
How does GPT-2 Predict Acronyms? Extracting and Understanding
a Circuit via Mechanistic Interpretability

Jorge García-Carrasco Alejandro Maté Juan Trujillo
Lucentia Research, Department of Software and Computing Systems, University of Alicante

Abstract

Transformer-based language models are
treated as black-boxes because of their large
number of parameters and complex internal
interactions, which is a serious safety con-
cern. Mechanistic Interpretability (MI) in-
tends to reverse-engineer neural network be-
haviors in terms of human-understandable
components. In this work, we focus on under-
standing how GPT-2 Small performs the task
of predicting three-letter acronyms. Previous
works in the MI field have focused so far on
tasks that predict a single token. To the best
of our knowledge, this is the first work that
tries to mechanistically understand a behav-
ior involving the prediction of multiple con-
secutive tokens. We discover that the predic-
tion is performed by a circuit composed of
8 attention heads (∼ 5% of the total heads)
which we classified in three groups accord-
ing to their role. We also demonstrate that
these heads concentrate the acronym predic-
tion functionality. In addition, we mechanis-
tically interpret the most relevant heads of
the circuit and find out that they use posi-
tional information which is propagated via
the causal mask mechanism. We expect this
work to lay the foundation for understanding
more complex behaviors involving multiple-
token predictions.

1 INTRODUCTION

Scaling up the size of Language Models based on the
Transformer architecture (Vaswani et al., 2017; Brown
et al., 2020) has been shown to greatly improve its

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

performance on a wide range of tasks. Because of this,
the use of Large Language Models (LLMs) on high-
impact fields such as in medicine (Thirunavukarasu
et al., 2023; Zhang et al., 2023) is increasingly growing
and is expected to keep growing even larger. How-
ever, these models are treated as black-boxes due to
the fact that they have a large number of parameters
and complex internal interactions, hampering our abil-
ity to understand its behavior. This is a considerable
concern with regards to the safety of Artificial Intelli-
gence (AI) systems, as using a model without knowing
its internal heuristics or algorithms can derive in unex-
pected outcomes such as privacy issues (Li et al., 2023)
or harmful behavior (Wei et al., 2023) among others.

Mechanistic Interpretability (MI) aims to tackle this
issue by interpreting behaviors in terms of human-
understandable algorithms or concepts (Elhage et al.,
2021; Olsson et al., 2022; Elhage et al., 2022; Nanda
et al., 2023). In other words, it tries to reverse-
engineer the large amount of parameters that compose
the model into understandable components, which es-
sentially increases the trustworthiness of the model.
MI has been successfully applied to explain differ-
ent tasks on transformer-based models. For example,
Wang et al. (2023) discover the circuit responsible for
the Indirect Object Identification task (IOI) in GPT-2
Small, composed by 26 attention heads grouped in 7
different classes. Similarly, Hanna et al. (2023) use MI
techniques to explain how GPT-2 Small performs the
greater-than operation on a single task and test if the
discovered circuit generalizes to other contexts. Like-
wise, Heimersheim and Janiak (2023) discovered how a
smaller 4-layer transformer model predicted argument
names on a docstring.

In summary, works like the ones mentioned above are
proof that mechanistic analysis can be used to shine
light into the inner workings of language models. As
MI is a young field, the current focus is on develop-
ing methods and understanding behaviors on relatively
smaller models to lay a solid foundation that will be
used to interpret increasingly larger models. In fact,
preliminary studies have already appeared discussing

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

whether current MI techniques are scalable to larger
models, with optimistic results (Lieberum et al., 2023).

In this work, we contribute to the growing body of MI
works by focusing on understanding how GPT-2 Small
performs the task of predicting three-letter acronyms
(e.g. "The Chief Executive Officer" → "CEO").
We have mainly chosen this task because it consists
on predicting three consecutive tokens, in contrast to
previous existing work which focused on single-token
prediction. To the best of our knowledge, this is the
first work that applies MI to understand a behavior
involving the prediction of multiple tokens. Hence, we
expect that the work presented here serves as a start-
ing point for understanding more complex behaviors
that involve predicting multiple tokens.

More specifically, we will adopt a circuits perspective
(Elhage et al., 2021; Olah et al., 2020) and identify
the components of the model that are responsible for
the behavior under study via a series of systematic
activation patching (Meng et al., 2022) experiments.
Our contributions can be summarized as follows:

• We discover the circuit responsible for three-letter
acronym prediction on GPT-2 Small. The circuit
is composed by 8 attention heads (∼ 5% of GPT-
2’s heads) which we classified on three groups ac-
cording to their role.

• We evaluate the circuit by ablating the rest of
components of the model and show that the per-
formance is preserved and even slightly improved
when isolating the discovered 8-head circuit.

• We interpret the main components of the cir-
cuit, which we term letter mover heads by reverse-
engineering their parameters.

• We also found that letter mover heads make use
of positional information, mainly derived from the
attention probabilities due to the causal mask
mechanism instead of the positional embeddings.

The remainder of this paper is structured as follows.
In Section 2, the required background and the prob-
lem statement are presented. Section 3 describes the
procedure used to discover the circuit responsible for
three-letter acronym prediction as well as the role of
each component, followed by an evaluation of the cir-
cuit. Section 4 delves into mechanistically interpret-
ing letter mover heads as well as studying how these
heads use positional information. Finally, the conclu-
sions about the work are presented in Section 5.

2 BACKGROUND

In this section we briefly present the transformer and
the used notation, the task of study and how to eval-
uate the performance of the model on that task.

2.1 Model and Notation

GPT-2 Small (Radford et al., 2019) is a 117M pa-
rameter decoder-only transformer architecture com-
posed by 12 transformer blocks containing 12 attention
heads followed by an MLP, each component preceded
by Layer Normalization (Ba et al., 2016). The input
to the model is a sequence of N consecutive tokens
which are embedded into x0 ∈ RN×d via a learned
embedding matrix WE ∈ RV×d, where V is the size of
the vocabulary. Similarly, positional embeddings are
added to x0.

Following the notation presented in Elhage et al.
(2021), x0 is the initial value of the residual stream,
where all the components of the model read from and
write to. Specifically, if hij denotes the jth attention
head at layer i, the ith attention layer will update the
residual stream as xi+1 = xi +

∑
j hij(xi) (omitting

layer normalization). Each attention head is parame-
terized by the matrices W ij

Q ,W ij
K ,W ij

V ∈ Rd×d/H and
W ij

O ∈ Rd/H×d, where H is the number of heads in a
single layer, which can be arranged into the QK and
OV matrices W ij

QK = W ij
Q W ij

K , W ij
OV = W ij

V W ij
O . The

QK matrix contains information about which tokens
the head attends to, whereas the OV matrix is related
to what the head writes into the residual stream.

Finally, the resulting vector is unembedded via a un-
embedding matrix, which in the case of GPT-2 is tied
to the embedding matrix (i.e. WU = WT

E) to obtain
a vector y ∈ RN×V where yij represents the logits of
the jth token of the vocabulary for the prediction fol-
lowing the ith token of the sequence.

2.2 Task Description

We will focus on the task of predicting three-letter
acronyms. To evaluate whether GPT-2 is able to prop-
erly perform this task or not, we curated a dataset of
800 acronyms. It is important to remark that this
dataset will not be used to re-train the model, but to
perform experiments and identify the underlying cir-
cuit associated to the task of study. In other words,
our aim is to detect a circuit responsible for a con-
crete task on an LLM that has already been trained
in a general, self-supervised way. Hence, in order to
isolate the behavior of study and reduce the amount
of noise, we made each acronym to meet the following
characteristics:

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

• Each word must be composed by two tokens, the
first being only composed by the capital letter and
its preceding space (e.g. "| C|ane|")

• The acronym must be tokenized by exactly three
tokens, each for one letter of the acronym (e.g.
"|C|K|L|")

In order to build the dataset, we took a public list
of the most frequently-used common nouns in English
(Quintans, 2023) containing a total of 6775 nouns.
However, building the dataset is not as easy as choos-
ing three random words and tokenizing them accord-
ing to our imposed characteristics: words have to
be tokenized as GPT-2 naturally expects to stay in-
distribution. GPT-2 uses byte-pair encoding (BPE)
tokenization (Sennrich et al., 2016), a technique that
tokenizes according to the most frequent substring.
This means that common substrings/words such as
"ABC" or " Name" are encoded as a single token, hence
reducing the amount of possible nouns and acronyms
to use on our dataset. Taking this into account, the
building procedure was the following:

1. Nouns: We took the list of 6775 nouns and fil-
tered out the words that did not meet the char-
acteristics (i.e. each word of the acronym must
be composed by two tokens, the first being only
composed by the capital letter and its preceding
space), leaving us with 381 nouns.

2. Acronyms: We tokenized the PR(26, 3) = 263 =
17576 possible 3-letter acronyms and checked
which were naturally tokenized as three separate
tokens, which reduced the amount of possible
acronyms to 2740. As common nouns beginning
with the letter X, Q or U are rare, we also excluded
acronyms containing that letter, resulting in a to-
tal of 1154 possible combinations.

3. Dataset: Finally, we built the dataset by (i) sam-
pling one of the 152 possible acronyms (e.g. WVZ)
and randomly sampling three of the 381 nouns,
one for every letter of the acronym (e.g. Wreck,
Vibe and Zipper). Notice that we can build much
more than 800 samples in this way, but we chose
this size because of computational constraints. As
a reference, Hanna et al. (2023) curated a dataset
of 490 datapoints to properly identify a circuit.

In summary, this results in a dataset composed by
prompts with the structure:

"|The|C1|T1|C2|T2|C3|T3| (|A1|A2|A3|"

where Ci is the token encoding the capital letter of the
ith word (together with its preceding space), Ti is the

remainder of the word, and Ai is the ith letter of the
acronym. Therefore, the task consists on predicting
A1, A2 and A3 given the previous context.

The reason for choosing a list of nouns was because (i)
it is the common way to build acronyms and (ii) the
type of word (noun, adjective, etc.) does not affect the
result obtained. We can confirm these results since
we have also experimented with synthetic words by
taking a random token "| A|" where A can be any
capital letter, followed by one to three random tokens
containing just lowercase letters and found the same
results that will be presented in this work.

Also, one important concern is that the model could
have memorized popular acronyms (e.g. The Central
Processing Unit (CPU)). However, the acronyms
built with our procedure are rare (e.g. The Wreck
Vibe Zipper (WVZ)). We took this decision to ensure
that the model has not been trained with these sam-
ples, implying that the discovered circuit generalizes
to samples outside of the training dataset and does
not just memorize common acronyms.

2.3 Evaluation

In order to quantitatively evaluate the ability of GPT-
2 on the task under study, we will compute the logit
difference between the correct letter and the incorrect
letter with the highest logits, for each of the three let-
ters of the acronym:

logit_diffi = logitsai
− max

l∈L\{ai}
logitsl (1)

where ai is the correct prediction for the ith letter of
the acronym and L is the set of possible predictions,
which in the case of acronym prediction, is the set of
capital letters. GPT-2 has an average logit difference
across every letter and sentence of the dataset of 2.22,
which translates to an average ∼ 90.2% probability
difference. Overall, this result provides quantitative
evidence supporting that GPT-2 is indeed able to per-
form three-letter acronym prediction.

3 A CIRCUIT FOR 3-LETTER
ACRONYM PREDICTION

Now that the task has been clearly defined and checked
that GPT-2 is indeed able to perform it, we will dis-
cover the circuit responsible for this behavior, evalu-
ate it and understand the components that compose
such circuit. The following experiments were per-
formed by using both PyTorch (Paszke et al., 2019)
and TransformerLens (Nanda and Bloom, 2022) with
a 40GB A100 GPU. A repository containing the code

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

required to reproduce the experiments and figures
can be found in https://github.com/jgcarrasco/
acronyms_paper.

3.1 Discovering the circuit

In order to discover which components form the circuit
responsible for three-letter acronym prediction, we will
perform a systematic series of activation patching ex-
periments, first presented in Meng et al. (2022). The
idea of activation patching is to patch (i.e. replace)
the activations of a given component with the activa-
tions obtained by running the model on a corrupted
prompt. If the metric degrades when patching a com-
ponent, it means that it is relevant to the task under
study, therefore enabling us to locate the circuit.

In this case, we have carefully performed activation
patching with three different types of corruption. For
each of the ith letter prediction, we (i) randomly re-
sample the ith word, (ii) randomly resample the words
previous to the ith word and (iii) randomly resample
the acronym letters previous to the ith letter. This will
allow us to better track the flow of information and
the role of each component. Table 1 shows the differ-
ent types of corruption for the prediction of the third
letter on a sample prompt. We will perform the corre-
sponding activation patching experiments for each of
the three letters on parallel.

Table 1: Example of prompt corruption for the third
letter prediction i = 3 (this is also performed for i =
1, 2)

Corruption Type Prompt

Original The Cane Knee Lender (CK
Current Word The Cane Knee Tandem (CK
Previous Words The Ego Icy Lender (CK
Previous Letters The Cane Knee Lender (BJ
All corruptions The Ego Icy Tandem (BJ

3.1.1 Corrupting the Current Word

Fig. 1 shows the change in logit difference when patch-
ing the residual stream before each layer at every po-
sition, for each of the three letters of the acronym to
predict. If patching the residual stream at a given
position and layer considerably degrades the perfor-
mance, then it implies that the activations stored at
that specific step are important for the acronym pre-
diction task. In this case, we can see that patching
Ci at earlier layers does indeed drastically degrade the
performance, with the logit difference dropping up to
-5 units. We can also notice a shift from Ci to A(i-1)

beginning at layer 8. This implies that there are some
components that read information about Ci, move it
to A(i-1) and then use it to perform the prediction of
the next letter Ai.

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

10

8

6

4

2

0

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

−5

0

5

Residual Stream Patching

Sequence Position Sequence Position Sequence Position

L
a
y
e
r

First Letter Second Letter Third Letter

Figure 1: Patching the residual stream at every po-
sition and before every layer (corrupting the current
word).

Once that we have tracked the flow of information, we
can have a more fine-grained view by patching at the
level of individual components, i.e. attention heads
or MLPs. We performed activation patching experi-
ments on MLPs and found that they were not rele-
vant for acronym prediction. This was expected, as
this task mostly requires moving information between
token positions, which can only be performed by at-
tention heads. Fig. 2 shows the result of patching
the output of attention heads with the activations ob-
tained by corrupting the current word. We are able to
localize four heads that are relevant across the three
predictions: 8.11, 10.10, 9.9 and 11.4. It is also
interesting to notice that the drop on performance is
larger on the last letter than on the first. This is due
to the fact that the model has more context (i.e. the
two previous letters of the acronym) when predicting
the last letter, which translates to the model being
more confident on its prediction, which corresponds to
a larger drop when patching.

0 5 10

10

8

6

4

2

0

0 5 10 0 5 10

−2

−1

0

1

2

Patching Attention Heads

Head Head Head

L
a
y
e
r

First Letter Second Letter Third Letter

Figure 2: Patching the output of attention heads for
every iteration (corrupting the current word).

Fig. 3 shows the distribution of the average atten-
tion paid from A(i-1) to the previous token positions
for head 8.11. It can clearly be seen that it mostly

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

attends from A(i-1) to Ci, strongly suggesting that
these heads copy the information of the corresponding
letter and use it to perform the prediction of the next
letter of the acronym, so we term this heads as letter
mover heads. The behavior of these heads will be ex-
tensively discussed on Section 4, after performing the
remaining activation patching experiments. The at-
tention patterns for the rest of letter mover heads can
be seen in the Supplementary Materials.

The C1 T1 C2 T2 C3 T3 (A1 A2

0

0.1

0.2

0.3

0.4

0.5

The C1 T1 C2 T2 C3 T3 (A1 A2 The C1 T1 C2 T2 C3 T3 (A1 A2

Avg. Attention paid at each prediction by head 8.11

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 3: Average probability paid from A(i-1) to the
previous token positions for head 8.11.

3.1.2 Corrupting the Previous Words

Fig. 4 shows the results of performing activation
patching on the residual stream by corrupting the pre-
vious words. As expected, there is no effect on the pre-
diction of the first letter because there are no previous
words to corrupt. However, on the remaining letters,
patching C(i-1) at earlier layers has a significant (al-
though quite smaller than the previous) effect on pre-
dicting Ai, indicating that the circuit uses information
about the previous words to perform the task. Con-
cretely, it seems that the information is moved from
C(i-1) to Ci on layers 1-2 and from there to A(i-1) at
layer 5 and below. Interestingly, patching Ti around
layers 5-11 slightly improves the performance of the
circuit. We hypothesize that patching only this posi-
tion may cause the model to become less confident on
previous letters, essentially increasing the logit differ-
ence. As it is not the focus of the paper and the effect
is minimal, we will not delve deeper into this fact.

In order to check which attention heads were responsi-
ble for this movement of information, we patched the
output of attention heads at positions Ci and A(i-1).
Fig. 5 shows that there are a diffuse set of attention
heads responsible for moving information from C(i-1)
to Ci, such as 4.11, 1.0 and 2.2. Further inspection
of the attention patterns show that they are previous
token heads (or fuzzy versions of it), i.e. heads that at-
tend to the previous token position w.r.t. the current
token and move information. Visualizations of the at-
tention patterns of these heads can be found on the

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

10

8

6

4

2

0

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

−1

0

1

Residual Stream Patching

Sequence Position Sequence Position Sequence Position

L
a
y
e
r

First Letter Second Letter Third Letter

Figure 4: Patching the residual stream (corrupting
previous words).

Supplementary Materials.

0 5 10

10

8

6

4

2

0

0 5 10

−0.1

−0.05

0

0.05

0.1

Attn. Head Patching on Position Ci

Head Head

L
a
y
e
r

Second Digit Third Digit

Figure 5: Patching the output of attention heads for
every iteration at position Ci (corrupting the previous
words).

On the other hand, Fig. 6 shows that heads 5.8, 8.11
and 10.10 are the most relevant in this patching ex-
periment. Further inspection of the attention patterns
reveals that they mostly attend to the T(i-1) and Ci
tokens and move the information that was propagated
to these positions via the previous token heads.

There are a few important aspects to remark from
this patching experiment. The first is that the per-
formance drop when patching individual components
is significantly lower than on the previous experiment.
Secondly, the computation is more diffuse, i.e. it is
distributed across many components, specially when
looking at the Ci position. As we will see in the next
section, this is due to the fact that the model is able
to obtain the exact same information (i.e. the capital
letter of the previous word) by just attending to the
previous predicted letter, which is considerably eas-
ier. Another interesting fact is that some letter mover
heads are also present in this part of the computation,
i.e. some heads have multiple roles or behaviors, which
is a motif that has also been discovered on other works
Heimersheim and Janiak (2023).

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

0 5 10

10

8

6

4

2

0

0 5 10

−0.5

0

0.5

Attn. Head Patching on Position A(i-1)

Head Head

L
a
y
e
r

Second Digit Third Digit

Figure 6: Patching the output of attention heads for
every iteration at position A(i-1) (corrupting the pre-
vious words).

3.1.3 Corrupting Previous Predicted Letters

The results presented in Fig. 7 clearly show that
the model uses information about the previous pre-
dicted letter to predict the next one, as patching the
A(i-1) position causes a considerable performance
drop (larger than the previous corruption method)
across every layer. This provides even more evidence
in favor of the previously presented hypothesis that
letter mover heads obtain the same information via
two paths: from C(i-1) via the combination of previ-
ous token heads and heads that move information to
Ci and then to A(i-1), and directly from A(i-1).

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

10

8

6

4

2

0
B

O
S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

−2

−1

0

1

2

Residual Stream Patching

Sequence Position Sequence Position Sequence Position

L
a
y
e
r

First Letter Second Letter Third Letter

Figure 7: Patching the residual stream at every po-
sition and before every layer (corrupting the previous
predicted letters).

To summarize, we have been able to discover the fol-
lowing circuit via a series of activation patching exper-
iments:

• Heads 8.11, 10.10, 9.9 and 11.4, termed Let-
ter Mover Heads, attend mostly to the Ci token
position from the A(i-1) token position and are
the main responsible for acronym prediction on
GPT-2.

• Letter Mover Heads use the previous predicted
letter to attend to the correct token position and

predict the next letter of the acronym.

• This information, although more faintly, is also
propagated from C(i-1) to Ci via a set of fuzzy
previous heads such as 4.11, 1.0 and 2.2, which
is then moved from Ci to A(i-1) via heads 5.8,
8.11 and 10.10.

3.2 Circuit Evaluation

Now that we have defined a circuit, it is necessary to
evaluate whether it is sufficient to effectively perform
acronym prediction. In order to evaluate it, we will
ablate every other component that is not part of the
circuit. Specifically, we will perform mean-ablation,
which consists on replacing the activation of a compo-
nent with the mean activation obtained across all sam-
ples of the dataset. In this way, we only discard the
information related to the task of study while keep-
ing the rest. Fig. 8 shows the logit difference ob-
tained when progressively adding heads to the circuit.
We start with an empty circuit (i.e. ablating every
head) to check that the model is unable to perform
the task, obtaining negative values of the logit differ-
ence, as expected. Then, progressively adding Letter
Mover Heads greatly improves performance, the most
significant increase being on the third letter prediction,
where adding just head 8.11 increases the average
logit difference from -1 to 2 approximately. The logit
difference keeps increasing by progressively adding the
rest of components until we reach the baseline perfor-
mance with just the 8 discovered heads.

N
o
n
e

8
.1

1

9
.9

1
0

.1
0

1
1

.4

5
.8

4
.1

1

2
.2

1
.0

−2

0

2

4

N
o
n
e

8
.1

1

9
.9

1
0

.1
0

1
1

.4

5
.8

4
.1

1

2
.2

1
.0

N
o
n
e

8
.1

1

9
.9

1
0

.1
0

1
1

.4

5
.8

4
.1

1

2
.2

1
.0

Logit Diff. vs. Progressively Adding Components

Component Component Component

L
o
g
it

 D
iff

.

Letter=1 Letter=2 Letter=3

Figure 8: Logit Difference obtained by ablating ev-
erything and progressively adding components to the
circuit. The dashed horizontal line represents the logit
difference obtained with the complete model.

4 UNDERSTANDING LETTER
MOVER HEADS

Now that we have discovered and evaluated the main
circuit responsible for the task of three-letter acronym
prediction on GPT-2, we will provide further evidence
on how Letter Mover Heads work, which are the main
components of the circuit.

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

4.1 What do Letter Mover Heads Copy?

We discovered that Letter Mover Heads mostly attend
from A(i-1) to Ci and were the main responsible for
the acronym prediction task. Because of this, we hy-
pothesize that these heads directly increase the logits
of the correct letter to predict. In order to give evi-
dence about this, we will take a look at the weights of
Letter Mover Heads and try to reverse-engineer their
behavior.

Specifically, we will inspect the full OV circuit, ob-
tained by retrieving the embeddings corresponding to
the capital letter tokens and the capital letter tokens
preceded by a space, passing them through the OV
circuit of a Letter Mover Head and unembedding the
resulting vector. This essentially tells us what would
the head write into the residual stream if it attended
perfectly to that token. Fig. 9 shows the full OV cir-
cuit for Letter Mover Head 8.11, rearranging it in four
different ways to check what it writes when fully at-
tending to capital letters, with or without a preceding
space. At first sight, one cannot draw any conclusion
except that there is a slight diagonal when attending
to capital letters preceded with a space (two rightmost
plots.

A D G J M P S V Y

Y

V

S

P

M

J

G

D

A

A D G J M P S V Y A D G J M P S V Y A D G J M P S V Y

−2

−1

0

1

2

Full OV circuit for head [[8, 11]]

Output Output Output Output

In
p
u
t

|X| -> |X| |X| -> |_X| |_X| -> |X| |_X| -> |_X|

Figure 9: Full OV circuit for head 8.11, for all capital
letter tokens with/without a preceding space.

However, the pattern becomes much more clear when
we plot the full OV circuit taking into account all Let-
ter Mover Heads. As it can be seen in Fig. 10, there
is now a clear diagonal pattern on the two rightmost
plots. In other words, this implies that when Letter
Mover Heads attend to a capital letter preceded with a
space (which is exactly what Ci are), they translate it
to the token corresponding to the same capital letter
without a space (i.e. Ai) and write it into the residual
stream. It is important to remark that during analysis
we did not use any information from the dataset, i.e.
it was purely performed by inspecting the weights.

We also studied the copying behavior by analyzing the
relationship between the attention paid to Ci and the
increase of the logits of Ai for different heads. Specif-
ically, it can be seen on Fig. 11 that it pays more

A D G J M P S V Y

Y

V

S

P

M

J

G

D

A

A D G J M P S V Y A D G J M P S V Y A D G J M P S V Y

−10

0

10

Full OV circuit for heads [[8, 11], [9, 9], [10, 10], [11, 4]]

Output Output Output Output

In
p
u
t

|X| -> |X| |X| -> |_X| |_X| -> |X| |_X| -> |_X|

Figure 10: Sum of every Letter Mover Head OV cir-
cuit, for all capital letter tokens with/without a pre-
ceding space.

attention to Ci when predicting the ith digit, and that
the value written along the logits of Ai increases with
such attention.

0 0.2 0.4 0.6 0.8

0

20

40

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Ci

C1

C2

C3

Projection of head 8.11 onto the letter logits vs. attention probability

Attn. prob. on token Attn. prob. on token Attn. prob. on token

L
o
g
it

s

Letter=1 Letter=2 Letter=3

Figure 11: Projection of the output of head 8.11 along
the logits correct letter vs. the attention probability
paid to Ci.

4.2 Positional Information Experiments

We also hypothesized that Letter Mover Heads should
use positional information to perform the final pre-
diction (i.e. to attend to the first token of the
first/second/third word), specially when predicting the
first letter of the acronym, as there is no available in-
formation regarding the previously predicted letters of
the acronym. In order to test this hypothesis, we first
study the positional embeddings, as it is the most ev-
ident source of positional information of the model.
Specifically, we swapped the positional embeddings of
different pairs of Ci and checked if it had an effect on
the attention pattern of Letter Mover Heads. Ideally,
if a head relied in positional embeddings, swapping
them should force them to attend a different letter.
Fig. 12 shows the effect of swapping the positional
embeddings of C1 and C3 on the attention probabili-
ties of head 8.11.

As it can be seen, the change in attention probabilities
is negligible. We performed all the possible swapping
combinations for every letter mover head and found
similar results, implying that positional embeddings
are not the main source of positional information for

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

C1 C2 C3
0

0.1

0.2

0.3

0.4

0.5

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap

Attention probabilities for head 8.11 swapping positions C1 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 12: Attention probabilities on head 8.11 when
swapping the positional embeddings of C1 and C3.

Letter Mover Heads. However, the model has to use
some source of positional information to predict the
first letter, so we looked for another possible source. It
has been recently hypothesized (Heimersheim and Ja-
niak, 2023) that models are able to derive positional in-
formation from attention probabilities. Specially, due
to causal masking, the attention pattern paid to the
Beggining of Sequence (BOS) token position generally
decreases with the destination token position. There-
fore, the model could infer the position of a certain
token Ci by looking at the attention paid to the BOS
token: a lower attention paid to this token position
implies that the destination token is further from the
start of the sentence, and vice versa.

Therefore, we patched the activations of each head by
swapping their attention paid to the BOS token from
tokens Ci and Cj for all possible combinations and
measured the change in logit difference. Fig. 13 shows
the results for i = 1, j = 3. Indeed, swapping the
attention values does have an impact on the perfor-
mance, meaning that letter mover heads are likely to
use positional information derived from this mecha-
nism, specially when predicting the first letter. There
are also other heads that contribute positively. We hy-
pothesize that these heads are writing on the opposite
direction to avoid the model becoming overconfident
(similar to negative name mover heads on Wang et al.
(2023)). However, we leave this aspect as part of a
future study, as this requires an extensive analysis.

In order to provide further evidence, we swapped the
BOS attentions for those heads that had a negative im-
pact of at least 1% in the previous experiment and
visualized the change of attention pattern on letter
mover heads. Specifically, Fig. 14 shows the atten-
tion probabilities paid to the Ci tokens on head 8.11
on the clean run, swapping the positional embeddings,
swapping the BOS tokens and applying both swapping
techniques. In general, swapping the BOS tokens has
the most impact across all predictions, meaning that
head 8.11 does indeed use positional information. As

0 5 10

10

5

0

0 5 10 0 5 10

−0.1

0

0.1

Swapping Attention to BOS C1 <-> C3

Head Head Head

L
a
y
e
r

Letter 1 Letter 2 Letter 3

Figure 13: Change in logit difference obtained by
swapping the attention paid to BOS from the C1 and
C3 for every head in the model.

expected, the greatest difference can be found on pre-
dicting the first letter: swapping the positional em-
beddings and the BOS tokens of C1 and C3 changes the
average prediction from A1 to A3. It is also important
to remark that, most of the change on the attention
pattern, is caused by simply swapping two scalars on
each of the patched heads, i.e. a slight change in the
attention pattern of the patched heads causes a large
impact on the attention probabilities of head 8.11.

C1 C2 C3
0

0.1

0.2

0.3

0.4

0.5

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 8.11 when swapping POS/BOS tokens of words C1 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 14: Change in attention when performing the
BOS attention swapping experiment.

We also performed this experiment with every possi-
ble swapping combination and found two important
aspects. First, the attention probabilities are mainly
affected on the first letter prediction, aligned with our
hypothesis that the model relies mainly on positional
information (i.e. it has to look for the first capital let-
ter). Comparatively, the second and third letter pre-
diction rely on the previous predicted letter/s to gain
some context. Second, we found that only swapping
C1 and C3 had a considerable impact, probably due
to the fact that the other two possible swaps are per-
formed between tokens that are closer together, hence
the degree of corruption is smaller. This phenomena
also occured on the rest of letter mover heads. The ex-
periment involving the rest of letter mover heads and
swapping combinations are presented in the Supple-
mentary Materials.

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

5 CONCLUSIONS

In this work, we identified the circuit responsible for
the task of predicting three-letter acronyms on GPT-2
Small via a series of activation patching experiments.
The discovered circuit was composed by 8 attention
heads which we classified into three different groups
according to their role. We showed that ablating ev-
ery other head did preserve the performance, mean-
ing that the task of acronym prediction does indeed
rely on the discovered circuit. We also paid special
attention to the most important heads of the circuit,
which we termed letter mover heads, whose role is to
attend to the capital letter of the ith word and copy
its content for the ith letter prediction. We provided
evidence of this behavior by studying their attention
patterns, OV matrices and output activations. We also
show that these heads use positional information and
that this information is received not only by the po-
sitional embeddings, but from the attention patterns.
Our experiments show that the positional information
is derived from the attention paid to the BOS token, in
accordance to what it was discovered in simpler models
(Heimersheim and Janiak, 2023).

In summary, this is the first work that tries to mech-
anistically interpret a task involving multiple consec-
utive token using MI, laying the foundation for un-
derstanding more complex behaviors. Moreover, we
strongly believe that MI will enable us to understand
larger models, increasing the safety and trustworthi-
ness of AI systems.

Acknowledgements

This work has been co-funded by the BALLADEER
(PROMETEO/2021/088) project, a Big Data analyt-
ical platform for the diagnosis and treatment of At-
tention Deficit Hyperactivity Disorder (ADHD) fea-
turing extended reality, funded by the Conselleria de
Innovación, Universidades, Ciencia y Sociedad Dig-
ital (Generalitat Valenciana) and the AETHER-UA
project (PID2020-112540RB-C43), a smart data holis-
tic approach for context-aware data analytics: smarter
machine learning for business modelling and analyt-
ics, funded by the Spanish Ministry of Science and In-
novation. Jorge García-Carrasco holds a predoctoral
contract (CIACIF/2021/454) granted by the Conselle-
ria de Innovación, Universidades, Ciencia y Sociedad
Digital (Generalitat Valenciana).

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 1877–1901. Curran As-
sociates, Inc., 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Nelson Elhage, Neel Nanda, Catherine Olsson,
Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernan-
dez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown,
Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. A mathematical framework
for transformer circuits. Transformer Circuits
Thread, 2021. https://transformer-circuits.
pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Ols-
son, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn
Drain, Carol Chen, Roger Grosse, Sam Mc-
Candlish, Jared Kaplan, Dario Amodei, Mar-
tin Wattenberg, and Christopher Olah. Toy
models of superposition. Transformer Circuits
Thread, 2022. https://transformer-circuits.
pub/2022/toy_model/index.html.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
How does GPT-2 compute greater-than?: Interpret-
ing mathematical abilities in a pre-trained language
model. In Thirty-seventh Conference on Neural
Information Processing Systems (NeurIPS), 2023.
https://openreview.net/forum?id=p4PckNQR8k.

Stefan Heimersheim and Jett Janiak. A circuit
for Python docstrings in a 4-layer attention-only
transformer. https://www.alignmentforum.
org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-
python-docstrings-in-a-4-layer-attention-
only, 2023.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie
Huang, Fanpu Meng, and Yangqiu Song. Multi-
step jailbreaking privacy attacks on chatGPT. In
The 2023 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), 2023. https:
//openreview.net/forum?id=ls4Pfsl2jZ.

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

Tom Lieberum, Matthew Rahtz, János Kramár, Ge-
offrey Irving, Rohin Shah, and Vladimir Mikulik.
Does circuit analysis interpretability scale? Evi-
dence from multiple choice capabilities in Chinchilla.
arXiv preprint arXiv:2307.09458, 2023.

Kevin Meng, David Bau, Alex J Andonian, and
Yonatan Belinkov. Locating and editing factual as-
sociations in GPT. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022. https:
//openreview.net/forum?id=-h6WAS6eE4.

Neel Nanda and Joseph Bloom. Transformer-
Lens, 2022. https://github.com/neelnanda-io/
TransformerLens.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The
Eleventh International Conference on Learning Rep-
resentations (ICLR), 2023. https://openreview.
net/forum?id=9XFSbDPmdW.

Chris Olah, Nick Cammarata, Ludwig Schubert,
Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020.
doi: 10.23915/distill.00024.001. https://distill.
pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda,
Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna
Chen, Tom Conerly, Dawn Drain, Deep Gan-
guli, Zac Hatfield-Dodds, Danny Hernandez,
Scott Johnston, Andy Jones, Jackson Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei,
Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. In-context learn-
ing and induction heads. Transformer Cir-
cuits Thread, 2022. https://transformer-
circuits.pub/2022/in-context-learning-and-
induction-heads/index.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning
library. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper_files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Desi Quintans. The Great Noun List. https://www.
desiquintans.com/nounlist, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan,

Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with sub-
word units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725, Berlin, Germany, Au-
gust 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/P16-1162. URL https:
//aclanthology.org/P16-1162.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language
models in medicine. Nature Medicine, 29(8):1930–
1940, Aug 2023. ISSN 1546-170X. doi: 10.1038/
s41591-023-02448-8. URL https://doi.org/10.
1038/s41591-023-02448-8.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing
Systems (NeurIPS), volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.
neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Kevin Ro Wang, Alexandre Variengien, Arthur
Conmy, Buck Shlegeris, and Jacob Steinhardt. In-
terpretability in the wild: a circuit for indirect ob-
ject identification in GPT-2 small. In The Eleventh
International Conference on Learning Representa-
tions (ICLR), 2023. URL https://openreview.
net/forum?id=NpsVSN6o4ul.

Alexander Wei, Nika Haghtalab, and Jacob Stein-
hardt. Jailbroken: How does LLM safety training
fail? In Thirty-seventh Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2023. URL
https://openreview.net/forum?id=jA235JGM09.

Zhiyue Zhang, Hongyuan Mei, and Yanxun Xu.
Continuous-time decision transformer for health-
care applications. In Proceedings of The 26th
International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 206 of Proceed-
ings of Machine Learning Research, pages 6245–
6262. PMLR, 25–27 Apr 2023. URL https://
proceedings.mlr.press/v206/zhang23i.html.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable] Yes, at Section 2.

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes/No/Not Applicable] Not appli-
cable. The focus of this work is not on any
algorithm but on discovering a circuit by us-
ing an already existing technique. However,
we specify the sample size used on Section 3.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]
No, but it will be made public upon accep-
tance.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Applica-
ble] Not applicable. The work presented here
is mainly empirical evidence.

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] Not applicable.

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable] Not applicable.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes/No/Not Applicable] No, but it
will be made publicly available upon accep-
tance.

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable] Not applicable, as
no training is performed. We study a pre-
trained model.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]
Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes/No/Not Applicable]
Yes, on the start of Section 3.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable] Yes

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable] Not applica-
ble

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable] Yes

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble] Not applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or
offensive content. [Yes/No/Not Applicable]
Not applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Appli-
cable] Not applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable] Not applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Yes/No/Not Applica-
ble] Not applicable

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

A ATTENTION PATTERNS

This section contains additional attention pattern visualizations to support the findings described in Section 3.
Fig. 15 shows the mean attention patterns for heads 1.0, 2.2 and 4.11, which were the main responsible of
moving information from previous words. As it can be seen, these heads have the characteristic offset diagonal
pattern of previous token heads, meaning that these heads attend to the previous token w.r.t. the current one
and copy their information. On the other hand, heads 5.8, 8.11 and 10.10 move the previous information into
A(i-1) by attending to the tokens T(i-1) and Ci, as it can be seen on Figs. 16-17.

The attention probability histograms of the rest of letter mover heads 10.10, 9.9 and 11.4 are shown on Figs.
17-19. Even though the histograms are noisier than the one associated to the main letter mover head 8.11, it
can clearly be seen that these heads generally pay more attention to the proper capital letter Ci compared with
the other capital letters. We also see a high attention paid to T(i-1), in particular on heads 9.9 and 10.10.
This is likely due to the fact that these heads (specially 10.10) also perform the role of copying information
about the previous capital letter, as previously-mentioned.

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

A2

A1

 (

T3

C3

T2

C2

T1

C1

The

BOS

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

B
O

S

T
h
e

C
1

T
1

C
2

T
2

C
3

T
3

 (A
1

A
2

−1

−0.5

0

0.5

1

Mean Attention Patterns for Fuzzy Previous Heads

Source Source Source

D
e
s
t
in

a
t
io

n

1.0 2.2 4.11

Figure 15: Mean attention patterns for the 3 heads on the circuit that move information from C(i-1) to Ci.

B POSITIONAL INFORMATION EXPERIMENTS

This section contains the remaining positional experiments (presented in Section 4.2) regarding the rest of possible
swapping combinations and letter mover heads. Figs. 20 and 21 show the result of swapping the attention paid
to BOS from the C1 and C2 tokens, and the C2 and C3 tokens respectively.

Figs. 22-24 show the difference in attention paid to the Ci tokens on the clean run, when swapping the positional
embeddings, swapping the attention paid to the BOS token, and performing both swaps at the same time. This
is visualized for every possible swap and letter mover head. As mentioned in the paper, it can be seen that
the largest impact happens when performing the swapping operation on tokens C1 and C3, specially on the first
letter prediction, whereas the changes on the other swapping experiments are almost negligible.

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

The C1 T1 C2 T2 C3 T3 (A1 A2

0

0.1

0.2

0.3

0.4

0.5

0.6

The C1 T1 C2 T2 C3 T3 (A1 A2 The C1 T1 C2 T2 C3 T3 (A1 A2

Avg. Attention paid at each prediction by head 5.8

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 16: Average probability paid from A(i-1) to the previous token positions for head 5.8.

The C1 T1 C2 T2 C3 T3 (A1 A2
0

0.1

0.2

0.3

0.4

The C1 T1 C2 T2 C3 T3 (A1 A2 The C1 T1 C2 T2 C3 T3 (A1 A2

Avg. Attention paid at each prediction by head 10.10

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 17: Average probability paid from A(i-1) to the previous token positions for head 10.10.

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

The C1 T1 C2 T2 C3 T3 (A1 A2

0

0.1

0.2

0.3

0.4

0.5

0.6

The C1 T1 C2 T2 C3 T3 (A1 A2 The C1 T1 C2 T2 C3 T3 (A1 A2

Avg. Attention paid at each prediction by head 9.9

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 18: Average probability paid from A(i-1) to the previous token positions for head 9.9.

The C1 T1 C2 T2 C3 T3 (A1 A2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

The C1 T1 C2 T2 C3 T3 (A1 A2 The C1 T1 C2 T2 C3 T3 (A1 A2

Avg. Attention paid at each prediction by head 11.4

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 19: Average probability paid from A(i-1) to the previous token positions for head 11.4.

Jorge García-Carrasco, Alejandro Maté, Juan Trujillo

0 5 10

10

5

0

0 5 10 0 5 10

−0.1

0

0.1

Swapping Attention to BOS C1 <-> C2

Head Head Head

L
a
y
e
r

Letter 1 Letter 2 Letter 3

Figure 20: Change in logit difference obtained by swapping the attention paid to BOS from the C1 and C2 tokens
for every head in the model.

0 5 10

10

5

0

0 5 10 0 5 10

−0.04

−0.02

0

0.02

0.04

Swapping Attention to BOS C2 <-> C3

Head Head Head

L
a
y
e
r

Letter 1 Letter 2 Letter 3

Figure 21: Change in logit difference obtained by swapping the attention paid to BOS from the C2 and C3 tokens
for every head in the model.

How does GPT-2 Predict Acronyms? Understanding a Circuit via Mechanistic Interpretability

C1 C2 C3
0

0.1

0.2

0.3

0.4

0.5

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 8.11 when swapping POS/BOS tokens of words C1 <-> C2

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3

0

0.02

0.04

0.06

0.08

0.1

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 9.9 when swapping POS/BOS tokens of words C1 <-> C2

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3
0

0.05

0.1

0.15

0.2

0.25

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 10.10 when swapping POS/BOS tokens of words C1 <-> C2

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3
0

0.05

0.1

0.15

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 11.4 when swapping POS/BOS tokens of words C1 <-> C2

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 22: Effect of swapping the positional embeddings and/or attention to BOS of C1 and C2 on the attention
paid to the capital letter tokens for each letter mover head.

C1 C2 C3
0

0.1

0.2

0.3

0.4

0.5

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 8.11 when swapping POS/BOS tokens of words C1 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3

0

0.05

0.1

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 9.9 when swapping POS/BOS tokens of words C1 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y
Letter=1 Letter=2 Letter=3

C1 C2 C3
0

0.05

0.1

0.15

0.2

0.25

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 10.10 when swapping POS/BOS tokens of words C1 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3
0

0.05

0.1

0.15

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 11.4 when swapping POS/BOS tokens of words C1 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 23: Effect of swapping the positional embeddings and/or attention to BOS of C1 and C3 on the attention
paid to the capital letter tokens for each letter mover head.

C1 C2 C3
0

0.1

0.2

0.3

0.4

0.5

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 8.11 when swapping POS/BOS tokens of words C2 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3

0

0.02

0.04

0.06

0.08

0.1

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 9.9 when swapping POS/BOS tokens of words C2 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3
0

0.05

0.1

0.15

0.2

0.25

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 10.10 when swapping POS/BOS tokens of words C2 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

C1 C2 C3
0

0.05

0.1

0.15

C1 C2 C3 C1 C2 C3

Experiment

Clean Run

Swap POS

Swap BOS

Swap POS+BOS

Attn. probs. for head 11.4 when swapping POS/BOS tokens of words C2 <-> C3

Token Token Token

A
t
t
e
n
t
io

n
 P

r
o
b
a
b
il
it

y

Letter=1 Letter=2 Letter=3

Figure 24: Effect of swapping the positional embeddings and/or attention to BOS of C2 and C3 on the attention
paid to the capital letter tokens for each letter mover head.

