
A Greedy Approximation for k-Determinantal Point Processes

Julia Grosse Rahel Fischer Roman Garnett Phlipp Hennig
University of Tübingen,
Tübingen AI Center

University of Tübingen,
Tübingen AI Center

University of Washington University of Tübingen,
Tübingen AI Center

Abstract

Determinantal point processes (DPPs) are an
important concept in random matrix theory
and combinatorics, and increasingly in ma-
chine learning. Samples from these processes
exhibit a form of self-avoidance, so they are
also helpful in guiding algorithms that ex-
plore to reduce uncertainty, such as in active
learning, Bayesian optimization, reinforce-
ment learning, and marginalization in graph-
ical models. The best-known algorithms for
sampling from DPPs exactly require signif-
icant computational expense, which can be
unwelcome in machine learning applications
when the cost of sampling is relatively low
and capturing the precise repulsive nature of
the DPP may not be critical. We suggest
an inexpensive approximate strategy for sam-
pling a fixed number of points (as would typi-
cally be desired in a machine learning setting)
from a so-called k-DPP based on iterative in-
verse transform sampling. We prove that our
algorithm satisfies a (1− 1/e) approximation
guarantee relative to exact sampling from the
k-DPP, and provide an efficient implementa-
tion for many common kernels used in ma-
chine learning, including the Gaussian and
Matérn class. Finally, we compare the em-
pirical runtime of our method to exact and
Markov-Chain-Monte-Carlo (MCMC) sam-
plers and investigate the approximation qual-
ity in a Bayesian Quadrature (BQ) setting.

1 INTRODUCTION

Determinantal point processes (DPPs), introduced by
Macchi (1975), are point processes whose joint inten-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

sity is proportional to the determinant of a positive
definite kernel Gram matrix. Intuitively, this intro-
duces a dependence between points in samples from
such processes that gives them a repulsive property—
points drawn from DPPs cover a space more regularly
than uniform random samples; see Figure 1 (left vs.
middle).

Figure 1: 100 random points on the interval [0, 1]2

sampled uniformly at random (left), sampled from a
k-DPP with square-exponential kernel with a length-
scale of 0.1 (middle), and sampled from its greedy ap-
proximation that is the subject of this paper (right).

DPPs initially arose in the study of fermionic gases
in physics and have since found application in other
areas, such as random matrix theory (Mehta, 1991).
A review of their statistical properties is provided by
Soshnikov (2000). Meanwhile, DPPs have also re-
ceived attention in machine learning and statistics. A
reason for the growing interest in them is that they
provide an elegant theoretical view on the notion of ex-
ploration that is of relevance across machine learning.
In areas like active and reinforcement learning, as well
as in numerical tasks like marginalization in graphi-
cal models, the basic challenge is that the algorithm
should in some sense “probe” an input domain in a
maximally informative way. The repulsive property of
DPPs can help automatically guide such a procedure.

As we will review below, DPPs have a direct con-
nection to the entropy of Gaussian process models,
which closely ties them to many basic probabilistic
algorithms in machine learning, e.g. in Bayesian op-
timization (Garnett, 2023; Nava et al., 2022; Kathuria
et al., 2016; Wang et al., 2017), Bayesian quadrature
(Bardenet and Hardy, 2016), kernel quadrature (Bel-

A Greedy Approximation for k-Determinantal Point Processes

hadji et al., 2019) and Monte Carlo integration (Gau-
tier et al., 2019a). DPPs have been used as diversity-
inducing priors (e.g., Kulesza and Taskar, 2012) and
found applications in several other areas, such as rec-
ommender systems (Wilhelm et al., 2018), clustering
(Kang, 2013), neural network compression (Mariet and
Sra, 2015), batch stochastic gradient descent (Zhang
et al., 2017) or learning diverse generative models
(Elfeki et al., 2019). In these applications, the num-
ber of points desired k is usually fixed by the users
in advance, whereas in a DPP, this size is a random
variable. To this end, we may consider a so-called k-
DPP, which is a DPP conditioned to have fixed size.
In machine learning, the process of sampling from a
k-DPP is often used a subroutine rather than the end
goal in itself. Therefore, it can then be desirable to
trade-off accuracy in the sampling process for speed.
This is the motivation for our contributions here.

After reviewing the definition of a k-DPP in §2, we
start by characterizing the k-DPP as a point processes
maximizing a natural score function. This score func-
tion consists of two components: One that ensures that
the elements of a single point set sampled from the pro-
cess are expected to be diverse. And another one that
rewards a high entropy of the point processes itself and
thereby ensures that multiple point sets sampled from
the process are expected to be diverse themselves.

We then introduce the greedy strategy for approximate
maximization of this score function. Our motivation
to choose a greedy approach for the approximation is
due to its success in the analogous non-stochastic set-
ting. It is common practice in tasks that involve the
(non-stochastic) exploration of a function or a domain,
e.g. by maximizing information gain (Srinivas et al.,
2009; Hennig and Schuler, 2012; Ma et al., 2018) or
entropy (Sharma et al., 2015). Hence, we suspect it
to be useful for our stochastic sampling setting, too.
We continue with a theoretical analysis of the approx-
imation quality, where we use tools from submodular
optimization to show that the point process defined by
our greedy sampling procedure achieves a near-optimal
value of the introduced score function.

While a large amount of computational costs is saved
by sampling greedily, the implementation costs of a
single greedy decision can still be significant over large
domains or continuous domains. However, we will
show that the kernels typically encountered in machine
learning are amenable to an efficient implementation.
In §4, we present an analytic sampling scheme, by way
of example on the popular square-exponential kernel,
which we generalize to other common kernels, includ-
ing the Matérn class. We conclude with an empiri-
cal study of the approximation quality in an applied
setting in §5 and a runtime comparison to exact and

MCMC sampling algorithms in §6.

2 DPPs

Let ℓ : X×X _ R be a symmetric positive semi-definite
kernel over some compact Euclidean space X. Given
two sets A := [a1, . . . , aI],B := [b1, . . . , bJ] ⊆ X, the
symbol LAB ∈ RI×J is a matrix containing the ele-
ments [LAB]ij = ℓ(ai, bj). For our purposes, a k-DPP
is a stochastic process, such that a sample of cardi-
nality k, X := [x1, . . . , xk] ⊂ X from the process has
joint probability proportional to the determinant of
the corresponding Gram matrix LXX:

pk-DPP(X=X) = Z det LXX. (1)

Here, Z is a normalization constant, the existance of
which can be shown via a general argument (Hough
et al., 2006; Kulesza and Taskar, 2011). More pre-
cise definitions of DPPs and k-DPPs can be found in
Soshnikov (2000); Hough et al. (2009); Bardenet and
Hardy (2016), and Kulesza and Taskar (2011). They
require a discussion of base measures and other prop-
erties of point processes, which unnecessarily compli-
cate the exposition in our context. Kulesza and Taskar
(2012) also provide a relatively complete introduction
to discrete DPPs, where X is restricted to be a dis-
crete space. In this work, we consider a finite dis-
cretization of a continuous space. In order to simplify
exposition, we assume that X is a unit cube [0, 1]D

discretized into an equally spaced grid of size N . For
a more general box constraint x̃d ∈ [ad, bd] for each
d = 1, . . . , D, one can apply the linear transformations
xd = (x̃d−ad)/(bd−ad).

3 GREEDY APPROXIMATION

We begin by outlining a connection between the k-
DPP and the softargmax of the Gaussian differential
entropy in §3.1. This relation serves as the motiva-
tion behind our choice of the score function. Then, we
greedily maximize this score function, resulting in our
greedy approximation of the k-DPP in §3.2. Finally
we examine the theoretical properties of the approxi-
mation in §3.3.

3.1 Motivation

Consider an algorithm aiming to learn the function
f : X _ R by choosing k evaluation points (“designs”)
X1:k, using a Gaussian process prior p(f) = GP(µ, ℓ)
with arbitrary mean function µ : X _ R and kernel
function ℓ as above. The slicing notation Xi:j de-
notes the elements selected in steps i, . . . , j (for j < i,
Xi:j = ∅). We allow for a stochastic and sequen-
tial policy π, defined over a product probability space

Julia Grosse, Rahel Fischer, Roman Garnett, Phlipp Hennig

(Xk, 2Xk

, π):

π(X1:k=X1:k)=

k∏
i=1

π
(
Xi=xi|X1:i−1=[x1, ..., xi−1]

)
.

(2)

In many cases, the evaluation order does not matter,
that is, one is only interested in the distribution over
unordered sets of points X ∈ X ={X ⊆ X||X|=k}. Ev-
ery sequential policy π induces a random variable X
over the discrete probability space (X , 2X , pπ), where
pπ is obtained by summing over all permutations
perm(X) of the elements in a set X:

pπ(X=X) =
∑

X′∈perm(X)

π(X1:k=X′) . (3)

Aiming to collect informative observations, assume the
algorithm may randomly place evaluations X1:k such
that the differential entropy

hdiff(fX1:k
) = 1

2 log(2eπ)
k det LX1:kX1:k

(4)

of the corresponding multivariate Gaussian fX1:k
∼

N (µX1:k
,LX1:kX1:k

) has a high value. To simplify no-
tation, we drop constants and use

h(X1:k) = log det LX1:kX1:k
(5)

in the following. To be more precise, we require sam-
ples to be draws from the softargmax of h:

pβ(x1, . . . , xN) = Z exp
(
β ·h(X1:N)

)
, (6)

where β > 0 is a constant. A policy π for sampling
from pβ maximizes the following score function

π = argmax
π

βEX∼pπ
h(X) +H(pπ) , (7)

where H(pπ) := −
∑

X∈X pπ(X) log pπ(X) is the Shan-
non entropy and EX∼pπ

h(X) is the expected value of
the objective value h of the sampled subsets. To see
this, consider the Kullback–Leibler divergence between
pπ and pβ

DKL(pπ||pβ) = −H(pπ)− βEX∼pπ
h(X) + logZ;

Z :=
∑
X∈X

expβh(X),

and note that π achieves the minimiumDKL(pπ ∥pβ)=
0 per definition of optimality. For β =1, one obtains
the k-DPP associated with ℓ. This form reveals that a
k-DPP is a smooth approximation to the argmax of the
differential entropy in the sense that for β→∞, one re-
covers the exact argmax (and the mode of the k-DPP).
The expression Hβ(π) := βEX∼pπ

h(X) + H(pπ) can

be interpreted as a softmax corresponding to the sof-
targmax. Intuitively, this score function rewards high
diversity within samples, as well as high diversity be-
tween samples. For active learning, the resulting sam-
ples are useful, for example, in so far as the resulting
empirical estimator EN [f] for expectations of f (even
if f is not a true sample from GP(µ, ℓ), or even an
element of the RKHS associated with ℓ) converges at
a rate dominating that of the Monte Carlo estimator
as shown in Bardenet and Hardy (2016).

3.2 Method

Finding the exact argmax (β →∞) of the entropy h
is known to be NP-hard, but a greedy approximation
typically shows good practical performance and is also
theoretically well understood (Sharma et al., 2015).
The greedy approach to finding the set of points X1:k

with the highest entropy h consists in iteratively se-
lecting the next point xi by maximizing the marginal
gain ∆h(x|X1:i−1) :=h(X1:i−1∪{x})−h(X1:i−1) in each
step, i.e.

xi = argmax
x

∆h(x|X1:i−1) . (8)

By taking the Schur complement of LX1:i,X1:i
, one ob-

tains

det(LX1:i,X1:i
) = det(LX1:i−1,X1:i−1

)

· det(Lxixi
− LxiX1:i−1

L−1
X1:i−1X1:i−1

LX1:i−1xi
),

and thereby the marginal gain simplifies to

∆h(x|X1:i−1) =

log
(
Lxx − LxX1:i−1

L−1
X1:i−1X1:i−1

LX1:i−1x

)
. (9)

The term inside the logarithm will be known to readers
experienced with Gaussian processes as the posterior
variance of a Gaussian process regression model con-
ditioned on function values at X1:i−1. We will refer to
it as vi(x) and in preparation for the derivations in §4,
we introduce the shorthand L(i) := LX1:i−1,X1:i−1

and
re-formulate the posterior variance more explicitly as

vi(x) = ℓ(x, x)−
i−1∑

a,b=1

ℓ(x, xa) ℓ(x, xb)[L
−1
(i)]ab . (10)

In analogy to greedy optimization, we define the
greedy approximation to the k-DPP by sampling it-
eratively from the softargmax of the marginal gain
∆h(x |X1:i−1):

πgreedy(x |X1:i−1) =
exp∆h(x |X1:i−1)

ZX1:i−1

∝ vi(x). (11)

A Greedy Approximation for k-Determinantal Point Processes

ZX1:i−1 denotes the normalizing constant, that de-
pends on the previously selected points X1:i−1. Al-
ternatively, one can view the greedy approximation
to sampling from a k-DPP as the greedy approxima-
tion to the optimum of the score function H(π) :=
EX1:k∼πh(X1:k) +H(π) since

πgreedy(x |X1:i−1)

= argmax
π(x|X1:i−1)

Eπ(x|X1:i−1)

[
∆h(x |X1:i−1)

]
+H(Xi | X1:i−1=X1:i−1) (12)

is equivalent to Eq. (11) by the same argument based
on the Kullback–Leibler divergence as in the previous
section. Here, H(Xi | X1:i−1 = X1:i−1) denotes the
conditional Shannon entropy.

3.3 Approximation Guarantees

In this section we derive the approximation guarantee
for the greedy optimization of the above score function
H. It is based on a classic result from combinatorial
optimization giving a (1−1/e)-approximation ratio be-
tween greedy and optimal maximization of monotone
submodular set functions (Nemhauser et al., 1978).
We extend this guarantee to a stochastic setting and
show that it holds for our greedy k-DPP sampling al-
gorithm. For technical reasons, we introduce a free pa-
rameter α during this analysis that we will later fix to
a convenient value, leaving us with an approximation
ratio that depends on k and the spectral properties of
the kernel of the k-DPP.

The function h(X) = log det LXX has two helpful char-
acteristics, as pointed out by Krause et al. (2008) and
Sharma et al. (2015). It is submodular, i.e. ∀X1 ⊆ X2

and i /∈ X2, h(X1∪{i})−h(X1) ≥ h(X2∪{i})−h(X2). If
additionally, the smallest eigenvalue λmin(L) ≥ 1, the
function h is also monotone, i.e. ∀X1,X2 with X1 ⊆
X2 ⊆ X, h(X1) ≤ h(X2). In combination, monotonic-
ity and submodularity bound the future change in the
objective value h in subsequent steps by the previous
change. Nemhauser et al. (1978) used this property to
give an upper bound on the optimal objective value
h(O) based on (1 − 1/e)−1 times the objective value
h(G) found with the greedy algorithm:

Theorem (Nemhauser et al. (1978)) Given a
monotone submodular function h, let G be the solution
found with the greedy algorithm as defined in Eq. (8)
and O be the optimal solution. It holds:

(1− 1/e)h(O) ≤ h(G) .

In our case, where we treat the k-DPP as the soft-
argmaximum of h, we derive an analogous statement
in terms of the softmaximum instead of the maximum:

Theorem 1 Let h be a submodular set function with
h(∅) = 0 and ∆h(x |X) > (1/k) log k! for all X ⊂ X,
x ∈ X \X. Assume X is finite. It holds

(1− 1/e)H(pπopt) ≤ H(pπgreedy
) ,

with H(pπ) = EX∼pπ
[h(X)]+H(pπ) and πopt being an

optimal policy.

A full proof is included in Appendix 4. The idea is to
first prove the desired results for the sequential, order-
dependent policies, i.e. (1−1/e)H(πopt) ≤ H(πgreedy).
This can be done by following the series of arguments
in Nemhauser et al. (1978) with a replacement of sets
by (ordered) set-valued random variables and addi-
tional care of the Shannon entropy terms. Then, we
transfer the result to the final distribution over un-
ordered sets by exploiting that the order-dependent
bound holds for all order-dependent optimal policies,
including the (“worst case”) one with uniform distri-
bution over all permutations.

In order for the latter step to work out, we introduce
the additional requirement ∆h(x | X) > (1/k) log k!
for all X ⊂ X, x ∈ X \ X regarding the slope of
h. However, note that altering the slope of h can
be done easily by scaling the kernel function with a
constant value. To make this dependence explicit, we
use hα(X) = log detαLXX instead of h for the follow-
ing analysis. In optimization, as well as in the sam-
pling case, the greedy strategy is invariant with re-
spect to this change because the scale α cancels out
when sampling proportionally to the posterior vari-
ance. The distribution of samples from a random-sized
DPP, though, changes in general. In particular, in-
creasing α increases the expected cardinality of the
samples. But for k-DPPs, the scaling again does not
matter. For them, we can therefore give the following
approximation guarantee:

Corollary 1 Running the algorithm
πgreedy(x |X1:i−1) ∝ vi(x) as introduced in Sec-
tion 4 for k iterations on a finite grid is a (1 − 1/e)
approximation to the exact distribution pk-DPP of the
corresponding k-DPP, in the sense of

(1− 1/e)Hα(pk-DPP) ≤ Hα(pπgreedy
),

with Hα(p) = EX∼p[hα(X)] + H(p), hα(X) =
log det(αLXX) and α > k!1/k/λmin, where λmin is the
smallest eigenvalue of the Kernel Gram matrix over
the grid.

This result follows directly from Theorem 1. For de-
tails, see Appendix 4. By plugging in α = k!1/k/λmin,
rearranging the terms and additionally applying Strin-

Julia Grosse, Rahel Fischer, Roman Garnett, Phlipp Hennig

gling’s approximation for k!, the above inequality reads

(1− 1/e)H1(pk-DPP)−H1(pπgreedy
)

≤ (1/e)k log(α)

≤ (1/e)
(
k log(k)− k +O(log k) + k · log λ−1

min

)
This form reveals that the tightness of the bound in-
creases for a larger smallest eigenvalue λ−1

min and a
smaller number of points k. In the case of a DPP with
random k, larger eigenvalues lead to a higher expected
number of sampled points. Therefore, one possible in-
tuition for this result is that in settings in which the
sample space volume is not “very tightly filled” (i.e.,
if k is much less than the expected number of sam-
pled points under the DPP), the problem of placing
k self-avoiding points might become “easier” and the
greedy approximation can be very close to the exact
algorithm. The subtle differences between greedy and
exact only matter if the volume is very “packed” (note
that this does not imply that exact and approximate
methods are similar to iid. samples in such “loose”
cases. They still self-avoid).

A quantity closely related to the differential entropy h
is the information gain. Since it is also known to be
submodular and monotone, a (1−1/e)-approximation
guarantee for greedy sampling from the softargmax of
the information gain holds as well. Please refer to
Appendix 4 for the corresponding statement. It is re-
stricted to order-dependent sampling and requires a
slight modification of the sampling scheme presented
in §4 to take the noise term σ2 into account. The mod-
ification does not impede the efficiency of the method
and for σ_ 0, it corresponds to the algorithm intro-
duced above.

Besides the (1 − 1/e) approximation guarantees on
monotone submodular set functions, it is also known
that the greedy approach is optimal on matroidal
structures, and Lyons (2003) pointed out the close
relationship between matroids and orthogonal projec-
tion DPPs. This special kind of DPPs is charater-
ized by all eigenvalues of the correlation kernel matrix
K = L(I + L)−1 being zero or one. The cardinality of
the samples is then deterministic. For orthogonal pro-
jection DPPs, following the greedy approach and sam-
pling iteratively from the posterior variance is known
to result in the exact distribution (Hough et al., 2006).

As a final remark, note that the above statements
claim nothing about the similarity of the distributions
itself (e.g. in the sense of a total variation distance
of the probability masses). Instead, they state that
the two sampling distributions achieve a similar per-
formance in the task of generating diverse sets – as
quantified by the two entropy terms. While the latter
is typically what one cares about in practical applica-

tions of DPP sampling, the former can be interesting
future work to gain more theoretical insight into the
elegant nature of DPPs.

4 EFFICIENT IMPLEMENTATION

From a computational perspective, sampling propor-
tionally to the posterior variance vi(x) in Eq. (11)
poses two challenges. First, for general kernels ℓ, there
is usually no analytic cumulative density function for
them which is required to efficiently sample the next
point. However, this problem is much less severe in
machine learning, because our community enjoys free-
dom in the design of models and can thus choose ker-
nels with convenient analytic properties. Choosing
such a kernel and exploiting these properties directly
yields an efficient approximation for the generation of
samples from k-DPPs, even in high-dimensional do-
mains.

Second, even if the kernel is analytically convenient,
the calculation of the posterior variance vi(x) in-
volves the matrix inverse of L(i). Given the inverse
of L(i−1) from the preceding step in the iterative sam-
pling scheme, this inverse can be computed with com-
plexity O

(
(i−1)2

)
, using the matrix inversion lemma.

Even so, the cost of drawing a sample of cardinality k
remains cubic in k. This issue is directly connected
to inference in Gaussian process regression models,
and many approximations have been proposed over the
past decade. Furthermore, in use cases like Bayesian
optimization and quadrature, the number k of func-
tion evaluations is often low, and a decomposition of
the Gram matrix is computed anyway. In such cases,
the cubic cost can be unproblematic, and scaling to
larger domains (high N and D) may be more impor-
tant.

We provide an efficient implementation of the greedy
principle for k-DPP sampling if the kernel ℓ is ana-
lytically integrable. To ease intuition, the derivations
will be by way of example, using the popular square-
exponential kernel ℓSE : RD×RD _ R over the real vec-
tor space

lSE(xa, xb) = exp

(
−1

2

D∑
d=1

(xa − xb)
2
d

λ2
d

)
. (13)

To simplify things even further, we initially consider
the univariate problem, D = 1, then generalize to arbi-
trary dimensionality. The resulting algorithm draws a
k-sized sample at cost O(Dk3 log(N)). A general form
of the algorithm is summarized in Algorithm 1 in Ap-
pendix 2. There, we also provide a more detailed run-
time analysis and describe how to extend the scheme
to other popular kernels, like the Matérn class.

A Greedy Approximation for k-Determinantal Point Processes

0 1

x

0

1
v i

(x
)

0 1

x

0

uZ

V i
(x

)

Figure 2: Sketch illustrating analytic sampling from a
k-DPP in one dimension, using the square-exponential
kernel (Eq.13). Left: Posterior variance vi(x) after the
4th iteration (i = 5). Right: Inverse transform sam-
pling from vi(x), by computing the cumulative density
Vi (black line), drawing a scaled uniform random sam-
ple u and finding the point xi such that Vi(x5) = u,
by interval bisection.

4.1 Sampling in One Dimension

We may draw samples using the classic form of com-
puting a non-normalized cumulative density

Vi(x) =

∫ x

0

vi(x̃) dx̃ , (14)

and transforming standard uniform random variables
u ∼ U

[
0,Vi(1)

]
, produced by a pseudo-random num-

ber generator, into exact samples from vi (cf. Figure 2),
by setting

x = V−1
i (u) = {x |Vi(x) = u} . (15)

For the univariate square-exponential exponential ker-
nel Eq.(13), (10) can be re-written, using standard
properties of the Gaussian function, as

vi(x) = 1−
i−1∑

a,b=1

exp

(
− (x−mab)

2

λ2

)

· exp
(
− (xa − xb)

2

4λ2

)
︸ ︷︷ ︸

=:M(i),ab

[L−1
(i)]ab . (16)

where mab := 1/2(xa + xb), and we have defined a ma-
trix M(i) ∈ R(i−1)×(i−1). The variables m,M,L−1 pro-
vide the statistics of the sample needed to draw the
subsequent point. After xi has been drawn, these three
variables can be updated in O(k2)—we use the matrix
inversion lemma to update L−1

(i+1); the other two vari-

ables can be updated in O(k). The cumulative density
is then

Vi(x)= x−
√
πλ

2

i−1∑
a,b=1

[
erf

(
x−mab

λ

)
+erf

(
mab

λ

)]
[M(i) ⊙ L−1

(i)]ab . (17)

Here, ⊙ is the Hadamard (element-wise) product, and
we have used erf(x) = − erf(−x). Given a uniform

random draw u, all that is left to do is to find x such
that Vi(x) = u. A straightforward, numerically ro-
bust, albeit not particularly elegant way to do so is by
interval bisection, which takes 1

D log(N) steps of costs
O(k2). A more elegant search strategy could be con-
structed using grid refinement methods similar to the
popular Ziggurat algorithm of Marsaglia and Tsang
(2000).

4.2 Multivariate Samples

For square-exponential exponential kernel k-DPPs in
dimension D > 1, vi(x) retains much of its structure.
Equation (16) simply turns into (defining the elements
of a new matrix M ∈ R(i−1)×(i−1) analogous to M in
Eq. (16)):

vi(x) = 1−
i−1∑

a,b=1

exp

(
−

D∑
d=1

(x−mab)
2
d

λ2
d

)

· exp

(
−

D∑
d=1

(xa − xb)
2
d

4λ2
d

)
︸ ︷︷ ︸

=:M(i),ab

[L−1
(i)]ab . (18)

The additional challenge in this multivariate case is to
construct a parametrization of the cumulative density
Vi. This step, too, can be performed in an iterative
fashion, drawing one coordinate of the sample point xi

after another (cf. Figure 3). Given that the first d− 1
elements of xi are given by xi,1:d−1, the cumulative
density associated with the d-th dimension is given by
the sum rule:

Vi(xi,d|xi,1:d−1) =∫ xi,d

0

∫
· · ·
∫ 1

0

vi
(
[xi,1:d−1, x̃i,d, x̃i,d+1:D

)
dx̃i,d

D∏
d̃=d+1

dx̃i,d̃ . (19)

For the square-exponential exponential kernel, this
works out to

Vi(xi,d = x |xi,1:d−1) =

x−
i−1∑

a,b=1

{
exp

(
−

d−1∑
r=1

(x−mab)
2
r

λ2
r

)
[M(i) ⊙ L−1

(i)]ab

·
(
erf

(
[xi −mab]d

λd

)
+ erf

(
[mab]d
λd

)) √
πλl

2

·

 D∏
j=d+1

(
erf

(
[1−mab]j

λj

)
+erf

(
[mab]j
λj

))√
πλj

2

}.
(20)

Julia Grosse, Rahel Fischer, Roman Garnett, Phlipp Hennig

0 1

xi,2

0

1

x
i,

1

0 1

0

u

V i
(x
i,

2
|x
i,

1
)

0 u

Vi(xi,1)

0

1

Figure 3: Drawing approximate k-DPP samples in two
dimensions. Bottom left: Contour plot of the multi-
variate probability density vi(x) with (i = 5); pre-
ceding four samples as black points. Right: The first
coordinate of the fifth sample is drawn first, from the
marginal density along this dimension. Top: The sec-
ond coordinate is then drawn by computing a cumu-
lative density conditioned on the value of the first co-
ordinate.

5 EXPERIMENTS

We conduct an empirical analysis of the approxima-
tion quality in an applied setting. If greedily sampled
locations cover the domain almost as well as the ex-
actly sampled ones, one would expect to learn a similar
amount of information about a function (modeled with
a Gaussian Process) evaluated at these locations. This
should lead to little performance decrease in follow-up
tasks, such as the integration of that function. To in-
vestigate this, we perform Bayesian Quadrature (BQ)
of several benchmark functions with evaluation loca-
tions sampled from exact and approximate k-DPPs,
as well as uniformly chosen locations. For the BQ
we rely on the vanilla version from emukit 1 (Paleyes
et al., 2023). As integrands we use the benchmark
functions from The Virtual Library of Simulation

Experiments 2 (Surjanovic and Bingham). We use a
square-exponential kernel with a default lengthscale of
0.2 for all methods and benchmarks. All functions are
integraded over the domain X = [0, 1] × [0, 1]. Eval-
uation locations are sampled from a regular 50 × 50
grid. For more details on the methods and hyperpa-

1https://emukit.github.io/bayesian-quadrature/
2https://www.sfu.ca/~ssurjano/integration.html

rameters, see Appendix 5. The code for all experi-
ments in this paper is available at https://github.

com/JuliaGrosse/GreedykDPPSampling.
Figure 4 shows the mean error between the true value
F :=

∫
x∈X f(x)dx and the value F̂ estimated with BQ

for three of them. Figure 1 in Appendix 5 contains
the results for all twelve benchmark functions. On the
benchmarks, where there was a significant advantage
of the DPP over the uniform distribution, the greedy
version performed equally well to the DPP. This indi-
cates that sampling from the exact k-DPP might not
be very crucial in an application like this, as long as
some repulsiveness is still present.

2 10 20

0.02

0.04

0.06

0.08

Ê[
|F̂
−
F
|]

Continuous integrand family

2 10 20

0.2

0.4

0.6

0.8

Roos Arnold function

2 10 20

k

0.0

0.2

0.4

0.6

Ê[
|F̂
−
F
|]

Morokoff Caflisch function 1

2 10 20

k

0.2

0.4

0.6

0.8

Zhou function

greedy

exact

uniform

Figure 4: Results from BQ with evaluation locations
sampled from an exact k-DPP, the greedy approxima-
tion and uniformly sampled locations. The plots show
the mean error over 100 samples and 95% confidence
intervals for the mean error as shaded areas.

6 RELATED WORK

The maximum entropy formulation we use as starting
point for our derivations is prominent in reinforcement
learning. For an introduction to Maximum Entropy
Reinforcement Learning see e.g. (Levine, 2018). These
methods are used to learn a policy π that satisfies the
objective in equation 7 for an arbitrary function h.
Our method differs from this line of work in that we
do not learn π, but instead give an analytic approx-

emukit
The
Virtual
Library
of
Simulation
 Experiments
https://emukit.github.io/bayesian-quadrature/
https://www.sfu.ca/~ssurjano/integration.html
https://github.com/JuliaGrosse/GreedykDPPSampling
https://github.com/JuliaGrosse/GreedykDPPSampling

A Greedy Approximation for k-Determinantal Point Processes

imation for π from scratch for the specific choice of
h(X) being the Gaussian entropy itself (equation 5).

Regarding the theoretical analysis, the work from Djo-
longa et al. (2018) is closest to ours. They also prove
a (1 − 1/e) guarantee of a greedy algorithm on a log
partition function. Instead of monotonicity and sub-
modularity, they assume that h is a sum ofM ♮-concave
functions. In addition, their greedy algorithm is a vari-
ational approximation and not analytically derived as
in our case. The paper by Hough et al. (2006, Prop. 19)
contains a special case of our greedy algorithm for
orthogonal projection DPPs (where it is exact). A
greedy approximation for maximum a posteriori infer-
ence in DPPs is suggested in Chen et al. (2018).

Chen et al. (2022) sample proportionally to the poste-
rior variance of a GP – without the inverse transform
sampling – in the context of quadrature and low-rank
matrix approximations. They provide bounds on the
expected trace E[tr(A−Ak)], where Ak is the sampled
low-rank approximation of the matrix A. Epperly and
Moreno (2023) further analysed the greedy sampling
scheme – specifically for quadrature – and bound the
approximation error on the integrand itself. Similarly,
Huszár and Duvenaud (2012) and Adachi et al. (2022)
studied the convergence properties of the method in
the quadrature setting. However, our analysis in terms
of the entropies draws a novel connection to k-DPPs,
providing a theoretical justification for why it can be
seen as an approximation of them.

Due to the large amount of recent literature on DPPs
in general, we restrict the remainder of this section to
an overview of exact and approximate sampling from
k-DPPs only. Originally, exact samplers for generic
k-DPPs were based on eigendecompositions of the en-
tire N ×N Kernel Gram matrix and thereby required
O(N3) time (Kulesza and Taskar, 2011). Derezinski
et al. (2019) introduced DPP-VFX, an intermediate
sampling method for k-DPPs. They first sample in-
termediate points from the marginal distributions of a
random-sized DPP, and then repeatedly sample from
a DPP restricted to the intermediate points until a set
of size k is sampled. The algorithm has time complex-
ity in O(N · k10 + k15). The linear costs in N can
be reduced to less than linear costs by another inter-
mediate sampler named α-DPP (Calandriello et al.,
2020), that does not require the computation of all
marginals and additionally uses a more efficient reduc-
tion method from the DPP to the k-DPP. The result-
ing complexity is reported to be inO((βN ·k6+k9)

√
k),

making α-DPP to the best of our knowledge the cur-
rently fastest exact sampler for k-DPPs. The con-
stant β ≤ 1 depends on the effective dimension deff
of the matrix L, the sample size k, as well as the
largest entry κ2 in L and can be specified further to

β ≤ min{k2κ2/deff(L), 1}.

Regarding approximate sampling, MCMC methods
are popular. Anari et al. (2016) introduced one that
runs in O(poly(k)n log(n/ϵ)). Here, ϵ is a small
constant determining the approximation quality of
the MCMC samples. The approximation guaran-
tees for MCMC only hold after the mixing time of
O(n · poly(k)). Transitions steps in the Markov Chain
take time polynomial in k. Rezaei and Gharan (2019)
developed a k-DPP sampler for continuous domains.
As such its runtime does not depend on N , however, it
involves rejection sampling from the conditionals of the
k-DPP, which can become expensive in k. If k ≤ eD

1−c

for some constant 0 ≤ c ≤ 1, one can show that the
time complexity is in O(D log(1/ϵ)) ·kO(1/c). Based on
the asymptotic runtimes, the greedy algorithm in this
paper compares favorably if exactness is not absolutely
crucial and the domain is large or high-dimensional.

6.1 Runtime Comparison

We compare the runtime of the greedy algorithm with
those of several state-of-the-art exact and approximate
samplers (Derezinski et al., 2019; Calandriello et al.,
2020; Anari et al., 2016) described above (Figure 6.1).
For the baselines, we use the Python implementations
available in DPPy3 (Gautier et al., 2019b) with default
parameters. We draw 100 samples with k = 10 and
k = 100 points from a k-DPP with square-exponential
kernel with lengthscale 0.01, respectively 0.001, on the
interval [0, 1]. We run all methods for discretization
size N ∈ {102, 103, 104, 5 · 104, 6 · 104, 7 · 104, 105}.
Runs taking longer then 100 seconds for k = 10 or
360 seconds for k = 100 were stopped, i.e. they do
not appear in the figure. For k = 10, the experiment
was repeated 5 times and for k = 100, 3 times. Ad-
ditional results from a repetition of the experiment
on [0, 1]3 with lower discretization sizes are included
in Appendix 5.The results agree with those from the
asymptotic runtime analyses.

3https://github.com/guilgautier/DPPy

DPPy
https://github.com/guilgautier/DPPy

Julia Grosse, Rahel Fischer, Roman Garnett, Phlipp Hennig

103 105

discretization

10−1

100

101

102

ti
m

e
in

s
k = 10

103 104 105

discretization

100

101

102

k = 100

mcmc alpha-DPP vfx greedy

Figure 5: Runtime comparison of the greedy algorithm
with state-of-the-art baselines. Discussion in text.

7 CONCLUSION

We introduced a greedy approximation for sampling
from k-DPPs theoretically grounded in an analogy
to greedy optimization of the Gaussian differntial en-
tropy. We showed that approximation guarantees for
greedy optimization of the entropy have a resembling
interpretation in the sampling setting and tested the
approximation in a BQ application, where we found
the approximation error to be empirically negligible.
We provided an efficient implementation for continu-
ous domains – logarithmic in the size of the discretiza-
tion N – for common kernels like the Matérn class.
The algorithm described herein thus offers itself as a
low-level routine for all applications that require such
diverse points sets as part of a surrounding experimen-
tal design loop.

Acknowledgements

The authors thank the reviewers for useful comments
and additional references. JG thanks Cheng Zhang
and Marvin Pförtner for helpful discussions. The
authors are grateful to Lucy Kuncheva and Joseph
Courtney for (separately) pointing out a nontriv-
ial typo in Eq. (20) in an earlier version of this
manuscript, as well as to Simon Barthelmé for point-
ing out the approximate nature of the sampling
scheme. This work was supported by Microsoft Re-
search through its PhD Scholarship Programme. The
authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for sup-
porting JG. PH and JG gratefully acknowledge fi-
nancial support by the DFG Cluster of Excellence
“Machine Learning - New Perspectives for Science”,
EXC 2064/1, project number 390727645; the German
Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039A);
and funds from the Ministry of Science, Research and
Arts of the State of Baden-Württemberg. RG was

supported by the National Science Foundation under
award IIS-1845434

References

Masaki Adachi, Satoshi Hayakawa, Martin Jørgensen,
Harald Oberhauser, and Michael A Osborne. Fast
bayesian inference with batch bayesian quadrature
via kernel recombination. Advances in Neural Infor-
mation Processing Systems, 35:16533–16547, 2022.

Nima Anari, Shayan Oveis Gharan, and Alireza
Rezaei. Monte Carlo Markov chain algorithms for
sampling strongly Rayleigh distributions and deter-
minantal point processes. In Conference on Learning
Theory, pages 103–115. PMLR, 2016.

Rémi Bardenet and Adrien Hardy. Monte Carlo
with determinantal point processes. ArXiv e-print,
1605.00361, May 2016.

Ayoub Belhadji, Rémi Bardenet, and Pierre Chainais.
Kernel quadrature with DPPs. Advances in Neural
Information Processing Systems, 32, 2019.

Daniele Calandriello, Michal Derezinski, and Michal
Valko. Sampling from a k-DPP without looking at
all items. Advances in Neural Information Process-
ing Systems, 33:6889–6899, 2020.

Laming Chen, Guoxin Zhang, and Eric Zhou. Fast
greedy map inference for determinantal point pro-
cess to improve recommendation diversity. Advances
in Neural Information Processing Systems, 31, 2018.

Yifan Chen, Ethan N Epperly, Joel A Tropp, and
Robert J Webber. Randomly pivoted cholesky:
Practical approximation of a kernel matrix with few
entry evaluations. arXiv preprint arXiv:2207.06503,
2022.

Michal Derezinski, Daniele Calandriello, and Michal
Valko. Exact sampling of determinantal point pro-
cesses with sublinear time preprocessing. Advances
in neural information processing systems, 32, 2019.

Josip Djolonga, Stefanie Jegelka, and Andreas Krause.
Provable variational inference for constrained log-
submodular models. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Mohamed Elfeki, Camille Couprie, Morgane Riviere,
and Mohamed Elhoseiny. Gdpp: Learning diverse
generations using determinantal point processes. In
International conference on machine learning, pages
1774–1783. PMLR, 2019.

Ethan N Epperly and Elvira Moreno. Kernel quadra-
ture with randomly pivoted cholesky. arXiv preprint
arXiv:2306.03955, 2023.

Roman Garnett. Bayesian Optimization. Cambridge
University Press, 2023.

A Greedy Approximation for k-Determinantal Point Processes

Guillaume Gautier, Rémi Bardenet, and Michal Valko.
On two ways to use determinantal point processes
for Monte Carlo integration. Advances in Neural
Information Processing Systems, 32, 2019a.

Guillaume Gautier, Guillermo Polito, Rémi Bar-
denet, and Michal Valko. DPPy: DPP Sam-
pling with Python. Journal of Machine Learn-
ing Research - Machine Learning Open Source
Software (JMLR-MLOSS), 2019b. URL http:

//jmlr.org/papers/v20/19-179.html. Code at
http://github.com/guilgautier/DPPy/ Documenta-
tion at http://dppy.readthedocs.io/.

Philipp Hennig and Christian J Schuler. Entropy
Search for Information-Efficient Global Optimiza-
tion. Journal of Machine Learning Research, 13(6),
2012.

John Ben Hough, Manjunath Krishnapur, Yuval
Peres, and Bálint Virág. Determinantal processes
and independence. Probability Surveys, 3:206–229,
2006.

John Ben Hough, Manjunath Krishnapur, Yuval
Peres, and Bálint Virág. Zeros of Gaussian analytic
functions and determinantal point processes, volume
51, University Lecture Series. American Mathemat-
ical Society Providence, RI, 2009.

Ferenc Huszár and David Duvenaud. Optimally-
weighted herding is bayesian quadrature. arXiv
preprint arXiv:1204.1664, 2012.

Byungkon Kang. Fast determinantal point process
sampling with application to clustering. Advances
in Neural Information Processing Systems, 26, 2013.

Tarun Kathuria, Amit Deshpande, and Pushmeet
Kohli. Batched Gaussian process bandit optimiza-
tion via determinantal point processes. Advances in
neural information processing systems, 29, 2016.

Andreas Krause, Ajit Singh, and Carlos Guestrin.
Near-optimal sensor placements in Gaussian pro-
cesses: Theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research, 9
(2), 2008.

Alex Kulesza and Ben Taskar. k-DPPs: Fixed-size
determinantal point processes. In Proceedings of the
28th International Conference on Machine Learning
(ICML-11), pages 1193–1200, 2011.

Alex Kulesza and Ben Taskar. Determinantal point
processes for machine learning. Foundations and
Trends in Machine Learning, 5:123–286, 2012.

Sergey Levine. Reinforcement learning and control as
probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

Russell Lyons. Determinantal probability measures.
Publications Mathématiques de l’IHÉS, 98:167–212,
2003.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla,
José Miguel Hernández-Lobato, Sebastian Nowozin,
and Cheng Zhang. Eddi: Efficient dynamic discov-
ery of high-value information with partial vae. arXiv
preprint arXiv:1809.11142, 2018.

Odile Macchi. The coincidence approach to stochastic
point processes. Advances in Applied Probability,
pages 83–122, 1975.

Zelda Mariet and Suvrit Sra. Diversity networks: Neu-
ral network compression using determinantal point
processes. arXiv preprint arXiv:1511.05077, 2015.

George Marsaglia and Wai Wan Tsang. The Ziggurat
method for generating random variables. Journal of
Statistical Software, 5(8):1–7, 2000.

Madan Lal Mehta. Random Matrices. Academic Press,
1991.

Elvis Nava, Mojmir Mutny, and Andreas Krause. Di-
versified sampling for batched Bayesian optimiza-
tion with determinantal point processes. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 7031–7054. PMLR, 2022.

George L Nemhauser, Laurence A Wolsey, and Mar-
shall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathe-
matical programming, 14(1):265–294, 1978.

Andrei Paleyes, Maren Mahsereci, and Neil D.
Lawrence. Emukit: A Python toolkit for deci-
sion making under uncertainty. Proceedings of the
Python in Science Conference, 2023.

Alireza Rezaei and Shayan Oveis Gharan. A polyno-
mial time MCMC method for sampling from contin-
uous determinantal point processes. In International
Conference on Machine Learning, pages 5438–5447.
PMLR, 2019.

Dravyansh Sharma, Ashish Kapoor, and Amit Desh-
pande. On greedy maximization of entropy. In In-
ternational Conference on Machine Learning, pages
1330–1338. PMLR, 2015.

Alexander Soshnikov. Determinantal random point
fields. Russian Mathematical Surveys, 55(5):923–
975, 2000.

Niranjan Srinivas, Andreas Krause, Sham M Kakade,
and Matthias Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental
design. arXiv preprint arXiv:0912.3995, 2009.

Sonja Surjanovic and Derek Bingham. Virtual li-
brary of simulation experiments: Test functions
and datasets. Retrieved October 10, 2023, from
http://www.sfu.ca/~ssurjano.

http://jmlr.org/papers/v20/19-179.html
http://jmlr.org/papers/v20/19-179.html
http://www.sfu.ca/~ssurjano

Julia Grosse, Rahel Fischer, Roman Garnett, Phlipp Hennig

Zi Wang, Chengtao Li, Stefanie Jegelka, and Push-
meet Kohli. Batched high-dimensional Bayesian op-
timization via structural kernel learning. In In-
ternational Conference on Machine Learning, pages
3656–3664. PMLR, 2017.

Mark Wilhelm, Ajith Ramanathan, Alexander
Bonomo, Sagar Jain, Ed H Chi, and Jennifer Gillen-
water. Practical diversified recommendations on
youtube with determinantal point processes. In Pro-
ceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages
2165–2173, 2018.

Cheng Zhang, Hedvig Kjellstrom, and Stephan Mandt.
Determinantal point processes for mini-batch diver-
sification. arXiv preprint arXiv:1705.00607, 2017.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] mathematical setting: Section 2.1; as-
sumptions: finite domain (mentioned in text
and at the beginning of each theorem) + an-
alytically integrable kernel for the efficient
implementation (mentioned in Section 3) al-
gorithm: description in Section 3 and pseu-
docode in Appendix Section 2

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes/No/Not Applicable] time: Sec-
tion 3.1 and more details in Appendix Section
3, space: No, sample size: Not Applicable

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] Code is avail-
able at https://github.com/JuliaGrosse/
GreedykDPPSampling, see README therein
for dependencies etc.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] At the beginning
of each theorem.

(b) Complete proofs of all theoretical results.
[Yes] Appendix Section 4

(c) Clear explanations of any assumptions. [Yes]
assumptions: finite domain (mentioned in
text and at the beginning of each theorem)
+ analytically integrable kernel for the effi-
cient implementation (mentioned in Section
3). We additionally included examples for
analytically integrable kernels.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental re-
sults (either in the supplemental mate-
rial or as a URL). [Yes] Code is avail-
able at https://github.com/JuliaGrosse/
GreedykDPPSampling, see README therein
for how to generate the data and figures.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
Section 5, Section 6.1, Appendix Section 5

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] Section 6.1 and Cap-
tion of Figure 4

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] Appendix Section 5

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes] The Virtual Library of

Simulation Experiments ,DPPy and emukit:
see references.

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [No]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

https://github.com/JuliaGrosse/GreedykDPPSampling
https://github.com/JuliaGrosse/GreedykDPPSampling
https://github.com/JuliaGrosse/GreedykDPPSampling
https://github.com/JuliaGrosse/GreedykDPPSampling
The
Virtual
Library
of
Simulation
 Experiments
DPPy
emukit

A Greedy Approximation for k-Determinantal Point Processes
Supplementary Materials

The appendix contains a description of how the algorithm introduced in the main text for the square exponential
kernel can be extended to other analytically integrable kernels in Section 1, a description of the greedy sampling
algorithm in pseudocode in Section 2, a runtime analysis in Section 3, the proofs of the theoretical results for
Section 4 of the main paper in 4, and the additional experimental details in Section 5.

1 OTHER ANALYTICAL KERNELS

While the Gaussian kernel is the most widely used kernel in machine learning, it has some shortcomings, primarily
that it makes very strong smoothness assumptions that can lead to instability in interpolation models. But with
some algebraic elbow grease, the scheme of Eq. 19 can be extended to many other popular kernels, assuming
they factorize,

l(a, b) =

D∏
d

l(ad, bd), (1)

and the indefinite integrals ∫
l(a, a) da and

∫
l(a, b)l(a, c) da (2)

are analytically solvable. For example, the above results are applicable to the Matérn class of kernels (Stein,
1999) (including the exponential kernel, which induces the Ornstein–Uhlenbeck process), noting that, assuming
w.l.o.g. x0 < a < b < x1,∫ x1

x0

exp (−|x− a|) exp (−|x− b|) dx =

e−a−b

2

(
e2a − e2x0

)
+ (b− a)ea−b +

ea+b

2

(
e2x1 − e2b

)
, (3)

and using results such as (see e.g., Gradshteyn and Ryzhik, 2007, §2.322)∫
xeax dx = eax

(
x

a
− 1

a2

)
, (4)∫

x2eax dx = eax
(
x2

a
− 2x

a2
+

2

a3

)
, . . . (5)

2 PSEUDOCODE

A Greedy Approximation for k-DPPs

Algorithm .1 Greedy sampling from approximate DPPs with analytic kernels, on [0, 1]D.

1 procedure DrawFromDPP(l,D, k)
2 � initialize statistics of sample as empty

3 X ^∅,m^∅,M ^∅, L−1 ^∅
4 for i = 1, . . . , k do � draw samples iteratively

5 xi ^∅ � initialize current sample point

6 � draw dimensions iteratively

7 for d = 1, . . . , D do
8 � construct function for Eq. (20)

9 V ^Vconstruct(m,M,L−1)
10 � draw scaled unit random number

11 u^ V(1)·rand(·)
12 I ^[0, 1] � initialize search interval

13 while |I| > ε do � bisection search

14 µ^ 1/2(I0 + I1) � interval midpoint

15 I ^ if (V(µ) < u)
16 then [µ, I1] else [I0, µ] � bisect

17 end while
18 xi ^[xi, µ] � store sampled element

19 end for
20 � update sample statistics (rank-1)

21 (X,m,M,L−1)^Add(xi |X,m,M,L−1)
22 end for
23 end procedure

3 RUNTIME

Let k be the number of points to select, D the dimensionality, N the size of the discretization (regular grid).
Then the runtime of the greedy sampling algorithm is O(k3 logN):

• The Gaussian posterior is updated once in each of the k iterations in O(k2) by using the matrix-inversion-
lemma (see eg. the textbook on GPs by Rasmussen & Williams, A.3)

• In one iteration, along each of the D dimensions, a bisection search on a grid with discretization size N (1/D)

is performed. This gives O(D · log(N (1/D))) = O(log(N)) steps in total for the bisection search. For k
iterations these are O(k · log(N)) steps.

• Each step of the bisection search requires the calculation of Eq. (20). This expression contains a double sum
over the previously observed points. There are at most k of them, so there are at most O(k2) summands.
Each summand consists of D factors and thereby costs O(D). This results in O(Dk2) per step of the
bisection search, O(Dk2 log(N)) cost per iteration and O(Dk3 log(N)) in total.

4 PROOFS

For (conditional) entropies and the expected values, we introduce the following notation:

For S1:i ∼ π,

H(S1:i) = −
∑

S1:i∈Ek

π(S1:i) log π(S1:i)

H(Si|S1:i−1 = S1:i−1) = −
∑
Si∈E

π(Si|S1:i−1) log π(Si|S1:i−1)

H(Si|S1:i−1) = −
∑

S1:i∈Ei

π(S1:i) log π(Si|S1:i−1)

ES1:i
[h(S1:i)] =

∑
S1:i∈Ek

π(S1:i)h(S1:i)

ESi|S1:i−1=S1:i−1
[h(S1:i)] =

∑
Si∈E

π(Si|S1:i−1)h(S1:i)

H(S1:i) = ES1:i [h(S1:i)] +H(S1:i)

In general, H(S1:i) ̸= H(pπ) and thereby H(S1:i) ̸= H(pπ). The chain rule for the entropy is

H(S1:i) =

k∑
i=1

H(Si|S1:i−1)

For reference, the two statements regarding submodularity and monotonicity:

Proposition 1. Krause et al. (2008) Given any symmetric, positive semi-definite matrix L ∈ RN×N , the function
h(X) = log detLXX is submodular, i.e.

∀X1 ⊆ X2 and i /∈ X2, h(X1 ∪ {i})− h(X1) ≥ h(X2 ∪ {i})− h(X2)

Proposition 2. Sharma et al. (2015) Given any symmetric L ∈ RN×N with the smallest eigenvalue λmin(L) ≥ 1,
the function h(X) = log detLXX is monotone, i.e.

∀X1, X2 with X1 ⊆ X2 ⊆ X,h(X1) ≤ h(X2)

Lemma 1. Consider two independent random variables G1:k ∼ πgreedy and O1:k ∼ π for an arbitrary policy
π. In each iteration i = 0, ..., k − 1, we have

H(O1:k) ≤ EG1:i

[
h(G1:i)

]
+k

[
EG1:i+1 [h(G1:i+1)]− EG1:i [h(G1:i)] +H(Gi+1|G1:i)

]

A Greedy Approximation for k-DPPs

Proof.

H(O1:k)

definition of H
= EO1:k

[h(O1:k)] +H(O1:k)

h is monotone
≤ EO1:kG1:i

[
h(O1:k ∪G1:i)

]
+H(O1:k)

telescoping sum
= EO1:kG1:i

[
h(G1:i) +

k∑
j=1

h(G1:i ∪O1:j)− h(G1:i ∪O1:j−1)

]
+H(O1:k)

h is submodular
≤ EO1:kG1:i

[
h(G1:i) +

k∑
j=1

h(G1:i ∪Oj)− h(G1:i)

]
+H(O1:k)

entropy chain rule

≤ EO1:kG1:i

[
h(G1:i) +

k∑
j=1

h(G1:i ∪Oj)− h(G1:i)

]
+

k∑
j=1

H(Oj |O1:j−1)

cond. can only decrease entropy

≤ EG1:i

[
h(G1:i) +

k∑
j=1

EOj [h(G1:i ∪Oj)− h(G1:i)] +H(Oj)

]
summarize

= EG1:i

[
h(G1:i) +

k∑
j=1

EOj
[h(G1:i ∪Oj)− h(G1:i)] +H(Oj)

]
G,O indep.

= EG1:i

[
h(G1:i) +

k∑
j=1

EOj
[h(G1:i ∪Oj)− h(G1:i)] +H(Oj |G1:i = G1:i)

]
greedyness

≤ EG1:i

[
h(G1:i) +

k∑
j=1

EGi+1
[h(G1:i ∪Gi+1)− h(G1:i)] +H(Gi+1|G1:i = G1:i)

]
summarize

= EG1:i

[
h(G1:i)

]
+k

[
EG1:i+1 [h(G1:i+1)]− EG1:i [h(G1:i)] +H(Gi+1|G1:i)

]

Lemma 2. Consider two independent random variables G1:k ∼ πgreedy and O1:k ∼ π for an arbitrary policy
π. We have

(1− 1/e)H(O1:k) ≤ H(G1:k)

Proof. By rearranging the terms from Lemma 1

H(O1:k) ≤ EG1:i

[
h(G1:i)

]
+k

[
EG1:i+1

[h(G1:i+1)]− EG1:i
[h(G1:i)] +H(Gi+1|G1:i)

]
,

we get

H(O1:k)− EG1:i+1
[h(G1:i+1)] ≤

(
1− 1

k

)[
H(O1:k)− EG1:i

[h(G1:i)]

]
+H(Gi+1|G1:i)

By induction over i, we have

H(O1:k)− EG1:i
[h(G1:i)] ≤

(
1− 1

k

)i[
H(O1:k)− EG1:0

[h(G1:0)]

]
+

k∑
i=1

(
1− 1

k

)i−1

H(Gi|G1:i−1)

Because EG1:0 [h(G1:0)] = 0:

H(O1:k)− EG1:i
[h(G1:i)] ≤

(
1− 1

k

)i[
H(O1:k)

]
+

k∑
i=1

(
1− 1

k

)i−1

H(Gi|G1:i−1)

Because (1− 1/k) < 1 and the entropy chain rule:

H(O1:k)− EG1:i
[h(G1:i)] ≤

(
1− 1

k

)i[
H(O1:k)

]
+H(G1:k)

Setting i = k and using the known inequality 1− x ≤ e−x:

H(O1:k)− EG1:k
[h(G1:k)] ≤ (1/e)

[
H(O1:k)

]
+H(G1:k)

Rearranging terms and using the definition of H, we get the desired result:

(1− 1/e)H(O1:k) ≤ H(G1:k)

Lemma 3. The optimal policy is not uniquely determined due to sampling ordered sequences instead of unordered
sets. Let πopt be the optimal policy, that samples all sequences corresponding to the same set equally often:

∀S ∈ X ∀S1:k ∈ perm(S) : πopt(S1:k) = πopt(S1:k) =
1

k!
pπopt

(S)

For O1:k ∼ πopt, we have:

(1) EO1:k
[h(O1:k)] = EO∼pπopt

[h(O)]

(2) H(O1:k) = H(pπopt
) + log k!

For the greedy policy G1:k ∼ πgreedy, there is:

(3) EG1:k
[h(G1:k)] = EG∼pπgreedy

[h(G)]

(4) H(G1:k) ≤ H(pπgreedy
) + log k!

Proof. (3) h is a set function, i.e. the order does not matter for h and thereby also does not matter for
expectations of h.

(2)

H(O1:k)

definition of H
= −

∑
S1:k∈Ek

πopt(S1:k) log πopt(S1:k)

definition of πopt
= −

∑
S1:k∈Ek

1

k!
pπopt(S) log

1

k!
pπopt(S)

|perm(S)|=k!
= −

∑
S∈E

pπopt
(S) log

1

k!
pπopt

(S)

summarize
= H(pπopt

) + log k!

A Greedy Approximation for k-DPPs

(3) h is a set function, i.e. the order does not matter for h and thereby also does not matter for expectations
of h.C

(4) Consider a joint sample S1:k ∼ πgreedy and S ∼ pπgreedy
, since S is fully determined by S1:k:

H(S1:k) = H(S1:k,S) = H(S1:k|S) +H(S)

H(S1:k|S) is maximized by a uniform order over all permutations, i.e. H(S1:k|S) ≤ log k!

Theorem 1. Let h be a submodular set function with h(∅) = 0 and ∆h(x|X) > (1/k) log k! for all X ⊂ X,
x ∈ X \X. Assume X is finite. It holds

(1− 1/e)H(pπopt
) ≤ H(pπgreedy

),

with H(pπ) = EX∼pπ [h(X)] +H(pπ) and πopt being the optimal policy.

Proof. Define a new set function m(S) := h(S) + l(S) with l(S) = − |S|
k log k!. Due to the properties of h and

l being a modular function, we still have monotony and submodularity for m as well as m(∅) = 0 such that
Lemma 3 applies to m, too. The greedy policy πgreedy and the optimal sampling policy with uniform order πopt

as defined in Lemma 3 the same for m and h. Using Lemma 2 and Lemma 3, we obtain the result:

H(pπgreedy
)

definition of H
= EG∼pπgreedy

[h(G)] +H(pπgreedy
)

definition of m
= EG∼pπgreedy

[m(G)] +H(pπgreedy
) + log k!

Lemma 3
≥ EG1:k

[m(G1:k)] +H(G1:k)

definition of M
= M(G1:k)

Lemma 2
≥ (1− 1/e)M(O1:k)

definition of M
= (1− 1/e)

[
EO1:k

[m(O1:k)] +H(O1:k)

]
Lemma 3

= (1− 1/e)

[
EO∼pπopt

[m(O)] +H(pπopt
) + log k!

]
definition of m

= (1− 1/e)

[
EO∼pπopt

[h(O)] +H(pπopt)

]
definition of H

= (1− 1/e)H(pπopt
)

Corollary 1. Running the algorithm πgreedy(xi |X1:i−1) ∝ vi(x) as introduced in Section 3 for k iterations on
a finite grid is a (1 − 1/e) approximation to the exact distribution pk-DPP of the corresponding fixed size DPP,
in the sense of

(1− 1/e)H(pk-DPP) ≤ H(pπgreedy
),

with H(p) = EX∼p[hα(X)] +H(P) and hα(X) = log det

(
αLXX

)
for α = k!1/k

λmin
. Where λmin > 0 is the smallest

eigenvalue of the Kernel Gram matrix over the grid.

Proof. By proposition 1, the function hα is monotone. By proposition 2, the function h is also monotone since
scaling with the reciprocal of the smallest eigenvalue ensures that all eigenvalues are larger than 1. Additionally
scaling with (k!)1/k ensures that the marginal gains are larger than log k!1/k = 1

k log k!. Thus the assumptions
in Theorem 1 are met and the result follows.

4.1 Analysis in Terms of the Information Gain

For a Gaussian process regression model f ∼ GP(µ, ℓ) with additional i.i.d noise ϵ ∼ N (0, σI) on the observations,
the information gain g(X) = 1

2 log det
(
I + σ−2LXX

)
quantifies the reduction in uncertainty about f by observing

fX + ϵX. The matrix I denotes the identity matrix.

We’ll again drop the constant factor of 1/2 and instead analyse g(X1:k) = log det
(
I + σ−2LX1:k

)
.

It has been pointed out before by e.g. Srinivas et al. (2009) that g is monotone and submodular and can be
decomposed in terms of the posterior variances

g(X1:k) =

k∑
i=1

log(1 + σ2vσi(xi)),

where the vσi
(x) = l(x, x)− l(x,X1:i)(LX1:i,X1:i

+ σ2I)l(X1:i, x).

In the optimization setting, the greedy choice is given by

xi = argmax
x

log(1 + σ2vσi(x)), (6)

so we again take the softargmax instead and sample greedily from

πgreedyg
(x|X1:i) ∝ exp(log(1 + σ2vσi(x))) ∝ 1 + σ2vσi(x) (7)

By direct application of Lemma 2, we get:

Corollary 2. Consider πgreedyg
as defined in Eq. (7) and πk-DPP for an optimal policy for sampling from a

k-DPP. It holds

(1− 1/e)Hg (πk-DPP) ≤ Hg

(
πgreedyg

)
,

where HIg(π) = EX∼π (g(X)) +H (π), where g(X) = log det
(
I+ σ−2LX

)
for σ2 > 0.

The policy to sample greedily from information gain can be implemented as efficiently as the original policy for
the differential entropy:

The posterior vσi
retains much of the structure of vi, so in the terms for the posterior (Eq. 16), as well as the

unnormalized cumulative density in (Eq. 17) the matrix L merely has to be replaced with L+ σ2I to obtain the
corresponding terms for vσi

and Vσi
. Note that we do not sample proportionally to vσi

(x), but proportionally
to 1+ σ2vσi . However, given the efficient computation of Vσi the unnormalized cumulative density for 1+ σ2vσi

can easily be obtained due to linearity of integration.

5 ADDITIONAL EXPERIMENTAL DETAILS

The experiments were performed on a desktop machine with a 4 GHz Quad-Core Intel Core i7 processor and 32
GB memory. Table 5 lists the scales of the squared-exponential kernels used for BQ. Since all methods share
the same kernel hyperparameters, we assume that their choice only plays a subordinate role and obtained them
by eyeballing the ground-truth scale from 2D plots of the integrands. Figure 1 shows additional results from the
BQ experiment described in Section 5 of the main paper for more benchmark functions.

Figure 2 shows additional runtime results in three dimensions. We draw 100 samples with k = 10 and k = 100
points from a k-DPP with square-exponential kernel with lengthscale 0.01, respectively 0.001, on the interval
[0, 1]3. Runs taking longer than 100 seconds for k = 10 or 500 seconds for k = 1000 were stopped, i.e. they do
not appear in the figure. For k = 10, the experiment was repeated 5 times and for k = 100, 3 times.

A Greedy Approximation for k-DPPs

2 10 20

k

0.0

0.1

0.2

0.3

Ê[
|F̂
−
F
|]

Brately function

2 10 20

k

0.02

0.04

0.06

0.08

Ê[
|F̂
−
F
|]

Continuous integrand family

2 10 20

k

0.004

0.006

0.008

0.010

0.012

Ê[
|F̂
−
F
|]

Corner peak integrand family

2 10 20

k

0.02

0.04

0.06

0.08

0.10

0.12

Ê[
|F̂
−
F
|]

Discontinuous integrand family

2 10 20

k

0.2

0.4

0.6

0.8

Ê[
|F̂
−
F
|]

G function

2 10 20

k

0.02

0.04

0.06

0.08

0.10

Ê[
|F̂
−
F
|]

Gaussian Peak integrand family

2 10 20

k

0.0

0.2

0.4

0.6

Ê[
|F̂
−
F
|]

Morokoff Caflisch function 1

2 10 20

k

0.0

0.2

0.4

0.6

Ê[
|F̂
−
F
|]

Morokoff Caflisch function 2

2 10 20

k

0.025

0.050

0.075

0.100

0.125

0.150

Ê[
|F̂
−
F
|]

Oscillatory integrand family

2 10 20

k

0.000

0.025

0.050

0.075

0.100

0.125

Ê[
|F̂
−
F
|]

Product peak integrand family

2 10 20

k

0.2

0.4

0.6

0.8

Ê[
|F̂
−
F
|]

Roos Arnold function

2 10 20

k

0.2

0.4

0.6

0.8

Ê[
|F̂
−
F
|]

Zhou function

greedy

exact

uniform

Figure 1: Results from Bayesian Quadrature with evaluation locations sampled from an exact k-DPP, the greedy
approximation and uniformly sampled locations. The plots show the mean error over 100 samples and 95%
confidence intervals for the mean error as shaded areas.

Table 1: Hyperparameters for the Bayesian Quadrature

Benchmark Scale

Brately function 1
Continuous integrand family 1
Corner peak integrand family 1
Discontinuous integrand family 140
G function 3.5
Gaussian Peak integrand family 1
Morokoff Caflisch function 1 2.5
Morokoff Caflisch function 2 1
Oscillatroy integrand family 2
Product peak integrand family 700
Roos Arnold function 4
Zhou function 8

20 25 30 35 40

discretization

100

101

102

ti
m

e
in

s

k = 10

40 50 60 70 80 90

discretization

102

103

k = 100

greedy mcmc alpha-DPP vfx

Figure 2: Runtime comparison of the greedy algorithm with state-of-the-art baselines in three dimensions.

References

Gradshteyn, I. and Ryzhik, I. (2007). Table of Integrals, Series, and Products. Academic Press, 7th edition.

Krause, A., Singh, A., and Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Machine Learning Research, 9(2).

Sharma, D., Kapoor, A., and Deshpande, A. (2015). On greedy maximization of entropy. In International
Conference on Machine Learning, pages 1330–1338. PMLR.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process optimization in the bandit
setting: No regret and experimental design. arXiv preprint arXiv:0912.3995.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer S&B M.

	INTRODUCTION
	DPPs
	GREEDY APPROXIMATION
	Motivation
	Method
	Approximation Guarantees

	EFFICIENT IMPLEMENTATION
	Sampling in One Dimension
	Multivariate Samples

	EXPERIMENTS
	RELATED WORK
	Runtime Comparison

	CONCLUSION

