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Abstract

Distribution matching can be used to learn
invariant representations with applications in
fairness and robustness. Most prior works
resort to adversarial matching methods but
the resulting minimax problems are unstable
and challenging to optimize. Non-adversarial
likelihood-based approaches either require
model invertibility, impose constraints on the
latent prior, or lack a generic framework for
distribution matching. To overcome these lim-
itations, we propose a non-adversarial VAE-
based matching method that can be applied to
any model pipeline. We develop a set of align-
ment upper bounds for distribution matching
(including a noisy bound) that have VAE-like
objectives but with a different perspective.
We carefully compare our method to prior
VAE-based matching approaches both theo-
retically and empirically. Finally, we demon-
strate that our novel matching losses can
replace adversarial losses in standard invari-
ant representation learning pipelines without
modifying the original architectures—thereby
significantly broadening the applicability of
non-adversarial matching methods.

1 INTRODUCTION

Distribution matching can be used to learn invariant
representations that have many applications in robust-
ness, fairness, and causality. For example, in Domain
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Adversarial Neural Networks (DANN) (Ganin et al.,
2016; Zhao et al., 2018), the key is enforcing an inter-
mediate latent space to be invariant with respect to the
domain. In fair representation learning (e.g., Creager
et al. (2019); Louizos et al. (2015); Xu et al. (2018);
Zhao et al. (2020)), a common approach is to enforce
that a latent representation is invariant with respect
to a sensitive attribute. In both of these cases, distri-
bution matching is formulated as a (soft) constraint or
regularization on the overall problem that is motivated
by the context (either domain adaptation or fairness
constraints). Thus, there is an ever-increasing need for
reliable distribution matching methods.

Most prior works of distribution matching resort to ad-
versarial training to implement the required matching
constraints. While adversarial loss terms are easy to
implement as they only require a discriminator network,
the corresponding minimax optimization problems are
unstable and difficult to optimize in practice (see e.g.
Lucic et al. (2018); Kurach et al. (2019); Farnia and
Ozdaglar (2020); Nie and Patel (2020); Wu et al. (2020);
Han et al. (2023)) in part because of the competitive
nature of the min-max optimization problem. To re-
duce the dependence on adversarial learning, Grover
et al. (2020) proposed an invertible flow-based method
to combine likelihood and adversarial losses under a
common framework. Usman et al. (2020) proposed
a completely non-adversarial matching method using
invertible flow-based models where one distribution is
assumed to be fixed. Cho et al. (2022) unified these
previous non-adversarial flow-based approaches for dis-
tribution matching by proving that they are upper
bounds of the Jensen-Shannon divergence called the
alignment upper bound (AUB). However, these non-
adversarial methods require invertible model pipelines,
which significantly limit their applicability in key dis-
tribution matching applications. For example, because
invertibility is required, the aligner cannot reduce the
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dimensionality. As another consequence, it is impos-
sible to use a shared invertible aligner because JSD
is invariant under invertible transformations1. Most
importantly, invertible architectures are difficult to de-
sign and optimize compared to general neural networks.
Finally, several fairness-oriented works have proposed
variational upper bounds (Louizos et al., 2015; Moyer
et al., 2018; Gupta et al., 2021) for distribution match-
ing via the perspective of mutual information. Some
terms in these bounds can be seen as special cases of
our proposed bounds (detailed in Section 5; also see
comparisons to these methods in subsection 6.2). How-
ever, these prior works impose a fixed prior distribution
and are focused on the fairness application, i.e., they do
not explore the broader applicability of their matching
bounds beyond fairness.

To address these issues, we propose a VAE-based match-
ing method that can be applied to any model pipeline,
i.e., it is model-agnostic like adversarial methods, but it
is also non-adversarial, i.e., it forms a min-min cooper-
ative problem instead of a min-max problem. Inspired
by the flow-based alignment upper bound (AUB)(Cho
et al., 2022), we relax the invertibility of AUB by
replacing the flow with a VAE and add a mutual infor-
mation term that simplifies to a β-VAE (Higgins et al.,
2017) matching formulation. From another perspective,
our development can be seen as revisiting VAE-based
matching bounds where we show that prior works im-
pose an unnecessary constraint caused by using a fixed
prior and do not encourage information preservation
as our proposed relaxation of AUB. We then prove
novel noisy alignment upper bounds as summarized
in Table 1, which may help avoid vanishing gradient
and local minimum issues that may exist when using
the standard JSD as a divergence measure (Arjovsky
et al., 2017).2 This JSD perspective to distribution
matching complements and enhances the mutual infor-
mation perspective in prior works (Moyer et al., 2018;
Gupta et al., 2021) because the well-known equivalence
between mutual information of the observed features
and the domain label and the JSD between the domain
distributions. Our contributions can be summarized as
follows:

• We relax the invertibility constraint of AUB using
VAEs and a mutual information term while ensuring
the distribution matching loss is an upper bound
of the JSD up to a constant.

• We propose noisy JSD and noise-smoothed JSD

1refer to subsection E.1 for proof
2while the term alignment in deep learning is often

being interpreted as “bringing human values and goals into
models”, for the purposes of maintaining consistency with
the terminology employed in the AUB paper, we instead
use the term alignment interchangeably with the idea of
distribution matching throughout the rest of the paper.

to help avoid vanishing gradients and local min-
ima during optimization, and we develop the corre-
sponding noisy alignment upper bounds.

• We demonstrate that our non-adversarial VAE-
based matching losses can replace adversarial losses
without any change to the original model’s architec-
ture. Thus, they can be used within any standard
invariant representation learning pipeline such as
domain-adversarial neural networks or fair repre-
sentation learning without modifying the original
architectures.

Notation. Let x and d ∈ {1, 2, . . . , k} denote the
observed variable and the domain label, respectively,
where k > 1 is the number of domains. Let z = g(x|d)
denote a deterministic representation function, i.e., an
aligner, that is invertible w.r.t. x conditioned on d
being known. Let q denote the encoder distribution:
q(x, d,z) = q(x, d)q(z|x, d), where q(x, d) is the true
data distribution and q(z|x, d) is the encoder (i.e.,
probabilistic aligner). Similarly, let p denote the de-
coder distribution p(x, d,z) = p(z)p(d)p(x|z, d), where
p(z) is the shared prior, p(x|z, d) is the decoder, and
p(d) = q(d) is the marginal distribution of the domain
labels. Entropy and cross entropy will be denoted as
H(·), and Hc(·, ·), respectively, where the KL diver-
gence is denoted as KL(p, q) = Hc(p, q)−H(p). Jensen-
Shannon Divergence (JSD) is denoted as JSD(p, q) =
H( 12 (p+q))− 1

2 (H(p)+H(q)). Furthermore, the General-
ized JSD (GJSD) extends JSD to multiple distributions
(Lin, 1991) and is equivalent to the mutual informa-
tion between z and d: GJSD({q(z|d)}kd=1) ≡ I(z, d) =
H(Eq(d)[q(z|d)])− Eq(d)[H(q(z|d))], where q(d) are the
weights for each domain distribution q(z|d). JSD is
recovered if there are two domains and q(d) = 1

2 ,∀d.

2 BACKGROUND

Adversarial Methods. Adversarial methods based
on GANs (Goodfellow et al., 2014) maximize a lower
bound on the GJSD using a probabilistic classifier de-
noted by f :

min
g

(
max
f

Eq(x,d)[log fd(g(x|d))]
)

= min
g

ADV(g) ≤ min
g

GJSD({q(z|d)}kd=1).

where ADV(g) is the adversarial loss that lower bounds
the GJSD and can be made tight if f is optimized
overall all possible classifiers. This optimization can be
difficult to optimize in practice due to its adversarial
formulation and vanishing gradients caused by JSD (see
e.g. Lucic et al. (2018); Kurach et al. (2019); Farnia
and Ozdaglar (2020); Nie and Patel (2020); Wu et al.
(2020); Han et al. (2023); Arjovsky and Bottou (2017)).
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Table 1: Summary of new alignment upper bounds where C ≜ −Eq(d)[H(q(x|d))] and Flow+JSD is prior work
from Cho et al. (2022). Blue represents changes needed for VAEs, i.e., replacing log Jacobian term and adding β
term to encourage near-invertibility of encoder, and red highlights that we merely need to add noise to the latent
representation before evaluating the shared latent distribution. JSD bounds can be made tight via optimization
while noisy JSD bounds can only be made tight if the noise variance goes to 0.

Model JSD Noisy JSD
Flow

z = g(x|d)
min
p(z)

Eq[− log(|Jg(x|d)| · p(z))]+C min
p(z̃)

Eq[− log(|Jg(x|d)| · p(z+ϵ))]+C

β-VAE (β ≤ 1)

z ∼ q(z|x, d)
min
p(z)

p(x|z,d)

Eq

[
− log

(
p(x|z, d)
q(z|x, d)β

· p(z)β
)]

+C min
p(z̃)

p(x|z,d)

Eq

[
− log

(
p(x|z, d)
q(z|x, d)β

· p(z+ϵ)β
)]

+C

We aim to address both optimization issues by forming
a min-min problem (Section 3) and considering additive
noise to avoid vanishing gradients (Section 4).

Fair VAE Methods. A series of prior works in
fairness implemented distribution matching methods
based on VAEs (Kingma et al., 2019), where the prior is
assumed to be the standard normal distribution N (0, I)
and the probabilistic encoder represents a stochastic
aligner. Concretely, the fair VAE objective (Louizos
et al., 2015) can be viewed as an upper bound on the
GJSD:

min
q(z|x,d)

(
min

p(x|z,d)
Eq(x,z,d)

[
− log

p(x|z, d)
q(z|x, d)

· pN (0,I)(z)
])

≥ min
q(z|x,d)

GJSD({q(z|d)}kd=1).

We revisit and compare to this and other VAE-based
methods (Gupta et al., 2021; Moyer et al., 2018) in
detail in Section 5.

Flow-based Methods. Leveraging the development
of invertible normalizing flows (Papamakarios et al.,
2021), Grover et al. (2020) proposed a combination
of flow-based and adversarial distribution matching
objectives for domain adaptation. Usman et al. (2020)
proposed another upper bound for flow-based models
where one distribution is fixed. Recently, Cho et al.
(2022) generalized prior flow-based methods under a
common framework by proving that the following flow-
based alignment upper bound (AUB) is an upper bound
on GJSD3:

min
g

(
min

p(z)∈P
Eq(x,z,d)

[
− log

(
|Jg(x|d)| · p(z)

)])
= min

g
AUB(g) ≥ min

g
GJSD({q(z|d)}kd=1). ,

Like VAE-based methods, this forms a min-min prob-
lem but the optimization is over the prior distribution

3refer to Appendix A for more background on AUB

p(z) rather than a decoder. But, unlike VAE-based
methods, AUB does not impose any constraints on the
shared latent distribution p(z), i.e., it does not have
to be a fixed latent distribution. While AUB (Cho
et al., 2022) provides an elegant characterization of dis-
tribution matching theoretically, the implementation of
AUB still suffers from two issues. First, AUB assumes
that its aligner g is invertible, which requires special-
ized architectures and can be challenging to optimize in
practice. Second, AUB inherits the vanishing gradient
problem of theoretic JSD even if the bound is made
tight—which was originally pointed out by Arjovsky
and Bottou (2017). We aim to address these two issues
in the subsequent sections and then revisit VAE-based
matching to see how our resulting matching loss is both
similar and different from prior VAE-based methods.

3 RELAXING INVERTIBILITY
CONSTRAINT OF AUB VIA VAES

One key limitation of the AUB matching measure is
that g must be invertible, which can be challenging
to enforce and optimize. Yet, the invertibility of g
provides two distinct properties. First, invertibility en-
ables exact log likelihood computation via the change-
of-variables formula for invertible functions. Second,
invertibility perfectly preserves mutual information be-
tween the observed and latent space conditioned on the
domain label, i.e., I(x, z|d) achieves its maximal value.
Therefore, we aim to relax invertibility while seeking to
retain the benefits of invertibility as much as possible.
Specifically, we approximate the log likelihood via a
VAE approach, which we show is a true relaxation of
the Jacobian determinant computation, and we add a
mutual information term I(x, z|d), which attains its
maximal value if the encoder is invertible. These two
relaxation steps together yield an distribution match-
ing objective that is mathematically similar to the
domain-conditional version of β-VAE (Higgins et al.,
2017) where β ≤ 1. Finally, we propose a plug-and-play
version of our objective that can be used as a drop-
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in replacement for adversarial loss terms so that the
matching bounds can be used in any model pipeline.

3.1 VAE-based Alignment Upper Bound
(VAUB)

We will first relax invertibility by replacing g with a
stochastic autoencoder, where q(z|x, d) denotes the
encoder and p(x|z, d) denotes the decoder. As one
simple example, the encoder could be a determinis-
tic encoder g plus some learned Gaussian noise, i.e.,
qg(z|x, d) = N (g(x|d), σ2(x, d)I). The marginal latent
encoder distribution is q(z|d) =

∫
X q(x|d)q(z|x, d)dx.

Given this, we can define an VAE-based objective and
prove that it is an upper bound on the GJSD. All
proofs are provided in Appendix E.

Definition 1 (VAE Alignment Upper Bound (VAUB)).
The VAUB(q(z|x, d)) of a probabilistic aligner (i.e.,
encoder) q(z|x, d) is defined as:

min
p(z)

p(x|z,d)

Eq(x,z,d)

[
− log

p(x|z, d)
q(z|x, d)

· p(z)
]
+ C, (1)

where C ≜ −Eq(d)[H(q(x|d))] is constant w.r.t.
q(z|x, d) and thus can be ignored during optimization.

Theorem 1 (VAUB is an upper bound on GJSD).
VAUB is an upper bound on GJSD between the
latent distributions {q(z|d)}kd=1 with a bound gap
of KL(q(z), p(z)) +Eq(d)q(z|d)[KL(q(x|z, d), p(x|z, d))]
that can be made tight if the p(x|z, d) and p(z) are
optimized over all possible densities.

While prior works proved a similar bound (Louizos
et al., 2015; Gupta et al., 2021), an important difference
is that this bound can be made tight if optimized over
the shared latent distribution p(z), whereas prior works
assume p(z) is a fixed normal distribution (more details
in Section 5). Thus, VAUB is a more direct relaxation
of AUB, which optimizes over p(z). Another insightful
connection to the flow-based AUB Cho et al. (2022)

is that the term Eq(z|x,d)[− log p(x|z,d)
q(z|x,d) ] can be seen as

an upper bound generalization of the − log |Jg(x|d)|,
similar to the correspondence noticed in Nielsen et al.
(2020). The following proposition proves that this
term is indeed a strict generalization of the Jacobian
determinant term.

Proposition 2. If the decoder is optimal, i.e.,
p(x|z, d) = q(x|z, d), then the decoder-encoder ratio

is the ratio of the marginal distributions: Eq(z|x,d)

[
−

log p(x|z,d)
q(z|x,d)

]
= Eq

[
− log q(x|d)

q(z|d)

]
. If the encoder is also

invertible, i.e., q(z|x, d) = δ(z − g(x)), where δ is a

Dirac delta, then the ratio is equal to the Jacobian de-

terminant: Eq(z|x,d)

[
− log p(x|z,d)

q(z|x,d)

]
= − log |Jg(x|d)|.

This proposition gives a stochastic version of the change
of (probability) volume under transformation. In the
invertible case, this is captured by the Jacobian deter-
minant. While for the stochastic case, given an input
x, consider sampling multiple latent points from the
posterior q(z|x, d), which can be thought of as a poste-
rior mean prediction plus some small noise. Now take
the expected ratio between the marginal densities of
q(z|d) for each sample point and q(x|d). If on aver-
age q(x|d)/q(z|d) > 1, then the transformation locally
expands the space (akin to determinant greater than
1) and vice versa. This ratio estimator can consider
volume changes due to non-invertibility and stochas-
ticity. For example, z = bx + ϵ for some b < 1 and
independent noise ϵ, locally “shrinks” because b < 1
but also locally expands because the noise flattens the
distribution.

While the VAUB looks similar to standard VAE ob-
jectives, the key difference is noticing the role of d
in the bound. Specifically, the encoder and decoder
can be conditioned on the domain d but the trainable
prior p(z) is not conditioned on the domain d. This
shared prior ties all the latent domain distributions
together so that the optimal is only achieved when
q(z|d) = q(z) for all d. Additionally, the perspective
here is flipped from the VAE generative model perspec-
tive; rather than focusing on the generative model p
the goal is finding the encoder q while p is seen as a
variational distribution used to learn q. Finally, we
note that VAUB could accommodate the case where
the encoder is shared, i.e., it does not depend on d so
that q(z|x, d) = q(z|x). However, the dependence of
the decoder p(x|z, d) on d should be preserved (other-
wise the domain information would be totally ignored
and distribution matching would not be enforced).

3.2 Preserving Mutual Information via
Reconstruction Loss

While the previous section proved an alignment up-
per bound for probabilistic aligners based on VAEs,
we would also like to preserve the property of flow-
based methods that preserves the mutual information
between the observed and latent spaces. Formally, for
flow-based aligners g, we have that by construction
I(x, z|d) = I(x, g−1(z|d)|d) = I(x,x|d) = H(x|d), i.e.,
no information is lost. Instead of requiring exact in-
vertibility, we relax this property by maximizing the
mutual information between x and z given the do-
main d. Mutual information can be lower bounded
by the negative log likelihood of a decoder (i.e., the
reconstruction loss term of VAEs), i.e., I(x, z|d) ≥



Ziyu Gong, Ben Usman, Han Zhao

maxp̃(x|z,d) Eq(x|d)[log p̃(x|z, d)] + C, where p̃ is a vari-
ational decoder and C is independent of model pa-
rameters (though well-known, we include the proof in
Appendix E for completeness). Similar to the previ-
ous section, this relaxation is a strict generalization
of invertibility in the sense that mutual information is
maximal in the limit of the encoder being exactly invert-
ible. While technically this decoder p̃ could be different
from the alignment-based p, it is natural to make them
the same so that p̃(x|z, d) ≜ p(x|z, d). Therefore, this
additional reconstruction loss can be directly combined
with the overall objective:

GJSD({q(z|d)}kd=1) + λEq[−I(x, z|d)] + C

≤ min
p(z)

p(x|z,d)

Eq

[
−log

p(x|z, d)
q(z|x, d)

p(z)
]

︸ ︷︷ ︸
VAUB objective

+λEq[− log p(x|z, d)]︸ ︷︷ ︸
Bound on I(z,x|d)

= min
p(z)

p(x|z,d)

1
β Eq

[
−log

p(x|z, d)
q(z|x, d)β

p(z)β
]

︸ ︷︷ ︸
β-VAUB obj with β ≜ 1

1+λ

where λ ≥ 0 is the mutual information regularization
and β ≜ 1

1+λ ≤ 1 is a hyperparameter reparametriza-
tion that matches the form of β-VAE (Higgins et al.,
2017). While the form is similar to a vanilla β-VAE
(except for conditioning on the domain label d), the
goal of β here is to encourage good reconstruction while
also ensuring distribution matching rather than making
features independent or more disentangled as in the
original paper (Higgins et al., 2017). Therefore, we
always use λ ≥ 0 (or equivalently β ≤ 1). As will be
discussed when comparing to other VAE-based match-
ing methods, this modification is critical for the good
performance of VAUB, particularly to avoid posterior
collapse. Indeed, posterior collapse can satisfy latent
distribution matching but would not preserve any infor-
mation about the input, i.e., if q(z|x, d) = qN (0,I)(z),
then the latent distributions will be trivially matched
but no information will be preserved, i.e., I(x, z|d) = 0.

3.3 Plug-and-Play Matching Loss

While it may seem that VAUB requires a VAE model,
we show in this section that VAUB can be encapsulated
into a self-contained loss function similar to the self-
contained adversarial loss function. Specifically, using
VAUB, we can create a plug and play matching loss that
can replace any adversarial loss with a non-adversarial
counterpart without requiring any architecture changes
to the original model.

Definition 2 (Plug-and-play matching loss). Given
a deterministic feature extractor g, let qg,σ2(z|x, d) ≜
N (g(x|d),diag(σ2(x, d))) be a simple probabilistic ver-

sion of g where σ2(x, d) is a trainable diagonal conva-
riance matrix. Then, the plug-and-play matching loss
for any deterministic representation function g can be
defined as:

VAUB PnP(g) ≜ β-VAUB(qg,σ2(z|x, d)) (2)

= min
σ2(x,d)

p(x|z,d),p(z)

Eq

[
− log

(
p(x|z, d)

qg,σ2(z|x, d)β
p(z)β

)]
.

Like the adversarial loss in Eqn. 1, this loss is a self-
contained variational optimization problem where the
auxiliary models (i.e., discriminator for adversarial and
decoder distributions for VAUB) are only used for
distribution matching optimization. This loss does not
require the main pipeline to be stochastic and these
auxiliary models could be simple functions. While
weak auxiliary models for adversarial could lead to an
arbitrarily poor approximation to GJSD, our upper
bound is guaranteed to be an upper bound even if
the auxiliary models are weak. Thus, we suggest that
our β-VAUB PnP loss function can be used to safely
replace any adversarial loss function.

4 NOISY JENSEN-SHANNON
DIVERGENCE

While in the previous section we addressed the invert-
ibility limitation of AUB, we now consider a different
issue related to optimizing a bound on the JSD. As
has been noted previously Arjovsky et al. (2017), the
standard JSD can saturate when the distributions are
far from each other which will produce vanishing gra-
dients. While Arjovsky et al. (2017) switch to using
Wasserstein distance instead of JSD, we revisit the idea
of adding noise to the JSD as in the predecessor work
Arjovsky and Bottou (2017). Arjovsky and Bottou
(2017) suggest smoothing the input distributions with
Gaussian noise to make the distributions absolutely
continuous and prove that this noisy JSD is an upper
bound on the Wasserstein distance. However, in Ar-
jovsky and Bottou (2017), the JSD is estimated via an
adversarial loss, which is a lower bound on JSD. Thus,
it is incompatible with their theoretic upper bound
on Wasserstein distance. In contrast, because we have
proven an upper bound on JSD, we can also consider
a upper bound on noisy JSD that could avoid some of
the problems with the standard JSD. We first define
noisy JSD and prove that it is in fact a true divergence.

Definition 3 (Noisy JSD). Noisy JSD is the JSD
after adding Gaussian noise to the distributions, i.e.,
NJSDσ(p, q) = JSD(p̃σ, q̃σ), where p̃σ ≜ p ∗ N (0, σ2I)
(∗ denotes convolution) and similarly for q̃σ.
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Note that in terms of random variables, if x ∼ px,
y ∼ py, and ϵ ∼ N (0, σ2I), then NJSD(px, py) =
NJSD(px+ϵ, py+ϵ). We prove that Noisy JSD is in-
deed a statistical divergence using the properties of
JSD and the fact that convolution with a Gaussian
density is invertible.

Proposition 3. Noisy JSD is a statistical divergence.

In Appendix B, we present a toy example illustrating
how adding noise to JSD can alleviate plateaus in the
theoretic JSD that can cause vanishing gradient issues
and can smooth over local minimum in the optimization
landscape. We now prove noisy versions of both AUB
and VAUB to be upper bounds of Noisy JSD. To the
best of our knowledge, these bounds are novel though
straightforward in hindsight.

Theorem 4 (Noisy alignment upper bounds). For the
flow-based AUB, the following upper bound holds for :

NAUB(q(z|x, d);σ2) + C

≜ min
p(z̃)

Eq(x,d)q(ϵ;σ2)[− log |Jg(x|d)|p(g(x|d) + ϵ)]

≥ NJSD({q(z|d)}kd=1;σ
2) ,

where C ≜ Eq(d)[H(q(x|d))]. Similarly, for VAUB, the
following upper bound holds:

NVAUB(q(z|x, d);σ2) + C

≜ min
p(z̃)

p(x|z,d)

Eq(x,z,d)q(ϵ;σ2)

[
− log

(
p(x|z, d)
q(z|x, d)

· p(z + ϵ)

)]
≥ NJSD({q(z|d)}kd=1;σ

2) .

By comparing the original objectives and these noisy ob-
jectives, we notice the correspondence between adding
noise before passing to the shared distribution p(z + ϵ)
and the noisy JSD. This suggests that simple additive
noise can add an implicit regularization that could
make the optimization smoother. Similar to VAUB,
a β-VAUB version of these can be used to preserve
mutual information between x and z.

5 REVISITING VAE-BASED
MATCHING METHODS FROM
FAIRNESS LITERATURE

The literature on fair classification has proposed several
VAE-based methods for distribution matching. For fair-
ness applications, the global objective includes both a
classification loss and an matching loss but we will only
analyze the matching losses in this paper. Louizos et al.
(2015) first proposed the vanilla form of a VAE with

an matched latent space where the prior distribution
is fixed. Moyer et al. (2018) and Gupta et al. (2021)
take a mutual information perspective and bound two
different mutual information terms in different ways.
They formulate the problem as minimizing the mutual
information between z and d, where d corresponds
to their sensitive attribute—our generalized JSD is
in fact equivalent to this mutual information term,
i.e., GJSD({q(z|d)}kd=1) ≡ I(z, d). They then use the
fact that I(z, d) = I(z, d|x) + I(z,x) − I(z,x|d) =
I(z,x)− I(z,x|d), where the second equals is by the
fact that z is a deterministic function of x and indepen-
dent noise. Finally, they bound I(z,x) and −I(z,x|d)
separately. We explain important differences here and
point the reader to the Appendix C for a detailed
comparison between methods.

We notice that most prior VAE-based methods use a
fixed standard normal prior distribution pN (z). This
can be seen as a special case of our method in which the
prior is not learnable. However, a fixed prior actually
imposes constraints on the latent space beyond distribu-
tion matching, which we formalize in this proposition.

Proposition 5. The fair VAE objective from Louizos
et al. (2015) with a fixed latent distribution pN (0,I)(z)
can be decomposed into a VAUB term and a regulariza-
tion term on the latent space:

min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

pN (0,I)(z)
]

= min
q(z|x,d)

(
min

p(x|z,d)
min
p(z)

Eq

[
− log

p(x|z, d)
q(z|x, d)

p(z)
])

︸ ︷︷ ︸
VAUB Alignment Objective

+KL(q(z), pN (0,I)(z))︸ ︷︷ ︸
Regularization

.

This proposition highlights that prior VAE-based
matching objectives are actually solving distribution
matching plus a regularization term that pushes the
learned latent distribution to the normal distribution—
i.e., they are biased distribution matching methods.
In contrast, GAN-based matching objectives do not
have this bias as they do not assume anything about
the latent space. Similarly, our VAUB methods can
be seen as relaxing this by optimizing over a class of
latent distributions for p(z) to reduce the bias.

Furthermore, we notice that Moyer et al. (2018) used
a similar term as ours for −I(z,x|d) but used a non-
parametric pairwise KL divergence term for I(z,x),
which scales quadratically in the batch size. On the
other hand, Gupta et al. (2021) uses a similar varia-
tional KL term as ours for I(z,x) but decided on a
contrastive mutual information bound for −I(z,x|d).
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Gupta et al. (2021) did consider using a similar term
for −I(z,x|d) but ultimately rejected this alternative
in favor of the contrastive approach. We summarize
the differences as follows:

1. We allow the shared prior distribution pθ(z) to be
learnable so that we do not impose any distribution
on the latent space. Additionally, optimizing pθ(z)
is significant as we show in Theorem 1 that this can
make our bound tight.

2. The β-VAE change ensures better preservation of
the mutula information of x and z inspired by the
invertible models of AUB. This seemingly small
change seems to overcome the limitation of the
reconstruction-based approach originally rejected
in Gupta et al. (2021).

3. We propose a novel noisy version of the bound that
can smooth the optimization landscape while still
being a proper divergence.

4. We propose a plug-and-play version of our bound
that can be added to any model pipeline and replace
any adversarial loss. Though not a large technical
contribution, this perspective decouples the distri-
bution matching loss from VAE models to create a
self-contained distribution matching loss that can
be broadly applied outside of VAE-based models.

6 EXPERIMENTS

6.1 Simulated Experiments

Non-Matching Dimensions between Latent
Space and Input Space. In order to demonstrate
that our model relaxes the invertibility constraint of
AUB, we use a dataset consisting of rotated moons
where the latent dimension does not match the input
dimension (i.e. the transformation between the input
space and latent space is not invertible). Please note
that the AUB model proposed by Cho et al. (2022)
is not applicable for such situations due to the re-
quirement that the encoder and decoder need to be
invertible, which restricts our ability to select the di-
mensionality of the latent space. As depicted in Fig. 2,
our model is able to effectively reconstruct and flip the
original two sample distributions despite lacking the
invertible features between the encoders and decoders.
Furthermore, we observe the mapped latent two sample
distributions are matched with each other while sharing
similar distributions to the shared distribution p(z).

Noisy-AUB helps mitigate the Vanishing Gra-
dient Problem. In this example, we demonstrate
that the optimization can get stuck in a plateau re-
gion without noise injection. However, this issue can
be resolved using the noisy-VAUB approach. Initially,
we attempt to match two Gaussian distributions with

Figure 1: This figure shows that the loss reaches a
plateau during learning if VAUB is used. (a) shows
the loss convergence graph for VAUB and NVAUB,
while (b) visualizes the latent distribution p(z) with
histogram density estimation of zi ∼ q(z|x, d = i), i ∈
0, 1 at the red circle in figure (a). Notice that the
latent distribution matches the mixture of the domains
but the latent domain distributions are not yet aligned.

widely separated means. As shown in Fig. 1, the shared
distribution, p(z) (which is a Gaussian mixture model),
initially fits the bi-modal distribution, but this creates
a plateau in the optimization landscape with small
gradient even though the latent space is misaligned.
While VAUB can eventually escape such plateaus with
sufficient training time, these plateaus can unnecessar-
ily prolong the training process. In contrast, NVAUB
overcomes this issue by introducing noise in the latent
domain and thereby reducing the small gradient issue.

6.2 Other Non-adversarial Bounds

Due to the predominant focus on fairness learning in
related works, we select the Adult dataset4, comprising
48,000 instances of census data from 1994. To investi-
gate distribution matching, we create domain samples
by grouping the data based on gender attributes (male,
female) and aim to achieve matching between these
domains. We employ two alignemnt metrics: sliced
Wasserstein distance (SWD) and a classification-based
metric. For SWD, we obtain the latent sample distri-
bution (zi ∼ q(z|xi)) and whiten it to obtain zwhite

i .
Because Wasserstein distance is sensitive to scaling, the
whitening step is required to remove the effects of scal-
ing, which do not fundamentally change the distribu-
tion matching performance. We then measure the SWD
between the whitened sample distributions zwhitemale
and zwhite

female by projecting them onto randomly chosen
directions and calculating the 1D Wasserstein distance.
We use t-test to assess significant differences between
models. For the classification-based metric, we train a
Support Vector Machine (SVM) with a Gaussian kernel
to classify the latent distribution, using gender as the
label. A more effective distribution matching model is
expected to exhibit lower classification accuracy, reflect-
ing the increasing difficulty in differentiating between

4https://archive.ics.uci.edu/ml/datasets/adult
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(a) Original dist. (b) Reconstructed dist. (c) Transformed dist. (d) Latent dist. with p(z)

Figure 2: This figure shows distribution matching on the 2D rotated moons dataset while the latent sample
distribution is 1D. (a) shows the original distribution where x1 is the original moons dataset and x2 is the rotated
and scaled moons dataset. (b) shows the reconstructed distribution generated by using the probabilistic encoder
and decoder within the same domain, i.e. xrecon

i ∼ p(x|z, d=i) (c) shows the flipped distribution between two

distributions by forwarding the probabilistic encoder and decoder in different domains, i.e. xflipped
i ∼ p(x|z, d=j),

where the dataset is flipped from i to j. (d) shows the shared distribution p(z), along with the histogram density
estimation of the latent distributions of zi ∼ q(z|x, d = i), i ∈ 0, 1.

matched distributions. We chose kernel SVM over train-
ing a deep model because the optimization is convex
with a unique solution given the hyperparameters. In
all cases, we used cross-validation to select the kernel
SVM hyperparameters.

We choose two non-adversarial bounds Moyer et al.
(2018); Gupta et al. (2021) as our baseline methods.
Here we only focus on the distribution matching loss
functions of all baseline methods. Note that these
methods are closely related (see Section 5). To ensure
a fair comparison, we employ the same encoders for
all models and train them until convergence. The
results in Table 2 suggest that our VAUB method can
achieve better distribution matching compared to prior
variational upper bounds.

Table 2: Distribution matching comparison between
non-adversarial bounds (refer to Appendix F for t-test
details)

Moyer’s Gupta’s VAUB

SWD (↓) 9.71 6.70 5.64
SVM (↓) 0.997 0.833 0.818

6.3 Plug-and-Play Implementation

In this section, we see if our plug-and-play loss can
be used to replace prior adversarial loss functions in
generic model pipelines rather than those that are
specifically VAE-based.

Replacing the Adversarial Objective in Fairness
Representation Models. In this experiment, we
explore the effectiveness of using our min-min VAUB
plug-and-play loss as a replacement for the adversarial

objective of LAFTR (Madras et al., 2018). We include
the LAFTR classifying loss and adjust the trade-off be-
tween the classification loss and matching loss via λaub

Definition 2. In this section, we conduct a comparison
between our proposed model and the LAFTR model
on the Adult dataset where the goal is to fairly predict
whether a person’s income is above 50K, using gender
as the sensitive attribute. To demonstrate the plug-
and-play feature of our VAUB model, we employ the
same network architecture for the deterministic encoder
g and classifier h as in LAFTR-DP. We also share the
parameters of our encoders (i.e. q(z|x, d) = q(z|x)) to
comply with the structure of the LAFTR. The results
of the fair classification task are presented in Table 3,
where we evaluate using three metrics: overall accuracy,
demographic parity gap (∆DP ), and test VAUB loss.
We argue that our model(VAUB) still maintains the
trade-off property between classification accuracy and
fairness while producing similar results to LAFTR-DP.
Moreover, we observe that LAFTR-DP cannot achieve
perfect fairness in terms of demographic parity gap
by simply increasing the fairness coefficient γ, whereas
our model can achieve a gap of 0 with only a small
compromise in accuracy. Finally, we note that the
VAUB loss correlates well with the demographic par-
ity gap, indicating that better distribution matching
leads to improved fairness; perhaps more importantly,
this gives some evidence that VAUB may be useful for
measuring the relative distribution matching between
two approaches. Please refer to the appendix for a
more comprehensive explanation of all the experiment
details.

Comparison of Training Stability between Ad-
versarial Methods and Ours. To demonstrate
the stability of our non-adversarial training objective,



Ziyu Gong, Ben Usman, Han Zhao

Table 3: Accuracy, Demographic Parity Gap (∆DP ),
and VAUB Metric (in nats) on Adult Dataset with the
models VAUB and LAFTR-DP. Numbers after VAUB
indicate λaub, and numbers after LAFTR-DP indicate
the fairness coefficient γ.

Method Accuracy ∆DP VAUB

VAUB(100) 0.74 0 308.36
VAUB(50) 0.76 0.0002 318.31
VAUB(10) 0.797 0.058 324.28
VAUB(1) 0.835 0.252 333.47

LAFTR-DP(1000) 0.765 0.015 -
LAFTR-DP(4) 0.77 0.022 -
LAFTR-DP(0.1) 0.838 0.21 -

we use plug-and-play VAUB model to replace the ad-
versarial objective of DANN (Ganin et al., 2016). We
re-define the min-max objective of DANN to a min-
min optimization objective while keeping the model
the same. Because of the plug-and-play feature, we can
use the exact same network architecture of the encoder
(feature extractor) and label classifier as proposed in
DANN and only replace the adversarial loss. We con-
duct the experiment on the MNIST (LeCun et al., 2010)
and MNIST-M (Ganin et al., 2016) datasets, using the
former as the source domain and the latter as the target
domain. We present the results of our model in Ta-
ble 45, which reveals a comparable or better accuracy
compared to DANN. Notably, the NVAUB approach
exhibits further improvement over accuracy, as adding
noise may smooth the optimization landscape. In con-
trast to the adversarial method, our model provides a
reliable metric (VAUB loss) for assessing adaptation
performance. The VAUB loss shows a strong correla-
tion with test accuracy, whereas the adversarial method
lacks a valid metric for evaluating adaptation quality
(see Appendix D for figure). This result on DANN and
the previous on LAFTR give evidence that our method
could be used as drop-in replacements for adversar-
ial loss functions while retaining the performance and
matching of adversarial losses.

Table 4: The table shows the accuracy after the domain
adaptation in DANN, VAUB and NVAUB models. For
each model, results are averaged from 5 experiments
with different random seeds.

Method DANN VAUB NVAUB

Accuracy (↑) 75.42 75.53 76.47

5We optimized the listed results for the DANN experi-
ment to the best of our ability.

7 LIMITATION

Empirical Scope. Since this paper is theoretically
focused rather than empirically focused, our goal was
to prove theoretic bounds for distribution matching,
elucidate insightful connections to prior works (AUB,
fair VAE, and GAN methods), and then empirically
validate our methods compared to other related ap-
proaches on simple targeted experiments, which means
the experiments conducted in our study are deliberately
simple and may not fully capture the complexity of
real-world scenarios. We primarily utilize toy datasets
such as the 2D moons dataset and 1D noisy VAUB
illustrations to illustrate key insights. Although we
validate our methods on common benchmark datasets
like Adult and MNIST, our choice to avoid state-of-
the-art methods and complex datasets may limit the
generalizability of our findings.

Comparisons with SOTA models. We intention-
ally select representative methods such as LAFTR and
DANN, along with well-known benchmark datasets, to
demonstrate the feasibility of our approach. However,
this choice may not fully capture the diversity of exist-
ing methods and datasets used in practical applications.
Also, our study does not aim for state-of-the-art perfor-
mance on specific tasks, which may lead to overlooking
certain performance metrics or nuances that are crucial
in practical applications. While our approach shows
promise as an alternative to adversarial losses, further
exploration is needed to understand its performance
across various metrics and tasks.

8 DISCUSSION AND CONCLUSION

In conclusion, we present a model-agnostic VAE-based
distribution matching method that can be seen as a
relaxation of flow-based matching or as a new variant
of VAE-based methods. Unlike adversarial methods,
our method is non-adversarial, forming a min-min co-
operative problem that provides upper bounds on JSD
divergences. We propose noisy JSD variants to avoid
vanishing gradients and local minima and develop cor-
responding alignment upper bounds. We compare to
other VAE-based bounds both conceptually and em-
pirically showing how our bound differs. Finally, we
demonstrate that our non-adversarial VAUB alignment
losses can replace adversarial losses without modifying
the original model’s architecture, making them suitable
for standard invariant representation pipelines such as
DANN or fair representation learning. We hope this
will enable distribution matching losses to be applied
generically to different problems without the challenges
of adversarial losses.
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A More Background and Theory from AUB (Cho et al., 2022)

Alignment Upper Bound (AUB), introduced from Cho et al. (2022), jointly learns invertible deterministic aligners
g with a shared latent distribution p(z), where z = g(x|d), or equivalently where q(z|x, d) is a Dirac delta
function centered at g(x|d). In this section, we remember several important theorems and lemmas from Cho et al.
(2022) based on invertible aligners g. These provide both background and formal definitions. Our proofs follow a
similar structure to those in Cho et al. (2022).

Theorem 6 (GJSD Upper Bound from Cho et al. (2022)). Given a density model class P, we form a GJSD
variational upper bound:

GJSD({q(z|d)}kd=1) ≤ min
p(z)∈P

Hc(q(z), p(z))− Eq(d)[H(q(z|d))] ,

where q(z) =
∑

d

∫
q(x, d)q(z|x, d)dx =

∑
dq(d)q(z|d) is the marginal of the encoder distribution and the bound

gap is exactly minp(z)∈P KL(q(z), p(z)).

Lemma 7 (Entropy Change of Variables from Cho et al. (2022)). Let x ∼ q(x) and z ≜ g(x) ∼ q(z), where g is
an invertible transformation. The entropy of z can be decomposed as follows:

H(q(z)) = H(q(x)) + Eq(x)[log |Jg(x)|] , (3)

where |Jg(x)| is the absolute value of the determinant of the Jacobian of g.
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Definition 4 (Alignment Upper Bound Loss from Cho et al. (2022)). The alignment upper bound loss for aligner
g(x|d) that is invertible conditioned on d is defined as follows:

AUB(g) ≜ min
p(z)∈P

Eq(x,z,d)

[
− log

(
|Jg(x|d)| · p(z)

)]
, (4)

where P is a class of shared prior distributions and |Jg(x|d)| is the absolute value of the Jacobian determinant.

Theorem 8 (Alignment at Global Minimum of AUB from Cho et al. (2022)). If AUB is minimized over the
class of all invertible functions, a global minimum of AUB implies that the latent distributions are aligned, i.e.,
for all d, d′, q(z|d) = q(z|d′) ∈ P. Notably, this result holds regardless of P.

B Illustration of Noisy JSD for Alleviating Vanishing Gradient and Local
Minimum

We present a toy example illustrating how adding noise to JSD can alleviate plateaus in the theoretic JSD that can
cause vanishing gradient issues (Fig. 3(a-b)) and can smooth over local minimum in the optimization landscape
(Fig. 3(c-d)).

C VAE-Based Distribution Alignment Comparison Table

We present the full comparison table between VAE-based methods below in Table 5. We add the notation where
ϕ are the parameters of the encoder distributions qϕ and θ are the parameters of the decoder distribution pθ to
emphasize that our VAUB objectives allow training of the prior distribution pθ(z), while prior methods assume it
is a standard normal distribution.

Table 5: Variational Upper Bounds Comparison: Prior bounds have one or more similarities to our bounds but
have several key differences as noted below and explained in this section. C is a constant and CE stands for

Contrastive Estimation which equals to − log exp(f(z,x,d)
Ez′∼q(z|c)[exp(f(z

′,x,d))] .

Method I(z,x) ≤ · · · −I(z,x|d) ≤ · · ·+ C

Louizos et al. (2015) Eq[KL(qϕ(z|x, d), pN (z))] Eq[− log pθ(x|z, d)]
Moyer et al. (2018) E(x,x′)∼q[KL(qϕ(z|x), qϕ(z|x′))] Eq[− log pθ(x|z, d)]
Gupta et al. (2021) Eq[KL(qϕ(z|x), pN (z))] Eq[−CE(z,x, d)]
Gupta et al. (2021) recon6 Eq[KL(qϕ(z|x), pN (z))] Eq[− log pθ(x|z, d)]
(ours) VAUB Eq[KL(qϕ(z|x, d), pθ(z))] Eq[− log pθ(x|z, d)]
(ours) β-VAUB (β ≤ 1) Eq[βKL(qϕ(z|x, d), pθ(z))] Eq[− log pθ(x|z, d)]
(ours) Noisy β-VAUB Eq[ β︸︷︷︸

(2)

KL(qϕ(z|x, d), pθ︸︷︷︸
(1)

(z +ϵ︸︷︷︸
(3)

))] Eq[− log pθ(x|z, d)]
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(a) Case 1: Gaussian distributions. (b) Case 1: Opt. landscape for different noise levels.

(c) Case 2: Mixture of Gaussian distributions. (d) Case 2: Opt. landscape for different noise levels

Figure 3: This figure illustrates that Noisy JSD can reduce the vanishing gradient problem and smooth over
local minimum compared to theoretic JSD. In Case 1 (a), we consider the (Noisy) JSD between two Gaussian
distributions whose variance are the same but whose means are different. The gradient of JSD can vanish to
zero as it reaches its maximum value as seen by the plateau regions on the top curve in (b) but this can be
alleviated with noise as seen in bottom curves in (b). In Case 2 (c), we consider the (Noisy) JSD between a
Gaussian mixture model where the mixture components are the same but the overall means are different. For
this case, a local minimum of JSD occurs when only one mixture component overlaps as seen in the top curve of
(d). However, Noisy JSD can smooth out this local minimum so that there are no local minimum.
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D Illustration of Differences Between Adversarial vs VAUB Loss

In Fig. 4, we illustrate that using an adversarial loss in DANN does not provide a good measure of test performance
while our VAUB-based loss has a strong correlation with test error.

(a) DANN loss vs test accuracy (b) VAUB loss vs test accuracy

Figure 4: This figure illustrates the tendency of test error and training loss for both models. For both figures,
x-axis represents the epochs while the y-axis indicates the value of corresponding metric.

E Proofs

E.1 Proof that JSD is Invariant Under Invertible Transformations

See proof from Theorem 1 of Tran et al. (2021).

E.2 Proof of Entropy Change of Variables For Probabilistic Autoencoders

An entropy change of variables bound inspired by the derivations of surjective VAE flows Nielsen et al. (2020)
can be derived so that we can apply a similar proof as in Cho et al. (2022).

Lemma 9 (Entropy Change of Variables for Probabilistic Autoencoders). Given an encoder q(z|x) and a
variational decoder p(x|z), the latent entropy can be lower bounded as follows:

H(q(z)) = H(q(x)) + Eq(x,z)

[
log

p(x|z)
q(z|x)

]
+ Eq(z)[KL(q(x|z), p(x|z)] ≥ H(q(x)) + Eq(x,z)

[
log

p(x|z)
q(z|x)

]
, (5)

where the bound gap is exactly Eq(z)[KL(q(x|z), p(x|z)], which can be made tight if the right hand side is maximized
w.r.t. p(x|z).

Proof. Similar to the bounds for ELBO, we inflate by both the encoder q(z|x) and the decoder p(x|z) and
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eventually bring out an expectation over a KL term.

H(q(x)) = Eq(x)[− log q(x)] (6)

= Eq(x)q(z|x)[− log q(x)] (7)

= Eq(x)q(z|x)[log q(z|x)− log q(z|x)q(x)] (8)

= Eq(x)q(z|x)[log q(z|x)− log q(z)q(x|z)] (9)

= Eq(x)q(z|x)[− log q(z) + log q(z|x)− log q(x|z)] (10)

= H(q(z)) + Eq(x)q(z|x)

[
log

q(z|x)
q(x|z)

]
(11)

= H(q(z)) + Eq(x)q(z|x)

[
log

q(z|x)p(x|z)
p(x|z)q(x|z)

]
(12)

= H(q(z)) + Eq(x)q(z|x)

[
log

q(z|x)
p(x|z)

]
+ Eq(x)q(z|x)

[
log

p(x|z)
q(x|z)

]
(13)

= H(q(z)) + Eq(x)q(z|x)

[
log

q(z|x)
p(x|z)

]
− Eq(z)

[
Eq(x|z)

[
log

q(x|z)
p(x|z)

]]
(14)

= H(q(z)) + Eq(x)q(z|x)

[
log

q(z|x)
p(x|z)

]
− Eq(z)[KL(q(x|z), p(x|z))] . (15)

By rearranging the above equation, we can easily derive the result from the non-negativity of KL:

H(q(z)) = H(q(x))− Eq(x)q(z|x)

[
log

q(z|x)
p(x|z)

]
+ Eq(z)[KL(q(x|z), p(x|z))] (16)

= H(q(x)) + Eq(x)q(z|x)

[
log

p(x|z)
q(z|x)

]
+ Eq(z)[KL(q(x|z), p(x|z))] (17)

≥ H(q(x)) + Eq(x)q(z|x)

[
log

p(x|z)
q(z|x)

]
, (18)

where it is clear that the bound gap is exactly Eq(z)[KL(q(x|z), p(x|z))]. Furthermore, we note that by maximizing
over all possible p(x|z) (or minimizing the negative objective), we can make the bound tight:

argmax
p(x|z)

H(q(x)) + Eq(x)q(z|x)

[
log

p(x|z)
q(z|x)

]
(19)

= argmax
p(x|z)

Eq(x)q(z|x)[log p(x|z)] (20)

= argmin
p(x|z)

Eq(x)q(z|x)[− log p(x|z)] (21)

= argmin
p(x|z)

Eq(x)q(z|x)[− log p(x|z) + log q(x|z)] (22)

= argmin
p(x|z)

Eq(z)[KL(q(x|z), p(x|z))] , (23)

where the minimum is clearly when p(x|z) = q(x|z) and the KL terms become 0. Thus, the gap can be reduced
by maximizing the right hand side w.r.t. p(x|z) and can be made tight if p(x|z) = q(x|z).
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E.3 Proof of Theorem 1 (VAUB is an Upper Bound on GJSD)

Proof. The proof is straightforward using Theorem 6 from Cho et al. (2022) and Lemma 9 applied to each
domain-conditional distribution q(z|d):

GJSD({q(z|d)}kd=1) (24)

≤ min
p(z)

Hc(q(z), p(z))− Eq(d)[H(q(z|d))] (Theorem 6)

≤ min
p(z)

p(x|z,d)

Hc(q(z), p(z))− Eq(d)

[
H(q(x|d)) + Eq(x|d)q(z|x,d)

[
log

p(x|z, d)
q(z|x, d)

]]
(Lemma 9)

= min
p(z)

p(x|z,d)

Eq[− log p(z)]− Eq(d)[H(q(x|d))] + Eq

[
− log

p(x|z, d)
q(z|x, d)

]
(25)

= min
p(z)

p(x|z,d)

Eq

[
− log

(
p(x|z, d)
q(z|x, d)

· p(z)
)]

− Eq(d)[H(q(x|d))] (26)

≜ VAUB(q(z|x, d)) , (27)

where the last two equals are just by definition of cross entropy and rearrangement of terms. From Theorem 6
and Lemma 9, we know that the bound gaps for both inequalities is:

KL(q(z), p(z)) + Eq(d)q(z|d)[KL(q(x|z, d), p(x|z, d))] , (28)

where both KL terms can be made 0 by minimizing the VAUB over all possible p(z) and p(x|z, d) respectively.

E.4 Proof of Proposition 2 (Ratio of Decoder and Encoder Term Interpretation)

Proof. Given that the variational optimization is solved perfectly so that p∗(x|z, d) = q(x|z, d), we can notice
that this ratio has a simple form as the ratio of marginal densities:

Eq(z|x,d)

[
− log

p∗(x|z, d)
q(z|x, d)

]
= Eq

[
− log

q(x|z, d)
q(z|x, d)

]
= Eq

[
− log

q(x, z|d)
q(z|d)

q(x|d)
q(x, z|d)

]
= Eq

[
− log

q(x|d)
q(z|d)

]
, (29)

where the first equals is just by assumption that p∗(x|z, d) is optimized perfectly. Now if the encoder is an
invertible and deterministic function, i.e., q(z|x, d) is a Dirac delta at g(x|d), then we can derive that the marginal
ratio is simply the Jacobian in this special case:

Eq(z|x,d)

[
− log

q(x|d)
q(z|d)

]
= − log

q(x|d)
q(z = g(x|d)|d)

= − log
|Jg(x|d)|q(z = g(x|d)|d)

q(z = g(x|d)|d)
= − log |Jg(x|d)| , (30)

where the first equals is because the encoder q(z|x, d) is a Dirac delta function such that z = g(x|d), and the
second equals is by the change of variables formula.

E.5 Proof that Mutual Information is Bounded by Reconstruction Term

We include a simple proof that the mutual information can be bounded by a probabilistic reconstruction term.

Proof. For any p̃(x|z, d), we know the following:

I(x, z|d) = H(x|d)−H(x|z, d) (31)

= H(x|d)− Eq[− log q(x|z, d)] (32)

= H(x|d) + Eq

[
log

q(x|z, d)p̃(x|z, d)
p̃(x|z, d)

]
(33)

= Eq(x|z)[log p̃(x|z, d)] + KL(q(x|z, d), p̃(x|z, d)) + H(x|d) (34)

≥ Eq(x|z)[log p̃(x|z, d)] + C , (35)
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where C ≜ H(x|d), which is constant in the optimization. Therefore, we can optimize over all p̃ and still get a
lower bound on mutual information:

I(x, z|d) ≥ max
p̃(x|z,d)

Eq(x|z)[log p̃(x|z, d)] + C (36)

where C in constant w.r.t. to the parameters of interest.

E.6 Proof of Proposition 3 (Noisy JSD is a Statistical Divergence)

We prove a slightly more general version of noisy JSD here where the added Gaussian noise can come from a
distribution over noise levels. While the Noisy JSD definition uses a single noise value, this can be generalized to
an expectation over different noise scales as in the next definition.

Definition 5 (Noised-Smoothed JSD). Given a distribution over noise variances pσ that has support on the
positive real numbers, the noise-smoothed JSD (NSJ) is defined as:

NSJ(p, q) = Eσ[NJSDσ(p, q)] = Eσ[JSD(p̃σ, q̃σ)] , (37)

where p̃σ ≜ p ∗ N (0, σ2I) and similarly for q̃σ.

Note that NJSD is a special case of NSJ where pσ is a Dirac delta distribution at a single σ value. Now we give
the proof that NSJ (and thus NJSD) is a statistical divergence.

Proof. NSJ is non-negative because Eqn.6 (in main paper) is merely an expectation over JSDs, which are
non-negative by the property of JSD. Now we prove the identity property for divergences, i.e., that NSJ(p, q) =
0 ⇔ p = q. If p = q, then it is simple to see that all the inner JSD terms will be 0 and thus NSJ(p, q) = 0. For
the other direction, we note that if NSJ(p, q) = 0, we know that every NJSD term in the expectation in Eqn.6
(in main paper) must be 0, i.e., ∀σ ∈ supp(pσ), NJSD(p, q) = 0. Thus, we only need to prove for NJSD. For
NJSD, we note that convolution with a Gaussian kernel k ≜ N (0, σ2I) is invertible, and thus:

NJSD(p, q) = 0 ⇒ JSD(p ∗ k, q ∗ k) = 0 (38)

⇒ p ∗ k = q ∗ k ⇒ p = q . (39)

E.7 Proof of Theorem 4 (Noisy AUB and Noisy VAUB Upper Bounds)

We would like to show that the noisy JSD can be upper bounded by a noisy version of AUB. Again, the key here
is considering the latent entropy terms. So we provide one lemma and a corollary to setup the main proof.

Lemma 10 (Noisy entropy inequality). The entropy of a noisy random variable is greater than the entropy
of its clean counterpart, i.e., if z̃ ≜ z + ϵ ∼ q(z̃) where z ∼ q(z) and ϵ are independent random variables, then
H(q(z̃)) ≥ H(q(z)). (Proof are provided in the appendix)

Proof.

H(z + ϵ) ≥ H(z + ϵ|ϵ) (Conditioning reduces entropy)

= H(z|ϵ) (Entropy is invariant under constant shift)

= H(z) . (Independence of z and ϵ)

Corollary 11 (Noisy entropy inequalities). Given a noisy random variable z̃ ≜ z + ϵ ∼ q(z̃), the following
inequalities hold for deterministic invertible mappings g and stochastic mappings q(z|x), respectively:

H(q(z̃)) ≥ H(q(z)) ≥ H(q(x)) + Eq(x)[log |Jg(x)|] (40)

H(q(z̃)) ≥ H(q(z)) ≥ H(q(x)) + Eq(x)q(z|x)

[
log

p(x|z)
q(z|x)

]
. (41)
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Proof. Inequalities follow directly from Lemma 10 and the entropy inequalities in Lemma 7 and Lemma 9
respectively.

Given these entropy inequalities, we now provide the proof that NAUB and NVAUB are upper bounds of the
noisy JSD counterparts using the same techniques as (Cho et al., 2022) and the proof for VAUB above.

Proof. Proof of upper bound for noisy version of flow-based AUB:

NGJSD({q(z|d)}kd=1;σ
2) (42)

≡ GJSD({q(z̃|d)}kd=1) (43)

≤ min
p(z̃)∈Pz̃

Hc(q(z̃), p(z̃))− Eq(d)[H(q(z̃|d))] (44)

≤ min
p(z̃)∈Pz̃

Hc(q(z̃), p(z̃))− Eq(d)[Eq(x|d)[log |Jg(x|d)|] + H(q(x|d))] (45)

= min
p(z̃)∈Pz̃

Eq(z̃)[− log p(z̃)]− Eq(x,d)[log |Jg(x|d)|]− Eq(d)[H(q(x|d))] (46)

= min
p(z̃)∈Pz̃

Eq(x,d)q(ϵ;σ2)[− log |Jg(x|d)|p(g(x|d) + ϵ)]− Eq(d)[H(q(x|d))] (47)

≜ NAUB(q(z|x, d);σ2) . (48)

Proof of upper bound for noisy version of VAUB:

NGJSD({q(z|d)}kd=1;σ
2) (49)

≡ GJSD({q(z̃|d)}kd=1) (50)

≤ min
p(z̃)∈Pz̃

Hc(q(z̃), p(z̃))− Eq(d)[H(q(z̃|d))] (51)

≤ min
p(z̃)∈Pz̃

Hc(q(z̃), p(z̃))− Eq(d)

[
max

p(x|z,d)∈Px|z,d

Eq(x,z|d)

[
log

p(x|z, d)
q(z|x, d)

]
+H(q(x|d))

]
(52)

= min
p(z̃)∈Pz̃

p(x|z,d)∈Px|z,d

Eq(z̃)[− log p(z̃)]− Eq(d)

[
Eq(x,z|d)

[
log

p(x|z, d)
q(z|x, d)

]
+H(q(x|d))

]
(53)

= min
p(z̃)∈Pz̃

p(x|z,d)∈Px|z,d

Eq(x,z,d,z̃)

[
− log

(
p(x|z, d)
q(z|x, d)

· p(z̃)
)]

− Eq(d)[H(q(x|d))] (54)

= min
p(z̃)∈Pz̃

p(x|z,d)∈Px|z,d

Eq(x,z,d)q(ϵ;σ2)

[
− log

(
p(x|z, d)
q(z|x, d)

· p(z + ϵ)

)]
− Eq(d)[H(q(x|d))] (55)

≜ NVAUB(q(z|x, d);σ2) . (56)

E.8 Proof of Proposition 5 (Fixed Prior is VAUB Plus Regularization Term)

We first remember the Fair VAE objective (Louizos et al., 2015) (note q is encoder distribution and p is decoder
distribution and q(z) is the marginal distribution of q(x, d,z) := q(x, d)q(z|x, d)):

min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

pN (0,I)(z)
]

(57)

We show that this objective can be decomposed into an alignment objective and a prior regularization term if
we assume the optimization class of prior distributions from the VAUB includes all possible distributions (and
is solved theoretically). This gives a precise characterization of how the Fair VAE bound w.r.t. alignment and
compares it to the VAUB alignment objective.

This decomposition exposes two insights. First, the Fair VAE objective is an alignment loss plus a regularization
term. Thus, the Fair VAE objective is sufficient for alignment but not necessary—it adds an additional
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constraint/regularization that is not necessary for alignment. Second, it reveals that by fixing the prior distribution,
it can be viewed as perfectly solving the optimization over the prior for the alignment objective but requiring an
unnecessary prior regularization. Finally, it should be noted that it is not possible in practice to compute the
prior regularization term because q(z) is not known. Therefore, this decomposition is only useful to understand
the structure of he objective theoretically.

Proof of Proposition 5.

min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

pN (0,I)(z)
]

(Fair VAE)

= min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

pN (0,I)(z)q(z)

q(z)

]
(Inflate with true marginal q(z))

= min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

q(z)
]
+ Eq

[
− log

pN (0,I)(z)

q(z)

]
(Rearrange)

= min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

q(z)
]
+ Eq

[
log

q(z)

pN (0,I)(z)

]
(Push negative inside)

= min
q(z|x,d)

min
p(x|z,d)

Eq

[
− log

p(x|z, d)
q(z|x, d)

q(z)
]

︸ ︷︷ ︸
VAUB Alignment with perfect prior optimization

+KL(q(z), pN (0,I)(z))︸ ︷︷ ︸
Prior regularization

(Definition of KL)

= min
q(z|x,d)

min
p(x|z,d)

(
min
p(z)

Eq

[
− log

p(x|z, d)
q(z|x, d)

p(z)
])

+KL(q(z), pN (0,I)(z))

(Replace q(z) with optimization over p(z))

= min
q(z|x,d)

(
min

p(x|z,d)
min
p(z)

Eq

[
− log

p(x|z, d)
q(z|x, d)

p(z)
])

︸ ︷︷ ︸
VAUB Alignment Objective

+KL(q(z), pN (0,I)(z))︸ ︷︷ ︸
Prior Regularization

(Regroup to show structure)

The last line is by noticing that KL(q(z), pN (0,I)(z)) does not depend on p(x|z, d) or p(z), i.e., it only depends
on q(z|x, d) and the original data distribution q(x, d).

F Experimental Setup

All experiments were conducted on a computing setup with 24 processors, each having 12 cores running at 3.5GHz.
Additionally, 2 NVIDIA RTX 3090 graphics cards were utilized when needed.

F.1 Simulated Experiments

F.1.1 Non-Matching Dimensions between Latent Space and Input Space

Dataset: We have two datasets, namely X1 and X2, each consisting of 500 samples. X1 represents the
original moon dataset, which has been perturbed by adding a noise scale of 0.05. X2 is created by applying a
transformation to the moon dataset. First, a rotation matrix of 3π

8 is applied to the moons dataset which is
generated using the same noise scale as in X1. Then, scaling factors of 0.75 and 1.25 are applied independently to
each dimension of the dataset. This results in a rotated-scaled version of the original moon dataset distribution.

Model: Encoders consist of three fully connected layers with hidden layer size as 20. Decoders are the reverse
setup of the encoders. Pz is a learnable one-dimensional mixture of Gaussian distribution with 10 components
and diagonal covariance matrix.

F.1.2 Noisy-AUB Helps Mitigate the Vanishing Gradient Problem

Dataset: X1 Gaussian distribution with mean −20 and unit variance, X2 Gaussian distribution with mean 20
and unit variance. Each dataset has 500 samples.

Model: Encoders consist of three fully connected layers with hidden layer size as 10. Decoders are the reverse
setup of the encoders. Pz is a learnable one-dimensional mixture of Gaussian distribution with 2 components and



Ziyu Gong, Ben Usman, Han Zhao

diagonal covariance matrix. The NVAUB has the added noise level of 10 while the VAUB has no added noise.

F.2 Comparison Between Other Non-adversarial Bounds

Dataset: We adopted the preprocessed Adult Dataset from Zhao et al. (2020), where the processed data has
input dimensions 114 , targeted attribute as income and sensitive attribute as gender.

Model: Since all baseline models have only one encoder, we also adapt our model to have shared encoders. All
models have encoder consists of three fully connected layers with hidden layer size as 84 and latent features as 60.
For Moyer et al. (2018) and ours, decoders are the reverse setup of the encoder. For Gupta et al. (2021), we
adapt the same network setup for the contrastive estimation model. Again, for Moyer et al. (2018) and Gupta
et al. (2021) we used a fixed Gaussian distribution, and for our model, we use a learnable mixture of Gaussian
distribution with 5 components and diagonal covariance matrix. For this experiment, we manually delete the
classifier loss in all baseline models for the purpose of comparing only the bound performances.

Metric: For SWD, we randomly project 103 directions to one-dimensional vectors and compute the 1-Wasserstein
distance between the projected vectors. Here is the table for the corresponding mean and standard deviation.
The models are all significantly different (i.e., p-value is less than 0.01) when using an unpaired t-test on the 103

SWD values for each method.

Table 6: SWD for each method where * denotes statistically different at a 99% confidence level.

Moyer Gupta VAUB

Sample Mean 9.71* 6.7* 5.64*
σ 0.54 0.74 0.64

For SVM, we first split the test dataset with 80% for training the SVM model and 20% for evaluating the SVM
model. We use the scikit-learn package to grid search over the logspace of the C and γ parameters to choose the
best hyperparameters in terms of accuracy.

F.3 Replacing Adversarial Losses

F.3.1 Replacing the Domain Adaption Objective

Model: We use the same encoder setup (referred as feature extraction layers) and the same classifier structure
as in Ganin et al. (2016)).

F.3.2 Replacing the Fairness Representation Objective

Dataset: We adopted the preprocessed Adult Dataset from Zhao et al. (2020), where the processed data has
input dimensions 114 , targeted attribute as income and sensitive attribute as gender.

Model: Since all baseline models have only one encoder, we also adapt our model to have a shared encoder. All
models have encoder consists of three fully connected layers with hidden layer size as 84 and latent features as 60.
For Moyer et al. (2018) and ours, decoders are the reverse setup of the encoder. For Gupta et al. (2021), we
adapt the same network setup for the contrastive estimation model. Again, for Moyer et al. (2018) and Gupta
et al. (2021) we used a fixed Gaussian distribution, and for our model, we use a learnable mixture of Gaussian
distribution with 5 components and diagonal covariance matrix.
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