
Sample-efficient neural likelihood-free Bayesian inference of implicit
HMMs

Sanmitra Ghosh1,2 Paul J. Birrell3,2 Daniela De Angelis2,3
{sanmitra.ghosh,paul.birrell,daniela.deangelis}@mrc-bsu.cam.ac.uk

1PhysicsX, London, 2MRC Biostatistics Unit, University of Cambridge, 3UK Health Security Agency

Abstract

Likelihood-free inference methods based on
neural conditional density estimation were
shown to drastically reduce the simulation
burden in comparison to classical methods
such as ABC. When applied in the context
of any latent variable model, such as a Hid-
den Markov model (HMM), these methods
are designed to only estimate the parameters,
rather than the joint distribution of the pa-
rameters and the hidden states. Naive appli-
cation of these methods to a HMM, ignoring
the inference of this joint posterior distribu-
tion, will thus produce an inaccurate esti-
mate of the posterior predictive distribution,
in turn hampering the assessment of goodness-
of-fit. To rectify this problem, we propose a
novel, sample-efficient likelihood-free method
for estimating the high-dimensional hidden
states of an implicit HMM. Our approach re-
lies on learning directly the intractable poste-
rior distribution of the hidden states, using an
autoregressive-flow, by exploiting the Markov
property. Upon evaluating our approach on
some implicit HMMs, we found that the qual-
ity of the estimates retrieved using our method
is comparable to what can be achieved using
a much more computationally expensive SMC
algorithm.

1 INTRODUCTION

We consider the task of carrying out Bayesian inference
of an implicit HMM, i.e. a HMM whose likelihood
density function is analytically intractable. Such a

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

model is only available as a simulator from which one
can generate data that realistically, faithfully mimics
the observed time course of some complex bio-physical
system.

Due to the analytical intractability of the likelihood
density function standard Bayesian inference methods
cannot be applied to such an implicit HMM. Inference
of such a model is typically carried out using approxi-
mate Bayesian computation (ABC) (Sisson et al., 2018),
which only requires forward simulations from the model,
see for example Martin et al. (2019); Picchini (2014);
Toni et al. (2009).

Recently, a new class of likelihood-free inference meth-
ods, see Cranmer et al. (2020) for a review, were de-
veloped that use a neural network based emulator of
the posterior density, the likelihood density and the
likelihood ratio. Such methods were empirically shown
to be much more sample-efficient (require fewer model
simulations) (Lueckmann et al., 2021) than ABC. These
methods were found to perform equally well across dif-
ferent models without problem specific tailoring of the
neural network’s architecture. Naturally, these meth-
ods appear as more preferable algorithmic choices for
carrying out inference of an implicit HMM, in compar-
ison to ABC.

These neural likelihood-free inference (NLFI) ap-
proaches, in the specific context of a latent variable
problem such as a HMM, have so far been applied to
carry out Bayesian inference partially by estimating
only the marginal posterior of the parameters rather
than the joint posterior of the hidden states and pa-
rameters. This is since a naive implementation of a
neural network based density (or density-ratio) estima-
tor may perform unreliably (with drastically reduced
sample-efficiency) in estimating the joint posterior of
the parameters and the high-dimensional hidden states,
potentially for a lack of inductive biases. Estimation of
the hidden states may or may not be of interest within
a particular application domain. However, without es-
timating the joint posterior of the parameters and the
hidden states the goodness-of-fit cannot be correctly as-

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

sessed. This is a severe limitation. Note that although
ABC theoretically targets the joint distribution (see
Appendix A.1 for details) it fails to estimate the hid-
den states adequately within a reasonable simulation
budget.

Note that the task of inferring the posterior of the
hidden states of an implicit HMM is in itself extremely
challenging. This problem can only be solved using the
Bootstrap sequential Monte Carlo (SMC) algorithm
(Gordon et al., 1995). However, reliable performance
of the Bootstrap SMC algorithm often requires a large
number of model simulations, thus defeating the pur-
pose of sample-efficient inference which motivates the
use of NLFI. Thus, extending NLFI approaches to solve
the joint estimation problem is highly non-trivial as
this requires the development of a fundamentally new
approach of estimating the hidden-states, that is much
more sample-efficient in comparison to SMC.

In this paper we present such a novel technique which
is based on learning an approximation of the posterior
distribution of the hidden states using neural density
estimation. After learning this posterior approximation,
neural density estimators can be used to draw the full
path of the hidden states recursively. Following are our
salient contributions:

• We develop a sample-efficient method to obtain
an approximation of the posterior distribution of
the sample path of a HMM, without accessing the
transition or the observation densities.

• Our approach, when combined with any off-the-
shelf NLFI method, can be used, as a sample-
efficient alternative to ABC, for carrying out full
Bayesian inference of an implicit HMM.

2 BACKGROUND

We begin by first introducing the implicit HMM and
then we will discuss the challenges of carrying out
Bayesian inference. We can describe a HMM, for a
latent Markov process Xt ∈ RK with a K-dimensional
continuous state-space, as follows:

Xt ∼ f(Xt|Xt−1,θf), yt ∼ g(yt|Xt,θg) (1)

where θf ,θg parameterise the transition
f(Xt|Xt−1,θf) and the observation g(yt|Xt,θg)
densities respectively. We consider the parameter
vector θ = (θf ,θg,X0) to include the initial state
X0. Given a set of noisy observations of L out of
the K states y ∈ RM×L at M experimental time
points, of the latent process, our goal is to infer
the joint posterior distribution p(θ,x|y), where
x = (X1, . . . ,XM−1) is the unobserved sample path

of the process – the hidden states. The expression for
the unnormalised posterior is given by

p(θ,x|y) ∝

(
M−1∏
t=0

g(yt|Xt,θg)

)(
M−1∏
t=1

f(Xt|Xt−1,θf)

)
× p(θ),

(2)
where p(θ) is the prior distribution over the parame-
ters and the initial values. Additionally, we are also
interested in checking the goodness-of-fit, which, within
the Bayesian context, is carried out by inspection of
the posterior predictive distribution p(yr|y) of gener-
ating replicated data (Gelman et al., 1996) yr. This
distribution is given by

p(yr|y) =
∫

p(yr|x,θ)p(x,θ|y)dxdθ. (3)

We assume that one can draw samples from f(·) and
g(·), but cannot evaluate either or both of these densi-
ties. This assumption leads to an intractable likelihood
density rendering the model implicit. This is the con-
strained setting for our work. Inference of p(θ,x|y),
in our implicit modelling context, can be carried out
using the ABC algorithm which replaces the evaluation
of the right hand side of Eq (2), upto a normalising
constant, by using a distance function between simu-
lated and real data. Although ABC jointly samples
(Appendix A.1) the hidden states and the parameters,
drawing the high-dimensional hidden states just using
rejection sampling is highly inefficient. Although a
more efficient variant of the basic ABC algorithm may
employ a sophisticated technique to propose values of
θ, the states are still updated using the prior of the
Markov process as the proposal, thus falling back to
rejection sampling, resulting in an exorbitant compu-
tational expense. Due to this computational burden
ABC algorithms are rarely practically useful for in-
ference of an implicit HMM where f(·) and g(·) are
computationally expensive simulators.

Note that we can decompose the joint density using
the product rule as follows:

p(x,θ|y) = p(x|θ,y)p(θ|y). (4)

With the above decomposition we can break down the
task of inferring the joint distribution of x,θ into two
sub-tasks of inferring separately the distributions p(θ|y)
and p(x|θ,y). Samples of x can then be drawn given
samples of θ. Note that the task of inferring p(θ|y)
can be carried out, sample-efficiently, using any NLFI
method. Inference of p(x|θ,y) can then be carried
out using a Bootstrap SMC, or its ABC (and more
inefficient) variant (Drovandi et al., 2016) when g(·) is
unavailable. The posterior predictive distribution can

Ghosh, Birrell, De Angelis

then be evaluated as follows:

p(yr|y) ≈
∫

p(yr|x,θ)psmc(x|y,θ)p(θ|y)dxdθ, (5)

where psmc(x|y,θ) is a Bootstrap SMC estimate of
the hidden states. To evaluate the above integral nu-
merically, one has to run a particle filter for each θ
sample, which in turn will require as many simulations
as the number of particles, resulting in a computa-
tion cost that in most cases will be higher than that
of running NLFI for inferring θ alone. Clearly, this
makes SMC unusable as long as we need to evaluate the
posterior predictive distribution. The particle Markov
chain Monte Carlo (MCMC) algorithm (Andrieu et al.,
2010), when g(·) is known, can produce samples from
the true joint posterior distribution in Eq. (2). How-
ever, this algorithm also requires running SMC for
each iteration of MCMC, making it computationally
expensive to apply to complex models. Recently, neural
network based methods have been proposed to infer
a high-dimensional hidden states of a HMM (Schu-
macher et al., 2023; Ryder et al., 2021). However, it
is unclear, given lack of comparison with exact algo-
rithms, whether such methods can indeed recover the
true posterior hidden states.

Note that standard sample-efficient alternatives to SMC
such as EM family algorithms and more generally vari-
ational inference algorithms for state-space models are
non-applicable due the implicitness of our model. Next,
we briefly describe existing NLFI methods and high-
light their limitations in estimating the joint posterior
of x,θ, before explaining the proposed method.

2.1 Related work: Neural likelihood-free
inference (NLFI)

If instead of the joint p(θ,x|y) we only wish to esti-
mate the marginal p(θ|y), then a number of strategies
based on conditional density estimation can be em-
ployed. For example, we can simulate pairs of θ,y
from their joint distribution and then subsequently
create a training dataset, of N samples {θn,yn}Nn=1,
which can be utilised to train a conditional density
estimator, constructed using a flexible function ap-
proximator such as a neural network, that can ap-
proximate the marginal posterior (Papamakarios and
Murray, 2016) p(θ|y) ≈ qψ(θ|y) or the likelihood Pa-
pamakarios et al. (2019) p(y|θ) ≈ qψ(y|θ). Here ψ
denotes the parameters of the function approximator
used to build the density estimator. In the former case
once we have trained an approximation to the posterior,
using a density estimator, we can directly draw samples
θ ∼ qψ(θ|yo) by conditioning on a particular dataset
yo. In the latter case we can use the trained density
estimator of the likelihood to approximate the posterior

p(θ|y) ∝ qϕ(yo|θ)p(θ) and then draw samples from it
using MCMC.

A neural network is used in this context either as a
nonlinear transformation of the conditioning variables,
within a mixture-of-Gaussian density as was proposed
in Bishop (1994), or as a normalizing-flow (Rezende
and Mohamed, 2015; Papamakarios et al., 2021) that
builds a transport map (Parno, 2015) between a sim-
ple distribution (such as a standard Gaussian) and
a complex one such as the likelihood/posterior den-
sity. Following the seminal work of Tabak and Turner
(2013) a large amount of research is undertaken to build
such transport maps using samples from the respective
measures.

An alternative formulation of NLFI utilises the duality
(Cranmer et al., 2015) between the optimal decision
function of a probabilistic classifier and the likelihood
ratio, r(θa,θb) = p(y|θa)

p(y|θb)
evaluated using two samples

θa and θb, to approximate the likelihood-ratio through
training a binary classifier using samples from p(y,θ).
This likelihood ratio can then be used as proxy within
a MCMC accept/reject step as follows:

min

{
1, r(θ∗,θ)

kθ(θ|θ∗)p(θ∗)
kθ(θ

∗|θ)p(θ)

}
, (6)

where kθ(·) is a proposal density. Note that these NLFI
methods carry out amortised inference that is there is
no need to re-learn the density/density-ratio estimator
for every new instances of the observations. However,
we like to point out that the MCMC algorithms, as-
sociated with likelihood or likelihood ratio estimation
based approaches, has to be re-run for each new dataset,
which can be more time consuming than training the
associated neural networks.

To increase sample-efficiency of these methods one can
use them in a sequential manner (Durkan et al., 2018).
After an initial round of NLFI, we are left with samples
of θ from its posterior distribution. We can subse-
quently use these samples to generate further simulated
data concentrated around the given observations yo.
This constitute a new training set on which a second
round of NLFI can be applied to further refine the
approximations. This process can be repeated for a
number of rounds. Note that when a sequential process
is used in conjunction with a density estimator for the
posterior then the parameter samples from the second
round are no longer drawn from the prior. Thus, differ-
ent adjustments had been proposed, leading to different
algorithms (Greenberg et al., 2019; Lueckmann et al.,
2017), to overcome this issue.

We like to further point out that NLFI is applied using
some summary statistic s(y) of the data y, a practise

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

carried over from the usage of ABC methods. There
have been recent work (Chen et al., 2021) on using a
neural network to generate the summary statistics.

Also see Appendix H for a brief review of other classical
approaches for inference of implicit HMMs.

3 LIMITATIONS OF NLFI
METHODS

Can we ignore the joint distribution? The var-
ious NLFI techniques discussed so far are designed
to solve the marginal problem of estimating p(θ|y).
The necessity of the estimation of the hidden states
x is problem specific. In some applications estima-
tion of the hidden states is of paramount importance
whereas in others one may wish to ignore the hidden
states. Irrespective of whether the interest is in esti-
mating p(θ,x|y) or p(θ|y), in the process of modelling
a physical phenomenon it is necessary to assess the
goodness-of-fit. But when instead of the joint distribu-
tion we only have access to the marginal distribution
(that is access to only samples of θ, the output of
any NLFI method) then the posterior predictive dis-
tribution, instead of Eq. (3), can only be obtained as
follows

p(yr|y) ≈ p̂(yr|y) =
∫

p(yr|x,θ)p(x|θ)p(θ|y)dxdθ,

(7)
where the joint posterior of x,θ is approximated as
p(x,θ|y) ≈ p(x|θ)p(θ|y), which is akin to drawing x
from the prior p(x|θ) =

∏M−1
t=1 f(Xt|Xt−1,θ), of the

latent Markov process. As a result the credible inter-
vals of p̂(yr|y) would be erroneously inflated, since in
this case the latent sample path x is not correctly con-
strained by the data, leading to an incorrect assessment
of the goodness-of-fit. This is a severe problem that
needs to be addressed even in the case where we wish
to estimate just the marginal p(θ|y).

limitations of NFLI for inferring the joint: let
us now consider the task of estimating the joint pos-
terior p(θ,x|y) using a NLFI method. If we want to
approximate the posterior then we have to extend any
chosen density estimator to target a high-dimensional
vector (θ, vec(x)), where vec : RK×M → RKM , which
would invariably require a larger training set, and thus
more simulations, in comparison to estimating only
θ (see Appendix F for an example). Alternatively, if
we choose to approximate the likelihood density, then
note that the accept/reject step of a MCMC scheme,
targeting p(x,θ|y), will be of the following form:

min

{
1,

qψ(yo|x∗,θ∗)p(x∗|θ∗)p(θ∗)kx(x|x∗)kθ(θ|θ∗)

qψ(yo|x,θ)p(x|θ)p(θ)kx(x∗|x)kθ(θ∗|θ)

}
,

(8)

where kx(·), kθ(·) are the proposal densities. Due to the
intractability of p(x,θ) = p(x|θ)p(θ) our only option
as a proposal, kx(·), is the prior (so that the proposal
and prior of x cancel out in the above ratio) that is the
transition density in equation 1. This will jeopardise
the mixing of the MCMC sampler which in turn would
require excessive simulation from the model. We would
face the same limitation if we had chosen to emulate
the likelihood ratio.

4 METHODS

4.1 Inferring hidden states

We can decompose the posterior of x, by applying the
product rule and then utilising the Markov property
(see proof in Appendix A.2), as follows:

p(x|θ,y) = p(XM−1|XM−2:1,θ,y)

×
M−2∏
t=1

p(Xt|Xt+1,Xt−1,yt,θ).
(9)

Note that the above decomposition produces homoge-
neous factors p(Xt|Xt+1,Xt−1,yt,θ). By dropping
the dependency of the future sample point Xt+1 and
thus approximating each factor,

p(Xt|Xt+1,Xt−1,yt,θ) ≈ p(Xt|Xt−1,yt,θ), (10)

we can approximately decompose the posterior as fol-
lows:

p(x|θ,y) ≈
M−1∏
t=1

p(Xt|Xt−1,yt,θ). (11)

Although we are losing information, this approxima-
tion will still be a reasonable one as long as the in-
formation in Xt+1 is largely contained in the pair
(Xt−1,yt). Importantly, this approximation lets us
easily draw the hidden states using ancestral sampling
from the approximate factor p(Xt|Xt−1,yt,θ). Ad-
ditionally, we can improve this approximation by em-
ploying importance sampling. That is we can obtain a
sample from the correct factor p(Xt|Xt+1,Xt−1,yt,θ)
by drawing a weighted sample from the approximate
one p(Xt|Xt−1,yt,θ), with weights given by

wt(Xt) =
p(Xt|Xt+1,Xt−1,yt,θ)

p(Xt|Xt−1,yt,θ)
. (12)

Having introduced a technique for drawing the hidden
states we must point out that except for linear-Gaussian
models, these factors are never available in closed form.
Thus, the decomposition in Eq. (9), in our knowledge,
has never been explored in the context of classical
filtering/smoothing methodologies.

Ghosh, Birrell, De Angelis

Since these factors are homogeneous thus we can now
emulate the approximate and true:

p(Xt|Xt−1,yt,θ) ≈ qϕ1
(Xt|Xt−1,yt,θ)

p(Xt|Xt+1,Xt−1,yt,θ) ≈ qϕ2
(Xt|Xt+1,Xt−1,yt,θ),

(13)
factors between any two consecutive time points t, t−1,
using neural density estimators qϕ1

(·), qϕ2
(·), where

ϕ1,ϕ2 are the parameters of the respective neural net-
works, parameterising the density estimators in turn.
With access to these neural density estimates of the
correct and approximate factors, an approximation to
the entire sample path can be generated again using
importance sampling where weighted samples Xt can
be recursively drawn at every time point, with weights
given by

wt(Xt) =
qϕ2

(Xt|Xt+1,Xt−1,yt,θ)

qϕ1
(Xt|Xt−1,yt,θ)

. (14)

In practise the above importance sampling can be car-
ried out in two steps. First, we draw a cloud of P
particles, at each time point, from the importance
factor: X̂

p

t ∼ qϕ1
(·|X̂

p

t−1,yt,θ), and assign weight
wp

t := w(X̂
p

t) to each particle p = 1, . . . , P . We then
resample a single Xt, at each t from the particle cloud
to construct the desired sample path x.

Since we are using a density estimator, rather than the
HMM itself, as above, we can use a large number of
importance samples (we chose P = 104, throughout),
unlike traditional SMC algorithms, without bothering
about computational cost.

We denote the above strategy (see Algorithm 1 for
the pseudocode) of drawing the hidden states x using
neural density estimates of the true and approximate
factors (both being essentially an incremental poste-
rior), collectively as an incremental density estimator
(IDE). Using the IDE we can approximate the posterior
predictive in (3) now as follows:

p(yr|y) ≈
∫

p(yr|x,θ)qϕ1
(XM−1|XM−2,θ,y)

M−2∏
t=1

wt(Xt)qϕ1
(Xt|Xt−1,yt,θ)p(θ|y)dxdθ.

(15)
In summary our strategy, see Figure 1 for an overview,
for drawing samples x,θ from an approximation of
their joint posterior is as follows. We first infer the
parameter marginal p(θ|y) using any chosen off-the-
shelf NLFI method (see section 2.1) and draw samples
of θ. In parallel we train an IDE using a subset of
simulations used in inferring p(θ|y). Then for each
sample θ, and an observed dataset yo, we can use the
trained IDE recursively to obtain the sample path x
conditioned on the sample θ and the dataset yo.

Algorithm 1 Hidden states prediction using IDE
Input: Posterior parameter samples {θl}Ll=1, ob-
served time series yo = (yo1 , . . . ,yoM) of length M ,
number of particles P , neural density estimators
qϕ1

(·), qϕ2
(·) introduced in Eq (13).

1. Generate importance samples
for l = 1 to L do

for t = 1 to M − 1 do
for p = 1 to P do

Draw importance samples of the hidden states
X̂

l,p

t ∼ qϕ1
(·|X̂

l,p

t−1,yot ,θ
l).

Obtain importance weights

wl,p
t (X̂

l

t) =
qϕ2

(X̂
l,p
t |X̂l,p

t+1,X̂
l,p
t−1,yot

,θl)

qϕ1
(X̂

l,p
t |X̂l,p

t−1,yot
,θl)

.

end for
Normalise the weights, set wl,p

t =
wl,p

t∑P
p=1 wl,p

t

end for
end for
2. Generate weighted samples
for l = 1 to L do

for t = 1 to M − 1 do
Resample an index r from the set {1, . . . , P},
with respective weights {wl,1

t , . . . , wl,P
t }.

Set X l
t = X̂

l,r

t .
end for

end for
Output: Hidden states X ∈ RM×L.

Limitations: There are two fundamental assump-
tions behind our approach. Firstly, we assume that
samples of θ are drawn from a good approximation to
the true unknown posterior. However, this may not
be true when inference of θ is done on a very limited
simulation budget. Secondly, we assume that there
is no model miss-specification and the actual observa-
tions come from the joint distribution p(x,θ,y) used
for learning the IDE. This can be a strong assumption
when modelling a new phenomenon.

4.2 Training the incremental density
estimator

For simplicity we will provide details about the neu-
ral density estimation for the approximate factor
qϕ1

(Xt|Xt−1,yt,θ), from which we can draw the sam-
ple path recursively. The corresponding neural density
estimator for the true factor can be constructed and
trained analogously.

We chose a masked autoregressive flow (MAF) as the in-
cremental neural density estimator. MAF is built upon
the idea of chaining together a series of autoregressive
functions, and can be interpreted as a normalizing-
flow (Papamakarios et al., 2017). That is we can rep-

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

HMM

A. Generate training dataset

by simulating the HMM times

B.Train density

estimators using

simulated dataset

C. Graphical model of

 the approximate factor

Or

Or

Posterior

estimator

Likelihood

estimator

Approximate factor

True factor

Sample from

prior in

rst round

Sample from estimator of in subsequent rounds

HMM

Figure 1: The process of using neural density estimators to approximate the joint posterior distribution p(θ,x|y)
of a HMM. First, the HMM (simulator) is used to generate a training dataset {θn,xn,yn}Nn=1 (A), which is then
used to train three neural density estimators (B). Training of the estimators of θ happens sequentially through
multiple rounds, generating more simulated data in the process. Once trained, given an observed time series
yo, for each posterior sample of θ drawn using its estimator, the approximate factor recursively generates (C)
importance samples of the latent path. The hidden states are resampled from these importance samples using
weights that are the ratio of the true and approximate factors (see Algorithm 1 for the pseudocode).

resent qϕ1
(Xt|Xt−1,yt,θ) as a transformation of a

standard Gaussian N (0, I) (or another simple distri-
bution) through a series of J autoregressive functions
h1
ϕ1
, . . . , hJ

ϕ1
, parameterised by ϕ1, each of which is

dependent on the triplet (Xt−1,yt,θ):

Xt = zJ , where
z0 = N (0, I)
zj = hj

ϕ1
(zj−1,Xt−1,yt,θ)

.

(16)
Each hj is a bijection with a lower-triangular Jacobian
matrix, implemented by a Masked Autoencoder for Dis-
tribution Estimation (MADE) (Germain et al., 2015),
and is conditioned on (Xt−1,yt,θ). Using the formula
for change of variable the density is given by

qϕ1
(Xt|Xt−1,yt,θ) = N (0, I)

J∏
j=1

∣∣∣∣∣ det
(

∂hj
ϕ1

∂zj−1

) ∣∣∣∣∣
−1

.

(17)

We can learn the parameters ϕ1 by maximising the
likelihood. To do this we create a training dataset
consisting of N examples. We first sample N val-
ues of the parameter {θn}Nn=1 from its prior and for
each θn we simulate the sample path of the states
and the observations using (1). Each training exam-
ple is then created by collecting the random variables:
(Xn

i ,y
n
j ,θ

n), and Xn
j , as the input-target pair, where

(i, j) = (0, 1), (2, 3), . . . , (M − 2,M − 1). Clearly, even
with a small number of model simulations (a few thou-
sands) we can create a large training dataset to learn
an expressive neural density estimator.

In Figure 1 we outline the process of creating this
training dataset. Given these training examples ϕ can

be learnt, using gradient ascent, through maximising
the total likelihood:

L(ϕ1) =

N∑
n=1

M−2,M−1∑
i=0,j=1

log qϕ1
(Xn

j |X
n
i ,y

n
j ,θ

n), (18)

which is equivalent to minimising the
forward Kullback–Leibler divergence
KL
(
p(Xt|Xt−1,yt,θ)||qϕ1

(Xt|Xt−1,yt,θ)
)

(Pa-
pamakarios et al., 2019) between the approximate
factor and its neural density estimate.

Pseudocode of sampling and training of the IDE is
provided in Appendix A.3.

5 EVALUATIONS

We evaluated the proposed approach in two stages.
First, we used a nonlinear Gaussian state-space
model which has a tractable approximate factor
p(Xt|Xt−1,yt,θ). This tractability lets us compare
the IDE with a conditionally optimal SMC algorithm
(more accurate than bootstrap SMC). In the next stage,
we used two implicit biological HMMs models to evalu-
ate the IDE’s usefulness in accurately estimating the
hidden states and the posterior predictive distribution.

5.1 State-space model with a tractable
approximate factor

We considered a state-space model, that has a tractable
approximate factor, to evaluate the quality of approxi-
mation of the hidden states x ∼ p(x|y,θ) in a classical
filtering context (Särkkä, 2013). Specifically, we used

Ghosh, Birrell, De Angelis

the following model:

Xt ∼ N (Aγ(Xt−1), σ
2
xI) t ≥ 1

yt ∼ N (BXt, σ
2
yI),

(19)

where γ(X) = sin(exp(Xt−1)), applied elementwise,
A = IK×K , B = 2A and X0 = 0.

We considered a moderately high-dimensional state-
space, K = L = 10, with a long enough time series,
M = 500, to challenge SMC algorithms. Naturally, a
model setup that is challenging for a SMC algorithm
will suffice as a good test-bed for the IDE. We con-
sidered the parameters σx, σy to be known and fixed,
thus conditioning the IDE only on (Xt−1,yt).To es-
timate the sample path x we applied the IDE (see
Appendix B.1 for details of the neural networks used),
the bootstrap SMC, and the conditionally optimal SMC
(Doucet et al., 2000), also known as the guided SMC,
that uses p(Xt|Xt−1,yt), a Gaussian distribution, see
Appendix B.1, as the importance proposal. Note that
the guided SMC is not applicable in case of an implicit
model. However, due to its superior performance, when
we have a tractable p(Xt|Xt−1,yt), we have used this
algorithm as the gold standard for this model.

The goal of this experiment was to find out how the
quality of estimation, by methods that require simula-
tion, vary with the number of simulations. Essentially
comparing the sample-efficiency. For the IDE this is
determined by the training set size, and for SMC the
number of particles. We chose the (i) mean squared
error (MSE) between the true hidden states and it’s
posterior mean, to quantify the bias, and (ii) the 90%
empirical coverage (EC), of the ground truth, to quan-
tify the quality of uncertainty estimation.

Figure 2: Estimation of the hidden states of a nonlin-
ear state-space model. The quality of approximations
was quantified using the MSE and 90% EC, summarised
using the mean (solid line) and 95% confidence intervals
(shaded area), across 10 datasets.

In Figure 2 we plot these metrics, summarised across
10 simulated datasets. The Bootstrap SMC performed
poorly and its particle system completely degenerated
within a few time steps resulting in a comparatively

high MSE (≥ 0.4) for all the datasets. Thus, we avoid
plotting the Bootstrap SMC results in Figure 2. We
found similar degeneration for other experimental set-
tings (see Appendix B.2). The IDE outperformed the
guided SMC algorithm, in terms of both the metrics.
It produced a noticeably smaller MSE than what was
produced by the guided SMC using the largest parti-
cle population, 5000. Thus, it is clearly evident that
although the guided SMC’s importance proposal is bet-
ter than a vanilla Bootstrap SMC, a large number of
particles (much larger than the maximum, 5000, used
in this experiment) is required to make its performance
comparable to the IDE. Especially, for a problem with a
large value of K×M . This experiment also shows that
for complex high-dimensional implicit models, where
guided SMC is inapplicable, IDE, using significantly
fewer simulations, may perform at par or better than
the bootstrap SMC.

5.2 Implicit biological HMMs

To evaluate the usefulness of the IDE for accurate esti-
mation of the posterior predictive distribution p(yr|y),
we considered two biological HMMs: (i) a stochas-
tic Lotka-Volterra (LV) (Wilkinson, 2018), and (ii)
a prokaryotic autoregulator (PKY) (Golightly and
Wilkinson, 2011) model. Further details of the dy-
namics, data generation and priors can be found in
Appendix C. The hidden states for these models evolve
as a pure Markov jump process (MJP) and thus the
density f(·) is unavailable. Throughout we used sim-
ulated data so that we are cognisant of the ground
truth. We used a tractable observation density g(·)
to facilitate the Bootstrap SMC algorithm, run with
100 particles following Golightly and Wilkinson (2011).
SMC estimates were considered as the baseline.

We chose the following competing approaches. First,
the ABC-SMC algorithm (Toni et al., 2009), which
produces samples from the joint distribution p(x,θ|y),
that can be used to evaluate the posterior predictive in
(3). Except ABC-SMC all other approaches rely on the
availability of parameters samples from the marginal
p(θ|y), which can be obtained using any off-the-shelf
NLFI method such as the ones discussed in section
2.1. Once samples of θ become available then samples
of x can be drawn from its posterior using the IDE,
the SMC (since g(·) is available), or simply from the
prior transition p(x|θ) (which we denote as PrDyn).
Samples from p(yr|y) can then be drawn using (15)
for IDE, (5) for SMC and (7) for PrDyn.

To estimate p(θ|y), required for IDE, SMC and PrDyn
approaches, we used two sequential NLFI methods.
One based on learning the likelihood density (SNLE)
and the other one based on learning the likelihood-ratio
(SRE). It was recently shown in (Durkan et al., 2020)

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

Table 1: Estimates of the hidden states of the Lotka-Volterra and Prokaryotic autoregulator models.
Except ABC-SMC, we denoted all other methods using the following convention: method to estimate x (NLFI
algorithm for estimating θ). Metrics were summarised by mean ± standard deviation across 10 simulated datasets.
The baseline is SMC.

The Lotka-Volterra model

Methods MSE 90% EC CV

ABC-SMC 3654.41± 2239.14 0.99± 0.0091 0.79± 0.16
PrDyn (SRE) 3585.03± 1938.88 0.98± 0.02 0.75± 0.16
PrDyn (SNLE) 4165.14± 1869.35 0.97± 0.02 0.81± 0.16
SMC (SRE) 57.19± 7.97 0.93± 0.03 0.07± 0.01
SMC (SNLE) 56.86± 7.79 0.92± 0.03 0.07± 0.01
IDE (SRE) 58.13± 6.11 0.95± 0.01 0.08± 0.01
IDE (SNLE) 57.85± 6.89 0.95± 0.01 0.08± 0.01

The Prokaryotic autoregulator model

Methods MSE 90% EC CV

ABC-SMC 17.28± 4.76 0.99± 0.01 1.03± 0.11
PrDyn (SRE) 19.71± 6.68 0.99± 0.01 0.80± 0.02
PrDyn (SNLE) 20.14± 7.51 0.99± 0.01 0.72± 0.04
SMC (SRE) 3.05± 0.61 0.93± 0.03 0.73± 0.02
SMC (SNLE) 2.98± 0.59 0.94± 0.02 0.65± 0.04
IDE (SRE) 2.83± 0.54 0.97± 0.01 0.72± 0.02
IDE (SNLE) 2.78± 0.46 0.98± 0.01 0.66± 0.04

that SRE (Hermans et al., 2020) is equivalent to a cer-
tain form of sequential learning of the posterior density
(SNPE-C) (Greenberg et al., 2019) and both can be uni-
fied under a common framework on contrastive learning
(Gutmann and Hyvärinen, 2010). Thus, by using SNLE
and SRE we can cover the general ambit of sequential
NLFI approaches. Further details of the neural network
architecture, optimisation and other relevant details for
IDE/SNLE/SRE are given in Appendix D. We used a
fixed budget of simulations respectively for ABC-SMC
(which jointly estimates θ,x) and SNLE/SRE (used for
estimating θ). This was done to rule out major differ-
ences in the estimates of θ among ABC-SMC and NLFI
methods so that the differences in estimates of x, and
subsequently yr, cannot be attributed to differences in
parameter estimates. These simulation budgets were
informed by previous studies such as Lueckmann et al.
(2021) that compared the sample-efficiency between
ABC-SMC and NLFI methods for estimating p(θ|y).
Thus, for both models, while using SNLE/SNRE, we
used 30 rounds and the posterior samples from the final
round were collected. For both models we generated
5000 training examples in the first round and in the
subsequent rounds we generated 1000 examples. The
simulations generated in the first round were used to
learn the parameters ϕ of the IDE. We limited the
ABC-SMC to use no more than 107 simulations from
the model. ABC-SMC is far less sample-efficient in
comparison to SNLE/SRE (Lueckmann et al., 2021).
Hence, we used considerably more simulations, in case
of ABC-SMC, to ensure that the parameter estimates
are as close as possible to SNLE/SRE. Further details
of ABC-SMC implementation are given in Appendix
D.

For inferring the parameters using ABC, SNLE/SRE
we used summary statistics chosen to preserve the
dynamical properties (e.g limit cycles). Note that IDE
and SMC require full data, and PrDyn does not use
data. Additionally, these methods use the same θ
values. Thus, these methods’ relative performances

are not influenced by the choice and use of summary
statistics.

As before we considered the MSE (between the ground
truth and the posterior mean) and 90% EC as metrics to
quantify the quality of estimates of the replicated data
yr and the hidden states x. However, methods such as
the PrDyn are bound to overestimate the uncertainty
(see section 3). Thus, we have also quantified the
dispersion of p(yr|y) and p(x|θ,y) using coefficient
of variation (CV): the ratio of the posterior standard
deviation and posterior mean, averaged across the time
points.

The NLFI approaches were implemented using the
sbi1 package (Tejero-Cantero et al., 2020). We im-
plemented the stochastic simulation algorithm (Gille-
spie, 1977) in C++ to simulate the LV and PKY mod-
els. All the experiments were carried out on a high-
performance computing cluster. Our code is available
at https://github.com/sg5g10/HMM.

Additional experiments: In Appendix E we have
also carried out evaluations on the PKY model without
using summary statistics, using the SRE (which can
learn summaries on the fly) and ABC-SMC, where we
see no major differences in performance. Additionally,
we have also run an experiment with the LV model to
show the perils of trying to estimate x,θ jointly using
a neural density estimator. See Appendix F for details.

Results: We quantified the quality of estimation of the
posterior distribution of the hidden states in Table 1
and subsequently the posterior predictive distribution
in Table 2. In both these Tables, except ABC-SMC,
we denoted all other methods using the following con-
vention: method to estimate x (NLFI algorithm
for estimating θ). We summarised the chosen met-
rics across 10 simulated datasets. Clearly, using the
IDE we were able to produce an estimate of the hid-
den states and subsequently the posterior predictive

1https://www.mackelab.org/sbi/

Ghosh, Birrell, De Angelis

Table 2: Estimates of the posterior predictive distribution of the Lotka-Volterra and Prokaryotic
autoregulator models, summarised across 10 simulated datasets. The baseline is SMC.

The Lotka-Volterra model

Methods MSE 90% EC CV

ABC-SMC 3791.01± 2239.27 0.98± 0.01 0.80± 0.16
PrDyn (SRE) 3671.44± 1876.06 0.97± 0.02 0.76± 0.16
PrDyn (SNLE) 4260.82± 1827.63 0.96± 0.02 0.82± 0.16
SMC (SRE) 55.50± 13.08 0.98± 0.01 0.12± 0.02
SMC (SNLE) 54.61± 12.43 0.98± 0.01 0.12± 0.02
IDE (SRE) 100.69± 28.02 0.96± 0.03 0.12± 0.02
IDE (SNLE) 99.21± 27.39 0.96± 0.03 0.12± 0.02

The Prokaryotic autoregulator model

Methods MSE 90% EC CV

ABC-SMC 22.23± 5.45 0.98± 0.02 0.34± 0.07
PrDyn (SRE) 24.87± 7.46 0.98± 0.01 0.33± 0.03
PrDyn (SNLE) 25.20± 8.48 0.98± 0.02 0.32± 0.03
SMC (SRE) 2.15± 0.46 0.99± 0.01 0.11± 0.01
SMC (SNLE) 1.76± 0.54 0.99± 0.01 0.11± 0.01
IDE (SRE) 2.36± 0.43 0.99± 0.01 0.12± 0.02
IDE (SNLE) 2.05± 0.51 0.99± 0.01 0.12± 0.01

that is closer or better (hidden states of PKY model)
to what can be achieved using SMC (which is highly
sample-inefficient). We noticed that all the methods
were producing higher values of the empirical cover-
age. For methods such as PrDyn such higher values do
not indicate good uncertainty quantification. Rather
such high coverage, for these methods, indicate credible
intervals that are wide enough to always contain the
ground truth. This was verified upon inspecting the
CV metric which indicated significantly higher disper-
sion, for PrDyn and ABC-SMC, methods which draws
x using its prior (f(·)), indicating overestimation of
the uncertainty. Notice the overestimation of uncer-
tainty in plots of the posterior sample paths (Appendix
G.1). PrDyn and ABC-SMC, by relying on the prior
of the Markov process for proposing the hidden states,
end-up producing a highly biased and under-confident
estimate of the posterior distribution of the hidden
states and subsequently the posterior predictive distri-
bution. In Figure 3 we have compared the accuracy of

(a) (b)

Figure 3: Accuracy of parameter estimates for the
Lotka-Volterra (a) and Prokaryotic autoregulator
(b) models, assessed using the log probability of the
true generative parameter vector, summarised across
the 10 datasets. The log probabilities were obtained by
fitting a mixture of multivariate Gaussian densities to
500 samples drawn from an estimate of p(θ|y) obtained
using each method.

parameters estimates obtained using ABC-SMC and
the NLFI methods. Accuracy of the estimates were
evaluated as the log probability of the true parame-

ter vector under a mixture of multivariate Gaussian
densities fitted to 500 samples drawn from an estimate
of p(θ|y) obtained using each method. We did not
notice any drastic difference in accuracy and thus the
difference in the estimation of posterior predictive were
largely influenced by the estimates of the hidden states.
The marginal densities of the parameter posteriors, for
one dataset, are shown in Appendix G.2.

6 CONCLUSION

Neural likelihood-free methods have been previously
benchmarked using implicit HMMs and are proposed
as a computationally cheaper alternative to classical
methods such as ABC-SMC in surrounding literature.
We have shown that both classical as well as neural
likelihood-free methods, by ignoring accurate state es-
timation, can lead to a grossly incorrect assessment
of the goodness-of-fit. We thus proposed a novel tech-
nique to approximately estimate the hidden states once
samples from the posterior (of the parameters) have
been obtained using any likelihood-free method. Our
technique, based on learning the posterior Markov pro-
cess, using an autoregressive flow, produced estimate
of the hidden states closer to what can be obtained
using SMC, albeit with much fewer simulations.

Acknowledgements

We like to thank the anonymous reviewers for their
helpful comments and suggestions. We like to also
thank the anonymous reviewers of NeurIPS 2022 and
ICLR 2023 conferences, who had kindly provided con-
structive comments on an earlier version of this work.
SG was supported by the Medical Research Council
(Unit programme number MC UU 00002/11).

References

Scott A Sisson, Yanan Fan, and Mark Beaumont. Hand-
book of approximate Bayesian computation. CRC
Press, 2018.

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

Gael M Martin, Brendan PM McCabe, David T Fra-
zier, Worapree Maneesoonthorn, and Christian P
Robert. Auxiliary likelihood-based approximate
bayesian computation in state space models. Jour-
nal of Computational and Graphical Statistics, 28(3):
508–522, 2019.

Umberto Picchini. Inference for sde models via ap-
proximate bayesian computation. Journal of Com-
putational and Graphical Statistics, 23(4):1080–1100,
2014.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P.H
Stumpf. Approximate Bayesian computation scheme
for parameter inference and model selection in dy-
namical systems. Journal of the Royal Society Inter-
face, 6(31):187–202, February 2009.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe.
The frontier of simulation-based inference. Proceed-
ings of the National Academy of Sciences, 117(48):
30055–30062, 2020.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg,
Pedro Goncalves, and Jakob Macke. Benchmarking
simulation-based inference. In Arindam Banerjee and
Kenji Fukumizu, editors, Proceedings of The 24th
International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 343–351. PMLR, 13–15
Apr 2021.

Neil Gordon, David Salmond, and Craig Ewing.
Bayesian state estimation for tracking and guidance
using the bootstrap filter. Journal of Guidance, Con-
trol, and Dynamics, 18(6):1434–1443, 1995.

Andrew Gelman, Xiao-Li Meng, and Hal Stern. Poste-
rior predictive assessment of model fitness via real-
ized discrepancies. Statistica sinica, pages 733–760,
1996.

Christopher C Drovandi, Anthony N Pettitt, and Roy A
McCutchan. Exact and approximate bayesian infer-
ence for low integer-valued time series models with
intractable likelihoods. Bayesian Analysis, 11(2):
325–352, 2016.

Christophe Andrieu, Arnaud Doucet, and Roman
Holenstein. Particle markov chain monte carlo meth-
ods. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 72(3):269–342, 2010.

Lukas Schumacher, Paul-Christian Bürkner, Andreas
Voss, Ullrich Köthe, and Stefan T Radev. Neural
superstatistics for bayesian estimation of dynamic
cognitive models. Scientific Reports, 13(1):13778,
2023.

Thomas Ryder, Dennis Prangle, Andrew Golightly,
and Isaac Matthews. The neural moving average
model for scalable variational inference of state space

models. In Uncertainty in Artificial Intelligence,
pages 12–22. PMLR, 2021.

George Papamakarios and Iain Murray. Fast ε-free infer-
ence of simulation models with bayesian conditional
density estimation. Advances in neural information
processing systems, 29, 2016.

George Papamakarios, David Sterratt, and Iain Mur-
ray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. In The 22nd
International Conference on Artificial Intelligence
and Statistics, pages 837–848. PMLR, 2019.

Christopher M Bishop. Mixture density networks. 1994.

Danilo Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In International
conference on machine learning, pages 1530–1538.
PMLR, 2015.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic mod-
eling and inference. Journal of Machine Learning
Research, 22(57):1–64, 2021.

Matthew David Parno. Transport maps for accelerated
Bayesian computation. PhD thesis, Massachusetts
Institute of Technology, 2015.

Esteban G Tabak and Cristina V Turner. A family of
nonparametric density estimation algorithms. Com-
munications on Pure and Applied Mathematics, 66
(2):145–164, 2013.

Kyle Cranmer, Juan Pavez, and Gilles Louppe. Ap-
proximating likelihood ratios with calibrated discrim-
inative classifiers. arXiv preprint arXiv:1506.02169,
2015.

Conor Durkan, George Papamakarios, and Iain Mur-
ray. Sequential neural methods for likelihood-free
inference. arXiv preprint arXiv:1811.08723, 2018.

David Greenberg, Marcel Nonnenmacher, and Jakob
Macke. Automatic posterior transformation for
likelihood-free inference. In International Confer-
ence on Machine Learning, pages 2404–2414. PMLR,
2019.

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo
Bassetto, Kaan Öcal, Marcel Nonnenmacher, and
Jakob H Macke. Flexible statistical inference for
mechanistic models of neural dynamics. Advances in
neural information processing systems, 30, 2017.

Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann,
Aaron Courville, and Zhanxing Zhu. Neural approx-
imate sufficient statistics for implicit models. In
Ninth International Conference on Learning Repre-
sentations (ICLR 2021), May 2021. URL https:
//iclr.cc/Conferences/2021/Dates. Ninth Inter-
national Conference on Learning Representations

https://iclr.cc/Conferences/2021/Dates
https://iclr.cc/Conferences/2021/Dates

Ghosh, Birrell, De Angelis

2021, ICLR 2021 ; Conference date: 04-05-2021
Through 07-05-2021.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation.
Advances in neural information processing systems,
30, 2017.

Mathieu Germain, Karol Gregor, Iain Murray, and
Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference
on Machine Learning, pages 881–889. PMLR, 2015.

Simo Särkkä. Bayesian filtering and smoothing. Num-
ber 3. Cambridge university press, 2013.

Arnaud Doucet, Simon Godsill, and Christophe An-
drieu. On sequential monte carlo sampling methods
for bayesian filtering. Statistics and computing, 10
(3):197–208, 2000.

Darren J Wilkinson. Stochastic modelling for systems
biology. CRC press, 2018.

Andrew Golightly and Darren J Wilkinson. Bayesian
parameter inference for stochastic biochemical net-
work models using particle markov chain monte carlo.
Interface focus, 1(6):807–820, 2011.

Conor Durkan, Iain Murray, and George Papamakarios.
On contrastive learning for likelihood-free inference.
In International Conference on Machine Learning,
pages 2771–2781. PMLR, 2020.

Joeri Hermans, Volodimir Begy, and Gilles Louppe.
Likelihood-free mcmc with amortized approximate
ratio estimators. In International Conference on
Machine Learning, pages 4239–4248. PMLR, 2020.

Michael Gutmann and Aapo Hyvärinen. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 297–304. JMLR
Workshop and Conference Proceedings, 2010.

Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler,
Jan-Matthis Lueckmann, Conor Durkan, Pedro J.
Gonçalves, David S. Greenberg, and Jakob H. Macke.
sbi: A toolkit for simulation-based inference. Jour-
nal of Open Source Software, 5(52):2505, 2020.
doi:10.21105/joss.02505. URL https://doi.org/
10.21105/joss.02505.

Daniel T Gillespie. Exact stochastic simulation of
coupled chemical reactions. The journal of physical
chemistry, 81(25):2340–2361, 1977.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Sample-efficient neural likelihood-free Bayesian inference of implicit
HMMs:

Supplementary Materials

A Derivations of ABC and incremental posteriors of HMM

A.1 Joint distribution for HMM using ABC

NLFI methods are designed to efficiently sample from the marginal distribution p(θ|y). In ABC although the
desired outcome often is the marginal distribution, however it is easy to show that for a latent variable model,
such as an implicit HMM, ABC does indeed target an approximation of the joint distribution p(θ,x|y).

In ABC we rely upon simulation of a pseudo-data ŷ, when the likelihood p(y|θ) is intractable. The operating
principle of any standard ABC algorithm, based on rejection sampling (Pritchard et al., 1999), MCMC (Marjoram
et al., 2003) or SMC (Toni et al., 2009; Del Moral et al., 2012), is to jointly sample the parameters θ and the
pseudo-data ŷ from their posterior density (Marin et al., 2012)

pϵ(θ, ŷ|y) =
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ|θ)p(θ)∫
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ|θ)p(θ)dθ

, (1)

where 1ϵ(·) is the indicator function, d(·) is a chosen distance metric, ϵ > 0 and we consider the summary s(·) to
be sufficient. The desired marginal posterior then follows as

pϵ(θ|y) =
∫

pϵ(θ, ŷ|y)dŷ. (2)

Note that the pseudo-data distribution p(ŷ|θ) appearing in (1) is not required analytically in any of the ABC
algorithms. This distribution is essentially the generative model under consideration.

For the HMM such a pseudo data is sampled from the distribution

p(ŷ,x|θ) =

(
M−1∏
t=0

g(ŷt|Xt,θ)

)(
M−1∏
t=1

f(Xt|Xt1 ,θ)

)
, (3)

where f(·), g(·) and thus p(ŷ,x|θ) need not be analytically tractable, just a sample ŷ of the pseudo-data from
this distribution is required. Sampling from this distribution is essentially the process of forward sampling from
the generative model of the HMM (see main text). Considering ŷ alone from the pair (ŷ,x) we have a sample of
the pseudo-data drawn from its marginal p(ŷ|θ). Thus, when ABC is applied to the HMM the joint density in
(1) is replaced by a density over the triplet (θ,x, ŷ) given by

pϵ(θ,x, ŷ|y) =
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ,x|θ)p(θ)∫
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ,x|θ)p(θ)dθ

, (4)

from which samples of the pair (θ,x) is distributed from pϵ(θ,x|y). And the corresponding ABC marginal
posterior is given by

pϵ(θ|y) =
∫

pϵ(θ,x, ŷ|y)dŷdx. (5)

From (4) it is evident that any ABC algorithm applied to the HMM will target the joint distribution pϵ(θ,x|y).
However, this distribution will only be an approximation to the true posterior p(θ,x|y), since ϵ ≠ 0 (considering
s(·) to be sufficient). Note that since x is sampled from its prior thus if ϵ is set to zero (or a small value)
then a practically infeasible amount of simulations is required to produce an ABC posterior p(θ,x|y) that can
approximate closely the true posterior.

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

A.2 Deriving the incremental posterior decomposition

We can decompose the posterior of x, using the product rule, as follows:

p(x|θ,y) = p(XM−1|XM−2:1,θ,y)p(XM−2:1|θ,y). (6)

Let us first consider the first factor from the above equation, p(XM−1|XM−2:1,θ,y). We can obtain from this
the density of the last sample points XM−1, conditioned on all other random variables, by applying the Markov
property and retaining only the terms that involve it, given by:

p(XM−1|XM−2, . . . ,X1,θ,y) ∝ p(y|XM−1,XM−2, . . . ,X1,θ)p(XM−1,XM−2, . . . ,X1|θ)p(θ)

∝ p(θ)

(
M−1∏
t=0

g(yt|Xt,θg)

)(
M−1∏
t=1

f(Xt|Xt−1,θf)

)
∝ g(yM−1|XM−1,θg)f(XM−1|XM−2,θf)p(θ),

(7)

which is simply the density p(XM−1|XM−2,yM−1,θ).

We can also write the conditional distribution of any intermediate sample point Xt among the remaining ones
XM−2:1, by again applying the Markov property and retaining only the terms that involve it, given by:

p(Xt|XM−1, . . . ,Xt+1,Xt−1, . . . ,X1,θ,y) ∝ p(y|XM−1, . . . ,Xt+1,Xt−1, . . . ,X1,θ)

× p(XM−1, . . . ,Xt+1,Xt−1, . . . ,X1|θ)p(θ)

∝ p(θ)

(
M−1∏
t=0

g(yt|Xt,θg)

)(
M−1∏
t=1

f(Xt|Xt−1,θf)

)
∝ f(Xt+1|Xt,θf)f(Xt|Xt−1,θf)g(yt|Xt,θg)p(θ),

(8)

which is simply the density p(Xt|Xt−1,Xt+1,yt,θ).

Using Eq. (7) and Eq. (8), we can now factorise and re-write Eq. (6) as given by

p(x|θ,y) = p(XM−1|XM−2,θ,y)

M−2∏
t=1

p(Xt|Xt+1,Xt−1,yt,θ), (9)

which completes the proof.

A.3 Pseudocode for the IDE training.

In Algorithm 1 we provide the pseudocode describing the process of creating a training dataset and then
subsequently training the two MAF density estimators emulating the true factor p(Xt|Xt+1,Xt−1,yt,θ), and
the approximate factor p(Xt|Xt−1,yt,θ).

B Nonlinear Gaussian state-space model

B.1 Model details

Here we want to evaluate how well the IDE can perform in comparison to an optimal SMC algorithm which uses
the approximate factor p(Xt|Xt−1,yt,θ) as the importance proposal. This density is tractable for Gaussian
state-space models. Thus, for this evaluation we have chosen the following state-space model:

Xt ∼ N (Aγ(Xt−1), σ
2
xI) t ≥ 1

yt ∼ N (BXt, σ
2
yI),

(12)

where γ(X) = sin(exp(Xt−1)), applied elementwise, A = IK×K , B = 2A and X0 = 0.

We considered the dimensionality of the state-space, dim(Xt) and dim(yt) to be the same, K = L = 10. We
also considered the parameters θ = (σx, σy) to be fixed and known. Thus, we can drop θ from the conditioning

Algorithm 1 Simulation and IDE training

Input: Training dataset size N , time series length M .
1. Simulate from HMM:
for n = 1 to N do
for t = 1 to M − 1 do
(θnf ,θ

n
g ,X

n
0) ∼ p(θ), Xn

t ∼ f(Xt|Xt−1,θf), ynt ∼ g(yt|Xt,θg).
end for

end for
2. Generate training examples for the density estimators
for n = 1 to N do
for i = 0 to M − 3 do
for j = 1 to M − 2 do
for k = 2 to M − 1 do
qϕ2

(Xt|Xt+1,Xt−1,yt,θ) emulating the true factor: target Xn
j , inputs (X

n
k ,X

n
i ,y

n
j ,θ

n).
qϕ1

(Xt|Xt−1,yt,θ) emulating the approximate factor: target Xn
j , inputs (X

n
i ,y

n
j ,θ

n).
end for

end for
end for

end for
3. Train the density estimators, using gradient ascent:

ϕ∗
1 = argmax

ϕ1

L(ϕ1)

ϕ∗
2 = argmax

ϕ2

L(ϕ2),
(10)

where the loss functions L(ϕ1) and L(ϕ2) are given by the total likelihood of the MAF density estimators:

L(ϕ1) =

N∑
n=1

M−2,M−1∑
i=0,j=1

log qϕ1
(Xn

j |X
n
i ,y

n
j ,θ

n)

L(ϕ2) =

N∑
n=1

M−3,M−2,M−1∑
i=0,j=1,k=2

log qϕ2
(Xn

j |X
n
k ,X

n
i ,y

n
j ,θ

n).

.

(11)

Output: Optimised parameters ϕ∗
1,ϕ

∗
2.

variables for the true and approximate factors p(Xt|Xt−1,Xt+1,yt) and p(Xt|Xt−1,yt) respectively. And we do
the same for the corresponding density estimates: qϕ(Xt|Xt−1,yt) and qϕ(Xt|Xt−1,Xt+1,yt). For the model
above, the approximate factor is known analytically and happens to be a Gaussian:

p(Xt|Xt−1,yt) = N (Xt;m,Σ), (13)

whose mean and the covariance are given by

Σ−1 = Σ−1
x +BΣ−1

y B

m = Σ(Σ−1
x γ(Xt−1) +BΣ−1

y yt),
(14)

where Σx = σ2
xI and Σy = σ2

yI.

We used σx = σy = 0.5 to generate the simulated data. We considered a long time series with M = 500 time
points. We created the IDE training set as was described in section 4.2 (main text).

For the IDE’s MAF we have used J = 3 transformations, each of which has two hidden layers of 50 units and
ReLU nonlinearities. We found that chaining a few transformations was enough to learn a Gaussian density.
Increasing the number of transformations did not improve the performance noticeably. For training the MAF

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

we used ADAM (Kingma and Ba, 2015) with a minibatch size of 256, and a learning rate of 0.0005. Following,
Papamakarios et al. (2019) we used 10% of the training data as a validation set, and stopped training if validation
log likelihood did not improve after 20 epochs.

B.2 Additional experiments with state-space model

In the main text we have furnished results for using parameters σx = σy = 0.5. However, we have carried
out additional experiments firstly with noise σx = σy = 1 and then probing the performances for even more
higher-dimensional states space, K = 30, along with this higher noise setting. See Figure 1 for the results of these
additional experiments. Note that we consistently found the Bootstrap SMC to give extremely poor performance,
and thus not shown in the plots.

(a)

(b)

Figure 1: Estimation of the hidden states of a nonlinear state-space model, for two different experiments: (a)
σx = σy = 1 and K = 10, (b) σx = σy = 1 and K = 30. The quality of approximations was quantified using the
MSE and 90% EC, summarised using the mean (solid line) and 95% confidence intervals (shaded area), across 10
datasets.

Finally, we also compared the IDE’s performance for longer times series, M = 1000, 5000. For these experiments,
we set the number of particles for SMC algorithms and training set size for IDE to 500. We used σx = σy = 0.5
to generate the simulated data. In Table 1 we furnished the results.

Table 1: Metrics for longer time series.

Metrics for M = 1000

Metrics SMC Guided IDE

MSE 0.0113 0.0139
Coverage 0.9073 0.8954

Metrics for M = 5000

Metrics SMC Guided IDE

MSE 0.0112 0.0139
Coverage 0.9096 0.8960

C Model details

C.1 Stochastic Lotka-Volterra model

The stochastic Lotka-Volterra model, a stochastic kinetic system, can be defined through the following list of
reactions:

R1 : Xprey c1−→ 2Xprey

R2 : Xprey +Xpred c2−→ 2Xpred

R3 : Xpred c2−→ ∅,

(15)

where we denote by Xprey, Xpred the prey and predator species respectively. We further denote the corresponding
numbers of the species as the system state Xt = (Xprey

t , Xpred
t). The hazard vector for this system is h(Xt, c) =(

c1X
prey
t , c2X

prey
t Xpred

t , c3X
pred
t

)
. The stoichiometry matrix for this system is given by

S =

(
1 −1 0
0 1 −1

)
. (16)

We set the initial values as X0 = (100, 100) and consider them known.

A MJP describing a stochastic kinetic system, like the one above or the PKY model, is characterised by the
transition probability p(t0,X0, t,Xt) := p(X, t) for the process arriving at state Xt at time t conditioned on an
initial state X0 at time t0. This is basically the transition density f(·) appearing in the definition of a HMM
(see main text) defined here in continuous time. Now this transition probability is given by the solution of the
following differential equation:

∂p(X, t)

∂t
=

v∑
i=1

= {hi(X − Si, ci)p(X − Si, t)− hi(X, ci)p(X, t)}, (17)

known as the chemical master equation (Golightly and Gillespie, 2013, and the references therein). The chemical
master equation (CME) only admits an analytical solution for a handful of simple models (not for the ones we
have used: LV and PKY). Thus, the density f(·) cannot be evaluated. However, the seminal work in Gillespie
(1977) developed an algorithm, commonly referred to as the stochastic simulation algorithm, that can simulate X
exactly.

We generated simulated trajectories from this model using the stochastic simulation algorithm and added Gaussian
noise corruption, with variance 100, at 50 time points. We used the following generative values of the parameters
θ = (0.3, 0.0025, 0.5) to ensure that the model follows an oscillatory regime. Moreover, following previous studies
we considered the initial values to be known and set at Xt0 = (100, 100).

We used the following set of prior distributions: c1 ∼ Beta(1, 2), c2 × 103 ∼ U(15, 50) and c3 ∼ Beta(2, 1).

For running ABC-SMC and all the NLFI methods we downsampled the generated time series by a factor of 5 to
create a summary statistic s(y) ∈ R20 which is used in place of the full data y.

C.2 Prokaryotic autoregulatory gene network

We considered the autoregulatory model used to benchmark the particle MCMC method in Golightly and
Wilkinson (2011). This is a simplified model that describes a mechanism for autoregulation in prokaryotes
based on a negative feedback mechanism of dimers of a protein coded by a gene repressing its own transcription.

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

Essentially this is a stochastic kinetic model described by the following set of reactions:

R1 : DNA+ P2 → DNA · P2

R2 : DNA · P2 → DNA+ P2

R3 : DNA → DNA+RNA

R4 : RNA → RNA+ P

R5 : 2P → P2

R6 : P2 → 2P

R7 : RNA → ∅
R8 : P → ∅.

(18)

We order the variables as X = (RNA,P, P2, DNA,DNA · P2) leading to a stoichiometry matrix for the system:

S =

0 0 1 0 0 0 −1 0
0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0

 , (19)

and the associated hazard function is given by

h(X, c) = (c1DNA× P2, c2DNA · P2, c3DNA, c4RNA, c5P (P − 1)/2, c6P2, c7RNA, c8P). (20)

This model has one conservation law (Golightly and Wilkinson, 2011)

DNA · P2 +DNA = k, (21)

where k is the number of copies of this gene in the genome. Following Golightly and Wilkinson (2011) we use
this relation to to remove DNA · P2 from the model, replacing any occurrences of DNA · P2 in rate laws with
k −DNA. This leads to a reduced full-rank model with species X = (RNA,P, P2, DNA), stoichiometry matrix:

S =

0 0 1 0 0 0 −1 0
0 0 1 −2 2 −1
−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

 , (22)

and associated hazard function

h(X, c) = (c1DNA× P2, c2(k −DNA), c3DNA, c4RNA, c5P (P − 1)/2, c6P2, c7RNA, c8P). (23)

We consider k to be known and set to 10. Again we generated simulated trajectories from this model using the
stochastic simulation algorithm.

Following Golightly and Wilkinson (2011), we considered the observations as a linear combination of the proteins
P, P2 as follows:

yt = Pt + 2P2t + ϵt, (24)

where ϵ is assumed to be iid Gaussian noise. We generated 100 simulated observations from this model at times
t = [0 : .5 : 50] with generative rate constants θ = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1) and ϵ ∼ N (0, 4). In this case
also we considered the initial values Xt0 to be known and set to (8, 8, 8, 5).

We placed a Gamma(2, 3) prior on all the rate constants.

We downsampled the simulated data by a factor of five to obtain the summary statistic s(y) ∈ R20.

D NLFI, IDE and ABC-SMC implementation details for biological HMMs

For SNLE we used a MAF as the likelihood density estimator qψ(s(y)|θ) and for SRE we used a MLP classifier.
For both uses of the MAFs, qϕ(Xt|Xt−1,yt,θ) and qϕ(Xt|Xt+1,Xt−1,yt,θ) for the IDE and qψ(θ|s(y)) for

(a)

(b)

Figure 2: Comparison of the estimates of the (a) posterior predictive distribution and (b) hidden states of
the Prokaryotic autoregulator models. We summarised the chosen metrics across 10 simulated datasets. The
baseline is SMC. Here we are using the full data rather than the summaries.

SNLE, we used the same architecture. That is J = 5 transformations, each of which has two hidden layers of 50
units each and ReLU nonlinearities. For SRE we used a residual network based classifier with two residual layers
of 50 units each and ReLU nonlinearities.

For training all the neural networks we used ADAM (Kingma and Ba, 2015) with the same minibatch size, learning
rate and validation split as was used for the experiment with the state-space model. Following Papamakarios
et al. (2019), we used the Slice Sampling algorithm (Neal, 2003) to draw samples from the posterior while using
SNLE and SRE.

We applied the particular version of ABC-SMC algorithm, that was proposed in Toni et al. (2009), using 1000
particles. Furthermore, we used an adaptive tolerance sequence where the tolerance ϵτ at the τ -th step of the
algorithm is selected as the 0.1-quantile of the distances of the accepted particles in the τ − 1-th step. Moreover,
we chose the perturbation kernel of ABC-SMC (see Toni et al. (2009)) as a multivariate Gaussian whose covariance
is based on a k-nearest neighbours strategy, with k = 15, proposed in Filippi et al. (2013). We terminated the
ABC-SMC algorithm when a predetermined number of simulations has been carried out. If that number is
exceeded within the τ -th step, we then considered the weighted particle system at the τ − 1-th step as the desired
ABC posterior.

E Evaluations without using summary statistics

All our evaluations on the two biological HMMs were based on the use of hand-crafted summary statistics.
Here we repeat the analysis for the PKY model without using summary statistics. For ABC-SMC this means
calculating a distance between the full observed data (considering all the time points) and the simulated one.
Note that the particular ABC-SMC algorithm that we have used (Toni et al., 2009) was originally designed to
work with full data. For obtaining the hidden states and subsequently the posterior predictive distribution using
SMC, IDE and PrDyn we have used an estimate of θ obtained using SRE trained on the full dataset. For this we
extended the classifier neural network with a 2-layer LSTM, trained simultaneously with the classifier, to embed
the data into a smaller dimensional summary statistics. We used a LSTM with a 10-dimensional hidden state and
fed the hidden state, corresponding to the last time-step, into a fully connected layer consisting 8 hidden units
and a ReLU activation function. Thus, we have a 8-dimensional summary statistics that is learnt on the fly.

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

(a) (b)

Figure 3: (a) Posterior distributions of the latent sample path x summarised by the mean (solid lines) and
95% credible intervals (broken lines), for the Prokaryotic autoregulator. The ABC-SMC is using the full
dataset. (b) Accuracy of parameter estimates for the Prokaryotic autoregulator model, evaluated using the log
probability of the true generative parameter vector, summarised across the 10 datasets. SRE and ABC-SMC is
using the full dataset.

In Figure 2 we compare the estimates of the posterior predictive and the hidden states using the same metrics that
we have used previously. We noticed that the IDE produced estimates of these quantities closer to the baseline
(SMC’s estimate) than ABC-SMC and PrDyn. Additionally, we noticed a slight improvement of ABC-SMC’s
performance in estimating the hidden states (see also Figure 3 (a) where we have plotted the estimated hidden
states for one dataset), however the accuracy of the parameters estimates (summarised in Figure 3 (b)) did
not change significantly from what was observed while using summary statistics. Note that the accuracy of the
parameter estimates did not change significantly for the SRE as well. Despite having access to the full data the
ABC-SMC’s proposal mechanism for the hidden states is still too inefficient to significantly improve the accuracy
of reconstructing the hidden states within a practically feasible simulation budget.

F Joint inference of the sample path and parameters using a MAF

We have argued before (see the last paragraph of section 3 in main text) that NLFI methods cannot be used
directly for inferring the joint posterior p(x,θ|y). Next, we have shown results for an experiment, using the LV
model, that supports our argument. Note that since we cannot evaluate the joint density p(x,θ), the only strategy
that can be applied is of using a normalizing-flow to directly emulate the joint posterior p(x,θ|y) ≈ qψ(x,θ|y).
We denote this approach as neural posterior estimation (NPE). We used 106 simulations from the model to train
a MAF representing qψ(x,θ|y). Note that for the proposed IDE approach we have used much fewer simulations.
We retained the same architecture and optimisation settings that we used in other experiments. Once trained, we
used one of the simulated dataset for the LV model to carry out inference. This is the same dataset corresponding
to the plot shown in Figure 6.

In Figure 4 we plot components of the hidden state estimated by SMC, IDE, ABC-SMC and NPE. Note that
SMC, IDE are using same samples of θ estimated using SNLE. All methods use 500 samples from the posteriors
of θ,x. In Figure 5 we show the corresponding parameter estimates. Although NPE estimates the hidden state
better than ABC-SMC, its estimation quality drops at those time points where the concentration reaches a peak
before decreasing again. This drop is much more pronounced near the last peak. The parameter estimates are
however significantly different than all the other methods. From which it can be concluded that NPE performs
worse than even ABC-SMC to produce the posterior of the parameters when targeting x,θ jointly.

Additionally, as further pilot experiments, we have also repeated this experiment without using summary statistics
for NPE and rather (i) learning the summaries using a LSTM and (ii) feeding in the full data as the input to the

(a) (b)

Figure 4: Comparison between methods that estimate jointly the parameters and hidden states of a HMM (in
this case the Lotka-Volterra model), such as ABC-SMC & NPE, with those that estimate these quantities
separately, such as SMC & IDE. The plot above shows the posteriors of the hidden states summarised by the
mean (solid lines) and 95% credible intervals (broken lines). The proposed method IDE reduces the simulation
burden by a large factor in comparison to NPE. Note that even with a much larger simulation budget NPE fails
to correctly estimate the hidden states as well as the parameters (see Figure 5).

Figure 5: Posterior marginal densities of the parameters of the Lotka-Volterra model obtained using SNLE,
SRE (both targeting the marginal p(θ|y)) with NPE, ABC-SMC (both targeting the joint p(x,θ|y)). NPE failed
to estimate θ correctly.

normalising-flow. However, the results were even worse and thus we have not shown them here.

G Plots of hidden states and parameter posteriors

G.1 Plots of hidden states

The following plots of the posterior sample paths (posterior of the hidden states) for one dataset (Figure 6),
clearly show the overestimation of uncertainty in case of PrDyn and ABC-SMC, for all models.

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

(a) (b)

Figure 6: Posterior distributions of one component of the latent sample path (the hidden states) x summarised
by the mean (solid lines) and 95% credible intervals (broken lines), for the Lotka-Volterra (a), Prokaryotic
autoregulator (b) model. Here SMC, IDE and PrDyn estimates of x corresponds to an SNLE estimate of θ.

G.2 Plots of marginal posteriors of the parameters

In the subsequent plots Figure 7 and 8 we compare the parameter estimates of the models between NLFI based
methods, SNLE/SRE, and ABC-SMC. Here we have shown the estimates for one of the 10 different simulated
datasets. This is the same dataset corresponding to the plot shown in Figure 6. Note that the parameter
estimates are reasonably close to each other and thus the estimate of the posterior predictive distribution is
largely influenced by the estimates of the hidden states.

Figure 7: Posterior marginal densities of the parameters of the Lotka-Volterra model, inferred from one of the
10 datasets.

Figure 8: Posterior marginal densities of the parameters of the Prokaryotic autoregulatory model, inferred
from one of the 10 datasets.

H Related work in inference of implicit HMMs

The most common approaches to tackle the inference of an implicit HMM consist largely of ABC methods (Dean
et al., 2014; Martin et al., 2019; Picchini, 2014). Note that when the observational density is known analytically
then the particle-MCMC (Andrieu et al., 2010) method can be used to carry out exact inference. However, the
computational cost of this method is prohibitive, as in each step of MCMC a particle filter with a large number
of particles is run to calculate an unbiased estimate of the marginal likelihood. Interestingly, a new avenue of
research can be of combining our proposed IDE as an importance density within a particle-MCMC scheme. An
alternative approach which combines SMC with ABC was proposed in (Drovandi et al., 2016). However, this
approach requires the problematic choices of ABC tunning parameters.

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo methods. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342, 2010.

Thomas A Dean, Sumeetpal S Singh, Ajay Jasra, and Gareth W Peters. Parameter estimation for hidden markov
models with intractable likelihoods. Scandinavian Journal of Statistics, 41(4):970–987, 2014.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. An adaptive sequential monte carlo method for approximate
bayesian computation. Statistics and computing, 22(5):1009–1020, 2012.

Christopher C Drovandi, Anthony N Pettitt, and Roy A McCutchan. Exact and approximate bayesian inference
for low integer-valued time series models with intractable likelihoods. Bayesian Analysis, 11(2):325–352, 2016.

Sarah Filippi, Chris P Barnes, Julien Cornebise, and Michael PH Stumpf. On optimality of kernels for approximate
bayesian computation using sequential monte carlo. Statistical applications in genetics and molecular biology,
12(1):87–107, 2013.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry,
81(25):2340–2361, 1977.

Andrew Golightly and Colin S Gillespie. Simulation of stochastic kinetic models. In In Silico Systems Biology,
pages 169–187. Springer, 2013.

Andrew Golightly and Darren J Wilkinson. Bayesian parameter inference for stochastic biochemical network
models using particle markov chain monte carlo. Interface focus, 1(6):807–820, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate bayesian computational
methods. Statistics and Computing, 22(6):1167–1180, 2012.

Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré. Markov chain monte carlo without likelihoods.
Proceedings of the National Academy of Sciences, 100(26):15324–15328, 2003.

Gael M Martin, Brendan PM McCabe, David T Frazier, Worapree Maneesoonthorn, and Christian P Robert.
Auxiliary likelihood-based approximate bayesian computation in state space models. Journal of Computational
and Graphical Statistics, 28(3):508–522, 2019.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free inference
with autoregressive flows. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
837–848. PMLR, 2019.

Umberto Picchini. Inference for sde models via approximate bayesian computation. Journal of Computational
and Graphical Statistics, 23(4):1080–1100, 2014.

Jonathan K Pritchard, Mark T Seielstad, Anna Perez-Lezaun, and Marcus W Feldman. Population growth of
human y chromosomes: a study of y chromosome microsatellites. Molecular biology and evolution, 16(12):
1791–1798, 1999.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P.H Stumpf. Approximate Bayesian computation scheme for
parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6(31):
187–202, February 2009.

	INTRODUCTION
	BACKGROUND
	Related work: Neural likelihood-free inference (NLFI)

	LIMITATIONS OF NLFI METHODS
	METHODS
	Inferring hidden states
	Training the incremental density estimator

	EVALUATIONS
	State-space model with a tractable approximate factor
	Implicit biological HMMs

	CONCLUSION

