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Abstract

Bayesian inference is often used to quantify
uncertainty. Several recent analyses have rig-
orously decomposed uncertainty in predic-
tion by Bayesian inference into two types:
the inherent randomness in the data gen-
eration process and the variability due to
lack of data respectively. Existing studies
have analyzed these uncertainties from an
information-theoretic perspective, assuming
the model is well-specified and treating the
model parameters as latent variables. How-
ever, such information-theoretic uncertainty
analysis fails to account for a widely believed
property of uncertainty known as sensitivity
between test and training data. This means
that if the test data is similar to the training
data in some sense, the uncertainty will be
smaller. In this study, we study such sensitiv-
ity using a new decomposition of uncertainty.
Our analysis successfully defines such sensi-
tivity using information-theoretic quantities.
Furthermore, we extend the existing analysis
of Bayesian meta-learning and show the novel
sensitivities among tasks for the first time.

1 INTRODUCTION

Evaluating uncertainty in predictions of machine learn-
ing algorithms has become increasingly important.
Such information is used in the detection of domain
shifts (Ovadia et al., 2019), adversarial attacks (Ye
and Zhu, 2018), Bayesian optimization (Hernández-
Lobato et al., 2014), and reinforcement learning (Janz
et al., 2019). The Bayesian inference is widely used
in such applications since it represents uncertainties
through a posterior distribution updated from the prior
distribution using training data (Bishop, 2006).
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Recently, Xu and Raginsky (2022) have rigorously de-
composed the uncertainty in the prediction of Bayesian
inference into two types; one is aleatoric uncertainty,
which is caused by the noise inherent in the data-
generating process. The other is called epistemic
uncertainty, caused by the lack of data. The key idea
of their analysis is that assuming the model is well-
specified, model parameters are treated as latent vari-
ables and marginalized as is done in Bayesian inference.
Thus, they called the setting Bayesian learning.

Under the Bayesian learning setting, they clarified that
the aleatoric uncertainty corresponds to the Bayes risk
since the noise in the data-generating process is closely
related to the fundamental difficulty of learning. As
we introduce in Sec. 2, they showed that the epistemic
uncertainty can be regarded as the excess risk under
the posterior predictive distribution since such excess
risk corresponds to the “loss due to lack of data” when
the model is well specified. Furthermore, they clarified
that the excess risk is closely related to conditional
mutual information (CMI), see Eq. (4) for details.
The CMI satisfies the desirable property of epistemic
uncertainty, such as monotonically decreasing with the
training dataset size. These settings have recently been
extended to Bayesian meta-learning settings, where we
assume a hyperprior distribution on prior distributions
(Theresa Jose et al., 2022).

A limitation of these existing Bayesian learning analy-
ses is that they cannot account for the widely believed
geometric property of epistemic uncertainty: If a given
test data point is similar to the training data in some
sense, the uncertainty at such a test data point should
be small because there is enough information to make
a prediction. On the other hand, if the test data is
not very similar to the training data, the uncertainty
should be large. This property is called sensitivity
between test and training data points. Linear models
and Gaussian processes exhibit this property (Bishop,
2006) because the variance of the posterior predictive
distribution depends explicitly on the distance between
test and training data under a given feature map. How-
ever, existing analyses in Bayesian learning failed to
explain such sensitivity because they analyzed the CMI
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only focusing on the training data without considering
its relation to the test data.

In this paper, we continue the uncertainty analysis un-
der Bayesian learning and aim to analyze the sensitivity
between the test and training data points. To achieve
this, we first present the novel decomposition of the
CMI in Theorem 1. Using this, we formally define the
sensitivity between the test and training data using an
information-theoretic quantity. Then we provide the
theoretical and numerical analyses of this quantity. We
also apply our analysis to the meta-learning setting
similarly to Theresa Jose et al. (2022) and determined
the sensitivity between the meta-training and meta-test
tasks in Theorem 6. To the best of our knowledge, the
sensitivity among tasks is presented for the first time.

Another contribution of this work is a new information-
theoretic upper bound of the CMI, which includes the
interaction between training data points in Corollary 1.
Our new bound is tighter than the existing bound pro-
posed by Xu and Raginsky (2022). Finally, we present
a new exact characterization of the generalization error
using our novel decomposition in Theorem 4 and show
a new connection to the existing information-theoretic
generalization error bounds under the frequentist set-
ting (Aminian et al., 2021).

2 PRELIMINARIES

Here, we review the setting of Bayesian learning used
by Xu and Raginsky (2022) and its extension to the
meta-learning setting proposed by Theresa Jose et al.
(2022). Capital letters such as X represent random
variables, whereas lowercase letters such as x represent
deterministic values.

2.1 Bayesian Learning

We consider a supervised setting and denote input–
output pairs by Z = (X,Y ) ∈ Z := X × Y. Learners
can access N training data, ZN := (Z1, . . . , ZN ) with
Zn := (Xn, Yn), which are independent and identically
distributed (i.i.d.) samples from some underlying distri-
bution. The goal of supervised learning is to use ZN to
predict the test target variable Y given the test input X,
independently drawn from the same distribution as the
training data. For this purpose, we consider a paramet-
ric generative model. We assume that the underlying
distribution belongs to a model class {p(z|w) : w ∈ W}
with model parameter w in the set W. As discussed
in Theresa Jose et al. (2022) and Hafez-Kolahi et al.
(2021), this implies that the model is well-specified.
We also assume that p(Z|W ) = p(Y |X,W )p(X) for
simplicity. This means that the input data X is inde-
pendent of the model parameter.

In Bayesian learning, model parameters are treated
as latent random variables following a prior distribution
p(w). Conditioned on W = w, the data are generated
by p(Z|W = w). Thus, the joint distribution of the
training data ZN , the test data Z∗, and the model
parameter W is given by

p(W,ZN , Z∗) := p(W )p(Z|W )Np(Z∗|W ). (1)

Since ZN are i.i.d. samples, we can express p(Z|W )N =
p(ZN |W ). See Sec. 6 for the intuition of this
joint model. We express the Bayesian posterior as
p(W |ZN ) and the posterior predictive distribution as
p(Y ∗|X∗, ZN ) := Ep(W |ZN )p(Y ∗|X∗,W ).

Next, we introduce action a and loss function l to
measure the performance of supervised learning. We
define A as an action space and the loss function as
l : Y × A → R. The loss of action a ∈ A and the
target variable y are written as l(y, a); for example,
the log loss is given as l(y, q) = − ln q(y), where q is
the probability density of Y and A is the set of all
probability densities on Y . The squared loss is given as
l(y, a) = |y−a|2, where Y = A = R. Our goal is to infer
the decision rule ψ : X × ZN → A that minimizes the
expected loss Ep(Y ∗,X∗,ZN )[l(Y ∗, ψ(X∗, ZN ))] among
all decision rules. Following the previous work by Xu
and Raginsky (2022), we define the infimum of the
expected loss as the Bayesian risk:

Rl(Y ∗|X∗, ZN )
:= inf

ψ:X ×ZN→A
Ep(Y ∗,X∗,ZN )[l(Y ∗, ψ(X∗, ZN ))].

For example, when the log loss is used,
Rlog(Y ∗|X∗, ZN ) = H[Y ∗|X∗, ZN ], where
H[Y ∗|X∗, ZN ] is the entropy of the posterior
predictive distribution defined as H[Y ∗|X∗, ZN ] =

Ep(ZN )p(X∗)Ep(Y ∗|X∗,ZN )[− log p(Y ∗|X∗, ZN )].

Thus, the Bayesian risk equals the test error under a
posterior predictive distribution.

Next, we define a fundamental limit of learning as
ϕ : X × W → A, which takes the true parameter
W instead of the training dataset ZN . Then, the
corresponding risk is given as

Rl(Y ∗|X∗,W )
:= inf

ϕ:X ×W→A
Ep(Y ∗,X∗,W )[l(Y ∗, ϕ(X∗,W ))]. (2)

We cannot improve this risk by increasing the number
of training data. Thus, Rl(Y ∗|X∗,W ) can be regarded
as the aleatoric uncertainty since it expresses the
fundamental difficulty of learning. In other words, this
risk implies the inherent presence of randomness in the



Futoshi Futami, Tomoharu Iwata

data-generating mechanism. When the log loss is used,
Rl(Y ∗|X∗,W ) corresponds to the conditional entropy

Rlog(Y ∗|X∗,W ) = Ep(X∗)p(W )H[Y ∗|X∗,W ]
= Ep(Y ∗,X∗,W )[− log p(Y ∗|X∗,W )].

Finally, we define the difference between the Bayesian
risk and the fundamental limit of learning as the min-
imum excess risk (MER):

MERl(Y ∗|X∗, ZN ) := Rl(Y ∗|X∗, ZN ) −Rl(Y ∗|X∗,W ).
(3)

This corresponds to the epistemic uncertainty since
it is defined as the difference between the Bayesian risk
and the fundamental limit of learning. Thus, MER
implies the loss due to insufficient training data under
the well-specified model assumption (Xu and Raginsky,
2022; Hafez-Kolahi et al., 2021). When the log loss is
used, MER is given as

MERlog(Y ∗|X∗, ZN ) = I(W ;Y ∗|X∗, ZN ), (4)

where I(W ;Y ∗|X∗, ZN ) is the conditional mutual
information (CMI). Other than the log loss, if the
loss function satisfies the σ2 sub-Gaussian property
conditioned on (X∗, ZN ) = (x∗, zN ), Xu and Raginsky
(2022) showed that

MERl(Y ∗|X∗, ZN ) ≤
√

2σ2I(W ;Y ∗|X∗, ZN ). (5)

Thus, MER is upper-bounded by the square root of
the CMI. Thus, understanding the CMI is crucial to
understand MERl and epistemic uncertainty. For this
reason, we mainly analyze the CMI in this paper. CMI
has some desirable properties for understanding epis-
temic uncertainty. Xu and Raginsky (2022) proved that
CMI is greater than 0 and it decreases as we increase
N . Moreover, they showed that CMI can be upper-
bounded by the mutual information (MI) as follows:
lmm 1 (Xu and Raginsky (2022)). Under the joint
distribution of Eq. (1), we obtain

I(W ;Y ∗|X∗, ZN ) ≤ 1
N
I(W ;ZN ). (6)

In many practical settings, I(W ;ZN ) is upper-bounded
by O(logN); thus, the CMI is bounded by O(logN/N).
Therefore, it converges to 0 as O(logN/N) for the log
loss and O(

√
logN/N) for sub-Gaussian loss functions.

It has been discussed that I(W ;ZN ) captures the sen-
sitivity of the learned parameter and training dataset
and is closely connected to the generalization error
bound (Xu and Raginsky, 2017).

2.2 Bayesian Meta-learning

Uncertainty also plays an important role in meta-
learning. In traditional Bayesian inference, the prior
distribution is selected on the basis of prior knowl-
edge about the task. In Bayesian meta-learning, the
prior distribution is automatically inferred by observ-
ing related tasks. We model the statistical relationship
between different tasks using a hierarchical Bayesian
model with a global latent variable U in the set U . To
understand the uncertainty captured by this hierarchi-
cal structure, Theresa Jose et al. (2022) extended the
analysis of Bayesian learning.

We observe M related tasks and aim to infer a suitable
prior distribution for a new unknown task. Each meta-
training dataset has N data points drawn i.i.d from
p(Z|W = wm), where wm is the task-specific parameter.
We express the m-th meta-training dataset as ZN,(m) =
(Z(m)

1 , . . . , Z
(m)
N ). We assume that the parameterWm is

drawn i.i.d from the shared prior p(W |U) parametrized
by the global latent variable U . We assume the hy-
perprior distribution p(U) on U . We express meta-
training dataset as ZNM = (ZN,(1), . . . , ZN,(M)). We
express model parameters of the meta-training dataset
as WM = (W1, · · · ,WM ). Finally, we have a new un-
known task called the meta-test task generated from
the meta-test task parameter W . We can use the
meta-test training data ZN = (Z1, · · · , ZN ) and the
meta-test input data X∗ at the test stage.

The above setting is summarized as the joint distribu-
tion below:

p(U,WM , ZNM ,W,ZN , Z) :=

p(U)
(
p(W |U)p(ZN |W )

)M
︸ ︷︷ ︸

meta-training

p(W |U)p(ZN |W )p(Z∗|W )︸ ︷︷ ︸
meta-testing

.

(7)

Here, we omit the index for the meta-training dataset
for simplicity. Under this setting, we consider the
decision rules and excess risk in the same way as in
Sec. 2.1. We define the Bayesian meta-risk as

Rl(Y |X∗, ZN , ZNM ) := inf
ψmeta:X ×ZNM ×ZN→A

Ep(ZNM ,ZN ,Z∗)[l(Y ∗, ψmeta(X∗, ZNM , ZN ))]. (8)

We also define the fundamental limit of learning in
meta-learning as

Rl(Y ∗|X∗,W,U) :=
inf

ϕmeta:X ×W×U→A
Ep(U,W,Z)[l(Y ∗, ϕmeta(X∗,W,U))].

(9)
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We define the minimum excess meta-risk (MEMR) as

MEMRl(Y ∗|X∗, ZN , ZNM )
:= Rl(Y ∗|X∗, ZN , ZNM ) −Rl(Y ∗|X∗,W,U). (10)

Theresa Jose et al. (2022) showed that the MEMR of
the log loss equals to the CMI:

MEMRlog(Y ∗|X∗, ZN , ZNM ) = I(W ;Y ∗|X∗, ZN , ZNM ),
(11)

and derived the upper-bound of MEMRlog, which is
similar to Eq. (6), as

I(W ;Y ∗|X∗, ZN, ZNM ) ≤ I(U ;ZNM )
NM

+ I(W ;ZN |U)
N

.

(12)

We can see that the CMI is also upper-bounded by
the MI that captures the sensitivities of the learned
meta-test task parameter, hyperparameter, and meta-
training dataset.

3 EXACT CHARACTERIZATION
OF CMI

As we pointed out in Sec. 1, the analysis of MERl in-
troduced in Sec. 2 cannot explain the sensitivity in un-
certainty between the test and training data. The limi-
tation of the information-theoretic analysis of Lemma 1
is that the decomposition of the CMI focuses only on
the training dataset and not on the test data point.

Here, we show our novel CMI decomposition and
present the information-theoretic quantity of the sensi-
tivity. First, we consider the Bayesian learning setting
introduced in Sec. 2.1. All the proofs are shown in the
Supplementary material.

3.1 Decomposition of CMI Using Sensitivity

The following theorem is our first main result, which
decomposes the CMI as the sum of the MI and the
sensitivities of the test data and each training data
point.
thm 1. Under the joint distribution of Eq. (1), we
have

I(W ;Y ∗|X∗, ZN )= 1
N
I(W ;ZN ) − 1

N

N∑
n=1

I(Z∗, Zn|ZN\n)

− 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1), (13)

where ZN\n := (Z1, . . . , Zn−1, Zn+1, . . . , ZN ) and
Zn−1 := (Z1, . . . , Zn−1).

Different from the bound in Lemma 1, the CMI is
decomposed into three terms connected with equality,
not inequality. The first term on the right-hand side
of Eq. (13) is the MI between the learned parameter
and the training dataset. The second and third terms
correspond to the binary relation about how much
information each data point has to predict other data
points. The second term I(Z∗, Zn|ZN\n) represents
the information-theoretic quantity of the sensitivity of
the test and training data points. This term indicates
how useful the training data point Zn is to predict
the test data point Z. If the training data point Zn
has more information about the test data, then the
uncertainty at Z decreases. If Zn is almost independent
of Z, then the mutual information becomes 0, which
means that the uncertainty increases.

From this observation, we introduce the definition of
test data sensitivity as follows.
dfn 1. The sensitivity of the test data and the single
training data point is defined as

In := I(Z∗, Zn|ZN\n). (14)

For simplicity, we also express In+1,n :=
I(Zn+1, Zn|Zn−1), which appears in Eq. (13).

We transform In into a more intuitive expression as

In = H(Z∗|ZN\n) −H(Z∗|ZN ) (15)

= Ep(W,ZN ,Z∗) ln
Ep(W |ZN\n)p(Z∗, Zn|W )
p(Z∗|ZN\n)p(Zn|ZN\n) . (16)

Eq. (15) is useful for explicitly calculating the sensi-
tivity for some models shown in Sec. 3.2. Eq. (16)
states that the joint posterior predictive distribution
Ep(W |ZN\n)p(Z∗, Zn|W ) differs from the single-point
posterior predictive distribution. The joint predictive
distribution has recently attracted attention in decision
problems (Rosenfeld et al., 2020; Osband et al., 2021;
Wen et al., 2021). Thus, our theoretical results sug-
gest new insights into the connection between decision
problems, joint predictive distribution, and uncertainty.
However, this is outside the scope of this study, and
we leave it to future work to explore this connection.

Finally, from Theorem 1, we obtain the new
information-theoretic bound for the CMI as follows.
col 1. Under the joint distribution of Eq. (1), we obtain

I(W ;Y ∗|X∗,ZN ) ≤ 1
N
I(W ;ZN )

− 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1). (17)

This bound is tighter than that of Lemma 1 owing to
the second term on the right-hand side. In Sec. 7, we
numerically compare this bound with that of Lemma 1.
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3.2 Linear Regression Model

As we discussed in Sec. 1, we can explicitly evaluate
the sensitivity in linear models. In this section, we
use a linear regression model to explicitly discuss the
relationship between such traditional sensitivity and
the results in Sec. 3.1.

The likelihood of the model is given as the Gaus-
sian distribution with the mean w⊤ϕ(x) and the
variance β−1 ∈ R+. We express it as p(Y ∗|X∗ =
x∗, w) = N (w⊤ϕ(x∗), β−1), where Y = R and ϕ(x) :=
(ϕ1(x), . . . , ϕd(x))⊤ ∈ Rd is a d-dimensional feature
vector of input x and each ϕi : X → R. We assume
a prior distribution p(w) = N (0, α−1Id) with some
positive constant α > 0. We define a design matrix
as Φ = (ϕ(x1), . . . , ϕ(xN ))⊤ ∈ RN×d. We also define
a target vector as y = (y1, . . . , yN )⊤. Then, a poste-
rior distribution is given by p(w|zN ) = N (mN , SN ),
where mN = βSNΦ⊤y and S−1

N := αId + βΦ⊤Φ.
We also have a posterior predictive distribution as
p(Y ∗|X∗ = x∗, zN ) := N (m⊤

Nϕ(x∗), σ2
N (x∗)), where

σ2
N (x∗) := β−1 + ϕ(x∗)⊤SNϕ(x∗).

Since the posterior predictive distribution is given as
the Gaussian distribution, its entropy is calculated on
the basis of its variance. Thus, I(W ;Y ∗|X∗, ZN ) =
Ep(XN+1) log σ2

N (X∗)/2 + Const, and the interplay be-
tween ϕ(x) and SN characterizes the sensitivity of the
test and training data points. Similar arguments still
hold for Gaussian process models, where the inner
products of the feature maps are replaced with kernel
functions.

We can explicitly calculate the sensitivity In using
Eq. (15). Then, we obtain

In = Ep(XN+1)
1
2(ln σ2

N\n(X∗) − ln σ2
N (X∗)). (18)

We can simplify this as follows.

thm 2. For linear models, the sensitivity In satisfies
the following relation:

Ep(XN+1)
(ϕ(X∗)⊤SNϕ(Xn))2

2ω(Xn)(α−1ϕ(X∗)⊤ϕ(X∗) + β−1) ≤ In

≤ Ep(XN+1)
(ϕ(X∗)⊤SNϕ(Xn))2

2ω(Xn)(β−1 + ϕ(X∗)⊤SNϕ(X∗) ,

where ω(x) := β−1 − ϕ(x)⊤SNϕ(x).

This bound implies that the posterior covariance matrix
SN := (αId + βΦ⊤Φ)−1 can be seen as a metric for
measuring the similarity between the training data xn
and the test data x. In the Supplementary material,
we numerically evaluated this bound.

Combined with Theorem 1, we obtain

MERlog(Y ∗|X∗, ZN ) ≤ 1
N
I(W ;ZN )

− Ep(XN+1)
1
N

N∑
n=1

(ϕ(X∗)⊤SNϕ(Xn))2

2ω(Xn)(α−1ϕ(X∗)⊤ϕ(X∗) + β−1) .

This suggests that the test error becomes small if the
given test and training data points are similar under
the feature map with the metric SN . This relation
explicitly validates our intuition about the geometric
property of the sensitivity introduced in Sec. 1.

3.3 Asymptotic Behavior

Here, we discuss the asymptotic behavior of sensitivity.
Using the asymptotic expansion of Bayesian inference
introduced in Watanabe (2018), we obtain the following
relation:
thm 3. Assume that p(z|w) has a relatively finite vari-
ance, that is, for any pair of w0, w ∈ W, there exists a
positive constant c0 such that

c0Ep(Z|w0)(ln p(Z|w0) − ln p(Z|w))2

≤ Ep(Z|w0)[ln p(Z|w0) − ln p(Z|w)]. (19)

Then, we obtain In = I(Z∗, Zn|ZN\n) = o

(
1
N

)
,

where o( 1
N ) is little o.

The relatively finite variance assumption in Eq. (19)
is satisfied in many widely used models. For exam-
ple, generalized linear models, including the linear and
logistic regression models, satisfy this condition. See
the Supplementary material and Watanabe (2018) for
other examples.

Combined with Theorem 1, since 1
N I(W ;ZN ) =

O
( 1
N

)
, we obtain

I(W ;Y ∗|X∗, ZN )

≤ 1
N
I(W ;ZN )
=O( 1

N )

− 1
N

N∑
n=1

I(Z∗, Zn|ZN\n)

=o( 1
N )

. (20)

Thus, since the order of the sensitivity term is o(1/N),
it is much smaller than the MI, which is O(1/N). Fi-
nally, using Theorem 3, we obtain the following relation:

1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1) = O

(
1
N

)
. (21)

4 EXACT CHARACTERIZATION
OF GENERALIZATION ERROR

Information theoretic quantities play an important role
in understanding generalization as discussed in Xu and
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Raginsky (2017). Here, we discuss the relationship
between the sensitivity and the generalization using
Theorem 1.

4.1 Relation to Generalization Error

First, we show that the statement of Lemma 1 is closely
related to the generalization error analysis.
lmm 2. When a log loss is used, Eq. (6) is equivalent
to the following inequality;

Rlog(Y ∗|X∗,ZN ) ≤ −Ep(ZN )Ep(W |ZN )
1
N

N∑
n=1

ln p(Zn|W )

+ 1
N

KL(p(W |ZN )|p(W )). (22)

The left-hand side of Eq. (22) corresponds to the test
error, and the right-hand side is the training error plus
the regularization term. Thus, Lemma 1 (Eq. (6)) is
closely related to the generalization error.

With this observation, using our Theorem 1, we can
incorporate the sensitivity of the test and training data
to the generalization error as follows.
thm 4. Under the joint distribution of Eq. (1) with a
log loss, we obtain

Rlog(Y ∗|X∗, ZN ) =

− Ep(ZN )Ep(W |ZN )
1
N

N∑
n=1

ln p(Yn|Xn,W )

+ 1
N

KL(p(W |ZN )|p(W )) − 1
N

N∑
n=1

In − 1
N

N−1∑
n′=1

N−1∑
n=n′

In+1,n.

This theorem states that if training data xn has suffi-
cient information to predict x, In becomes large, lead-
ing to a smaller test error. Thus, this relation for-
malizes our intuition that we can predict a test data
point, which is similar to the training data in some
sense, better than the test data, which are completely
different from the training data. In this way, the geo-
metric properties of the sensitivity and generalization
are unified explicitly in Bayesian learning.

Another interesting point is that, unlike Lemma 2, this
theorem is the identity, not the inequality. Thus, we
can precisely characterize the relationship between the
test and training errors. We will discuss the relation
between our result and the recently proposed exact
characterization of the generalization error (Aminian
et al., 2021) in Sec. 4.2.

4.2 Relationship between the Sensitivity and
the Gibbs Test Error

So far, we focused on the Bayesian risk, Rl(Y ∗|X∗, ZN )
as the test error, and it is based on the Bayesian pos-

terior predictive distribution. On the other hand, in
many generalization error analyses, we often use the
Gibbs test error defined as

RGibbs
log (Y ∗|X∗, ZN ) :=

Ep(W )p(ZN |W )p(W̃ |ZN )[−Ep(Z∗|W ) log p(Y ∗|X∗, W̃ )].

Here, we express the learned parameter as W̃ , which
follows the Bayesian posterior distribution p(W̃ |ZN ).
By comparing with Rlog(Y ∗|X∗, ZN ), which uses the
posterior predictive distribution, we obtain

Rlog(Y ∗|X∗, ZN ) ≤ RGibbs
log (Y ∗|X∗, ZN ), (23)

where we used the Jensen inequality. This relation is
general since we only use the convexity of the log loss.

We further explore the relationship between the Gibbs
test error RGibbs

log (Y ∗|X∗, ZN ) and the Bayesian risk
Rlog(Y ∗|X∗, ZN ) using the Lautum information (LI),
which was used by Aminian et al. (2021). First, we
present the exact characterization of the generalization
error of the Gibbs test error.
thm 5. Under the joint distribution of Eq. (1) with a
log loss, we obtain

RGibbs
log (Y ∗|X∗, ZN )

= −Ep(W )p(ZN |W )

∑N
n=1 ln p(Yn|Xn,W )

N
+ LI(W̃ ;ZN |W )

N
,

where LI is the Lautum information defined as

LI(W̃ ;ZN |W )

= Ep(W )p(Z̃N |W )p(W̃ |Z̃N )p(ZN |W ) log p(Z
N |W )p(W̃ |W )
p(ZN , W̃ |W )

= KL(p(W̃ |W )p(ZN |W )|p(W̃ , ZN |W )). (24)

Note that the LI can also be regarded as the reverse
KL divergence (Aminian et al., 2021). This result is
similar to the exact characterization of generalization
error under the frequentist setting used by Aminian
et al. (2021).

From Theorems 4 and 5, we can evaluate the difference
between the Gibbs test error and Bayesian risk.
col 2. Under the joint distribution of Eq. (1), we obtain

RGibbs
log (Y ∗|X∗, ZN )−Rlog(Y ∗|X∗, ZN )= LI(W̃ ;ZN |W )

N

+
N∑
n=1

In
N

+
N−1∑
n′=1

N−1∑
n=n′

In+1,n

N
− I(W ;ZN )

N
. (25)

From the Jensen inequality of Eq. (23), if the posterior
p(W̃ |ZN ) is a point mass, the Jensen gap vanishes.
From this relation, as the sensitivity term In increases,
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the Jensen gap becomes large. The Jensen gap has been
studied in relation to the model misspecification under
the frequentist setting (Grünwald, 2012; Grünwald and
Van Ommen, 2017). Since our setting is Bayesian learn-
ing, it is difficult to directly compare our Eq. (25) with
previously reported results of the frequentist setting.
We leave it to future work to clarify how the existing
analysis of the Jensen gap under model misspecification
is translated into our setting.

5 EXACT CHARACTERIZATION
OF CMI IN META-LEARNING

In this section, we extend our information-theoretic
analysis of the sensitivity to a Bayesian meta-learning
setting. The following is our main result:
thm 6. Under the joint distribution of Eq. (7), we
obtain

I(W ;Y ∗|X∗, ZN , ZNM )

= 1
N
I(W ;ZN |U) + 1

NM
I(U ;ZNM ) (26)

− 1
NM

M∑
m=1

I(ZN , ZN,(m)|ZN(M\m)) (27)

− 1
NM

M−1∑
m′=1

M−1∑
m=m′

I(ZN,(m+1), ZN,(m)|ZN(m−1)) (28)

− 1
N

N∑
n=1

I(Z∗, Zn|ZN\n, ZNM ) (29)

− 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1, ZNM ), (30)

where ZNm := (ZN,(1), · · · , ZN,(m)), ZN(m−1) :=
(ZN,(1), · · · , ZN,(m−1)), and ZN(M\m) :=
(ZN,(1), . . . , ZN,(m−1), ZN,(m+1), . . . , ZN,(M)).

This theorem rigorously quantifies how the different
levels of sensitivities ( Eqs. (27) to (30) ) contribute
to the CMI, which corresponds to the epistemic un-
certainty. We explain each sensitivity below. First,
Eq. (27) represents the sensitivity between the test
and training tasks since it quantifies how useful the
m-th training task is to predict the meta-test task. To
the best of our knowledge, our study is the first to
quantify task sensitivity theoretically. Eq. (29) quanti-
fies the sensitivities of the meta-test training data and
meta-test test data points similarly to Theorem 1.

The information from the relevant tasks is captured by
the hyper-posterior distribution p(U |ZNM ), and the in-
formation from meta-test training data is incorporated
into the posterior distribution p(W |ZN , U). These cor-
respond to Eq. (26), which also appears in the existing

MEMR bound. Such relations are also summarized as
the posterior predictive distribution:

p(Y ∗|X∗, ZN , ZNM )
= Ep(W |ZN ,ZNM )p(Y ∗|X∗,W )
= Ep(U |ZNM )p(W |ZN ,U)p(Y ∗|X∗,W ).

The sensitivity between the meta-test and meta-
training tasks of Eq. (27) is given as

I(ZN , ZN,m|ZN(M\m))
=H(ZN |ZN(M\m))−H(ZN|ZNM ).

We can evaluate the above by evaluating the hyper-
posterior distributions p(U |ZN(M\m)) and p(U |ZNM ).

We can obtain the improved information-theoretic up-
per bound about MEMR, which improves Eq. (12), in
the same way as Corollary 1. We numerically evaluate
these information-theoretic quantities in Sec. 7.

6 RELATED WORK

First, we point out that the joint model in Eq. (1)
often appears in the Bayesian decision theory (Robert
et al., 2007) in statistics. This model evaluates the
average performance of the risk function over a prior
distribution and leads to the minimax rate analysis of
the parameter estimation. The lower bound for the
decision rule in the minimum excess risk has recently
been reported (Hafez-Kolahi et al., 2021) using the rate-
distortion theory (Cover and Thomas, 2006). Moreover,
the joint model in Eq. (1) is used in Bayesian exper-
imental design, in which the stochastic dependencies
of data and parameters are introduced to incorporate
uncertainty. We also remark that this model is closely
related to Bayesian online learning, and we show the
regret analysis in the Supplementary material.

The sensitivity between test and training data points
has been an important property theoretically and prac-
tically (Bishop, 2006; Murphy, 2013). Linear models
and Gaussian processes have extensively been studied
to analyze the sensitivity since their posterior predic-
tive distribution is expressed analytically (Fiedler et al.,
2021; Lederer et al., 2019). Our result extends this
relationship to general probabilistic models using the
information-theoretic quantity for the first time. Such
a relationship provides an important contribution in
practice since some recent studies, such as Angelopou-
los et al. (2021); Liu et al. (2020); Tian et al. (2021),
and He et al. (2020), explicitly introduced the sensi-
tivity property into deep neural networks to enhance
the uncertainty quantification performance. Similarly
to sensitivity, the CMI is widely used as the objec-
tive function in Bayesian experimental designs (Foster
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et al., 2019). Thus, understanding the sensitivity of the
CMI will lead to the analysis of such applications. In
meta-learning tasks, information-theoretic quantities
are widely used (Titsias et al., 2021; Chen et al., 2022)
to quantify the similarity of tasks. In these applica-
tions, evaluating exact information-theoretic quantities
is difficult for many practical models. Thus, various
approximation methods have been proposed, including
variational inference (Bishop, 2006). We leave it to
future work to explore how the approximation quality
affects the sensitivity in uncertainty.

The information-theoretic analysis has recently received
attention in the generalization error analysis (Xu and
Raginsky, 2017; Pensia et al., 2018). In such generaliza-
tion error analysis, including the PAC-Bayesian theory
(Sheth and Khardon, 2017; Alquier, 2021), the data
generating distribution may not be well-specified, and
model parameters are not treated as latent variables.
Compared with previous studies, we can specify the
correct model families in the Bayesian learning settings.
The CMI of Theorem 3 in Aminian et al. (2023) is
defined as the information between the super-sample
index U and W conditioned on super-sample S. On
the other hand, our CMI is defined as the information
between the test data and W conditioned on training
data, which is slightly different. However, we found
that Theorem 1 in Aminian et al. (2023) corresponds
to our Theorem 5, and both evaluate the generalization
error using Lautum information.

Theorem 1 in Bu et al. (2023) closely aligns with our
Theorem 5. While our Theorem 5 evaluates the gen-
eralization error in a non-meta-learning setting using
Lautum information, Bu et al. (2023) demonstrates
that similar results can also be obtained in a meta-
learning setting. This suggests that we can extend our
Theorem 5 to a meta-learning setting. However, such
a specific derivation would significantly expand beyond
the scope of our current study, so we leave it a future
research.

Finally, we remark that the relatively finite variance
assumption in Theorem 3 is equivalent to the General-
ized Bernstein condition Watanabe (2018) and, thanks
to this assumption, the fast learning rate O(1/N) can
be achieved.

7 NUMERICAL EXPERIMENTS

We show the numerical evaluation of the sensitivities
in Theorems 1 and 6. Detailed experimental settings
and additional numerical results are shown in the Sup-
plementary material.
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Bound in Corollary 4

Figure 1: Information-theoretic quantities appearing
in Theorem 1 and Corollary 1. Enlarged figures are
provided in the Supplementary material.

7.1 Bayesian Learning Setting

First, using linear regression models introduced
in Sec. 3.2, we numerically evaluated information-
theoretic quantities appearing in Theorem 1, changing
the training data size N . We can calculate all the
information-theoretic quantities analytically. In the
main paper, we only show the results of Gaussian basis
functions as ϕ, whose dimension is set to 10.

The results are shown in Fig. 1, where we plot the CMI
(I(W ;Y ∗|X∗, ZN )), MI (I(W ;ZN )/N), and the sum
of the test data sensitivity (

∑
n I(Z∗;Zn|Z(N\n))/N)

and the sum of the training data sensitivity
( 1
N

∑N−1
n′=1

∑N−1
n=n′ I(Zn+1;Zn|Z(n−1))). In the figure

legend, we omit the summation with respect to n and
n′ for clarity. In the left panel of this figure, we plot
them in the log scale, and we can see that all the terms
converge linearly in the plot. This is consistent with
Eq. (20), which describes the asymptotic order of each
quantity. Note that the sensitivity term In converges
faster than the other terms, as indicated by the asymp-
totic analysis in Theorem 3. In the right panel of
this figure, in addition to the CMI, MI, and sensitivi-
ties, we plot our proposed bound in Corollary 1. Our
bound is tighter than the existing bound, which corre-
sponds to I(W ;ZN )/N owing to the sensitivity given
as I(Zn+1;Zn|Z(n−1)). In the Supplementary material,
we numerically evaluated the upper and lower bounds
of In in Theorem 1.

7.2 Bayesian Meta-learning Setting

Next, we numerically evaluated the theoretical find-
ings of meta-learning settings in Theorem 6. For
this purpose, we put a hyperprior on the parame-
ters of the linear regression model. We consider that
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Figure 2: Information-theoretic quantities appearing
in Theorem 6. The left panel shows the results under
different M (the number of tasks) at fixed N (the
number of training datasets). The right panel shows
the results under different N at fixed M . Here, we
omit the summation with respect to n, n′,m, and m′

for clarity.

p(W |U) = N (U,α−1Id) and p(U) = N (0, γ−1Id). Un-
der these settings, we can analytically calculate the
posterior distributions p(U |ZNM ), p(W |ZN , U), and
p(W ;Y ∗|X∗, ZN , ZNM ). Thus, we can analytically
evaluate the information-theoretic quantities in Theo-
rem 6, see the Supplementary material for details.

The result is shown in Fig. 2. In the left panel of this
figure, fixing N = 50, we plot the information-theoretic
quantities with increasing M . We can see that MEMR
(black line) decreases as we increase the number of meta-
training datasets. We can also see that the MI between
the hyperparameter and meta-training datasets (red
dot line) also decreases. Finally, we can see that the
sensitivity between the meta-test and meta-training
tasks decreases faster than other information-theoretic
quantities. In the right panel of this figure, fixing
M = 20, we plot the information-theoretic quantities
with increasing N . By increasing N , we find that all
the quantities decrease as we expected.

8 CONCLUSION

In this work, we showed the novel decomposition of
the CMI and then provided the information-theoretic
quantity of the sensitivity between the test and train-
ing data points. Our analysis rigorously characterizes
the uncertainty’s widely believed sensitivity property
for the first time. Our analysis is also extended to
the meta-learning setting and showed the sensitivity

between tasks for the first time. It will be interesting
to analyze the sensitivity under model misspecification
and approximation in future work.
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In Supplementary material, we express the test data as Z = (Y,X) and drop the superscript ∗ for simplicity.

9 Proof of Theorem 1

Proof. First, we show the following lemma.

lmm 3. Under the same setting as Theorem 1, for any k ∈ (1, N ], we have

H[Zk+1|Zk] = H[Zk+1|Zk−1] − I(Zk+1;Zk|Zk−1). (31)

We can derive this by directly calculating the definition of entropy and conditional mutual information. This
lemma states how much uncertainty at Zk+1 reduces by adding a data point Zk. From this relation, we get the
relation about the conditional mutual information as follows,

lmm 4. Under the same setting as Theorem 1, for any k ∈ (1, N ], we have

I(W ;Zk+1|Zk) = I(W ;Zk|Zk−1) − I(Zk+1;Zk|Zk−1). (32)

Proof. From the definition of conditional mutual information, we have

I(W ;Zk|Zk−1) = H[Zk|Zk−1] −H[Zk|W,Zk−1]
= H[Zk+1|Zk−1] −H[Zk|W ]
= H[Zk+1|Zk] + I(Zk+1, Zk|Zk−1) −H[Zk+1|W ]
= H[Zk+1|Zk] + I(Zk+1, Zk|Zk−1) −H[Zk+1|W,ZK ]
= I[W ;Zk+1|Zk] + I(Zk+1, Zk|Zk−1),

where the second equality is because the joint distribution of (Zk−1, Zk) is equivalent to the joint distribution of
(Zk−1, Zk+1), and Zk−1 is independent of Zk given W . The third inequality is because of Lemma 3.

This relation explains how much information about W we obtain by adding a data point Zk into the training
dataset.

Finally, by using the chain rule of the mutual information and applying Lemma 4 recursively, we obtain

I(W ;ZN ) =
N∑
n=1

I(W ;Zn|ZN−1)

= NI(W ;ZN |ZN−1) +
N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|ZN−1) (33)

We transform the first term. By definition, we have

I(W ;ZN |ZN−1) = H[ZN |ZN−1] −H[ZN |W ]
= Ep(W )p(ZN |W )[− ln p(ZN ) + ln p(ZN−1)] −H[Zn|W ].

Here ZN−1 = (Z1, · · · , ZN−1). Let us consider the distribution of ZN\n = (Z1, . . . , Zn−1, Zn+1, . . . , ZN ). We
express the marginal distribution of this as p(ZN−1) = Ep(W )p(ZN−1|W ) and p(ZN\n) = Ep(W )p(ZN\n|W ).
Note that p(ZN |W ) and p(ZN\n|W ) are equivalent since all the data is drawn i.i.d. Thus, from the chain rule of
the KL divergence Ep(W )p(ZN |W )[ln p(ZN−1) − ln p(ZN\n|W )] = 0. Thus we have

I(W ;ZN |ZN−1) = H[ZN |ZN−1] −H[ZN |W ]
= Ep(W )p(ZN |W )[− ln p(ZN ) + ln p(ZN−1)] −H[Zn|W ]
= Ep(W )p(ZN |W )[− ln p(ZN ) + ln p(ZN\n)] −H[Zn|W ] = I(W ;Zn|ZN\n).
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Then we substitute this to Eq. (33)

I(W ;ZN ) = NI(W ;ZN |ZN−1) +
N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|ZN−1)

=
N∑
n=1

I(W ;Zn|ZN\n) +
N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|ZN−1). (34)

Finally, we apply Lemma 4 to each I(W ;Zn|ZN\n). Then, for each n ∈ (1, N ] we have

I(W ;ZN+1|ZN ) = I(W ;Zn|ZN−1) − I(ZN+1;Zn|ZN−1). (35)

This is because the training dataset {Zn}Nn=1 are i.i.d., and thus, we can permute the index of the training data
points in Lemma 4. By setting ZN+1 := Z, which is the test data point, we obtain

I(W ;ZN ) =
N∑
n=1

I(W ;Zn|ZN\n) +
N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|ZN−1)

= NI(W ;Z|ZN ) +
N∑
n=1

I(Z,Zn|ZN\n) +
N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|ZN−1). (36)

Finally, we rearrange this equation and divide both hand sides by N ; we get the result.

10 Proof of Theorem 2 in Linear Regression Model

Here we show the results of Bayesian linear regression again. A Bayesian linear regression model is given
as p(Y |x,w) = N (w⊤ϕ(x), β−1) where ϕ(x) := (ϕ1(x), . . . , ϕd(x))⊤ ∈ Rd is a d-dimensional feature vector
of the input x and each ϕi : Rd → R. We assume a prior distribution over W as P (W ) = N (0, α−1Id).
We define a design matrix as Φ = (ϕ(x1), . . . , ϕ(xN ))⊤ ∈ RN×d. We also define a target vector as Y =
(Y1, . . . , YN )⊤. Then a posterior distribution is given by P (W |ZN ) = N (mN , SN ) where mN = βSNΦ⊤Y and
S−1
N := αId + βΦ⊤Φ. We also have a posterior predictive distribution as P (Y |X,ZN ) := N (m⊤

Nϕ(x), σ2
N (x))

where σ2
N (x) := β−1 + ϕ(X)⊤SNϕ(X). Thus, the entropy of the posterior predictive distribution is given as

H(Z|ZN ) = H(X) +H(Y |X,ZN ) = H(X) + Ep(X)
1
2 ln σ2

N (X) + 1
2d(ln(2π) + 1). (37)

Thus, we can calculate In as follows

I(Z,Zn|ZN\n) = Ep(X)
1
2(ln σ2

N\n(X) − ln σ2
N (X)). (38)

Note that since σ2
N (X) ≤ σ2

N\n holds (Bishop, 2006), I(Z,Zn|ZN\n) is always positive. Then we use the relation

x− y

x+ y
≤ 1

2(ln x− ln y) ≤ 1
2
x− y

y
. (39)

Using these relations, we have

1
2
σ2
N\n(X) − σ2

N (X)
α−1ϕ(x)⊤ϕ(x) + β−1 ≤

σ2
N\n(X) − σ2

N (X)
σ2
N (X) + σ2

N\n(X) ≤ 1
2(ln σ2

N\n(X) − ln σ2
N (X)) ≤ 1

2
σ2
N\n(X) − σ2

N (X)
σ2
N (X) . (40)

Note that S−1
N := αId + βΦ⊤Φ and Φ⊤Φ =

∑
n ϕ(Xn)ϕ(Xn)⊤. Thus, we have S−1

N = S−1
N−1 + βϕ(XN )ϕ(XN )⊤.

From this relation, by using the Woodbury formula, we have

SN−1 = SN + SNϕ(β−1 − ϕ(xN )⊤SNϕ(xN ))−1ϕ⊤SN . (41)

Then by definition, we have

σ2
N\n(X) − σ2

N (X) = ϕ(x)⊤(SN\n − SN )ϕ(x)). (42)
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Combining these results, we have

σ2
N\n(X) − σ2

N (X) = (ϕ(x)⊤SNϕ(xn))2

β−1 − ϕ(xn)⊤SNϕ(xn) . (43)

Note that β−1 − ϕ(xn)⊤SNϕ(xn) is always positive. To confirm this, first, we regard this as the shur complement
of the matrix

M =
(

S−1
N ϕ(xn)

ϕ(xn)⊤ β−1

)
(44)

and use the fact that det(M) = det(S−1
N )det(β−1 − ϕ(xn)⊤SNϕ(xn)). We can confirm that M is positive definite

because we can show that v⊤Mv > 0, where v ∈ RN+1 is an arbitrary vector, using the fact that SN is positive
definite. Then β−1 − ϕ(xn)⊤SNϕ(xn) must be positive definite since M and SN are positive definite. Thus, we
have

(ϕ(x)⊤SNϕ(xn))2

β−1 − ϕ(xn)⊤SNϕ(xn) ≥ (ϕ(x)⊤SNϕ(xn))2. (45)

In conclusion, we have

1
N

N∑
n=1

I(Z,Zn|ZN\n) ≥ Ep(X)
1

2N
1

α−1ϕ(x)⊤ϕ(x) + β−1

N∑
n=1

(ϕ(x)⊤SNϕ(xn))2

ω(xn) , (46)

where ω(xn) := β−1 − ϕ(xn)⊤SNϕ(xn).

11 Proof of the Asymptotic Result in Theorem 3

We introduce the following definition,

GN (α) := −EW,ZN ,Z logEW̃ |ZN p(Z|W )α, (47)

where p(Z|W )α is the power of α ∈ R of p(Z|W )α. We only consider the α such that |GN (α)| < ∞. We also
simplify the expression of the expectation since the distribution with which we take the expectation is clear.
When α = 1, this is the Bayesian risk in the Bayesian learning setting. We also define

TN (α) := −EW,ZN

1
N

N∑
n=1

logEW̃ |ZN p(Zn|W )α. (48)

Compared to GN (α), this corresponds to the training error.

We then have the following relation

GN−1(α = 1) = −EW,ZN−1,ZN
logEW̃ |ZN−1p(ZN |W )

= EW,ZN−1,ZN

[
log 1

EW
∏N
n=1 PZn|W

EW

[
p(ZN |W )−1

N∏
n=1

p(Zn|W )
]]

= EW,ZN−1,ZN
logEW̃ |ZN p(ZN |W )−1

= EW,ZN−1,ZN

[
1
N

N∑
n=1

logEW̃ |ZN p(Zn|W )−1

]
= −TN (α = −1). (49)

Recall that

I(W ;Z|ZN ) = I(W ;ZN |ZN−1) − I(Z,ZN |ZN−1), (50)
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then we have

I(Z,ZN |ZN−1) = GN−1(α = 1) − GN (α = 1), (51)

thus we have

I(Z,ZN |ZN−1) = −TN (α = −1) − GN (α = 1). (52)

Next we consider the Taylor expansion of TN (α) and GN (α) about α. This expansion is studied asymptotically in
Watanabe (2018) rigorously. Using Theorem 3 in Watanabe (2018), we have

I(Z,ZN |ZN−1) = o

(
1
N

)
, (53)

where o( 1
N ) is little o.

Finally, from Theorem 1, we have

1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1) = −I(W ;Y |X,ZN ) + 1
N
I(W ;ZN ) − 1

N

∑
n

In ≤ 1
N
I(W ;ZN ). (54)

Thus 1
N I(W ;ZN ) = O(1/N), we obtain Eq. (20).

Remark 1. The finite variance assumption is satisfied for regular models. We say that a statistical model
is regular if its map w → p(z|w) is one-to-one, which implies p(z|w1) = p(z|w2) ⇒ w1 = w2 and its Fisher
information matrix is positive definite for arbitrary w ∈ W. Intuitively, this means that when we have enough
samples, the posterior distribution of a regular model converges to the Gaussian distribution.

12 Proofs of Lemma 2 and Theorem 4

Proof. The conditional mutual information is rewritten as

I(W ;Y |X,ZN )
= EW,ZN ,Z

[
− lnEW |ZN p(Y |X,W ) + ln p(Y |X,W )]

]
= EW,ZN ,Z

[
− lnEW |ZN p(Y |X,W )

]
−H[Y |X,W ]. (55)

On the other hand, the mutual information is rewritten as

I(W ;ZN )
= EZN ,W [− ln p(ZN ) + ln p(ZN |W )]
= −EZN ln p(ZN ) −H[ZN |W ]
= −EZNEW |ZN ln p(ZN |W ) + EZN KL(p(W |ZN )|p(W )) −H[ZN |W ]. (56)

This implies

−EZN ln p(ZN ) = I(W ;ZN ) +H[ZN |W ]. (57)

Note that H[ZN |W ] = NH[Z|W ] since the test and training data points are i.i.d. By combining these results,
we get Lemma 2. Moreover, combining these relations with Theorem 1, we get Theorem 4.

12.1 Relation to Bayesian Regret

Here, we discuss how the Bayesian learning setting is related to Bayesian regret problems. Bayesian inference
has been utilized for the sequential decision-making problem since we can incorporate the information from
past observations into the posterior distribution. Here, we discuss how to utilize our developed theories for the
sequential decision problem. We assume that, at each round n, we are given data Xn and predict Yn using Zn−1.
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When using an optimal decision, we suffer from loss Rl(Yn|Xn, Z
n−1) −Rl(Yn|Xn,W ) = MERl(Yn|Xn, Z

n−1) at
round n. We define an average cumulative regret as

Regl(N) := 1
N

N∑
n=1

MERl(Yn|Xn, Z
n−1). (58)

Under this definition, we obtain the following relation between regret and MER:
col 3.

MERlog(Y |X,ZN ) = Reglog(N) − 1
N

N∑
n=1

In − 1
N

N−1∑
n′=1

N−1∑
n=n′

In+1,n. (59)

Proof. Note that

− ln p(Zn|ZN−1) = − lnEW |ZN−1p(Zn|W ) = − ln p(Zn) + ln p(ZN−1). (60)

Thus, we have

EZn [− ln p(Zn|ZN−1)] = I(W ;Zn) − I(W ;ZN−1) +H. (61)

where H is the entropy H[Z|W ]. Here we omit the data point index from this entropy since all the entropy
H[Zn|W ] are equivalent since each Zn are i.i.d. By adding from n = 1 to N , we can reformulate a regret as

EZN

N∑
n=1

[− ln p(Zn|ZN−1)] = I(W ;ZN ) +NH. (62)

This concludes the proof.

13 Proof of Theorem 5

We express the learned parameters as W̃ , which follows the Bayesian posterior distribution p(W̃ |ZN ). Note that
we have the Markov chain W − ZN − W̃ . Recall that p(W |ZN ) := p(ZN ,W )

p(ZN ) . Then we have

L(W̃ ;ZN |W ) = Ep(W )p(Z̃N |W )Ep(W̃ |Z̃N )p(ZN |W )

[
log p(Z

N |W )p(W̃ |W )
p(ZN , W̃ |W )

]
= Ep(W )p(Z̃N |W )Ep(W̃ |Z̃N )p(ZN |W )

[
log p(Z

N |W )
p(ZN |W̃ )

]
= NRGibbs

log −NH[Y |X,W ]. (63)

14 Proofs of Meta-learning in Theorem 6

The proof of the sensitivity in meta-learning is almost identical to that of Theorem 1. First, using Theorem 1 we
can decompose the MEMR as follows.

I(Y ;W |X,ZN , ZNM )

= I(W ;ZN |ZNM )
N

− 1
N

N∑
n=1

I(Z,Zn|ZN\n, ZNM ) − 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1, ZNM ). (64)

Here we applied Theorem 1 to the meta-test test data and meta-test training dataset. Then we have

I(Y ;W |X,ZN , ZNM )

= I(W,U ;ZN |ZNM )
N

− 1
N

N∑
n=1

I(Z,Zn|ZN\n, ZNM ) − 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1, ZNM )

= I(W ;ZN |U)
N

+ I(U ;ZN |ZNM )
N

− 1
N

N∑
n=1

I(Z,Zn|ZN\n, ZNM ) − 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1, ZNM ), (65)
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where we used the fact that I(U ;ZN |ZNM ) = 0, which results from the Markov chain (U,ZNM ) − W − ZN .
Next, we use the following two lemmas, the modified versions of Lemma 3 and 4, in the proof of Theorem 1.
lmm 5. For any m ∈ (1, 2, . . . ,M ], we have

H[ZN,(m+1)|ZNm] = H[ZN,(m+1)|ZN(m−1)] − I(ZN,(m+1);ZN,(m)|ZN(m−1)), (66)

where ZNm := (ZN,(1), · · · , ZN,(m)) and ZN(m−1) := (ZN,(1), · · · , ZN,(m−1)).

We can derive this by direct calculation. We also have the following lemma.
lmm 6. For any m ∈ (1, 2, . . . ,M ]

I(U ;ZN,(m+1)|ZNm) = I(U ;ZN,(m)|ZN(m−1)) − I(ZN,(m+1);ZN,(m)|ZN(m−1)). (67)

We can prove this almost in the same way as Lemma 4. Then, similarly to Eq. (33) in Theorem 1, we have

I(U ;ZNM ) =
M∑
m=1

I(U ;ZN,(m)|ZN(m−1))

= MI(W ;ZN,(M)|ZN(M−1)) +
M−1∑
m′=1

M−1∑
m=m′

I(ZN,(m+1), ZN,(m)|ZN(m−1))

= MI(W ;ZN |ZNM ) +
M∑
m=1

I(ZN , ZN,(m)|ZN(M\m)) +
M−1∑
m′=1

M−1∑
m=m′

I(ZN,(m+1), ZN,(m)|ZN(m−1)),

(68)

where ZN(M\m) := (ZN,(1), . . . , ZN,(m−1), ZN,(m+1), . . . , ZN,(M)). Combining these results, we have

I(Y ;W |X,ZN , ZNM )

= I(W ;ZN |U)
N

+ 1
NM

I(U ;ZNM ) (69)

− 1
NM

M∑
m=1

I(ZN , ZN,(m)|ZN(M\m)) − 1
NM

M−1∑
m′=1

M−1∑
m=m′

I(ZN,(m+1), ZN,(m)|ZN(m−1)) (70)

− 1
N

N∑
n=1

I(Z,Zn|ZN\n, ZNM ) − 1
N

N−1∑
n′=1

N−1∑
n=n′

I(Zn+1, Zn|Zn−1, ZNM ). (71)

15 Numerical Experiments

Here we show a detailed explanation of the numerical experiments in the main paper and additional results. We
conducted on all the numerical experiments with a CPU machine (Intel(R) Core(TM) i9-9980HK CPU)

15.1 Experiments in Bayesian Learning Setting

Here we explain the settings in Sec. 7.1. In Figure 3, we show the enlarged version of Figure 1 in the main paper.

We generated input x ∼ N (0,1d′). We used d′ = 1 in the paper. We then set α = β = 1 in all the experiments.
As the feature map, we used the Gaussian feature map, defined as ϕ(x) = [e− 1

2 ∥x−µ1∥2
, · · · , e− 1

2 ∥x−µd∥2 ]. We set
d = 10 and µ1 to µd evenly in the interval [−2, 2].

Here we show additional numerical results, the upper and lower bounds of In derived in Theorem 2. The result is
shown in Fig. 4. We can see that the upper bound is very accurate, while the lower bound is relatively loose.

Next, we show the results when using a polynomial feature map, ϕ(x) = [x, x2, · · · , x5]. We show the results in
Fig. 5. We can see that the information-theoretic quantities behave similarly to when we use the Gaussian basis
function for the feature map.
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Figure 3: Information-theoretic quantities appearing in Theorem 1 and Corollary 1.
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Figure 4: The upper and lower bounds of the sensitivity derived in Theorem 2.

15.2 Experiments in Bayesian Meta-learning Setting

Here we introduce the meta-learning settings of our numerical experiments. In Figure 6, we show the enlarged
version of Figure 2 in the main paper.
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Figure 5: The information-theoretic quantities appeared in Theorem 1 and Corollary 1 for polynomial basis
function.
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Figure 6: Information-theoretic quantities appearing in Theorem 6. The left panel shows the results under
different M (the number of tasks) at fixed N (the number of training datasets). The right panel shows the results
under different N at fixed M . Here, we omit the summation with respect to n, n′,m, and m′ for clarity.

For the prediction stage, we have the meta-test posterior predictive distribution as follows;

p(Y ;W |X,ZN , ZNM ) =
∫
p(Y |X,W )p(W |ZN , ZNM )dW

=
∫
p(Y |X,W )p(W |ZN , U)p(U |ZNM )dWdU. (72)
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Note that from the meta-training dataset, we can learn the posterior of the hyper-prior p(U) as p(U |ZNM ). We
can learn the posterior of the parameter of the meta-task as p(W |ZN , U).

We are focusing on the linear regression model, and we put on a Gaussian prior on W and Gaussian hyper-prior
on U as p(W |U) = N (U,α−11) and p(U) = N (0, γ−11) where 1 is the identity matrix. Thus, we can analytically
calculate all the related posterior and predictive distributions. Thus, we can analytically calculate the CMI and
MI in the information-theoretic bound.

We first present the explicit form of p(W |ZN , U). Recall the definitions. A linear regression model is given as,
p(Y |X,W ) = N (W⊤ϕ(x), β−1) where ϕt(x) := (ϕ1(x), . . . , ϕd(x))⊤ ∈ Rd is a d-dimensional feature vector of the
input x of meta-test training dataset. We define a design matrix as Φt = (ϕ(x1), . . . , ϕ(xN ))⊤ ∈ RN×d. We also
define a target vector as y = (y1, . . . , yN )⊤.
lmm 7. The posterior distribution of the meta-task parameter is given as Gaussian distribution, p(W |ZN , U) =
N (mt, St) where

mt := St(βΦ⊤
t y + αU), (73)

S−1
t := αId + βΦ⊤

t Φt. (74)

Proof. The joint distribution p(U,ZN ,W ) is Gaussian; thus, p(W |ZN , U) is Gaussian distribution. So we only
need to calculate log p(U,ZN ,W ) and focus on the quadratic and linear terms of W since those coefficients
characterize the mean and variance of the Gaussian distribution. Then we have

− log p(U,ZN ,W ) = W⊤(αId + βΦ⊤Φ)W + 2W⊤(βΦ⊤y + αU) + Const. (75)

By re-arranging this, we obtain the result.

Next, we present the posterior distribution of hyperparameter U . We introduce the definition of the design
matrix of the m-th meta-training dataset ϕm(x) := (ϕ1(x), . . . , ϕd(x))⊤ ∈ Rd and a design matrix as Φm =
(ϕm(x1), . . . , ϕm(xN ))⊤ ∈ RN×d. We use the same feature map for the meta-training and meta-testing stages.
Under this setting, we have the following result.
lmm 8. The posterior distribution of hyper-parameter is given as the Gaussian distribution, p(U |ZNM ) =
N (mu, Su) where

mu := Su

M∑
m=1

y⊤
msmΦm, (76)

S−1
u :=

M∑
m=1

(γ1 + Φ⊤
msmΦm), (77)

s−1
m := β−11 + α−1ΦmΦ⊤

m. (78)

Proof. We consider the joint distribution for the meta-training as p(U,ZNM,WM ) = p(ZNM |WM )p(WM |U)p(U).
First, we can easily integrate out W from the joint distribution. Then, for the m-th task,

∫
p(ZN,m|Wm)p(Wm|U =

u)dWm is given as the Gaussian distribution N (Φmu, β−11 +α−1ΦmΦ⊤
m). Since the joint distribution p(U,ZNM )

is the Gaussian, p(U |ZNM ) is also the Gaussian distribution. Thus, we only need to calculate log p(U,ZNM ) and
focus on the quadratic and linear terms of U . Then we have

− log p(U,ZNM ) = U⊤(γ +
M∑
m=1

Φ⊤
msmΦm)U + 2U⊤(

M∑
m=1

Φ⊤smym) + Const, (79)

where s−1
m := β−11 + α−1ΦmΦ⊤

m and ym is the target variables of the m-th task. Thus, we obtain the result.

Finally, we calculate the meta-test predictive distribution. This is also given as the Gaussian distribution.
lmm 9. The posterior predictive distribution of the meta-test is given as the Gaussian distribution,
p(Y ;W |X,ZN , ZNM ) = N (mf , Sf ) where

mf = βy⊤ΦtStϕ(x) + αm⊤
u Stϕ(x), (80)

Sf = β−1 + ϕ(x)⊤Stϕ(x)) + (αStϕ(x))⊤Su(αStϕ(x)). (81)



Futoshi Futami, Tomoharu Iwata

100 101 102

M

10−3

10−2

10−1

I(Y ∗;W |X∗, ZN , ZNM )

I(U ;ZNM )/NM

I(W ;ZN |ZNM )/N

I(ZN ;ZN,m|ZN(M\m))

100 101 102

N

10−4

10−2

100

I(Y ∗;W |X∗, ZN , ZNM )

I(U ;ZNM )/NM

I(W ;ZN |ZNM )/N

I(ZN ;ZN,m|ZN(M\m))

Figure 7: The information-theoretic quantities appeared in Theorem 6 for polynomial basis function.

Proof. We first calculate
∫
p(Y |X,W )p(W |ZN , U)p(U |ZNM )dW . This is given as the Gaussian distribution

N (m⊤
t ϕ(x), β−1 + ϕ(x)⊤Stϕ(x)), where we defined mt and St in the above. Then applying the expectation

formula of the Gaussian distribution, we have

mf = EU [m⊤
t ϕ(x)] = EU [(St(βΦ⊤

t y + αU))⊤ϕ(x)] = βy⊤ΦtStϕ(x) + αm⊤
u Stϕ(x), (82)

Sf = β−1 + ϕ(x)⊤Stϕ(x)) + (αStϕ(x))⊤Su(αStϕ(x)). (83)

As for the experimental settings, we set γ = 1. All the other settings are the same as the not meta-learning
settings.

In the main paper, we showed the results of the Gaussian feature map. Here we show additional experimental
results about the polynomial feature map. In Fig. 7, we show the results when the polynomial feature map,
ϕ(x) = [x, x2, · · · , x5] is used. We can see that the information-theoretic quantities behave similarly to when we
use the Gaussian basis function for the feature map.


