00
NN 2 0.07 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
NN 3 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.01 0.07 ± 0.00
NN 4 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.07 ± 0.00
NN 5 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.07 ± 0.00

Table 4: Estimated risks on the HELOC dataset. Lower
risk is bold.

Wachter GS CoGS
RP RQ RP RQ RP RQ

LR 0.27 ± 0.03 0.40 ± 0.04 0.28 ± 0.02 0.42 ± 0.02 0.27 ± 0.04 0.45 ± 0.02
GBT 0.19 ± 0.02 0.21 ± 0.04 0.20 ± 0.02 0.25 ± 0.12 0.20 ± 0.01 0.35 ± 0.05
DT 0.19 ± 0.01 0.29 ± 0.31 0.20 ± 0.02 0.25 ± 0.13 0.20 ± 0.02 0.35 ± 0.09
NB 0.29 ± 0.02 0.45 ± 0.03 0.29 ± 0.02 0.45 ± 0.07 0.28 ± 0.03 0.51 ± 0.05
QDA 0.32 ± 0.03 0.47 ± 0.03 0.32 ± 0.02 0.49 ± 0.03 0.31 ± 0.03 0.52 ± 0.03
NN 1 0.27 ± 0.03 0.46 ± 0.03 0.28 ± 0.02 0.46 ± 0.03 0.28 ± 0.02 0.49 ± 0.02
NN 2 0.30 ± 0.12 0.47 ± 0.02 0.27 ± 0.03 0.45 ± 0.04 0.30 ± 0.12 0.51 ± 0.07
NN 3 0.28 ± 0.03 0.46 ± 0.04 0.27 ± 0.02 0.46 ± 0.02 0.27 ± 0.03 0.50 ± 0.02
NN 4 0.27 ± 0.02 0.44 ± 0.05 0.27 ± 0.04 0.45 ± 0.03 0.26 ± 0.02 0.48 ± 0.04
NN 5 0.27 ± 0.02 0.44 ± 0.05 0.27 ± 0.04 0.45 ± 0.03 0.26 ± 0.02 0.48 ± 0.04

In our implementation this integral is approximated by
a Riemann sum. The conditional distribution now fol-
lows,

P (Y = 1 | X0 = x0)

=
g+(x0)P (Y = 1)

g+(x0)P (Y = 1) + g−(x0)P (Y = −1)

=
g+(x0)

g+(x0) + g−(x0)
.

Gaussians dataset The Gaussian data points are sampled
from 2 Gaussians with different means µ, ν ∈ R2 and dif-
ferent covariances Σ+,Σ− ∈ R2×2,

X | Y = +1 ∼ N (µ,Σ+)

X | Y = −1 ∼ N (ν,Σ+).

The densities of the 2 conditional distributions are given
by

g+(x0) =
1

2π|Σ+|
e−

1
2 (x0−µ)⊤Σ−1

+ (x0−µ)

g0(x0) =
1

2π|Σ−|
e−

1
2 (x0−ν)⊤Σ−1

− (x0−ν).

The conditional distribution is given by the odds between
the densities of the 2 gaussians

P (Y = 1|X0 = x0) =
g+(x0)

g−(x0) + g+(x0)
.

E.1.1 Linear relation between p and RQ

Here, we derive the linear relation seen in Figure 4. Denote
by RQ(p) the risk after recourse dependent on p, then the
following relation can be calculated

RQ(p) = RP (f) + p(RQ(1)−RP (f)). (23)

We can apply Lemma 7 and use that r(x0) = p for all x0 to
get the following expressions:

RQ(p) = E [r(X0)p−(φ(X0))]

+ E [(1− r(X0))1{f(X0) ̸= Y }]
= pE [p−(φ(X0))] + (1− p)E [1{f(X0) ̸= Y }]
= pE [p−(φ(X0))] + (1− p)RP .

This also gives us that RQ(1) = E [p−(φ(X0))]. Substitut-
ing and rewriting gives

RQ(p) = pRQ(1) + (1− p)RP

= RP + p(RQ(1)−RP ).

E.2 Real Data
Here, we describe how the experiments for the real data
were performed.

Conditional distribution estimation As mentioned be-
fore the main challenge with real data is that we do not have
access to P (Y | X0). To circumvent this, we estimate this
function as well as possible, by reserving most of the data
to train a calibrated classifier. Ncond train are used to train
this classifier and Ncond calib are used to calibrate this classi-
fier. The exact values of the data splits are given in Table 5.
Furthermore, we perform a grid search over a large set of
parameters using cross validation to find the best perform-
ing calibrated classifier. The parameters in the grid search
are

• learning_rate: {0.05, 0.15},

• n_estimators: {10, 20, 60},

• subsample: {0.8, 0.9, 1},

• max_depth: {1, 2, 3}.

As a base classifier we use the Gradient
BoostedClassifier from scikit-learn and
we use Platt scaling (Platt et al., 1999) to calibrate the
probabilities.

Table 5: Details of the datasets used during the experiments

Credit data Adult data HELOC data

P (Y = +1) 0.932 0.239 0.480
P (Y = −1) 0.068 0.761 0.520
Ncond train 40000 30000 5000
Ncond calib 10000 10000 2000
Ntrain 5000 5000 5000
Ntest 1000 1000 1000
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Classification and Recourse After a conditional distribu-
tion is estimated for each dataset, we train the same set of
classifiers as for the synthetic data on Ntrain different data
points. Then, counterfactuals are generated using the differ-
ent methods and using the trained conditional estimated dis-
tribution a new class label is sampled for the position at the
counterfactual point. The estimated risk is then calculated
for the dataset before and after recourse is provided.
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R̂P (f) = 0.13 R̂Q(f) = 0.33 R̂P (f) = 0.13 R̂Q(f) = 0.33 R̂P (f) = 0.08 R̂Q(f) = 0.30

R̂P (f) = 0.13 R̂Q(f) = 0.33 R̂P (f) = 0.08 R̂Q(f) = 0.29 R̂P (f) = 0.04 R̂Q(f) = 0.26

Figure 6: Examples of the effect of giving recourse with various classifiers on the Moons data set. From left to Right, Top to
Bottom: LR, QDA, GBT, NB, DT, NN(8, 16).

R̂P (f) = 0.51 R̂Q(f) = 0.34 R̂P (f) = 0.17 R̂Q(f) = 0.17 R̂P (f) = 0.19 R̂Q(f) = 0.24

R̂P (f) = 0.17 R̂Q(f) = 0.18 R̂P (f) = 0.19 R̂Q(f) = 0.21 R̂P (f) = 0.16 R̂Q(f) = 0.19

Figure 7: Examples of the effect of giving recourse with various classifiers on the Circles data set. From left to Right, Top to
Bottom: LR, QDA, GBT, NB, DT, NN(8, 16).

R̂P (f) = 0.14 R̂Q(f) = 0.32 R̂P (f) = 0.12 R̂Q(f) = 0.33 R̂P (f) = 0.13 R̂Q(f) = 0.33

R̂P (f) = 0.15 R̂Q(f) = 0.28 R̂P (f) = 0.13 R̂Q(f) = 0.34 R̂P (f) = 0.11 R̂Q(f) = 0.35

Figure 8: Examples of the effect of giving recourse with various classifiers on the Gaussians data set. From left to Right,
Top to Bottom: LR, QDA, GBT, NB, DT, NN(8, 16).
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