
Towards Achieving Sub-linear Regret and Hard Constraint Violation in

Model-free RL

Arnob Ghosh Xingyu Zhou Ness Shroff
New Jersey Institute of Technology Wayne State University The Ohio State University

Abstract

We study the constrained Markov decision
processes (CMDPs), in which an agent aims
to maximize the expected cumulative reward
subject to a constraint on the expected to-
tal value of a utility function. Existing ap-
proaches have primarily focused on soft con-
straint violation, which allows compensation
across episodes, making it easier to satisfy
the constraints. In contrast, we consider
a stronger hard constraint violation metric,
where only positive constraint violations are
accumulated. Our main result is the devel-
opment of the first model-free, simulator-free
algorithm that achieves a sub-linear regret
and a sub-linear hard constraint violation si-
multaneously, even in large-scale systems. In
particular, we show that Õ(

p
d3H4K) regret

and Õ(
p
d3H4K) hard constraint violation

bounds can be achieved, where K is the num-
ber of episodes, d is the dimension of the fea-
ture mapping, H is the length of the episode.
Our results are achieved via novel adaptations
of the primal-dual LSVI-UCB algorithm, i.e.,
it searches for the dual variable that balances
between regret and constraint violation within
every episode, rather than updating it at the
end of each episode. This turns out to be
crucial for our theoretical guarantees when
dealing with hard constraint violations.

1 Introduction

In many practical applications of online reinforcement
learning (RL) (e.g., safety, resource constraints), there
exist additional constraints on the learned policy in
the sense that it also needs to ensure that the expected

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

total utility (cost, resp.) exceeds a given threshold (is
below a threshold, resp.). Such problems are formulated
as constrained Markov Decision Processes (CMDPs)
(Altman, 1999; Efroni et al., 2020) where the agent
gets a reward (r) and utility (g) depending on the state
and action. In an episodic CMDP, starting from initial
state x1, the goal is to

maximize⇡V ⇡

r,1(x1) subject to V ⇡

g,1(x1) � b,

where V ⇡

r,1(x1) is the cumulative reward value function
(defined in (3)) and V ⇡

g,1(x1) is the cumulative utility
value function respectively when the agent follows the
policy ⇡.

To develop provably efficient model-free algorithms for
CMDPs, most of the prior works (Wei et al., 2021b;
Ghosh et al., 2022; Liu et al., 2021a; Ding et al., 2020,
2021) seek to minimize the following metrics

Regret (K) =
KX

k=1

(V ⇤
r,1(x1)� V ⇡k

r,1 (x1))

Violation (K) =
KX

k=1

(b� V ⇡k

g,1 (x1)), (1)

where V ⇤
r,1(x1) is the optimal reward value function.

Prior works (Ghosh et al., 2022; Liu et al., 2021a) have
shown that Õ(

p
T) regret and zero constraint violation

are achievable with high-probability. An astute reader
may note that in the violation metric defined in (1),
a large violation (V ⇡k

g,1 (x1) < b) at an episode can be
offset by a strictly feasible policy (V ⇡k

g,1 (x1) > b) at
another episode. In particular, consider the sequence
of policies {⇡k}Kk=1, V

⇡k

g,1 (x1) = b+ 1 at odd episode k,
and V ⇡k

g,1 (x1) = b � 1 at even episode. Then
P

k
(b �

V ⇡k

g,1 (x1)) 0, even though such a sequence of policies
violates the constraints in half of the episodes. Thus,
the number of episodes where employed policies are not
close to satisfying the constraint can grow sub-linearly
even when they achieve zero violation by (1).

Clearly, the above is not a desired setting. Thus, in
this paper, we seek to minimize the regret along with

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

the following hard constraint violation:

ViolationH(K) :=
KX

k=1

⇣
b� V ⇡k

g,1 (x1)
⌘

+
. (2)

Subsequently, we denote the violation metric in (1) as
soft violation. The example we provided in the previous
paragraph shows that even zero soft violation may
lead to hard constraint violation that grows linearly
with the number of episodes. However, if the hard
constraint violation grows sub-linearly, then the number
of episodes where the policy violates the constraint by
any fixed non-zero amount which is independent of K
can only grow sub-linearly with the number of episodes.

Efroni et al. (2020) seeks to minimize such hard con-
straints defined in (2). However, they consider the
tabular set-up and proposed algorithms which are lin-
ear programming (LP)-based and model-based. The
regret and violation scale polynomially with the num-
ber of states in the paper. Thus, those results would
not be useful for large-scale RL applications, where
the number of states could be infinite. To address
this curse of dimensionality, modern RL has adopted
function approximation techniques to approximate the
(action-)value function of a policy, which greatly ex-
pands the potential reach of RL, especially via deep neu-
ral networks. Model-based and LP-based algorithms
are computationally difficult to extend to large-scale
systems (Chen et al., 2021). Motivated by this, we aim
to address the following open question:
Can we design a model-free algorithm with sub-linear

regret and sub-linear hard constraint violation for
CMDPs with function approximation?

Contribution: To answer the above question, we
consider CMDPs with linear function approximation,
where the transition dynamics and the reward function
can be represented as a linear function of some known
feature mapping. Our main contributions are as follows.

• We show that our proposed algorithm achieves
Õ(
p
d3H3T) regret and Õ(

p
d3H3T) (hard) con-

straint violation bounds with a high probability,
where d is the dimension of the feature mapping,
H is the length of the episode, and T is the total
number of steps.

• Our bounds are attained without explicitly estimat-
ing the unknown transition model or requiring a
simulator, and they depend on the state space only
through the dimension of the feature mapping. To
the best of knowledge, these sub-linear bounds for
regret and hard constraints are the first such results
for model-free online RL algorithms for CMDPs with
function approximations. Since linear CMDP con-
tains tabular setup, as a by-product, our result also

provides the first sub-linear regret and sub-linear hard
constraint bounds even for the tabular setup under
the model-free setup or using primal-dual approach.

• This is the first result that shows that Õ(
p
T) regret

and hard violation can be achieved using primal-dual-
based approach since all the existing primal-dual ap-
proaches give soft constraint violation bound. Our
main results are achieved by a novel approach of
tuning the dual variable within each episode rather
than updating at the end of the episodes (as done
in existing approaches). In particular, we tune the
dual variable within each episode to achieve a pol-
icy such that the estimated utility value function
would exceed b by a small amount indicating the
perfect trade-off between reward and utility maxi-
mization. This turns out to be the key to achieving
hard-constraint violation bound.

1.1 Related Work

Model-based RL algorithms have been proposed for the
CMDP (Efroni et al., 2020; Singh et al., 2020; Brantley
et al., 2020; Zheng and Ratliff, 2020; Kalagarla et al.,
2020; Liu et al., 2021a; Ding et al., 2021). Apart from
Efroni et al. (2020) and Liu et al. (2021a) (OptPess-
LP), none of the other papers considered the hard
constraint bound in (2). Both the papers assumed
finite state-space. Naturally, the proposed algorithms
there achieved regret bound which scales polynomi-
ally with the cardinality of the state-space. Hence,
such results cannot cope with the large state space
observed in many MDP problems. Moreover, both
Efroni et al. (2020) and Liu et al. (2021a) consider LP-
based approaches. Further, Liu et al. (2021a) assumes
the knowledge of a strictly feasible policy in order to
bound which we do not assume. In Section 3, we de-
tail the limitations of existing LP-based approaches
for unconstrained linear MDP (Neu and Pike-Burke,
2020; Neu and Okolo, 2023; Lakshminarayanan et al.,
2017; Bas-Serrano et al., 2021) and the advantages of
our approaches compared to a potential extension of
those LP-based approaches to linear CMDP. In the ban-
dit setup, Chen et al. (2022); Pacchiano et al. (2021)
consider hard violation for linear bandit setup. Note
that the bandit setting can be viewed as a degenerate
single-state RL, and bandit settings do not have a state
transition kernel associated with them. Hence, the ap-
proaches for the linear bandit setup cannot be extended
to the linear MDP setup. Furthermore, the approaches
in the above paper are not primal-dual based. Recently,
Guo et al. (2022) proposed a primal-dual algorithm
that obtains sublinear regret and hard constraint vi-
olation bound in the bandit setup. However, such an
approach cannot be extended to the episodic RL setup
(Appendix I).

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Ding et al. (2020); Xu et al. (2021) proposed policy-
gradient based model-free approaches. However, they
require ’simulator’ or generative model Azar et al.
(2012). Recently, model-free RL algorithms without
simulators have also been proposed (Wei et al., 2021b;
Ghosh et al., 2022) to solve CMDP. Only Ghosh et al.
(2022) considered the large state-space scenario in the
linear CMDP setting. However, all the aforementioned
works consider soft constraint violation (cf.(1)) rather
the hard constraint violation (cf.(2)). Since the focus
is different our algorithm and analysis are significantly
different. Please see Section 4 for more details. We do
not assume Slater’s condition (i.e., a stirctly feasible
policy exists), unlike all the existing approaches. Thus,
our analysis does not rely on strong duality. Amani
et al. (2021) proposed a RL algorithm for the scenario
where a constraint needs to be satisfied at each step of
an episode. We consider a constraint where the cumu-
lative utility over an episode must exceed a threshold.
Hence, the set of constraints is fundamentally differ-
ent. Further, unlike in Amani et al. (2021), we do not
assume that a safe policy is known.

2 Problem Formulation

We consider an episodic constrained MDP, denoted by
(S,A, , H, r, g) where S is the state space, A is the
action space, H is the fixed length of each episode,

= { h}
H

h=1 is a collection of transition probabil-
ity measures, r = {rh}Hh=1 is a collection of reward
functions, and g = {gh}Hh=1 is a collection of utility
functions. We assume that S is a measurable space
with possibly infinite number of elements, A is a finite
action set. h(·|x, a) is the transition probability ker-
nel which denotes the probability to reach a state when
action a is taken at state x. rh : S ⇥A ! [0, 1], and
gh : S⇥A! [0, 1] and are assumed to be deterministic.
However, one can readily extend to settings when rh
and gh are random.

Each episode k 2 [K] starts with a fixed state x1. It
can be readily generalized to the setting where x1 is
drawn from a distribution. At each step h 2 [H] in
episode k, the agent observes state xk

h
2 S, picks an

action ak
h
2 A, receives a reward rh(xk

h
, ak

h
), and a

utility gh(xk

h
, ak

h
). The MDP evolves to xk

h+1 drawn
from h(·|xk

h
, ak

h
). The episode terminates at step

H + 1. Without loss of generality, we assume that
rH+1 = gH+1 = 0. In this paper, we consider the
challenging scenario where the agent only observes the
bandit information rh(xk

h
, ak

h
) and gh(xk

h
, ak

h
) at the

visited state-action pair (xk

h
, ak

h
). The policy-space

of an agent is �(A|S, H); {{⇡h(·|·)}Hh=1 : ⇡h(·|x) 2
�(A), 8x 2 S, h 2 [H]}. Here �(A) is the probability
simplex over the action space. For any xk

h
2 S , k 2 [K],

and h 2 [H], ⇡h,k(akh|xk

h
) denotes the probability that

action ak
h
2 A is taken at episode k at the state xk

h
.

Let V ⇡

r,h
(x) denote the expected value of the total re-

ward function starting from step h and state x when
the agent selects action using the policy ⇡ = {⇡h}Hh=1

V ⇡

r,h
(x) = ⇡

2

4
HX

i=h

ri(xi, ai)|xh = x

3

5 , (3)

where is taken with respect to the policy ⇡ and the
transition probability kernel . Let Q⇡

r,h
(x, a) denote

the expected value of the total reward starting from step
h and the state-action pair (x, a) and follows the policy
⇡ as Q⇡

r,h
(x, a) = ⇡

hP
H

i=h
ri(xi, ai)|xh = x, ah = a

i
.

Similarly, we define the value function for the utility
V ⇡

g,h
(x), and the action-value function for the utility

Q⇡

g,h
(x, a). We denote V ⇡

j,h
(x), and Q⇡

j,h
(x, a) for j =

r, g. We observe V ⇡

j,h
(x) = h⇡h(·|x), Q⇡

j,h
(x, ·)iA, where

h⇡h(·|x), Q⇡

j,h
(x, ·)iA =

P
a2A ⇡h(a|x)Q

⇡

j,h
(x, a).

Definition 1. For brevity, we denote hV ⇡

j,h+1(x, a) =

x0⇠ h(·|x,a)V
⇡

j,h+1(x
0) for j = r, g.

Using this notation, Bellman’s equation associated with
the policy ⇡ becomes

Q⇡

j,h
(x, a) = (rh + hV

⇡

j,h+1)(x, a). (4)

The objective of the learning agent is to find an optimal
solution to the following problem

maximize⇡V ⇡

r,1(x1), subject to V ⇡

g,1(x1) � b. (5)

Note that even though we have only one constraint, it
can be readily generalized to the scenario with multi-
ple constraints. Further, constraints like V ⇡

g,1(x1) b
can also be accommodated. In order to avoid trivial
solutions, we consider b 2 (0, H]. We denote the opti-
mal policy as ⇡⇤ which solves the above optimization
problem. Since ⇡⇤ is obtained by having complete in-
formation, it is denoted as the best policy in hindsight.
The CMDP setup is standard (Efroni et al., 2020).

Without any constraint information a priori, an agent
cannot know the policies that satisfy the constraint.
Instead, we allow the policy to violate the constraint
and minimize the regret while minimizing the total
constraint violations over the K episodes. We now
define the performance metric that we seek to minimize.

Performance Metric: Let the policy employed by the
agent at episode k be ⇡k = [⇡1,k, . . . ,⇡h,k, . . . ,⇡H,k]T .
The performance metric we consider is the following

Regret(K) =
KX

k=1

V ⇡
⇤

r,1 (x1)� V ⇡k

r,1 (x1),

ViolationH(K) =
KX

k=1

⇣
b� V ⇡k

g,1 (x1)
⌘

+
, (6)

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

where [z]+ = max{z, 0}. There is a violation of
b � V ⇡k

g,1 (x1) at episode k if V ⇡k

g,1 (x1) is less than b.
On the other hand, if V ⇡k

g,1 (x1) � b, then there is no
violation. Thus, we define the total violation as the
cumulative sum of all constraint violations over all
the episodes. Note the difference with the constraint
violation metric (cf. (1)) considered in the existing lit-
erature (Ghosh et al., 2022; Ding et al., 2020, 2021; Wei
et al., 2021a). In (1), if V ⇡k

g,1 (x1) � b it can negate the
violation V ⇡k

g,1 (x1) < b in metric (1). As we have shown
in the introduction, a sub-linear (even zero) violation
defined in (1) does not guarantee that policies that
violate the constraint by a fixed amount (independent
of K) are selected for a sub-linear number of episodes.
On the other hand, if the violation metric defined in
(6) grows only sub-linearly with K, it implies that the
number of episodes where such policies are selected
scales at most sub-linearly with K.

Linear Function Approximation: To handle a pos-
sible large number of states, we consider the following
linear MDP.

Assumption 1. The CMDP is a linear MDP with
feature map � : S ⇥ A ! Rd, if for any h, there ex-
ists d unknown signed measures µh = {µ1

h
, . . . , µd

h
}

over S such that for any (x, a, x0) 2 S ⇥ A ⇥ S,
h(x0

|x, a) = h�(x, a), µh(x0)i and there exists vec-
tors ✓r,h, ✓g,h 2 Rd such that for any (x, a) 2 S ⇥ A,
rh(x, a) = h�(x, a), ✓r,hi gh(x, a) = h�(x, a), ✓g,hi.

This is similar to the setting considered in Ghosh et al.
(2022) and is based on the definition of linear MDP (Jin
et al., 2020; Yang and Wang, 2019). By the above defi-
nition, the transition model, the reward, and the utility
functions are linear in terms of the feature map �. We
remark that despite being linear, h(·|x, a) can still
have infinite degrees of freedom since µh(·) is unknown.
Note that tabular MDP is a subset of linear MDP
(Jin et al., 2020). A recent study (Zhang et al., 2022)
showed that policies for linear MDPs can achieve better
results than state-of-the-art approaches for benchmark
databases. Linear MDPs are also viewed as a critical
step toward studying large-scale RL problems, par-
ticularly those with infinite state space. Further, as
demonstrated in numerous other settings, analyzing
linear MDPs can provide insights that can be used to
generalize to other settings. Thus, unconstrained linear
MDP is extensively studied (Jin et al., 2020, 2021; He
et al., 2021b,a; Wang et al., 2020; Hu et al., 2022).

Note that Ding et al. (2021); Zhou et al. (2021) studied
another related concept known as linear kernel MDP.
In the linear kernel MDP, the transition probability
is given by h(x0

|x, a) = h (x0, x, a), ✓hi. In general,
linear MDP and linear kernel MDPs are two different
classes of MDP (Zhou et al., 2021).

Similar to Proposition 1 in Jin et al. (2020), we can
show that for a linear MDP and for any policy ⇡ there
exists {w⇡

j,h
}
H

h=1 such that Q⇡

j,h
(x, a) = hw⇡

j,h
,�(x, a)i

for any (x, a, h) 2 S ⇥A⇥ [H]. We, thus, focus on the
linear action-value function.

Dual Variable: We also use dual variable to consider
a composite function.
Definition 2. V ⇡,Y

h
(·) = V ⇡

h,r
(·) + Y V ⇡

h,g
(·), and

Q⇡,Y

h
(x, a) = Q⇡

r,h
(x, a) + Y Q⇡

g,h
(x, a), where Y is the

dual variable.

3 Our Approach

We now describe our proposed Algorithm 1.

Algorithm 1 Model Free Algorithm with Linear Func-
tion Approximation for hard-constraint violation

1: Initialization: ↵ = (log(|A|)
p
K)/(4H),

⌘ = 1/(dH�1K1.5H log(|A|)H), � =
C1dH

p
log(4 log|A|dT/p), w1

r,h
= 0, w1

g,h
= 0.

2: for episodes k = 1, . . . ,K do
3: Initialize: Yk = 0, Receive the initial state x1.
4: while Yk

p
K do

5: for step h = H,H � 1, . . . , 1 do
6: ⇤k

h
=
P

k�1
⌧=1 �(x

⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)T + �I

7: wk

r,h
= (⇤k

h
)�1[

P
k�1
⌧=1 �(x

⌧

h
, a⌧

h
)[rh(x⌧

h
, a⌧

h
) +

V k

r,h+1(x
⌧

h+1)]]

8: wk

g,h
= (⇤k

h
)�1[

P
k�1
⌧=1 �(x

⌧

h
, a⌧

h
)[gh(x⌧

h
, a⌧

h
) +

V k

g,h+1(x
⌧

h+1)]]

9: Qk

r,h
(·, ·) = min{hwk

r,h
,�(·, ·)i +

�(�(·, ·)T (⇤k

h
)�1�(·, ·))1/2, H}

10: Qk

g,h
(·, ·) = min{hwk

g,h
,�(·, ·)i +

�(�(·, ·)T (⇤k

h
)�1�(·, ·))1/2, H}

11: ⇡h,k(a|·) = Soft-Maxa

↵
(Qk

r,h
+YkQk

g,h
) (see

(8)),
12: V k

r,h
(·) =

P
a
⇡h,k(a|·)Qk

r,h
(·, a), V k

g,h
(·) =P

a
⇡h,k(a|·)Qk

g,h
(·, a)

13: if V k

g,h
� b then

14: break //Found the ideal dual variable
15: Yk = Yk + ⌘ //Increase the dual variable
16: if Yk >

p
K then

17: Set Yk =
p
K,

18: for step h = 1, . . . , H do
19: Receive xk

h
; compute Qk

j,h
(xk

h
, a), ⇡(a|xk

h
) for

all a using wk

j,h
and Yk.

20: Take action ak
h
⇠ ⇡h,k(·|xk

h
) and observe xk

h+1.

Note that at each episode k, Algorithm 1 can be divided
into two steps: i) the dual variable finding step (Lines
4–17), and ii) the policy execution step (Lines 18–20).
The dual variable finding step can be divided into two
main steps: i) the policy finding step (Lines 5– 12),

Arnob Ghosh, Xingyu Zhou, Ness Shroff

and ii) the constraint checking step for a given value of
Yk (Lines 13–15). We now describe the steps in detail.

In order to obtain V k

g,1(x1), we need to first find the
policy and Q-functions. For a given dual variable Yk,
lines 6-12 consist of updating the parameters wk

r,h
, wk

g,h

and ⇤k

h
which are used to update the Qk

j,h
and V k

j,h
at

episode k. ⇤k

h
is the Gram-matrix for the regularized

least square problem (see (7), later). Note that the
lines 9-12 (i.e., Q, V , and policy) are not evaluated
for each state, rather, they are evaluated only for the
encountered states till episode k � 1. Hence, we do
not need to iterate over a potentially infinite number
of states. For the first episode, since k � 1 = 0 and
⌧ = 1, we have wk

j,h
= 0, 8j and ⇤k

h
= �I. We note

that Qk

j,H+1(·, ·) = 0 for j = r, g.

Q function and Value function Estimation: We
need to estimate the value-function and Q-function
with respect to the policy ⇡k for a given value of
Yk. However, there are challenges. We do not know

h in Bellman’s equation (4), rather hV
⇡k

j,h+1 should
be replaced by the empirical samples. Further, since
Q⇡

j,h
(x, a) is linear in �(x, a) , we parameterize Q⇡

j,h
(·, ·)

by a linear form hwk

j,h
,�(·, ·)i. The intuition is to ob-

tain wk

j,h
from Bellman’s equation (cf.(4)) using the

regularized least-square regression. We obtain wk

j,h
for

j = r, g according to the following equation

wk

j,h
 arg min

w2Rd

k�1X

⌧=1

[jh(x
⌧

h
, a⌧

h
) + V k

j,h+1(x
⌧

h+1)�

wT�(x⌧

h
, a⌧

h
)]2 + �||w||22 (7)

Then, an additional bonus term
�(�(·, ·)T (⇤k

h
)�1�(·, ·))1/2 is added as in Jin et al.

(2020), where � is a constant which we will characterize
in the next section. Such an additional term is used
for the upper confidence bound in LSVI-UCB (Jin
et al., 2020). The same bonus term is used for both
Qk

r,h
and Qk

g,h
.

Policy: The value functions are updated based on
the Q function and the policy (line 13). The policy is
based on a soft-max policy (line 12) unlike the greedy
one in the unconstrained case Jin et al. (2020). Soft-
max policy Soft-Max↵(X) = {Soft-Maxi

↵
(X)}|A|

i=1
for any vector X 2 R|A| is a |A|-dimensional vector
with parameter ↵ where the i-th component

Soft-Maxi

↵
(X) =

exp(↵Xi)
P|A|

n=1 exp(↵Xn)
. (8)

At step h, ⇡h,k(a|x) is computed based on the soft-
max policy with the composite Q-function vector
{Qk

r,h
(x, a) + YkQk

g,h
(x, a)}a2A. When ↵ = 1, this

becomes equal to the greedy policy. As shown in Ghosh
et al. (2022), the greedy policy is not Lipschitz. Hence,

it does not provide a uniform concentration bound
for each individual value function, an essential step
in proving the regret and violation bound. Note that
for different values of Yk, the policy is different, hence
V k

j,h
would also be different. We also use the Lipschitz

property of soft-max to obtain Yk that satisfies certain
characteristics which we discuss in the following.

Finding Yk: Once we compute Qk

g,1 and compute
policy according to soft-max, we obtain V k

g,1(x1). If
V k

g,1(x1) < b, we increase the dual variable by ⌘ and
repeat the steps (lines 5-12). We continue this process
till Yk reaches

p
K or we obtain V k

g,1(x1) � b. Once
we are out of the inner loop, we use Yk, and wk

j,h
to

compute the policy in the execution phase.

In summary, at every episode, we identify Yk such that
one of the following three cases holds:

• Yk = 0, V k

g,1(x1) � b, thus, one can focus on maxi-
mizing the reward only.

•
p
K � Yk > 0, and V k

g,1(x1) � b. We show that in
this case V k

g,1(x1) b+O(K�1) by proper choice of
step-size ⌘ and ↵ (temp. co-efficient) of the soft-max
policy ensuring the right balance. Intuitively, if we
select a higher Yk such that V k

g,1(x1) exceeds b by
a large amount, it would put a smaller weight on
reward maximization. Hence, the regret increase.

• Yk =
p
K, and V k

g,1(x1) < b which means that we
reach the upper bound of the dual variable. We show
that an upper bound of

p
K is the enough to obtain

Õ(
p
K) regret and Õ(

p
K) hard constraint violation.

Execution: The last part includes the execution of
the policy for episode k (lines 22-24). The policy is
again based on the soft-max policy with wk

j,h
and Yk

obtained in the dual variable finding step.

Difference with other approaches: Ghosh et al.
(2022); Ding et al. (2021, 2020); Liu et al. (2021a)
(OptPess-PrimalDual) also proposed primal-dual type
algorithm. However, their focus was on minimizing
the soft violation (cf.(1)) rather than the hard viola-
tion. The major difference is that at every episode,
we find Yk such that it has the property characterized
above. Since in the soft-constraint violation, one can
negate violation at one episode by selecting a strictly
feasible policy at the other episode, hence searching
for such a dual-variable at every episode was not re-
quired there. Rather, updating the dual variable at
the end of the episode was enough since if the current
policy is infeasible one can increase the dual variable
to choose a feasible policy in the subsequent episode to
negate the violation. However, because of stricter re-
quirements, we need to find the perfect dual variable at

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

every episode. Our analysis is also different compared
to those (see Section 4.2).

Space complexities: We remark that Algorithm 1
only needs to store rh(xk

h
, ak

h
), gh(xk

h
, ak

h
),⇤k

h
, and

{�(xk

h
, a)}a2A for all (h, k) 2 [H]⇥ [K], hence, it takes

O(d2H + dAT) space which is the same as the uncon-
strained setup Jin et al. (2020). For the tabular setup,
using the approach presented in Appendix H, the space
complexity is at most O(|S|2|A|H) which is the same
as the model-based approach in Efroni et al. (2020).
We do not need to invert (⇤k

h
)�1 for the tabular case.

Comparison with LP-based approach: Efroni et al.
(2020) and Liu et al. (2021a) proposed LP-based ap-
proach to obtain the state-action occupancy measure
for tabular setup in order to bound the hard constraint
violation. From the state-action occupancy measure,
they obtain the policy. However, solving LP for large
state-space is challenging as the decision variables scale
with the state-space. Neu and Okolo (2023); Lakshmi-
narayanan et al. (2017); Neu and Pike-Burke (2020);
Bas-Serrano et al. (2021) proposed an LP-based ap-
proach for linear MDP for the unconstrained problem.
One may ask why not extending that approach to the
constrained case. However, apart from Neu and Okolo
(2023), the above formulations still rely on the finite
state space assumption and the decision variables still
consist of state-action occupancy measure which can
be large for large state space. Neu and Okolo (2023)
reduces the number of decision variables by assuming
that a core set of state-action pairs is known which
essentially means that a low dimensional state-action
occupancy measure is enough to represent the rewards
for all state-action pairs. However, finding the core set
is difficult in general Neu and Okolo (2023). Also, all
the above still rely on a model-based approach and need
to estimate the transition probability. Neu and Okolo
(2023) also proposed a model-free algorithm, however,
that relies on the simulator. In summary, all the above
approaches either rely on finite state-space assumptions
or rely on a simulator and a core-set assumption to
obtain a policy.

Instead, we propose a primal-dual-based algorithm and
thus, we do not rely on any LP solver. Our algorithm
is also model-free and does not need any simulator.
Further, our algorithm works for infinite state space
and we do not rely on core-set assumption as in Neu
and Okolo (2023). Moreover, we would like to point out
that since our approach is model-free, our algorithmic
approach can be certainly extended to a larger class of
RL problems. As described in our approach, we need to
estimate the value function (we can use neural-network
to estimate the value function) and then tune the dual
variable till we achieve V k

g,1(x1) � b or Yk reaches
p
K.

Assumption of strict feasibility: All the primal-
dual-based approaches which focus on minimizing the
soft-constraint violation relies on strict feasibility as-
sumption (aka Slater’s condition). In particular, all the
primal-dual based approaches (model-free or model-
based) rely on strong duality (Paternain et al., 2019)
in order to achieve soft-constraint violation. This is
the first result that shows that sub-linear regret and
constraint violation (even soft) is achievable without
assuming Slater’s condition for a primal-dual-based ap-
proach. Naturally, our analysis is significantly different
(Section 4.2). If we assume the existence of a strictly
feasible policy, we can set a lower upper bound for the
dual-variable (Appendix J).

Value of ⌘: We obtain theoretical results for ⌘ =
O(1/(K1.5HdH�1)). However, in practice, we observe
that ⌘ = O(1/(

p
KH)) works well, hence, the algo-

rithm can be faster in practice. The characterization
of a more computationally efficient algorithm with the-
oretical bound is left for the future work.

4 Analysis

We now state the main result. We prove that Algo-
rithm 1 achieves the regret and hard constraint viola-
tion which are sublinear in T = KH where T is the
total number of steps.

4.1 Main Results

Theorem 1. Fix any p 2 (0, 1). If we set � = 1, � =
C1dH

p
◆ in Algorithm 1 where ◆ = log(log(|A|)4dT/p)

for some absolute constant C1. With probability 1� 2p,
we have

Regret(K) C
p

d3H3T ◆2,

ViolationH(K) C 0
p

d3H3T ◆2

for some absolute constants C, and C 0.

To the best of our knowledge, this is the first result that
achieves Õ(

p
T) regret and hard constraint violation

bound for linear CMDP. Since linear CMDP contains
a tabular setup, as a by-product, our result also pro-
vides the hard-constraint violation bound for tabular
setup using the model-free algorithm. As we mentioned
earlier, existing primal-dual type algorithms only con-
sider soft-constraint violation, rather, we show that it
is possible to achieve Õ(

p
T) regret and hard constraint

violation bound using primal-dual type approach. Our
bound with respect to T matches the bounds attained
in the tabular model-based and LP-based approach in
Efroni et al. (2020) and Liu et al. (2021a) (OptPess-
LP).∗

∗OptPess-LP achieves zero violation, however, they as-
sume that a safe policy is known.

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Note that our bounds are (nearly) optimal. It is shown
that ⌦(d

p
H2T) regret is unavoidable for the uncon-

strained setup. We can easily construct an example
where only one policy is feasible. For example, consider
the setup where g = r, and b = V ⇤

r,1(x1), (in this case,
we are forcing an unconstrained problem to be con-
strained) then only the optimal policy is feasible. Thus,
⌦(d
p
H2T) is also a lower bound for hard constraint

violation as well when there is no strictly feasible policy.

Note that our regret bound matches the same order
(with respect to T) as in the unconstrained case (Jin
et al., 2020) and in the linear CMDP setup with soft-
constraint violation (Ghosh et al., 2022). Ghosh et al.
(2022) achieves zero soft-constraint violation when
Slater’s condition holds. Whether it is possible to
reduce our violation bound further for the setup when
the Slater’s condition holds remains open.

Tabular Case: If we consider the tabular case with
the following representation �(x, a) = ex,a where ex,a is
a |S||A| dimensional vector and ex,a = 1 when (s, a) =
(x, a) and 0 otherwise, then plugging in d = |S||A| we
obtain the regret and hard constraint violation bound
as Õ(

p
|S|3|A|3H3T). However, since we can trivially

obtain ✏-covering number for a value function when
the state-space is bounded, we can obtain a tighter
result by modifying the bonus term �. In particular,
in Theorem 3 (Appendix H) we obtain the regret and
hard constraint violation bounds as Õ(

p
|S|2|A|H3T).

This matches the result of Efroni et al. (2020). This is
the first work which shows that it is possible to achieve
Õ(
p
|S|2|A|H3T) regret and hard constraint violation

bound using primal-dual based approach matching the
result from model-based LP-based approach (Efroni
et al., 2020).

4.2 Proof Outline

We start by highlighting the main differences with the
existing approaches.

Novelty in Analysis techniques: Existing primal-
dual approaches that focus on bounding the soft-
constraint violation (Ghosh et al., 2022; Ding et al.,
2021; Efroni et al., 2020) seek to bound for any Y � 0

KX

k=1

(V ⇤
r,1(x1)� V ⇡k

r,1 (x1)) + Y (b� V ⇡k

g,1 (x1)) (9)

In order to prove regret, they then bound (Y �Yk)(b�
V k

g,1(x1)) O(
p
K) using the fact that dual variable

is updated based on the gradient descent step in the
dual direction. Since our dual update is different, the
regret analysis is significantly different. Further, we
can not rely on strong duality result to bound the hard
constraint violation unlike obtaining the soft constraint
violation bound.

Rather, to prove the regret and the hard constraint vio-
lation bound, we first show that if the dual variable dif-
fers by ✏ amount, the estimated value function for utility
(V k

g,1) can also differ by at most O(K1.5HdH✏) amount.
Thus, by incrementing Yk by ✏ = O(K�1.5H+1d�H),
the maximum increment of V k

g,1 for two different dual-
variables would be bounded by O(K�1). Hence, one
can find Yk such that b V k

g,1(x1) b+O(K�1) (if it
is achievable within upper bound

p
K). This turns out

to be essential to bound the regret and hard constraint
violation. Such a guarantee is not required to obtain
an upper bound for the soft-constraint violation as
considered in the other papers. To bound the total soft
constraint violation, one only needs to update the dual
variable at the end of the episode k.

To prove that if the dual variable differs by ✏ amount,
the estimated value function for utility (V k

g,1) can also
differ by at most O(K1.5HdH✏) amount; we use the fact
that our policy is a soft-max to show that if the dual
variable differs by an ✏ amount, then the value func-
tion at the h-th step only differs by at most O(✏

p
KH)

(Lemma 15). However, as the policy for the h-th step
changes, the parameter for the h � 1-th step would
also change to fit Bellman’s equation. Here, we use the
linearity property to show that the parameter value
wk

j,h�1 (obtained via solving the linear regression prob-
lem) also differs by O(dK✏) (Lemma 16). Using the
above, we show that the value function at the h� 1-th
step would differ by at most O(d✏K

p
KH) (Lemma 14).

We obtain the final result by induction. Please see Ap-
pendix C for details. We now provide the main ideas
behind bounding Regret and Hard constraint violation.

Regret Bound: We decompose the regret in the
following manner:

Regret(K) =
KX

k=1

(V ⇤
r,1(x1)� V k

r,1(x1))

| {z }
T1

+

KX

k=1

(V k

r,1(x1)� V ⇡k

r,1 (x1))

| {z }
T2

(10)

In order to bound both T1 and T2 we need to obtain
uniform concentration bound for each individual value
function. In particular, we need to show that the log ✏-
covering number of (estimated) reward and utility value
function must scale as log(K). As discussed in Ghosh
et al. (2022), the greedy policy with respect to the com-
posite state-action value function fails to achieve such
bound since the greedy policy is not Lipschitz. Instead,
the soft-max policy based on the composite state-action
policy function achieves the above (Lemma 10).

We, first, discuss how to bound T1. We observe that

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

T1

KX

k=1

(V ⇤
r,1(x1) + YkV

⇤
g,1(x1)� V k

r,1(x1)� YkV
k

g,1(x1))

| {z }
T3

+
KX

k=1

Yk(V
k

g,1(x1)� b)

| {z }
T4

(11)

where we have used the fact that V ⇤
g,1(x1) � b and

Yk � 0. We now bound T3 and T4.

Readers should note that T3 is similar to the optimism
term with respect to the composite value function.
However, since we use soft-max instead of the greedy
policy, we cannot bound the above by zero. Rather,
using the property of soft-max, we obtain

Lemma 1. For any k, with probability 1�p, (V ⇤
r,1(x1)�

V k

r,1(x1) + YkV ⇤
g,1(x1)� YkV k

g,1(x1)) log(|A|)H/↵.

When ↵ = log(|A|)
p
K/(4H), the above can be

bounded by O(H2/K1/2). Also, note that it shows
that a large value of ↵ would degrade the regret. Now,
we provide an upper bound for T4.

We, first, define the set of episodes where Yk =
p
K,

and V k

g,1(x1) < b, Ib = {k : Yk =
p
K,V k

g,1(x1) < b}.
Thus, for these episodes V k

g,1(x1) � b 0. Hence, for
these episodes, T4 is trivially upper bounded by 0.
Hence, we now need to obtain an upper bound on T4

on the set of episodes which are not in Ib, i.e., when
they belong to the set I

C

b
.

As we have discussed, by the choice of ⌘, when we
obtain Yk > 0 such that V k

g,1(x1) � b, we also obtain
V k

g,1(x1)� b O(K�1). Formally,

Lemma 2. For any k 2 I
C

b
, Yk(V k

g,1(x1) � b)

O(HK�1/2).

Intuitively, we strike the balance between reward max-
imization and utility maximization for V k

r,1(x1) and
V k

g,1(x1) (as even if V k

g,1(x1) > b, it would only ex-
ceed by O(HK�1)). Hence, we can upper bound T4

by O(HK�1/2). Thus, summing over the expressions
in Lemmas 1 and 2 we obtain with probability 1� p,
T1 O(HK1/2).

We obtain the bound of T2 using Azuma-Hoeffding
inequality and the uniform concentration bound,

Lemma 3. With probability 1�p, T2 O(
p
d3◆2KH4)

Hard constraint Violation Bound: We decompose

the violation as the following:

KX

k=1

(b� V ⇡k

g,1 (x1))+
KX

k=1

(b� V k

g,1(x1))+

| {z }
T5

+

KX

k=1

(V k

g,1(x1)� V ⇡k

g,1 (x1))+

| {z }
T6

(12)

We, further, decompose T5 as the following

T5

X

k2Ib

(b� V k

g,1(x1))+ +
X

k2IC

b

(b� V k

g,1(x1))+ (13)

By the definition of Ib, for episodes in Ib, Yk �
p
K,

and b > V k

g,1(x1), yet since ↵ = log(|A|)K1/2/(4H), we
obtain from Lemma 1

X

k2Ib

(b� V k

g,1(x1))+ O(H2
p

K) (14)

In order to bound the second term in the right-hand
side of (13) note that V k

g,1(x1) � b for k 2 I
C

b
. Hence,

(b� V k

g,1(x1))+ = 0. Thus, we have

Lemma 4. With probability 1� p, T5 O(H2
p
K).

Finally, we bound T6. Since we add bonus term to
obtain Qk

g,h
, thus,

Lemma 5. With probability 1�p, V k

g,1(x1) � V ⇡k

g,1 (x1).

Thus, we can rewrite
P

k
(V k

g,1(x1) � V ⇡k

g,1 (x1))+ asP
k
(V k

g,1(x1)�V ⇡k

g,1 (x1)). Thus, from Azuma-Hoeffding
inequality and uniform concentration bound, we obtain
Lemma 6. With probability 1 � p, T6

O(
p
◆2d3H4K).

From Lemma 4 and 6 we obtain the bound on violation
in Theorem 1.

5 Experiments

We evaluate Algorithm 1 on a simulated model (same
as in Ghosh et al. (2022), details in Appendix K.1) to
validate our theoretical results. We run Algorithm 1
for 3⇥ 105 episodes (K). We use ⌘ = 1/

p
KH. Thus,

we are using a larger ⌘ proposed in Algorithm 1 as
it decreases the time complexity. We observe that
such ⌘ is enough to achieve sub-linear regret and hard
constraint violation. We use the feature-space repre-
sentation similar to tabular setup (Appendix H). We
compare our algorithm with two state-of-the-art al-
gorithm: i) the algorithm proposed in Ghosh et al.
(2022), and ii) OptPess-PrimalDual proposed in Liu

Arnob Ghosh, Xingyu Zhou, Ness Shroff

0 1 2 3
K 105

0

0.5

1

1.5

2

2.5

H
ar

d
Vi

ol
at

io
n

105

Current approach
Ghosh et al.'22
Liu et al.'21

0 1 2 3
K 105

6

7

8

9

10

Av
g.

 R
ew

ar
d

Our approach
Ghosh et al.'22
Liu et al.'21

Figure 1: Comparison of our approach with Ghosh et al. (2022) and OptPess-PrimalDual (Liu et al., 2021a). Each plot is
an average of 10 trials. The length of each episode (H) is 10.

et al. (2021a). Our empirical results (Figure 1) suggest
that our algorithm significantly reduces the hard con-
straint violations as compared to both the algorithms.
As predicted by our theory, the hard constraint viola-
tion scales much smaller than O(

p
K) (Figure 1). In

fact, our algorithm selects feasible policy after 1.5⇥105

episodes. However, the constraint violations grow for
the other two algorithms which indicate that those
algorithms are unable to find feasible policy. Obviously,
infeasible policies can give higher rewards, thus, the av-
erage reward achieved by the other two algorithms are
slightly higher compared to our approach. Nevertheless,
our algorithm indeed achieves optimal reward. Thus,
the empirical result shows the efficacy of our approach
in achieving sub-linear hard constraint violation and
regret. In Appendix K, we observe similar traits in
our empirical results on the OpenAIGym control suite
(Brockman et al., 2016) and other CMDP setups.

6 Conclusion and Future Work
We propose a model-free RL-based algorithm for lin-
ear CMDP which achieved Õ(

p
d3H3T) regret and

Õ(
p
d3H3T) hard constraint violation bound. To the

best of our knowledge, this is the first result which
shows Õ(

p
T) regret and Õ(

p
T) constraint violation

bound using primal-dual model-free setup. We achieve
our result by finding the dual variable that balances be-
tween regret and constraint violation within an episode,
rather than only updating it at the end of each episode.

Whether we can tighten the dependence on d and H
remains an important future research direction. Ex-
tending the work to the setup where the feature space
needs to be learnt or non-linear MDP setup is also im-
portant. Recent works (Modi et al., 2021; Zhang et al.,
2022; Agarwal et al., 2020) on feature-space learning
for unconstrained MDPs may provide some insights.

Acknowledgment

A part of this work was done when AG was at the Ohio
State University. This work has been supported in part
by NJIT Start up fund indexed number 172884, NSF
grants: CNS-2153220, CNS-2312835, CNS-2312836,
CNS- 2223452, CNS-2225561, CNS-2112471, CNS-
2106933, a grant from the Army Research Office:

W911NF-21-1-0244, and was sponsored by the Army
Research Laboratory under Cooperative Agreement
Number W911NF-23-2-0225. The views and conclu-
sions contained in this document are those of the au-
thors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation herein.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011).

Improved algorithms for linear stochastic bandits.
Advances in neural information processing systems,
24:2312–2320.

Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun,
W. (2020). Flambe: Structural complexity and rep-
resentation learning of low rank mdps. Advances
in neural information processing systems, 33:20095–
20107.

Altman, E. (1999). Constrained Markov decision pro-
cesses, volume 7. CRC press.

Amani, S., Thrampoulidis, C., and Yang, L. F. (2021).
Safe reinforcement learning with linear function ap-
proximation. arXiv preprint arXiv:2106.06239.

Azar, M. G., Munos, R., and Kappen, B. (2012). On
the sample complexity of reinforcement learning with
a generative model. arXiv preprint arXiv:1206.6461.

Bas-Serrano, J., Curi, S., Krause, A., and Neu, G.
(2021). Logistic q-learning. In International Confer-
ence on Artificial Intelligence and Statistics, pages
3610–3618. PMLR.

Brantley, K., Dudik, M., Lykouris, T., Miryoosefi,
S., Simchowitz, M., Slivkins, A., and Sun, W.
(2020). Constrained episodic reinforcement learn-
ing in concave-convex and knapsack settings. arXiv
preprint arXiv:2006.05051.

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:1606.01540.

Chen, T., Gangrade, A., and Saligrama, V. (2022). A

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

doubly optimistic strategy for safe linear bandits.
arXiv preprint arXiv:2209.13694.

Chen, Y., Dong, J., and Wang, Z. (2021). A primal-dual
approach to constrained markov decision processes.
arXiv preprint arXiv:2101.10895.

Ding, D., Wei, X., Yang, Z., Wang, Z., and Jovanovic,
M. (2021). Provably efficient safe exploration via
primal-dual policy optimization. In International
Conference on Artificial Intelligence and Statistics,
pages 3304–3312. PMLR.

Ding, D., Zhang, K., Basar, T., and Jovanovic,
M. R. (2020). Natural policy gradient primal-dual
method for constrained markov decision processes.
In NeurIPS.

Efroni, Y., Mannor, S., and Pirotta, M. (2020).
Exploration-exploitation in constrained mdps. arXiv
preprint arXiv:2003.02189.

Epasto, A., Mahdian, M., Mirrokni, V., and Zam-
petakis, M. (2020). Optimal approximation–
smoothness tradeoffs for soft-max functions. arXiv
preprint arXiv:2010.11450.

Ghosh, A., Zhou, X., and Shroff, N. (2022). Provably
efficient model-free constrained rl with linear function
approximation. arXiv preprint arXiv:2206.11889.

Guo, H., Zhu, Q., and Liu, X. (2022). Recti-
fied pessimistic-optimistic learning for stochastic
continuum-armed bandit with constraints. arXiv
preprint arXiv:2211.14720.

He, J., Zhou, D., and Gu, Q. (2021a). Logarithmic
regret for reinforcement learning with linear func-
tion approximation. In International Conference on
Machine Learning, pages 4171–4180. PMLR.

He, J., Zhou, D., and Gu, Q. (2021b). Uniform-pac
bounds for reinforcement learning with linear func-
tion approximation. Advances in Neural Information
Processing Systems, 34:14188–14199.

Hu, P., Chen, Y., and Huang, L. (2022). Nearly mini-
max optimal reinforcement learning with linear func-
tion approximation. In International Conference on
Machine Learning, pages 8971–9019. PMLR.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020).
Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning
Theory, pages 2137–2143. PMLR.

Jin, Y., Yang, Z., and Wang, Z. (2021). Is pessimism
provably efficient for offline rl? In International
Conference on Machine Learning, pages 5084–5096.
PMLR.

Kalagarla, K. C., Jain, R., and Nuzzo, P. (2020).
A sample-efficient algorithm for episodic finite-
horizon mdp with constraints. arXiv preprint
arXiv:2009.11348.

Lakshminarayanan, C., Bhatnagar, S., and Szepesvári,
C. (2017). A linearly relaxed approximate linear
program for markov decision processes. IEEE Trans-
actions on Automatic control, 63(4):1185–1191.

Liu, T., Zhou, R., Kalathil, D., Kumar, P., and Tian,
C. (2021a). Learning policies with zero or bounded
constraint violation for constrained mdps. arXiv
preprint arXiv:2106.02684.

Liu, X., Li, B., Shi, P., and Ying, L. (2021b). An effi-
cient pessimistic-optimistic algorithm for stochastic
linear bandits with general constraints. Advances in
Neural Information Processing Systems, 34.

Modi, A., Chen, J., Krishnamurthy, A., Jiang, N.,
and Agarwal, A. (2021). Model-free representation
learning and exploration in low-rank mdps. arXiv
preprint arXiv:2102.07035.

Moskovitz, T., O’Donoghue, B., Veeriah, V., Flenner-
hag, S., Singh, S., and Zahavy, T. (2023). Reload: Re-
inforcement learning with optimistic ascent-descent
for last-iterate convergence in constrained mdps.
arXiv preprint arXiv:2302.01275.

Neu, G. and Okolo, N. (2023). Efficient global planning
in large mdps via stochastic primal-dual optimization.
In International Conference on Algorithmic Learning
Theory, pages 1101–1123. PMLR.

Neu, G. and Pike-Burke, C. (2020). A unifying view
of optimism in episodic reinforcement learning. Ad-
vances in Neural Information Processing Systems,
33:1392–1403.

Pacchiano, A., Ghavamzadeh, M., Bartlett, P., and
Jiang, H. (2021). Stochastic bandits with linear
constraints. In International Conference on Artificial
Intelligence and Statistics, pages 2827–2835. PMLR.

Pan, L., Cai, Q., Meng, Q., Chen, W., Huang, L.,
and Liu, T.-Y. (2019). Reinforcement learning with
dynamic boltzmann softmax updates. arXiv preprint
arXiv:1903.05926.

Paternain, S., Calvo-Fullana, M., Chamon, L. F., and
Ribeiro, A. (2019). Safe policies for reinforcement
learning via primal-dual methods. arXiv preprint
arXiv:1911.09101.

Singh, R., Gupta, A., and Shroff, N. B. (2020). Learning
in markov decision processes under constraints. arXiv
preprint arXiv:2002.12435.

Vershynin, R. (2010). Introduction to the non-
asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027.

Wang, R., Du, S. S., Yang, L., and Salakhutdinov, R. R.
(2020). On reward-free reinforcement learning with
linear function approximation. Advances in neural
information processing systems, 33:17816–17826.

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Wei, C.-Y., Jahromi, M. J., Luo, H., and Jain, R.
(2021a). Learning infinite-horizon average-reward
mdps with linear function approximation. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 3007–3015. PMLR.

Wei, H., Liu, X., and Ying, L. (2021b). A provably-
efficient model-free algorithm for constrained markov
decision processes. arXiv preprint arXiv:2106.01577.

Xu, T., Liang, Y., and Lan, G. (2021). Crpo: A
new approach for safe reinforcement learning with
convergence guarantee. In International Conference
on Machine Learning, pages 11480–11491. PMLR.

Yang, L. and Wang, M. (2019). Sample-optimal para-
metric q-learning using linearly additive features.
In International Conference on Machine Learning,
pages 6995–7004. PMLR.

Zhang, X., Song, Y., Uehara, M., Wang, M., Agarwal,
A., and Sun, W. (2022). Efficient reinforcement
learning in block mdps: A model-free representation
learning approach. In International Conference on
Machine Learning, pages 26517–26547. PMLR.

Zheng, L. and Ratliff, L. (2020). Constrained upper
confidence reinforcement learning. In Learning for
Dynamics and Control, pages 620–629. PMLR.

Zhou, D., He, J., and Gu, Q. (2021). Provably ef-
ficient reinforcement learning for discounted mdps
with feature mapping. In International Conference
on Machine Learning, pages 12793–12802. PMLR.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]
Yes, (please see Section 3).

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]
Yes, (please see Section 3).

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]
Yes. We have described all the hyper-
parameters required to rerun the simulations.
The source code will be published for the
camera-ready version.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]
Yes, (please see Section 4).

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]
Yes, (please see Appendix).

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]
Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable]
Yes, (in Section 5 and Appendix K).

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]
Not applicable.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]
Not applicable.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]
Not applicable.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes/No/Not Applicable]
Not applicable.

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable]
Not applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]
Not applicable.

(d) Information about consent from data
providers/curators. [Yes/No/Not Applicable]
Not applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]
Not applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Applica-
ble]

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Not applicable.
(b) Descriptions of potential participant risks,

with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable]
Not applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applicable]
Not applicable.

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Organization of Appendix: In Section A, we state some results which we use throughout. In Section B, we
prove Lemma 1. In Section B.1, we state and prove base results Lemmas 10, 11, and 12 which are necessary
to prove the Lemma 1. Subsequently, we prove Lemma 1. In Section C, we prove Lemma 2. In Section D, we
prove Lemmas 4 and 5. In Section E, we prove Lemmas 3 and 6. In Section F we prove Lemma 10 (the uniform
concentration result) which is essential to prove all the previous results. In Section G, we state some results
proved in the existing literature which we have used in proving our results. In Section H, we detail our algorithm
for tabular setup. In Section I, we describe why the approach for Bandit setup can not be applied to our CMDP
setup. In Section J, we show that when a strictly feasible policy exists (aka Slater’s condition holds) upper bound
of H/� for the dual variable is enough to obtain Õ(

p
K) regret and hard constraint violation instead of an upper

bound of
p
K . Finally, in Section K, we provide empirical results of our algorithm for various CMDP setups

including OpenAI Gyms suite Brockman et al. (2016).

Notations: Throughout the rest of this paper, we denote Qk,Y

r,h
, Qk,Y

g,h
, V k,Y

r,h
, V k,Y

g,h
, wk,Y

r,h
, wk,Y

g,h
, as the Q-value,

value-function, and the parameter values estimated respectively at the episode k for a given dual variable Y
(inside the while loop in Algorithm 1). Note that policy depends on Y , hence, for different Y , V k,Y

j,h
would be

different. Naturally, wk,Y

j,h
and Qk,Y

j,h
would be different (cf.(7)). We denote V k,Y

h+1(·) = V k,Y

r,h+1(·) + Y V k,Y

g,h
(·).

Further, we denote Qk

j,h
, V k

j,h
, wk

j,h
, as the Q- value, value-function, and the parameters chosen for the determined

Yk (i.e., after the While loop in Algorithm 1 terminates). Hence, V k

j,h
(·) = V k,Yk

j,h
(·), Qk

j,h
(·, ·) = Qk,Yk

j,h
(·, ·).

V k,Y

j,h
(·) = h⇡h,k(·|·), Q

k,Y

j,h
(·, ·)iA. ⇡h,k(·|x) is the soft-max policy based on the composite Q-function at the k-th

episode as Qk

r,h
+Y Qk

g,h
. Here, ⇡h,k(·) depends on the dual variable. Thus, the dependence is implicit. Sometimes,

we also use the notation ⇡Y to make the dependence on the dual variable explicit.

To simplify the presentation, we denote �k
h
= �(xk

h
, ak

h
). Without loss of generality, we assume ||�(x, a)||2 1 for

all (x, a) 2 S ⇥A, ||µh(S)||2
p
d, ||✓j,h||2

p
d for j = r, g and all h 2 [H].

A Preliminary Results

Lemma 7. Under Assumption 1, for any fixed policy ⇡, let w⇡

h
be the corresponding weights such that Q⇡

j,h
=

h�(x, a), w⇡

j,h
i, for j 2 {r, g}, then we have for all h 2 [H],

||w⇡

j,h
|| 2H

p

d (15)

Proof. From the linearity of the action-value function, we have

Q⇡

j,h
(x, a) = jh(x, a) + hV

⇡

j,h
(x, a)

= h�(x, a), ✓j,hi+

Z

S
V ⇡

j,h+1(x
0)h�(x, a), dµh(x

0)i

= h�(x, a), w⇡

j,h
i (16)

where w⇡

j,h
= ✓j,h +

R
S V ⇡

j,h+1(x
0)dµh(x0).

Now, ||✓j,h||
p
d, and ||

R
S V ⇡

j,h+1(x
0)dµh(x0)|| H

p
d. Thus, the result follows.

Lemma 8. For any (k, h, Y), the weight wk,Y

j,h
satisfies

||wk,Y

j,h
|| 2H

p
dk/� (17)

Proof. For any vector v 2 R
d we have

|vTwk,Y

j,h
|= |vT (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
(x⌧

h
, a⌧

h
)(jh(x

⌧

h
, a⌧

h
) +

X

a

⇡h+1,k(a|x
⌧

h+1)Q
k,Y

j,h+1(x
⌧

h+1, a))| (18)

here ⇡h,k(·|x) is the Soft-max policy. Note that ⇡h,k(·|x) implicitly depends on the dual-variable Y .

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Note that Qk,Y

j,h+1(x, a) H for any (x, a). Hence, from (18) we have

|vTwk,Y

j,h
|

k�1X

⌧=1

|vT (⇤k

h
)�1�⌧

h
|.2H

vuut
k�1X

⌧=1

vT (⇤h

k
)�1v

vuut
k�1X

⌧=1

�⌧
h
(⇤k

h
)�1�⌧

h
.2H

 2H||v||

p
dk
p
�

(19)

Note that ||wk,Y

j,h
||= maxv:||v||=1|v

Twk,Y

j,h
|. Hence, the result follows.

B Proof of Lemma 1

We prove a more general result.
Lemma 9. For any episode k and 0 Y

p
K, with probability 1 � p, (V ⇤

r,1(x1) � V k,Y

r,1 (x1) + Y V ⇤
g,1(x1) �

Y V k,Y

g,1 (x1))
log(|A|)H

↵
.

Note that since the above holds for 0 Y
p
K, it will hold for Yk chosen value by Algorithm 1 at episode k

when the While loop terminates. Thus, Lemma 1 readily follows.

In order to prove the above result, we prove some base results in Section B.1. Subsequently, we prove Lemma 9
in Section B.2.

B.1 Proof of Base Results

We state and prove Lemmas 10,11, and 12.

First, we state the concentration lemma which is essential in controlling the fluctuations in the least square value
iteration for individual value function.
Lemma 10. There exists a constant C2 such that for any fixed p 2 (0, 1), if we let E be the event that

������

k�1X

⌧=1

�⌧
j,h

[V k,Y

j,h+1(x
⌧

h+1)� hV
k,Y

j,h+1(x
⌧

h
, a⌧

h
)]

������
(⇤k

h
)�1

 C2dH
p
� (20)

for all j 2 {r, g}, � = log[4(C1 + 1) log(|A|)dT/p], for some constant C2, then Pr(E) = 1� p.

The proof of Lemma 10 is technical and relegated to Appendix F. Note from the unconstrained setup Jin et al.
(2020), in order to prove the above bound, one needs to rely on the uniform concentration lemma. However, greedy
policy fails to provide such bound as shown in Ghosh et al. (2022). Hence, similar to Ghosh et al. (2022), we use
soft-max policy. However, there is a subtle difference with Ghosh et al. (2022). Ghosh et al. (2022) considered an
upper bound which is constant (i.e., 2H/�, see Appendix J). However, in our setup the upper bound of Yk is
p
K. Nevertheless, even though the upper bound depends on K, it only scales the constant C1 while keeping the

� = O(log(T)), the same as in Ghosh et al. (2022).

We now, recursively bound the difference between the value function maintained in Algorithm 1 (without the
bonus term) and the value function for any policy for both the reward and utility value functions. We bound this
using the expected difference at the next step plus an error term. This error term can be upper bounded by the
bonus term with a high-probability.
Lemma 11. There exists an absolute constant � = C1dH

p
◆, ◆ = log(log(|A|)4dT/p), and for any fixed policy ⇡,

on the event E defined in Lemma 10, we have

h�(x, a), wk,Y

j,h
i �Q⇡

j,h
(x, a) = h(V

k,Y

j,h+1 � V ⇡

j,h+1)(x, a) +�k

h
(x, a) (21)

for some �k

h
(x, a) that satisfies |�k

h
(x, a)| �

q
�(x, a)T (⇤k

h
)�1�(x, a).

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Proof. We only prove for j = r, the proof for j = g is similar. For notational simplicity, we also remove Y from
the superscript in wk,Y

j,h
for the remainder of this proof.

Note that Q⇡

r,h
(x, a) = h�(x, a), w⇡

r,h
i = rh(x, a) + hV ⇡

r,h+1(x, a).

Hence, we have

wk

r,h
� w⇡

r,h
= (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[r⌧

h
+ V k

r,h+1(x
⌧

h+1)]� w⇡

r,h

= ��(⇤k

h
)�1(w⇡

r,h
) + (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[V k

r,h+1(x
⌧

h+1)� hV
k

r,h+1(x
⌧

h
, a⌧

h
)]

+ (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[hV

k

r,h+1(x
⌧

h
, a⌧

h
)� hV

⇡

r,h+1(x
⌧

h
, a⌧

h
)] (22)

Now, we bound each term in the right hand side of expression in (22). We call those terms as q1, q2, and q3

respectively.

First, note that

|h�(x, a),q1i| = |�h�(x, a), (⇤k

h
)�1(w⇡

r,h
)i|

p

�||w⇡

r,h
||

q
�(x, a)T (⇤k

h
)�1�(x, a) (23)

Second, from Lemma 10, for the event in E , we have

|h�(x, a),q2i| CdH
p
�
q
�(x, a)T (⇤k

h
)�1�(x, a) (24)

where � = log(4(C1 + 1) log(|A|)dT/p). Third,

h�(x, a),q3i = h�(x, a), (⇤
k

h
)�1

k�1X

⌧=1

�⌧
h
[h(V

k

r,h+1 � V ⇡

r,h+1)(x
⌧

h
, a⌧

h
)]i

= h�(x, a), (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
(�⌧

h
)T
Z
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i

= h�(x, a),

Z
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i � h�(x, a),�(⇤k

h
)�1

Z
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i (25)

The last term in (25) can be bounded as the following

|h�(x, a),�(⇤k

h
)�1

Z
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i| 2H
p

d�
q
�(x, a)T (⇤k

h
)�1�(x, a) (26)

since ||
R
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x0)||2 2H

p
d as ||µh(S)||

p
d. The first term in (25) is equal to

h(V
k

r,h+1 � V ⇡

r,h+1)(x, a) (27)

Note that h�(x, a), wk

r,h
i�Q⇡

r,h
(x, a) = h�(x, a), wk

r,h
�w⇡

r,h
i = h�(x, a),q1 +q2 +q3i. Since � = 1, we have from

(23), (24,(26), and (27)

|h�(x, a), wk

r,h
i �Q⇡

r,h
(x, a)� h(V

k

r,h+1 � V ⇡

r,h+1)(x, a)| C3dH
p
�
q
�(x, a)T (⇤k

h
)�1�(x, a) (28)

for some constant C3 which is independent of C1. Finally, note that

C3
p
� =

p
log(4(C1 + 1) log(|A|)dT/p)

= C3

p
◆+ log(C1 + 1)

 C1
p
◆ (29)

where ◆ = log(4 log(|A|)dT/p). The last inequality follows from the fact that ◆ 2 [log 4,1) as |A|� 2, and C3 is
independent of C1. Hence, we can always pick C3

p
log 4 + log(C1 + 1) C1

p
log 4 which satisfies (29) for all

values of ◆ 2 [log 4,1).

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Next, using the above lemma, we bound the difference between the composite value function maintained by the
algorithm and the composite value function for a policy with the Lagrangian Yk.

Lemma 12. With prob. 1� p, (for the event in E) and any 0 Y
p
K,

Q⇡

r,h
(x, a) + Y Q⇡

g,h
(x, a) Qk

r,h
(x, a) + Y Qk,Y

g,h
(x, a)� h(V

k,Y

h+1 � V ⇡,Y

h+1)(x, a) (30)

Proof. Note the fact that |Q⇡

r,h
| H. Thus, from Lemma 11 on the event E and for any Y 2 [0,

p
K],

Q⇡

r,h
(x, a) min{h�(x, a), wk,Y

r,h
i+ �

q
�(x, a)T (⇤k

h
)�1�(x, a), H}

+ h(V
⇡

r,h+1 � V k,Y

r,h+1)(x, a)

= Qk,Y

r,h
(x, a) + h(V

⇡

r,h+1 � V k,Y

r,h+1)(x, a)

where the last equality follows from the definition of Qk,Y

r,h
.

Similarly, for the event E ,

Y Q⇡

g,h
(x, a) Y Qk,Y

g,h
(x, a) + Y h(V

⇡

g,h+1 � V k,Y

g,h+1)(x, a)

Hence, for the event E ,

Q⇡

r,h
(x, a) + Y Q⇡

g,h
(x, a) Qk,Y

r,h
+ Y Qk,Y

g,h
(x, a) + h(V

⇡,Y

h+1 � V k,Y

h+1)(x, a)

B.2 Proof of Lemma 1

First, we show that for a given Y , the gap between the maximum value attained by any composite (estimated)
value function and our (estimated) composite value function are close for the parameters wk,Y

j,h
which we use to

show Lemma 9 by controlling the parameter ↵.

Lemma 13. V̄ k,Y

h
(x)� V k,Y

h
(x)

log|A|

↵

where

Definition 3. V̄ k,Y

h
(·) = maxa[Q

k,Y

r,h
(·, a) + Y Qk,Y

g,h
(·, a)].

V̄ k,Y

h
(·) is the value function corresponds to the greedy-policy with respect to the composite Q-function attained

by our estimated value function.

Proof. Note that

V k,Y

h
(x) =

X

a

⇡h,k(a|x)[Q
k,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a)] (31)

where

⇡h,k(a|x) =
exp(↵[Qk,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a)])

P
a
exp(↵[Qk

r,h
(x, a) + Y Qk,Y

g,h
(x, a)])

(32)

Denote ax = argmaxa[Q
k,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a)]

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Now, recall from Definition 3 that V̄ k,Y

h
(x) = [Qk,Y

r,h
(x, ax) + Y Qk,Y

g,h
(x, ax)]. Then,

V̄ k,Y

h
(x)� V k,Y

h
(x) = [Qk,Y

r,h
(x, ax) + Y Qk,Y

g,h
(x, ax)]

�

X

a

⇡h,k(a|x)[Q
k,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a)]

0

@ log(
P

a
exp(↵(Qk,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a))))

↵

1

A

�

X

a

⇡h,k(a|x)[Q
k,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a)]

log(|A|)

↵
(33)

where the last inequality follows from Proposition 1 in Pan et al. (2019).

We are now ready to show Lemma 9.

Proof. We prove the lemma by Induction.

First, we prove for the step H.

Note that Qk,Y

j,H+1 = 0 = Q⇡

j,H+1.

Under the event in E as described in Lemma 10 and from Lemma 11, we have for j = r, g,

|h�(x, a), wk,Y

j,H
(x, a)i �Q⇡

j,H
(x, a)| �

q
�(x, a)T (⇤k

H
)�1�(x, a)

Hence, for any (x, a),

Q⇡

j,H
(x, a) min{h�(x, a), wk,Y

j,H
i+ �

q
�(x, a)T (⇤k

H
)�1�(x, a), H}

= Qk,Y

j,H
(x, a) (34)

Hence, from the definition of V̄ k,Y

h
(Recall Definition 3)

V̄ k,Y

H
(x) = max

a

[Qk

r,H
(x, a) + Y Qk

g,H
(x, a)] �

X

a

⇡(a|x)[Q⇡

r,H
(x, a) + Y Q⇡

g,H
(x, a)]

= V ⇡,Y

H
(x) (35)

for any policy ⇡. Thus, it also holds for ⇡⇤, the optimal policy. Hence, from Lemma 13, we have

V ⇡
⇤
,Y

H
(x)� V k

H,Y
(x)

log(|A|)

↵

Now, suppose that it is true till the step h+ 1 and consider the step h.

Since, it is true till step h+ 1, thus, for any policy ⇡,

h(V
⇡,Y

h+1 � V k,Y

h+1)(x, a)
(H � h) log(|A|)

↵
(36)

From (30) in Lemma 12 and the above result, we have for any (x, a)

Q⇡

r,h
(x, a) + Y Q⇡

g,h
(x, a) Qk,Y

r,h
(x, a) + Y Qk,Y

g,h
(x, a) +

(H � h) log(|A|)

↵
(37)

Hence,

V ⇡,Y

h
(x) V̄ k,Y

h
(x) +

(H � h) log(|A|)

↵
(38)

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Now, again from Lemma 13, we have V̄ k,Y

h
(x)� V k,Y

h
(x)

log(|A|)

↵
. Thus,

V ⇡,Y

h
(x)� V k,Y

h
(x)

(H � h+ 1) log(|A|)

↵
(39)

Now, since it is true for any policy ⇡, it will be true for ⇡⇤. From the definition of V ⇡,Y , we have

⇣
V ⇡

⇤

r,h
(x) + Y V ⇡

⇤

g,h
(x)
⌘
�

⇣
V k,Y

r,h
(x) + Y V k,Y

g,h
(x)
⌘

(H � h+ 1) log(|A|)

↵
(40)

Hence, the result follows by summing over K and considering h = 1.

C Proof of Lemma 2

Before proving Lemma 2, we prove the following result.

Lemma 14. Let V k,Y

g,1 be the estimated value function computed by the Algorithm 1 when the dual-variable is Y ,
then

|V k,Y

g,1 (x1)� V k,Y+⌘

g,1 (x1)| O(H/K)

We first show that because of the soft-max property, the difference between V k,Y

j,h
(x) and V k,Y

0

j,h
(x) is bounded.

Lemma 15. |V k,Y

j,h
(x)� V k,Y

0

j,h
(x)| 2↵H(H✏00 +maxY Y ✏0 + 2✏0) if |Y 0

� Y | ✏00, |Qk,Y

j,h
(x, a)�Qk,Y

0

j,h
(x, a)| ✏0

for all (x, a), and the policy is soft-max ⇡Y .

Proof. Note that

|Qk,Y

r,h
(x, a) + YkQ

k,Y

g,h
(x, a)�Qk,Y

0

r,h
(x, a)� Y 0Qk,Y

0

g,h
(x, a)|

 |Qk,Y

r,h
(x, a)�Qk,Y

0

r,h
(x, a)|+|Y Qk,Y

g,h
(x, a)� Y 0Qk,Y

0

g,h
(x, a)|

 ✏0 + Y |Qk,Y

g,h
(x, a)�Qk,Y

0

g,h
(x, a)|+|Y 0

� Y |Qk,Y
0

g,h
(x, a)

 ✏0 + Y ✏0 +H✏00 (41)

Hence, by the property of the soft-max (Theorem 4.4 in Epasto et al. (2020))

||⇡Y
� ⇡Y

0
||1 2↵(✏0 +maxY ✏0 +H✏00) (42)

Now,

|h⇡Y , Qk,Y

j,h
i � h⇡Y

0
, Qk,Y

0

j,h
i|

= |h⇡Y
� ⇡Y

0
, Qk,Y

j,h
i � h⇡Y

0
, Qk,Y

j,h
�Qk,Y

0

j,h
i|

 ||⇡Y
� ⇡Y

0
||1||Q

k

j,h
||1+||⇡Y

0
||1||Q

k,Y

j,h
�Qk,Y

0

j,h
||1

 2H↵(✏0 +maxY ✏0 +H✏00) + ✏0 (43)

Since ↵H � 1, thus, we have the result.

Since ↵ = log(|A|)
p
K, then, we have from (43), and Y

p
K, thus,

|V k,Y

j,h
(x)� V k,Y

0

j,h
(x)| 4H

p

K log(|A|)(H✏00 +
p

K✏0) (44)

We are now ready to prove Lemma 14.

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Proof. We prove the above by induction. In particular, we show that if |Y �Y 0
| (log(|A|))�HK�1.5H(

p
d)�H+1,

then, |V k,Y

j,h
(x)� V k,Y

0

j,h
(x)| H log(|A|)�h+1(

p
d)�hK�(1.5)h�1.

First, consider h = H. Since V k

j,H+1 = 0, thus, we have

Qk,Y

j,H
(x, a)�Qk,Y

0

j,H
(x, a) = 0 ✏0

Hence, by Lemma 15 (identifying ✏0 = ⌘, and plugging ↵ = log(|A|)/(4H)) we have

|V k,Y

j,H
(x)� V k,Y

0

j,H
(x)| log(|A|)�H+1H(

p

d)�H+1K�1.5H+0.5

= H log(|A|)�H+1(
p

d)�H+1K�1.5(H�1)�1 (45)

for all x. Hence, the statement is true for h = H.

In order to prove this for h, we need to show the following.

Lemma 16. If |V k,Y

j,h+1(x)� V k,Y
0

j,h+1(x)| ✏, then |�(x, a)Twk,Yk

j,h
� �(x, a)Tw

k,Y
0
k

j,h
| ✏
p
dk

Proof. We show that for j = r. Note that

wk,Y

r,h
� wk,Y

0

r,h
= (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[r⌧

h
+ V k,Y

r,h+1(x
⌧

h+1)]

� (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[r⌧

h
+ V k,Y

0

r,h+1(x
⌧

h+1)]

= (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[V k,Y

r,h+1(x
⌧

h+1)� V k,Y
0

r,h+1(x
⌧

h+1)] (46)

Hence,

|�(x, a)T (wk,Y

r,h
� wk,Y

0

r,h
)| �(x, a)T (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
✏

 ✏
p

dk||�(x, a)||(⇤k

h
)�1 ✏

p

dk (47)

where in the penultimate step we use Lemma 24. In the last inequality, we use the fact that (⇤K

h
) � �I,

||�(x, a)|| 1. Hence, we have

|Qk,Y

r,h
(x, a)�Qk,Y

0

r,h
(x, a)| ✏

p

dk (48)

for all (x, a).

Thus, we have from Lemma 15

|V k,Y

j,h
(x)� V k,Y

0

j,h
(x)| H log(|A|)

p

K(H✏00 + ✏0
p

dk
p

K) (49)

Since the statetemnt is true till h+ 1, thus, |V k,Y

j,h+1(x)� V k,Y
0

j,h+1(x)| (log(|A|)�hH(
p
d)�hK�1.5h�1 = ✏0.

✏0
p

dk
p

K (log(|A|)�h(
p

d)�h+1K�1.5h (50)

Now, ✏00 = (log(|A|))�H(
p
d)�H+1K�1.5H , Thus, plugging ↵ = log(|A|)/(4H), we have for any x,

|V k,Y

j,h
(x)� V k,Y

0

j,h
(x)|

log(|A|)
p

K
⇣
H(log(|A|))�H4�HH�H(

p

d)�H+1K�1.5H + (log(|A|)�h4�hH�h+1(
p

d)�h+1K�1.5h
⌘

= H(log(|A|))�h+1(
p

d)�h+1K�1.5h+0.5 = H(log(|A|))�h+1
p

d
�h+1

K�1.5(h�1)�1 (51)

Thus, by induction we have the result by plugging in h = 1.

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Now, we are ready to prove Lemma 2.

Proof. First, if Yk = 0, the result is trivially true.

Now, consider that the while loop terminates at some value Yk > 0. When Yk > 0 and k 2 I
C

b
, thus, we know

that V k,Yk

g,1 (x1) � b, however, V k,Yk�⌘

g,1 (x1) < b (otherwise, the loop would have terminated at Yk � ⌘). Now, from
Lemma 14,

|V k,Yk

g,1 (x1)� V k,Yk�⌘

g,1 (x1)| O(HK�1)

V k,Yk

g,1 (x1) V k,Yk�⌘

g,1 (x1) +O(HK�1)

 b+O(HK�1) (52)

Since Yk
p
K, thus,

Yk(b� V k,Yk

g,1 (x1)) � O(HK�0.5) (53)

Since Yk is the selected dual variable at episode k, thus, V k,Yk

g,1 (x) = V k

g,1(x) for any x. Hence, the result follows.

D Proof of Lemmas 4 and 5

D.1 Proof of Lemma 4

Recall the definition of Ib which is the set of episodes where Algorithm 1 returns Yk =
p
K and V k

g,1(x1) < b.
Thus, for the episodes k in I

c

b
, (b� V k

g,1(x1)) 0. We now, bound (b� V k

g,1(x1))+ for episodes in Ib.

From Lemma 1 and the value of ↵, we obtain
X

k2Ib

(V ⇤
r,1(x1)� V k

r,1(x1) + Yk(b� V k

g,1(x1))+) O(H2
p

K)

X

k2Ib

Yk(b� V k

g,1(x1))
X

k

(V k

r,1(x1)� V ⇤
r,1(x1)) +O(H2

p

K)

X

k2Ib

(b� V k

g,1(x1)) HK/
p

K +O(H
p

K)/
p

K = O(H2
p

K) (54)

where the last inequality follows from the fact that for all the episodes in Ib, Yk �
p
K. Thus,

X

k

(b� V k

g,1(x1))+ O(H2
p

K) (55)

D.2 Proof of Lemma 5

Proof. We prove via induction. Since V k

j,H+1(x) = 0 for all x, thus, from Lemma 11

Q⇡k

j,H
(x, a) min{�(x, a)Twk,Yk

j,H
+ �||�(x, a)||(⇤k

H
)�1 , H} = Qk,Yk

j,H
(x, a) (56)

Recall that Yk is the selected dual variable at episode k. Thus, Qk,Yk

j,h
= Qk

j,h
. Hence,

h⇡k, Q
⇡k

j,H
i h⇡k, Q

k

j,H
i (57)

Hence, V ⇡k

j,H
(x) V k

j,H
(x) for all x.

Suppose that it is true for step h+ 1. Hence, h(V
⇡k

j,h+1 � V k

j,h+1)(x, a) 0. Hence, from Lemma 11,

Q⇡k

j,h
(x, a) min{�(x, a)Twk

j,h
+ �||�(x, a)||(⇤k

h
)�1 , H} = Qk

j,h
(x, a) (58)

Thus,

h⇡k

h
, Q⇡k

j,h
i h⇡k

h
, Qk

j,h
i (59)

Thus, V ⇡k

j,h
(x1) V k

j,h
(x1).

Arnob Ghosh, Xingyu Zhou, Ness Shroff

E Proof of Lemmas 3 and 6

In order to prove the Lemma 3 and 6, we state and prove the following result. In this section, we obtain bounds
for the selected value Yk, hence, we use Qk

j,h
, wk

j,h
and V k

j,h
.

First, we introduce a notation. Let

Dk

j,h,1 = h(Qk

j,h
(xk

h
, ·)�Q⇡k

j,h
(xk

h
, ·)),⇡h,k(·|x

k

h
)i � (Qk

j,h
(xk

h
, ak

h
)�Q⇡k

j,h
(xk

h
, ak

h
))

Dk

j,h,2 = h(V
k

j,h+1 � V ⇡k

j,h+1)(x
k

h
, ak

h
)� [V k

j,h+1 � V ⇡k

j,h+1](x
k

h+1) (60)

Lemma 17. On the event defined in E in Lemma 10, we have

V k

j,1(x1)� V ⇡k

j,1 (x1)
HX

h=1

(Dk

j,h,1 +Dk

j,h,2) +
HX

h=1

2�
q
�(xk

h
, ak

h
)T (⇤k

h
)�1�(xk

h
, ak

h
) (61)

Proof. By Lemma 11, for any x, h, a, k

hwk

j,h
(x, a),�(x, a)i+ �

q
�(x, a)T (⇤k

h
)�1�(x, a)�Q⇡k

j,h

 h(V
k

j,h+1 � V ⇡k

j,h+1)(x, a) + 2�
q
�(x, a)T (⇤k

h
)�1�(x, a) (62)

Thus,

Qk

j,h
(x, a)�Q⇡k

j,h
(x, a) h(V

k

j,h+1 � V ⇡k

j,h+1)(x, a) + 2�
q
�(x, a)T (⇤k

h
)�1�(x, a)

h(V
k

j,h+1 � V ⇡k

j,h+1)(x, a) + 2�
q
�(x, a)T (⇤k

h
)�1�(x, a)� (Qk

j,h
(x, a)�Q⇡k

j,h
(x, a)) � 0 (63)

Since V k

j,h
(x) =

P
a
⇡h,k(a|x)Qk

j,h
(x, a) and V ⇡k

j,h
(x) =

P
a
⇡h,k(a|x)Q

⇡k

j,h
(x, a) where ⇡h,k(a|·) =

Soft-Maxa

↵
(Qk

r,h
+ YkQk

g,h
) 8a.

Thus, from (63),

V k

j,h
(xk

h
)� V ⇡k

j,h
(xk

h
) =

X

a

⇡h,k(a|x
k

h
)[Qk

j,h
(xk

h
, a)�Q⇡k

j,h
(xk

h
, a)]

X

a

⇡h,k(a|x
k

h
)[Qk

j,h
(xk

h
, a)�Q⇡k

j,h
(xk

h
, a)]

+ 2�
q
�(xk

h
, ak

h
)T (⇤k

h
)�1�(xk

h
, ak

h
) + h(V

k

j,h+1 � V ⇡k

j,h+1)(x
k

h
, ak

h
)� (Qk

j,h
(xk

h
, ak

h
)�Q⇡k

j,h
(xk

h
, ak

h
)) (64)

Thus, from (64), we have

V k

j,h
(xk

h
)� V ⇡k

j,h
(xk

h
) Dk

j,h,1 +Dk

j,h,2 + [V k

j,h+1 � V ⇡k

j,h+1](x
k

h+1) + 2�
q
�(xk

h
, ak

h
)T (⇤k

h
)�1�(xk

h
, ak

h
) (65)

Hence, by iterating recursively, we have

V k

j,1(x1)� V ⇡k

j,1 (x1)
HX

h=1

(Dk

j,h,1 +Dk

j,h,2) +
HX

h=1

2�
q
�(xk

h
, ak

h
)T (⇤k

h
)�1�(xk

h
, ak

h
) (66)

The result follows.

We, are now ready to prove Lemmas 3 and 6.

Proof. Note from Lemma 17, we have

KX

k=1

V k

j,1(x1)� V ⇡k

j,1 (x1)
KX

k=1

HX

h=1

(Dk

j,h,1 +Dk

j,h,2) +
KX

k=1

HX

h=1

2�
q
�(xk

h
, ak

h
)T (⇤k

h
)�1�(xk

h
, ak

h
) (67)

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

We, now, bound the individual terms. First, we show that the first term corresponds to a Martingale difference.

For any (k, h) 2 [K] ⇥ [H], we define F
k

h,1 as �-algebra generated by the state-action sequences, reward, and
constraint values, {(x⌧

i
, a⌧

i
)}(⌧,i)2[k�1]⇥[H] [{(xk

i
, ak

i
)}i2[h].

Similarly, we define the F
k

h,2 as the �-algebra generated by {(x⌧

i
, a⌧

i
)}(⌧,i)2[k�1]⇥[H] [{(xk

i
, ak

i
)}i2[h] [{xk

h+1}.
xk

H+1 is a null state for any k 2 [K].

A filtration is a sequence of �-algebras {F
k

h,m
}(k,h,m)2[K]⇥[H]⇥[2] in terms of time index

t(k, h,m) = 2(k � 1)H + 2(h� 1) +m (68)

which holds that F
k

h,m
⇢ F

k
0

h0,m0 for any t t0.

Note from the definitions in (60) that Dk

j,h,1 2 F
k

h,1 and Dk

j,h,2 2 F
k

h,2. Thus, for any (k, h) 2 [K]⇥ [H],

[Dk

j,h,1|F
k

h�1,2] = 0, [Dk

j,h,2|F
k

h,1] = 0 (69)

Notice that t(k, 0, 2) = t(k � 1, H, 2) = 2(H � 1)k. Clearly, Fk

0,2 = F
k�1
H,2 for any k � 2. Let F

1
0,2 be empty. We

define a Martingale sequence

Mk

j,h,m
=

k�1X

⌧=1

HX

i=1

(D⌧

j,i,1 +D⌧

j,i,2) +
h�1X

i=1

(Dk

j,i,1 +Dk

j,i,2) +
mX

l=1

Dk

j,h,l

=
X

(⌧,i,l)2[K]⇥[H]⇥[2],t(⌧,i,l)t(k,h,m)

D⌧

j,i,l
(70)

where t(k, h,m) = 2(k� 1)H +2(h� 1)+m is the time index. Clearly, this martingale is adopted to the filtration
{F

k

h,m
}(k,h,m)2[K]⇥[H]⇥[2], and particularly

KX

k=1

HX

h=1

(Dk

j,h,1 +Dk

j,h,2) = MK

j,H,2 (71)

Thus, MK

j,H,2 is a Martingale difference satisfying |MK

j,H,2| 4H since |Dk

j,h,1|, |D
k

j,h,2| 2H From the Azuma-
Hoeffding inequality, we have

Pr(MK

j,H,2 > s) 2 exp(�
s2

16TH2
) (72)

With probability 1� p/2 at least for any j = r, g,
X

k

X

h

MK

j,H,2
p
16TH2 log(4/p) (73)

Now, we bound the second term. Note that the minimum eigen value of ⇤k

h
is at least � = 1 for all (k, h) 2 [K]⇥[H].

By Lemma 22,
KX

k=1

(�k
h
)T (⇤k

h
)�1�k

h
 2 log

"
det(⇤k+1

h
)

det(⇤1
h
)

#
(74)

Moreover, note that ||⇤k+1
h

||= ||
P

k

⌧=1 �
k

h
(�k

h
)T + �I|| �+ k, hence,

KX

k=1

(�k
h
)T (⇤k

h
)�1�k

h
 2d log

�+ k

�

�
 2d◆ (75)

Now, by Cauchy-Schwartz inequality, we have
KX

k=1

HX

h=1

q
(�k

h
)T (⇤k

h
)�1�k

h

HX

h=1

p

K[
KX

k=1

(�k
h
)T (⇤k

h
)�1�k

h
]1/2

 H
p

2dK◆ (76)

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Note that � = C1dH
p
◆.

Thus, we have with probability 1� p/2,

KX

k=1

V k

j,1(x1)� V ⇡k

j,1 (x1) [
p
2TH2 log(4/p) + C4

p

d3H3T ◆2] (77)

Hence, the result follows.

F Proof of Lemma 10

To simplify the notation, we remove h and Y from the subscript and superscript from wk,Y

j,h
, Qk,Y

j,h
and V k,Y

j,h
in

this Section.

Note that the proof follows the similar direction as in Ghosh et al. (2022) (Lemma 8 there). However, there is a
major difference. In Ghosh et al. (2022), the upper bound of the dual variable Y was 2H/� (Appendix J), in our
case, the upper bound of Y is

p
K. However, we show that it only adds to the constant term C1.

In order to prove the Lemma 10, we first compute the ✏-covering number for the class of value functions (Lemma 18).
In order to compute that we first compute the ✏-covering number of the individual Q-functions (Lemma 19) which
is essential to compute the covering number for composite Q-functions (Corollary 1). Subsequently, we show that
if the two Q-functions and the Lagrange multipliers are close, the policies are also close (Lemma 20).

We first introduce the set of Q-functions.
Definition 4. Let Qj = {Q|Q(·, ·) = min{wT

j
�(·, ·) + �

p
�T (·, ·)T⇤�1�(·, ·), H}}

The set Q is parameterized by wj , and ⇤. We have ||wj || 2H
p

dk/� (from Lemma 8). The minimum eigen
value of ⇤ satisfies �min � 1. Hence, the Frobenius norm of ⇤�1 is bounded. Note that Qk

j
2 Qj for j = r, g.

We now introduce the class of value function for j = r, g.
Definition 5. Let Vj = {Vj |Vj(·) =

P
a
⇡(a|·)Qj(·, a);Qr 2 Qr, Qg 2 Qj , Y 2 [0, ⇠]} for j = r, g, where

⇧ = {⇡|8a 2 A,⇡(a|·) = Soft-Maxa

↵
((Qr(·, ·) + Y Qg(·, ·))Qr 2 Qr, Qg 2 Qg, Y 2 [0, ⇠]}.

where ⇠ =
p
K.

The class of value function Vj is parameterized by wr, wg, ⇤, and Y 2 [0, ⇠]. Note that even the individual value
function depends on the Q-functions for both the reward and utility since the policy depends on the composite
Q-function.

First, we need to see whether V k

j
2 Vj . Recall the definition of V k

j
at the k-th episode V k

j
(·) =

P
a
⇡k(a|·)Qk

j
(·, a)

where
⇡k(a|·) = Soft-Maxa

↵
((Qr(·, ·) + YkQg(·, ·)).

Since Qj 2 Qj for all j, and 0 Yk ⇠, thus, Vj 2 Vj .

We now bound the ✏-covering number for the class of value function
Lemma 18. There exists a Ṽj 2 Vj parameterized by (w̃r, w̃g, �̃,⇤, Ỹ) such that DIST (Vj , Ṽj) ✏ where

DIST(Vj , Ṽj) = sup
x

|Vj(x)� Ṽr(x)|. (78)

Let NVj

✏ be the ✏-covering number for the set Vj, then,

logNVj

✏
 d log

1 + 8H

p
dk
p
�✏0

!
+ d2 log

h
1 + 8d1/2�2/(�(✏0)2)

i
+ log

✓
1 +

⇠

✏0

◆
(79)

where ✏0 =
✏

H2↵(1 + ⇠ +H) + 1
where ⇠ = 2

p
K

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Note that ✏-covering number is dependent on ⇠, the upper bound of Yk. This is because the policy depends on the
Lagrange multiplier Y which is upper bounded by ⇠. Thus, we also need ✏-covering for the Lagrange multiplier
in order to obtain ✏-close value function. In Ghosh et al. (2022), the upper bound was 2H/� (see Appendix J).
However, in our case, the upper bound is

p
K. Note that log of epsilon-covering number only scales as log(K)

even when the upper bound of ⇠ is
p
K.

Note that the ✏-covering does not depend on sample dependent terms. Rather it only depends on general wj,h, ⇤,
and Y . Since the policy parameter is ↵, we also have ✏-covering number is dependent on ↵.

In order to prove the above lemma, we first state and prove some additional results.

We, first, obtain the N
Qj

✏ covering number for the set Qj . Towards this end, we first, introduce some notations.

Definition 6. Let C✏

w
be an ✏/2- cover of the set {w 2 Rd

|||w|| 2H
p
dk/�} with respect to the 2-norm. Let C✏

A
be an ✏2/4-cover of the set {A 2 Rd⇥d

|||A||F d1/2�2��1
} with respect to the Frobenius norm.

Lemma 19.

|C
✏

w
| (1 + 8H

p
dk/�/✏)d, |C

✏

A| [1 + 8d1/2�2/(�✏2)]d
2

(80)

The ✏-covering number for the set Qj, for j = r, g, NQj

✏ of the set Qj for j = r, g satisfies the following

logNQj

✏
 d log

1 +

8H
p
dk

p
�✏

!
+ d2 log[1 + 8d1/2�2/(�✏)2] (81)

The distance metric is the 1-norm, i.e., dist(Q1, Q2) = sup
x,a

|Q1(x, a)�Q2(x, a)|.

Proof. For notational simplicity, we represent A = �2⇤�1, and reparamterized the class Qj by (wj ,A). Now,

dist(Q1, Q2) = sup
x,a

|[wT

1 �(x, a) +
q
�T (x, a)A1�(x, a)]� [wT

2 �(x, a) +
q
�T (x, a)A2�(x, a)]|

 sup
�:||�||1

|[wT

1 �+
p
�TA1�]� [wT

2 �+
p
�TA2�]|

 sup
�:||�||1

|(w1 � w2)
T�|+ sup

�:||�||1

q
|�T (A1 �A2)�|

= ||w1 � w2||+
p

||A1 �A2|| ||w1 � w2||+
p
||A1 �A2||F (82)

where the second-last inequality follows from the fact that |
p
x �
p
y|

p
|x � y|. For matrices ||·||, and ||·||F

denote matrix operator norm and the Frobenius norm respectively.

Recall that Cw is an ✏/2- cover of the set {w 2 Rd
|||w|| 2H

p
dk/�} with respect to the 2-norm. Also recall that

CA be an ✏2/4-cover of the set {A 2 Rd⇥d
|||A||F d1/2�2��1

}. Thus, from Lemma 23,

|C
✏

w
| (1 + 8H

p
dk/�/✏)d, |C

✏

A| [1 + 8d1/2�2/(�✏2)]d
2

For any Qj 2 Qj , there exists a Q̃j parameterized by (w2,A2) where w2 2 C
✏

w
and A2 2 C

✏

A such that
dist(Qj , Q̃j) ✏. Hence, NQj

✏ |C
✏

w
||C

✏

A|, which gives the result since log(·) is an increasing function.

Since the class of Q-function is independent of the policy we do not have ⇠ and ↵ in the ✏-covering number.

From the above lemma and since Yk ⇠, we have the following,

Corollary 1. If dist(Qk

r
, Q̃r) ✏0, dist(Qk

g
, Q̃g) ✏0, and |Ỹk � Yk| ✏0, then, dist(Qk

r
+ YkQk

g
, Q̃r + ỸkQ̃g)

✏0(1 + ⇠ +H).

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Proof. Note that Q̃j 2 Qj belongs to the ✏0 covering of the set Q.

dist(Qk

r
+ YkQ

k

g
, Q̃r + ỸkQ̃g) = sup

x,a

|(Qk

r
(x, a) + YkQ

k

g
(x, a))� (Q̃r(x, a) + ỸkQ̃g(x, a))|

 sup
x,a

|(Qk

r
(x, a) + YkQ

k

g
(x, a))� (Q̃r(x, a) + YkQ̃g(x, a))|+sup

x,a

|(Ỹk � Yk)Q
k

g
(x, a)|

 sup
x,a

|Qk

r
(x, a)� Q̃r(x, a)|+Yk sup

x,a

|Qk

g
(x, a)� Q̃g(x, a)|+✏

0H

 ✏0(1 + Yk) + ✏0H

 ✏0(1 +H + ⇠) (83)

where the first inequality follows from the property of supremum and the norm. The second inequality follows
from the norm, and the fact that |Ỹk � Yk| ✏0, and |Qk

g
(x, a)| H. The third inequality follows from the fact

that dist(Qj , Q̃j) ✏0.

We now show that if the there exist Q̃j , and Ỹk which are close to Qj and Yk, then the soft-max policy is also
close.

Lemma 20. Suppose that ⇡ is the soft-max policy (temp. coefficient 1/↵) corresponding to the composite
Q-functions (Qk

r
+ YkQk

g
), i.e., 8a 2 A

⇡(a|·) = Soft-Maxa

↵
((Qr(·, ·) + YkQg(·, ·)).

⇡̃ is the soft-max policy vector with the same temp. coefficient 1/↵ corresponding to the composite Q-function
(Q̃r + ỸkQ̃g), i.e, 8a 2 A,

⇡̃(a|·) = Soft-Maxa

↵
((Q̃r(·, ·) + ỸkQ̃g(·, ·)).

then, for any state x,

||⇡(·|x)� ⇡̃(·|x)||1 2↵✏0(1 + ⇠ +H) (84)

where ⇡(·|x) = {⇡(a|x)}a2A and ⇡̃(·|x) = {⇡̃(a|x)}a2A when dist(Qk

j,h
, Q̃j) ✏0 for j = r, g, and |Ỹk � Yk| ✏0.

Proof. Let Exp↵(P) be a soft-max corresponding to the vector P , i.e., the i-th component of Exp↵(P) is

exp(↵Pi)P
i
exp(↵Pi)

.

Note from Theorem 4.4 in Epasto et al. (2020) then, we have

||Exp↵(P1)� Exp↵(P2)||1 2↵||P1 � P2||1 (85)

for two vectors P1 and P2.

Now note that in our case for a given state x, ⇡ is equivalent to Exp↵(Qk

r,h
(x, ·)+YkQk

g,h
(x, ·)), and ⇡̃ is equivalent

to Exp↵(Q̃r(x, ·) + ỸkQ̃g(x, ·)). Then from (85) and the fact that dist(Qk

r,h
+ YkQk

g,h
, Q̃r + ỸkQ̃g) ✏0(1 + ⇠ +H)

(by Corollary 1) we have

||⇡(·|x)� ⇡̃(·|x)||1 2↵✏0(1 + ⇠ +H) (86)

Hence, the result follows.

Based on the above two lemmas we show that when the Q-functions are close, the value functions in the class Vj

are also close.

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Lemma 21. There exists Ṽj 2 Vj such that

DIST(V k

j
, eVj) H2↵✏0(1 + ⇠ +H) + ✏0, (87)

where dist(Q̃j , Qj) ✏0, Q̃j 2 Qj for all j;

eVj(·) =
X

a

[⇡̃(a|·)Q̃j(·)],

⇡̃(a|·) = Soft-Maxa

↵
((Q̃r(·, ·) + ỸkQ̃g(·, ·)), 8a 2 A

|Ỹk � Yk| ✏0.

Proof. For any x,

V k

j
(x)� eVj(x)

= |

X

a

⇡(a|x)Qk

j
(x, a)�

X

a

⇡̃(a|x)Q̃j(x, a)|

= |

X

a

⇡(a|x)Qk

j
(x, a)�

X

a

⇡(a|x)Q̃j(x, a) +
X

a

⇡(a|x)Q̃j(x, a)�
X

a

⇡̃(a|x)Q̃j(x, a)|

 |

X

a

⇡(a|x)Qk

j
(x, a)�

X

a

⇡(a|x)Q̃j(x, a)|+|

X

a

⇡(a|x)Q̃j(x, a)�
X

a

⇡̃(a|x)Q̃j(x, a)|

 ✏0 + ||⇡(·|x)� ⇡̃(·|x)||1||Q̃j(x)||1

 ✏0 +H2↵✏0(1 + ⇠ +H) (88)

where we use the fact that dist(Qk

j
, Q̃r) ✏0, and

P
a
⇡(a|x) = 1 for the first term and the Holder’s inequality

in the second term for the second last inequality. For the last inequality, we use Lemma 20, and the fact that
Q̃j(x, a) H for any (x, a). Hence, we have the result.

Note that when ↵ = log(|A|)
p
K/H as we have in Algorithm 1, the right hand side in (87) becomes

✏0 + log(|A|)
p

K✏0(1 + ⇠ +H) (89)

We introduce one more notation which we use to prove Lemma 18.

Definition 7. Let C✏

⇠
be an ✏ cover for Y 2 [0, ⇠]. Hence, |C✏

⇠
|

✓
1 +

⇠

✏

◆

Note that C
✏

⇠
consists of points which is ✏-close to any point within the interval [0, ⇠]. Since we have defined

✏-cover for all the parameters, we are now ready to prove Lemma 18.

Proof. Fix an ✏. Let ✏0 =
✏

H2↵(1 + ⇠ +H) + 1
, then from Lemma 21, we have DIST(V k

j
, eVj) ✏. Thus, we only

need to find parameters in the ✏0-covering of the Q-functions as described in Lemma 19 in order to obtain ✏-close
value function.

Recall the Definition 6. Then, there exists w̃r, w̃g 2 C
✏
0

w
such that ||w̃r � wr||

✏0

2
, ||w̃g � wg||

✏0

2
. Further,

there exists A2 2 C
✏
0

A such that ||A � Ã||F
✏02

4
, A = �2(⇤k)�1, Ã = �2(⇤̃)�1, for some ⇤̃, and Yk, Ỹk such

that |Yk � Ỹk| ✏0. Then we obtain Q̃j parameterized by (w̃j ,�, ⇤̃) for j = r, g, such that dist(Qj , Q̃j) ✏0 (by
Lemma 19).

Now define eVj =
P

a
⇡̃(a|·)Q̃j , where

⇡̃(a|·) = Soft-Maxa

↵
((Q̃r(·, ·) + ỸkQ̃g(·, ·)).

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Thus, from Lemma 21, we have DIST(V k

j
, Ṽj) ✏. Hence, there exists Ṽj parameterized by w̃r, w̃g, Ỹk, Ã, such

that Dist(Ṽj , V k

j
) ✏. Hence, NV

✏
 |C

✏
0

w
||C

✏
0

A||C
✏
0

⇠
|. Thus, from Lemma 19 and Definition 7, the ✏-covering number

N
Vj

✏ for the set Vj satisfies the following

logNVj

✏
 d log

1 + 8H

p
dk
p
�✏0

!
+ d2 log

h
1 + 8d1/2�2/(�(✏0)2)

i
+ log

✓
1 +

⇠

✏0

◆
.

Hence, the result follows.

From Lemma 18, note that we need ✏0 covering for the Q-functions where ✏0 =
✏

(H2↵(1 + ⇠) + 1)
if we need to

bound DIST (Vj , Ṽj) by ✏.

Now, we are ready to prove Lemma 10.

Proof. By Lemma 18, we know that there exists Ṽj in the ✏-covering for Vj such that for every x,

Vj(x) = Ṽj(x) +�V (x) (90)

where sup
x
�V (x) ✏.

Hence,
������

kX

⌧=1

�⌧ (Vj(x⌧)� [Vj(x⌧)|F⌧�1])

������

2

(⇤k)�1

 2

������

kX

⌧=1

�⌧ (Ṽj(x⌧)� [Ṽj(x⌧)|F⌧�1])

������

2

(⇤k)�1

+ 2

������

kX

⌧=1

�⌧ (�V (x⌧)� [�V (x⌧)|F⌧�1])

������

2

(⇤k)�1

(91)

The last expression is bounded by
8k2✏2

�
.

Now, we bound the first term. Note from Lemma 18 that in order to obtain Ṽj which satisfies (90), we need
to obtain we need NV

✏
number of elements to obtain such (w̃r, w̃g,�, ⇤̃, Ỹ). Such Ṽj is independent of samples.

Hence, we can use the Elliptical lemma for self-normalization (Theorem 2). From Theorem 2 and the union
bound we obtain

������

kX

⌧=1

�⌧ (Ṽj(x⌧)� [Ṽj(x⌧)|F⌧�1])

������

2

(⇤k)�1

 2H2

2

4d log
✓
k + �

�

◆
+ log

NV

✏

�

!3

5 (92)

where NV

✏
is upper bounded in (79). � is equal to C1dH

p
◆ for some constant C1, and ◆ = log(log(|A|)4dT/p).

Further, ⇠ =
p
K . We obtain from (92)

������

kX

⌧=1

�⌧ (Ṽj(x⌧)� [Ṽj(x⌧)|F⌧�1])

������

2

(⇤k)�1

4H2

2

4d
2
log

✓
k + �

�

◆
+ d log

1 +

8H
p
dk

✏0
p
�

!
+ d2 log

1 +

8d1/2�2

✏02�

!
+ log

1 +

p
K

✏0

!
+ log

✓
4

p

◆3

5 (93)

where ✏0 =
✏

(H2↵(1 + ⇠ +H) + 1)
. Set ✏ =

dH

k
, � = 1. Thus, ✏0 =

dH

(2H↵(1 + ⇠ +H) + 1)k
. Plugging in the

above, and putting ↵ = log(|A|)
p
K/H, we obtain from (93)

||

kX

⌧=1

�⌧ (Ṽj(x⌧)� [Ṽj(x⌧)|F⌧�1])||
2
⇤�1

k

 C2H
2d2 log

✓
4(C1 + 1) log(|A|)dT

p

◆
(94)

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

for some constant C2. Hence, the result follows.

G Supporting Results

The following result is shown in Abbasi-Yadkori et al. (2011) and in Lemma D.2 in Jin et al. (2020).
Lemma 22. Let {�t}t�0 be a sequence in <d satisfying sup

t�0||�t|| 1. For any t � 0, we define ⇤t =

⇤0 +
P

t

j=0 �j�
T

j
�j. Then if the smallest eigen value of ⇤0 be at least 1, we have

log

"
det(⇤k+1

h
)

det(⇤1
h
)

#

KX

k=1

(�k
h
)T (⇤k

h
)�1�k

h
 2 log

"
det(⇤k+1

h
)

det(⇤1
h
)

#
(95)

Theorem 2. [Concentration of Self-Normalized Process Abbasi-Yadkori et al. (2011)] Let {✏t}1t=1 be a real-valued
stochastic process with corresponding filtration {Ft}

1
t=0. Let ✏t|Ft�1 be a zero mean and � sub-Gaussian, i.e.,

[✏t|Ft�1] = 0, and

8⇣ 2 <, [e⇣✏t |Ft�1] e⇣
2
�
2
/2. (96)

Let {�t}1t=1 be a <d-valued Stochastic process where �t 2 Ft�1. Assume ⇤0 2 <
d⇥d is a positive-define matrix,

let, ⇤t = ⇤0 +
P

t

j=0 �j�
T

j
. Then for any � > 0 with probability at least 1� �, we have

||

tX

s=1

�s✏s||
2
⇤�1

t

 2�2 log

"
det(⇤t)1/2 det(⇤0)�1/2

�

#
(97)

The next result characterizes the covering number of an Euclidean ball (Lemma 5.2 in Vershynin (2010)).
Lemma 23. [Covering Number of Euclidean Ball] For any ✏ > 0, the ✏-covering number of the Euclidean ball in
Rd with radius R is upper bounded by (1 + 2R/✏)d.

The following lemma is similar to Lemma C.4 in Jin et al. (2020).
Lemma 24. Let {✏⌧} be any sequence so that |✏⌧ | B for any ⌧ . Then, we have for any (h, k) 2 [H]⇥ [K] and
any � 2 <d:

|�T (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
✏⌧ | B

p

k||�||(⇤k

h
)�1

H Tabular Setup

In this section, we describe the tabular setup in detail. First, we describe a structure for the tabular setup where
one does not need to take the inverse of ⇤k

h
. Further, we note that ⌘ = O(K�H) is enough rater ⌘ = O(K�1.5H).

We can revert back to the tabular case by setting �(s, a) = es,a where es,a is a d-dimensional (here d = |S||A|)
vector where es,a = 1 for state-action pair (s, a) and zero for other values of state and action. The wr,h vector
update becomes as the following

wk,Y

r,h
(x, a) =

1

(nk

h
(x, a) + �)

n
k

h
(x,a)X

⌧=1

(rh(x
⌧

h
, a⌧

h
) + V k,Y

r,h+1(x
⌧

h+1))

where nk

h
(x, a) is the number of times the state-action pair (x, a) has been encountered at step h till episode k.

The Qk,Y

r,h
update will be

Qk,Y

r,h
(x, a) = min{hwk,Y

r,h
(x, a),�(x, a)i+ �

q
1/(nk

h
(x, a) + �), H}.

Arnob Ghosh, Xingyu Zhou, Ness Shroff

In a similar manner, we can update Qk

g,h
.

We further remark that if we maintain nk

h
(x, a, x̃) to be the number of times the state-action-next state (x, a, x̃)

has been encountered at step h till episode k. Then

wk,Y

r,h
(x, a) =

1

(nk

h
(x, a) + �)

·

0

@nk

h
(x, a)rh(x, a) +

X

x̃

nk

h
(x, a, x̃)V k,Y

r,h+1(x̃)

1

A .

In this case, we do not need to go through all samples at each iteration and do not even need to store the
old samples. The memory complexity of maintaining the counts {nh(x, a, x̃)} is O

�
H|S|

2
|A|
�
, which matches

model-based algorithms for tabular settings such as Efroni et al. (2020).

It is clear that if |V k,Yk

r,h+1(xh+1)� V
k,Y

0
k

r,h+1(xh+1)| ✏ then |wk,Yk

r,h
(x, a)� w

k,Y
0
k

r,h
(x, a)| ✏ for any (x, a).

Lemma 25. |V k,Yk

g,1 (x1)� V
k,Y

0
k

g,1 (x1)| O(K�1), if |Yk � Y 0
k
|

1

log(|A|)HKH+1
.

Proof. We prove the result via induction. For step h = H, V k

j,H+1(x) = 0, hence, Qk,Yk

j,H
(x, a) = Q

k,Y
0
k

j,H
(x, a) , thus,

from Lemma 15,

|V k,Yk

j,H
(x)� V

k,Y
0
k

j,H
(x)| 2H2↵

1

H log(|A|)KH+1
=

1

log(|A|)H�1KH+0.5
(98)

where we have used the fact that ✏00 =
1

log(|A|)HKH+1
, and ↵ = log(|A|)

p
K/(4H). Now, let us assume that the

result is true for h+1. We have |V k,Yk

j,h+1(x)�V
k,Y

0
k

j,h+1(x)|
1

Kh+1
. Thus, |Qk,Yk

j,h
(x, a)�Q

k,Y
0
k

j,h
(x, a)|

1

log(|A|)hKh+1
.

Hence, we have from Lemma 15

|V k

j,h
(x)� V k

j,h
(x)| 2H↵

✓
H✏00 +

p

K
1

Kh+1

◆

 O

✓
1

log(|A|)h�1Kh

◆
(99)

where ✏00 =
1

log(|A|)HKH+1
, and ↵ =

p
K/(4H) Hence, the result follows after putting h = 1.

Hence, for tabular case, ⌘ = O(1/KH+1) is enough. Thus, the maximum number of times the while loop may
continue is O(KH+1.5) since Yk

p
K.

Improved Bounds for Tabular Case Using the finite state-space, we obtain a better bound for the regret and
hard constraint violation.
Theorem 3. Fix any p 2 (0, 1). If we set � = 1, � = C4

p
|S|log(4|S||A|log(|A|)T/p) for tabular case in

Algorithm 1 for some absolute constant C4. With probability 1� 2p, we have

Regret(K) C(
p

|S|2|A|H3T log(4|S||A|log(|A|)T/p)),

ViolationH(K) C 0
p
|S|2|A|H3T log(4|S||A|log(|A|)T/p)

for some absolute constants C, and C 0.

Proof. In order to prove the above result, we show that new bonus term is enough for optimisim.

Let us recall the difference Qk

r,h
(x, a)�Q⇡

r,h
(x, a) = �(x, a)T [wk

r,h
� w⇡

r,h
] for any policy ⇡. Recall from (22) that

wk

r,h
� w⇡

r,h
= ��(⇤k

h
)�1(w⇡

r,h
) + (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[V k

r,h+1(x
⌧

h+1)� hV
k

r,h+1(x
⌧

h
, a⌧

h
)]

+ (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[hV

k

r,h+1(x
⌧

h
, a⌧

h
)� hV

⇡

r,h+1(x
⌧

h
, a⌧

h
)] (100)

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

Now, note that w⇡

r,h
= ✓j,h +

P
s0 PhV ⇡

r,h+1(s
0) for tabular case. Hence ||w⇡

r,h
|| H

p
|S|. For the third term, note

that

h�(x, a), (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[h(V

k

r,h+1 � V ⇡

r,h+1)(x
⌧

h
, a⌧

h
)]i

= h�(x, a), (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
(�⌧

h
)T
Z

(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i

= h�(x, a),

Z
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i

� h�(x, a),�(⇤k

h
)�1

Z
(V k

r,h+1 � V ⇡

r,h+1)(x
0)dµh(x

0)i (101)

The last term in (101) can be bounded as the following

|h�(x, a),�(⇤k

h
)�1

X

x0
h(x

0
|x, a)(V k

r,h+1 � V ⇡

r,h+1)(x
0)i| 2H

p
|S|
q
�(x, a)T (⇤k

h
)�1�(x, a) (102)

The first term in (101) is equal to

h(V
k

r,h+1 � V ⇡

r,h+1)(x, a)

We have to bound the second term in (100). Note that

�(x, a)T (⇤k

h
)�1

k�1X

⌧=1

�⌧
h
[V k

r,h+1(x
⌧

h+1)� hV
k

r,h+1(x
⌧

h
, a⌧

h
)] =

(nk

h
(x, a) + �)�1

X

⌧

1{(x, a) = (x⌧

h
, a⌧

h
)}(V k

r,h+1(x
⌧

h+1)� hV
k

r,h+1(x, a)) (103)

We now bound the above. First, we express Vr,h+1 = Ṽh+1 +�Vj where |�Vj | ✏ for Ṽj in the ✏-covering set of
Vj . Since the upper bound for the value function is H, one can trivially obtain the ✏-covering number for the
value function as NV

✏
= (1 + 2|S|H/✏)|S|. Now, we have

(nk

h
(x, a) + �)�1

X

⌧

1{(x, a) = (x⌧

h
, a⌧

h
)}(V k

r,h+1(x
⌧

h+1)� hV
k

r,h+1(x, a)) =

(nk

h
(x, a) + �)�1

X

⌧

1{(x, a) = (x⌧

h
, a⌧

h
)}(Ṽ k

h+1(x
⌧

h+1)� hṼ
k

h+1(x, a)) + 2(nk

h
(x, a) + �)�1✏ (104)

From Theorem 2, we obtain with probability 1� � for a specific (x, a) 2 [S]⇥ [A]

(nk

h
(x, a) + �)�1/2

kX

⌧=1

1{(x, a) = (x⌧

h
, a⌧

h
)}(Ṽj(x⌧)� [Ṽj(x⌧)|x, a])

vuuut2H2

2

4log

(nk

h
(x, a) + �)1/2��1/2

�

!3

5

p
2H2 log(T/�)

Hence, using the union bound where � = p/(N ✏

V
|S||A|), we obtain with probability 1� p/2 for any (x, a)

(nk

h
(x, a) + �)�1/2

kX

⌧=1

1{(x, a) = (x⌧

h
, a⌧

h
)}(Ṽj(x⌧)� [Ṽj(x⌧)|x, a])

q
2H2

⇥
log(2T |S||A|/p) + |S|log(1 + 2H|S|/✏)

⇤
(105)

Using ✏ = H/K, we obtain from (104) and (105) as

(nk

h
(x, a) + �)�1

kX

⌧=1

1{(x, a) = (x⌧

h
, a⌧

h
)}(Vr,h+1(x⌧)� [Ṽr,h+1(x⌧)|x, a])

p
2H2|S|log(4T |S||A|/p)(nk

h
(x, a) + �)�1/2 (106)

Arnob Ghosh, Xingyu Zhou, Ness Shroff

Hence, we can write

Qk

r,h
(x, a)�Q⇡

r,h
(x, a) C4H

p
|S|log(4(C5 + 1)|S||A|T)/p)

q
(�(x, a)T (⇤k

h
)�1�(x, a) (107)

for some constant C4 and C5.

Hence, in Lemma 11, we can use the � value as C4H
p

|S|log(|S||A|4T/p). Recall equation (67)

KX

k=1

V k

j,1(x1)� V ⇡k

j,1 (x1)
KX

k=1

HX

h=1

(Dk

j,h,1 +Dk

j,h,2) +
KX

k=1

HX

h=1

2�
q
�(xk

h
, ak

h
)T (⇤k

h
)�1�(xk

h
, ak

h
)

Hence, following the same arguments as in Lemmas 3, and 6, we obtain

KX

k=1

V k

j,1(x1)� V ⇡k

j,1 (x1) O(
p

|S|2|A|H3T ((log(|S||A|log(|A|)T/p))2)

where we use (76) to bound the above. The above is enough to obtain the improved regret and hard constraint
violation bound as the rest of the argument will follow the same logic.

I Difference from the Bandit-setup

Recently, Guo et al. (2022) proposed an algorithm which achieves Õ(
p
T) regret and hard-constraint violation in

various bandit setups using primal-dual approach. The episodic RL-setup with H = 1 is equivalent to the bandit
setup. Thus, our approach is applicable to the bandit setup as well. However, unfortunately, the approach in Guo
et al. (2022) can not be extended to the episodic CMDP setup. We will describe the main issue next.

For the bandit set-up, Guo et al. (2022) considered the following problem

maximize ⇡

X

a

⇡(a)f(a) subject to
X

a

⇡(a)g(a) 0 (108)

In Guo et al. (2022), a dual variable Ŷk �
p
K is used (hence, the dual variable is always greater than or equal

to
p
K). Since there is no need of multiple steps in bandit setup, there is no need of value function. Rather,

one only needs to estimate the reward and utility function f and g respectively. Guo et al. (2022) estimated
an optimistic reward function f̂(a) and utility function ĝ(a) for each a. Then, Guo et al. (2022) proposed an
algorithm according to the greedy policy

a = argmax
a0

(f̂(a0)� Ŷk(ĝ(a
0))+) (109)

Note that if ĝ(a0) is positive, then it negates the reward which means that such an action would be avoided.
From the optimism, one can show that f̂(a0)� Yk(ĝ(a0))+ � f(a⇤)� Yk(g(a⇤))+ where a⇤ is the optimal solution.
Using the above, Guo et al. (2022) obtained the regret and hard constraint violation bound.

The regret and violation bound obtained by Guo et al. (2022) is Õ(
p
T) which is the same as ours. However,

the computation complexity is much less. In particular, there is no need to obtain the dual-variable Yk at every
episode to balance between the reward and the utility maximization which we proposed. Rather, any Ŷk �

p
K

would be sufficient.

It is natural to ask whether we can extend the above approach for the RL setup. Readers would note that in the
RL one would replace the f and g with Qr,h and Qg,h respectively. In particular, one would be tempted to take
action according to the greedy policy

a = argmax
a0

(Qk

r,h
(x, a0)� Yk(b�Qk

g,h
)+) (110)

However, the above would not work.

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

First, as mentioned in Ghosh et al. (2022) greedy policy can not provide required ✏-covering number for individual
value function which is needed to show uniform concentration bound for linear CMDP. Ghosh et al. (2022) showed
that using the soft-max policy instead of greedy policy would solve the above issue. Thus, it is natural to ask
whether using the soft-max policy instead of greedy-policy would solve the above problem.

However, even if we use the soft-max policy on the composite state-action value function Qk

r,h
(x, a) � Yk(b �

Qk

g,h
(x, a))+ we can not guarantee optimism result. The reason is that in (5) the constraint only entails that the

expected cumulative utility must be greater than or equal to b (i.e., V ⇡k

g,1 (x1) � b). However, it does not imply
for what value function at h-th step (i.e.,V ⇡k

g,h
(x)) for h > 1 would lead to a feasible policy. Certainly, requiring

that V ⇡k

g,h
� b would be too pessimistic. Thus, such a policy would most likely reject even the optimal policy ⇡⇤.

Hence, even if one correctly estimates V ⇡k

g,h
it does not know whether it is feasible or not unless H = 1. Hence, the

optimism result no longer holds, unlike the bandit scenario. Instead, our algorithm tries to find the dual-variable
which would perfectly balance between the reward maximization and utility maximization.

Further, Guo et al. (2022) inherently assumed that the optimal policy is deterministic as the self-bounding
property in the proof of Theorem 1 (Appendix A in Guo et al. (2022)) only holds when the optimal policy is
deterministic. It is already known that CMDP admits stochastic policy Altman (1999), thus, the above approach
can not be applied to the RL-setup.

J Strictly feasible Policy

In order to obtain the soft-violation bound, all the existing works assume that there exists a strictly feasible
policy ⇡̄ such that V ⇡̄

g,1(x1) � b + � for some � > 0. Then, from the theory of strong duality, one obtains the
optimal dual variable is upper bounded by 2H/� Ghosh et al. (2022); Ding et al. (2021). As we mentioned before,
in our approach, we do not need such strict feasibility assumption. However, if we assume strict feasibility, we
only need to search for dual variable till H/� rather than

p
K. In fact, it is guaranteed that while loop will

return a Yk such that V k,Yk

g,1 (x1) � b� (�/H)K�1/2 which would help us to prove the violation bound. We now
formalize the result in the following
Lemma 26. Let there be a strictly feasible policy such that V ⇡̄

g,1 � b + � where � > 0, Algorithm 1 returns
V k,Yk

g,1 (x1) � b� �/H(K�1/2) for Yk H/�.

Proof. If while loop is terminated before H/�, then we are certain that V k,Y

g,1 � b, hence, the statement of the
lemma is trivially true. Thus, we consider the case when Yk reaches H/�..

We prove by contradiction. Suppose that the above does not hold. Then, for all Yk H/�, V k,Yk

g,1 (x1) <

b� �/H(K�1/2). However, note that V ⇡̄

g,1(x1) = b+ �. Hence,

V ⇡̄

r,1(x1) +H/�(V ⇡̄

g,1(x1)) � Hb/� +H (111)

where we used the fact that V ⇡̄

r,1(x1) � 0. Now, note that

V k,H/�

r,1 (x1) +H/�V k,H/�

g,1 (x1) < H +Hb/� �K�1/2 (112)

From Lemma 9 for any Y ,V k,Y

r,1 (x1) + Y V k,Y

g,1 (x1) +K�1/2
� V ⇡̄

r,1(x1) + Y V ⇡̄

g,1(x1). Thus,

V k,H/�

r,1 (x1) + YkV
k

g,1(x1) � V ⇡̄

r,1(x1) + YkV
⇡̄

g,1(x1)�K�1/2
� H +Hb� �K�1/2 (113)

However, it contradicts (112). Hence, the result follows.

Note that we use the fact that Yk �
p
K to show the violation bound. Hence, the regret bound can be proved in

a similar way as we have proved. In the following, we prove the violation bound.

We know that at least when the loop ends we have V k,Yk

g,1 (x1) � b�K�1/2�/H. Equating V k,Yk

g,1 = V k

g,1 for the
chosen dual value, we have

X

k

(b� V k

g,1(x1))+ K1/2�/H. (114)

Arnob Ghosh, Xingyu Zhou, Ness Shroff

which gives the bound on term T5. This shows the bound on violation in (12). Hence, the result follows.

Since we only need to search for dual variable till H/� instead of
p
K, we can reduce the maximum no. of steps

required to find Yk. Note that similar to Ghosh et al. (2022); Ding et al. (2021) we do not need to know the
strictly feasible policy, rather, we only need to know (estimate) �.

K Numerical Evaluations

Hyper-parameter Selection: Throughout this section, we use ↵ =
p
K/H, p = 0.05,and ⌘ =

1
p
KH

. Thus,

we are using a larger ⌘ compared to the one described in Algorithm 1. However, such a higher ⌘ decreases
the computation time significantly, and yet, we observe good empirical behavior. For algorithm proposed in
Ghosh et al. (2022) we use ↵ = K/H, and the dual variable learning rate ⌘ = 10/

p
KH2 as suggested by the

paper. For OptPess-PrimalDual (Liu et al., 2021a) we use the following set of hyper parameters: ⌘k = 10H
p
k,

✏k = H2
p
|S|3|A| log(k/�0 + 1)/

p
k log(k/�0), �0 = p/(|S|2|A|H) for episode k since we get the best result for this

set of hyper-parameters.

K.1 Setup in Ghosh et al. (2022)

Similar to Ghosh et al. (2022) we consider that even if the scheduler schedules a job, the machine might not be
able to complete the 2 jobs. We consider (xh+1 = (xh � 2a)+|xh, a) = 0.8, (xh+1 = (xh � a)+|xh, a) = 0.1,
and (xh+1 = xh|xh, a) = 0.1.

xh+1 =

8
>><

>>:

max{xh � 2a, 0} w.p. 0.8

max{xh � a, 0} w.p. 0.1

xh, otherwise

Thus, if a = 0, the state xh+1 = xh. We want that utility to be less than or equal to 4 at the end of every episode.

We evaluate Algorithm 1 on a simulated model (same as in Ghosh et al. (2022)) to validate our theoretical results.
We consider that the number of jobs belongs to the discrete state {0, 1, . . . , 9} where 0 means that there is no job.
The length of the episode (H)is 10. At the start of each episode, the state of the job is 9, i.e., the job stack is
full. The agent needs to decide whether to send job (a = 1) or not (a = 0) to a machine. The environment is
similar to Ghosh et al. (2022). In particular, we assume that at time steps from 3 to 6, the reward is 1� 0.9a, In
other time steps, the reward is 1� 0.2a. When a = 1, the job state decreases with the same probability as in
Ghosh et al. (2022). This mimics the setup where at a certain time, it might be more costly to process a job (for
example, electricity cost might be higher, or the machine needs to abandon an important job). The agent gets an
utility of g(xh, ah, xh+1) = (xh � xh+1)/2. b is set at 3.5. This will ensure that at most 2 job can remain at the
end of each episode.

We run Algorithm 1 for 3 ⇥ 105 episodes (K). Note that the setup can be represented in a tabular form
(Appendix H). We plot the reward achieved in an episode (averaged over the no. of episodes) and cumulative hard
constraint violations in Figure 1. As predicted by our theory, the hard constraint violation scales smaller than
p
K. In fact, our approach employs policies that are close to satisfying the constraint after 1.5⇥ 105 episodes.

Further, we observe that the hard constraint violations achieved by the algorithm proposed in Ghosh et al. (2022)
and OptPess-PrimalDual (Liu et al., 2021a) are much higher and grow at a faster scale compared to ours. The
average reward achieved by our approach is close to the optimal one. The above shows the efficacy of our approach
in achieving sub-linear hard constraint violation compared to other primal-dual based approaches which mostly
focus on reducing the soft constraint violation.

K.2 Cartpole

We also consider the traditional cartpole environment of OpenAIGym Brockman et al. (2016). Similar to Xu et al.
(2021), we consider that the agent gets a reward of 1 if the cartpole is kept upright, and gets 1 utility unless the
absolute value of the angle (✓) exceeds 6�. In which case the utility is 0. Each episode is of length 200 steps. We
set b = 140.

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL

(a) Moving Average (of Last 10 episodes)
of Reward for our approach, Ghosh et al.
(2022), and Liu et al. (2021a)

(b) Moving average of utility for our ap-
proach. The value of b is 140.

(c) Hard-violation of our approach,
Ghosh et al. (2022), and Liu et al.
(2021a)

Figure 2: Empirical evaluations for Cartpole environment of OpenAIGym Brockman et al. (2016).

The state space consists of location, speed, angle, and angular velocity. We discrete each in evenly-spaced 15
states, thus, the total state space is 154. Even though the state space is large, we observe that our approach
learns to achieve the optimal policy. It shows that our approach can be applied to continuous state space as well.
Further, our approach also learns to satisfy constraints.

From Figure 2, we observe that the hard constraint violation in our approach grows on a much smaller scale
compared to both Ghosh et al. (2022) and OptPess-PrimalDual. In fact, even the reward achieved by our approach
is higher. The highest achievable reward is 200 and as we can see our approach indeed approaches the optimal
reward as K increases.

K.3 A paradoxical CMDP

This MDP is proposed by Moskovitz et al. (2023). If one takes action a = 0, one would stay in state s0 and gets
a reward 1. However, taking action a = 1 would take the agent to state s1 and reward 0. At state s1, the action
a = 1 would get the agent to state s0 and reward 1. On the other hand, the agent will remain in state s1 if the
action a = 0 and the reward will be 0 (see Figure 3a). The length of the horizon H = 10. The utility g = r. The
CMDP problem is

maximize Vr,1(s0) s.t Vg,1(s0) 5 (115)

Hence, the agent should be in state s0 half of the time and state s1 for the rest. Though the maximum cumulative
reward can be 10 where the agent can remain in state s0. However, such a strategy is not feasible.

From Figure 3 it is evident that the hard-constraint violation in our approach scales at most O(
p
K) and scales at

a much smaller scale compared to Liu et al. (2021a) and Ghosh et al. (2022). Hence, it shows that our algorithm
is able to achieve feasible policy at a faster scale compared to the existing state-of-the-art approaches who have
only focused on reducing the soft constaint violation. Figure 3 also shows that initially, the reward is higher than
5 as our algorithm still explores. Hence, the algorithm chooses infeasible policies more frequently. Finally, the
reward decreases the reward converges to the optimal value of 5 as our algorithm chooses feasible optimal policies
more frequently.

K.4 Experiment on Frozen Lake

We also simulated our method on the frozen lake environment of OpenAIgym Brockman et al. (2016). We consider
4⇥ 4 grid. The agent gets a reward 1 when it reaches the goal state. We consider an episode length of H = 9.
The agent stays in the goal state once it reaches there. The agent is also permanently in the hole if it reaches a
hole. In this case, the reward will be 0.

In the original frozen-lake experiment, there are two optimal ways to get to the goal. We add a constraint to
ensure that one of the paths is infeasible. In particular, we add a utility function where the agent gets a utility of
1 except when the agent falls into a hole or goes to any of the blocks on the extreme left-hand column (Figure 4a).
This will ensure that the optimal path of the left-hand side is infeasible. We set b to 8 which ensures that only
one path is feasible and optimal.

Our simulation result shows that our approach indeed identifies the optimal path (Figure 4). The violation

Arnob Ghosh, Xingyu Zhou, Ness Shroff

a=0,
r=g=1 a=1,

r=g=0

a=0,
r=g=0

!! !"
a=1,
r=g=1

(a) Paradoxical CMDP

(b) The plot of hard-violation of our ap-
proach,that of Ghosh et al. (2022), and
Liu et al. (2021b) (c) Avg. reward of our approach.

Figure 3: Empirical evaluations for Paradoxical CMDP inspired from Moskovitz et al. (2023).

S, g=1 F, g=1 F, g=1 F,g=1
F, g=0, H, g=0 F, g=1 H,g=0
F, g=0 F, g=1 F, g=1 H, g=0
H, g=0 F, g=1 F, g=1 G, g=1

The optimal solution– Move rightward for 2 steps, and downward
for 3 steps, and then rightward for 1 step to reach the goal state.

(a) Frozen-Lake CMDP

(b) The plot of hard-violation of our
approach, that of Ghosh et al. (2022),
and Liu et al. (2021a).

(c) Moving Average reward of our ap-
proach for Frozen-lake.

Figure 4: Empirical evaluations for Frozen-Lake Environment of OpenAIGym.

becomes almost 0 after 1000 episodes (Figure 4b). Hence, our algorithm indeed achieves the feasible optimal
policy. The hard constraint violation achieved by Ghosh et al. (2022) is much higher compared to ours and is
unable to obtain feasible policy. The hard constraint violation achieved by Liu et al. (2021a) is higher compared
to even Ghosh et al. (2022).Further, the reward achieved by our approach converges to the optimal one (3) after
only 1000 episodes (Figure 4c). Again, it shows that our algorithm is able to identify optimal policy even within
smaller number of episode while the other algorithms are unable to find feasible policy.

