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Abstract

While machine learning models are typi-
cally trained to solve prediction problems,
we might often want to use them for op-
timization problems. For example, given a
dataset of proteins and their corresponding
fluorescence levels, we might want to op-
timize for a new protein with the highest
possible fluorescence. This kind of data-
driven optimization (DDO) presents a range
of challenges beyond those in standard pre-
diction problems, since we need models that
successfully predict the performance of new
designs that are better than the best de-
signs seen in the training set. It is not
clear theoretically when existing approaches
can even perform better than the näıve ap-
proach that simply selects the best design in
the dataset. In this paper, we study how
structure can enable sample-efficient data-
driven optimization. To formalize the notion
of structure, we introduce functional graph-
ical models (FGMs) and show theoretically
how they can provide for principled data-
driven optimization by decomposing the orig-
inal high-dimensional optimization problem
into smaller sub-problems. This allows us to
derive much more practical regret bounds for
DDO, and the result implies that DDO with
FGMs can achieve nearly optimal designs in
situations where näıve approaches fail due to
insufficient coverage of the offline data. We
further present a data-driven optimization al-
gorithm that inferes the FGM structure itself,
either over the original input variables or a
latent variable representation of the inputs.
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1 INTRODUCTION

Machine learning models are typically trained for pre-
diction, but we often want to use such models to solve
optimization or decision-making problems. Imagine
we would like to use a dataset of fluorescent proteins
and their fluorescence levels to design a new protein
with the highest possible fluorescence [3, 34]. Simi-
larly, when provided with examples of hardware ac-
celerators and their performance, an engineer might
want to infer a more performant hardware accelera-
tor design [15, 21]. A direct machine learning ap-
proach to such problems would be to train a surro-
gate model that predicts the performance for a given
design, and then find its maximizers with some opti-
mization method [35]. In this work, we focus on the
challenging yet practical scenario where we can use
offline training data to train a surrogate model, but
cannot collect additional samples online. This offline
data-driven optimization (DDO) approach is often ap-
plied in model-based optimization [12, 9, 35, MBO]
and offline reinforcement learning [23, 8, RL].

The primary challenge in DDO is insufficient data cov-
erage of optimal examples, which causes the distribu-
tion shift in the optimization process: when we op-
timize the design (i.e., the input to the model), we
produce a design very different from the training dis-
tribution. Predictions for such designs are likely to be
inaccurate, and an optimizer might exploit the model
to generate designs that result in the largest (opti-
mistic) errors. Consequently, recent works in MBO
and offline RL have focused on incorporating penal-
ties for exploiting data outside of offline data when
constructing a surrogate model [22, 35]. However, even
with these conservative approaches, it remains unclear
whether we can learn the optimal design when the of-
fline training data fails to cover it. The question in
this context is: What enables DDO to be feasible in
this challenging offline scenario?

We make the observation that sample-efficient DDO
can be enabled by leveraging structure. Without any
structural bias for the surrogate model, even with
the aforementioned conservative methods, a näıve ap-
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proach in the worst case reduces to choosing the best
design observed in the offline data, as we will formalize
in Section 3. As the design space becomes large, the
probability of an optimal design being actually present
in the offline data generally becomes extremely low.

In our work, we introduce the framework of Func-
tional Graphical Models (FGMs) as a structure that
facilitates sample-efficient DDO. FGMs are designed
to describe function’s independence properties, allow-
ing us to decompose every function into subfunctions
over partially intersecting cliques. Importantly, FGMs
provide an effective way to introduce structural bias
for DDO by automatically decomposing the whole
optimization problem into smaller subproblems. We
demonstrate that DDO with FGMs can mitigate dis-
tribution shift, as it only requires the optimal design to
be covered by the offline data in a more lenient man-
ner, compared to DDO without any structural bias.
Specifically, FGMs enable the learning of the optimal
design as long as the variables in each clique of the
FGM take on optimal values for some data point—it
is not required to see any single point with optimal
values for all cliques jointly. As a result, we can for-
mally demonstrate that DDO with FGMs surpasses
the näıve approach.

Our contributions can be summarized as follows.
First, we introduce FGMs and show how they give rise
to a natural decomposition of the function of interest
over itsx cliques. Second, we demonstrate that FGMs
can reduce regret in data-driven optimization signif-
icantly. In particular, our results imply that we can
learn a near-optimal design as long as it is covered by
the offline data within individual cliques of the FGM,
rather than the entire space. Lastly, we propose a
practical data-driven optimization algorithm that can
discover FGMs from the offline data, under Gaussian
assumptions, or from a learned latent space in a more
general setting. We validate the effectiveness of our al-
gorithm in combination with MBO through numerical
experiments that demonstrate the benefit of the dis-
covered FGMs, especially for high-dimensional func-
tions with many cliques.

2 RELATED WORK

Data-driven optimization has connections to several
fields, including Bayesian optimization and model-
based optimization, as summarized below.

Bayesian Optimization. The idea of using data
and machine learning tools for design and optimization
has been one of the primary motivations of Bayesian
optimization (BO) [2, 31]. In BO, one establishes a
prior belief of the considered function and updates it
based on the given dataset, as well as queries for func-

tion evaluations that balance maximization and ex-
ploration of the function. However, such an online ap-
proach is not applicable to problems where additional
queries cannot be made or are very cost- and time-
consuming (e.g., drug design) that would ideally be
solved fully offline. Nevertheless, we consider our work
to be of interest to the BO community, where it is com-
mon to assume a decomposition of the objective over
a dependency graph, which simplifies the problem and
enables solving it with fewer queries [14, 30, 11, 39]. In
Section 4, we existence of such a decomposition for ev-
ery function under mild conditions, enabling tractable
optimization with finite amounts of offline data.

Probabilistic Graphical Models. Learning
FGMs involves uncovering the structure of functions
that map inputs x to outputs y. Similarly, the
challenge of discovering structural graphs has been
extensively studied in the field of probabilistic graph-
ical models [13, 33, 24, PGMs]. FGMs and PGMs
differ because PGMs are built upon probabilistic
independence, while FGMs are constructed based
on the concept of functional independence, which we
will introduce later in Section 4. In the literature on
PGMs, the main focus is on uncovering statistical
relationships between variables, whereas for the DDO
problems that we study, the main goal of using FGMs
is to enable efficient optimization with fewer samples,
as we will formalize in Section 5.

Model-Based Optimization. There has been a
growing interest in model-based optimization (MBO)
and the specific instantiation of MBO from static data,
or data-driven optimization (DDO). Recent works
have investigated computational design via such of-
fline MBO for chemical molecules, proteins, hardware
accelerators, and more [9, 3, 20, 21]. MBO and DDO
are often used interchangeably, and we employ the
term DDO to refer specifically to optimization from
static offline data. Most of these prior methods adopt
a “conservative” (i.e., pessimistic) approach to DDO,
employing regularizers to prevent the generation of
out-of-distribution designs [35, 27]. Combined with
appropriate inductive bias, these methods found appli-
cation in practical engineering problems, such as hard-
ware accelerator (microchip) design [21]. In our paper,
we instead investigate how discovering functional inde-
pendence structure via our FGM framework can enable
efficient optimization from data, and provide to our
knowledge the first theoretical analysis of sample effi-
ciency for DDO with such independence properties.

3 PRELIMINARIES

In DDO, the algorithm receives an offline dataset D “

txpiq, ypiquNi“1, where the input x P X is drawn from
a data distribution p P ∆pX q, and y “ fpxq P R is
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the corresponding evaluation of an unknown (black-
box) function f at x. Our goal is to find an input
(i.e., design) x that takes a high value in terms of
fpxq. In the ideal case, we may want to find an exact
x‹ fi argmaxxPX fpxq. In our analysis, we study a
generalization of this problem, where DDO learns a
stochastic distribution π P ∆pX q that maximizes Jpπq,
where Jpπq is the value defined by Jpπq “ Ex„πrfpxqs.

In DDO (e.g., MBO), conventional methods typically
involve the following steps: (a) obtaining a surrogate

model f̂ : X Ñ R using function approximation tech-
niques like deep neural networks, and (b) optimizing
the surrogate model with respect to x P X . This is
formalized in the following procedure:

f̂ “ argmin
f̄PF

Epx,yq„Drtf̄pxq ´ yu2s, (Step (a))

π̂ “ argmax
πPΠ

Ex„πrf̂pxqs, (Step (b))

where Π consists of probability distributions over X ,
and F is a regression class that consists of functions
mapping X to R. When Π is a fully expressive class1,
i.e., Π “ ∆pX q, Step (b) reduces to

x̂ “ argmaxxPX f̂pxq.

The primary practical challenge in the fully offline
DDO setting lies in dealing with insufficient data cov-
erage. To see this, consider the näıve approach: we
can set a model f̂pxq to match the observed fpxq val-
ues and assign random values to examples outside of
the offline data. This approach amounts to construct-
ing a surrogate model f̂ in the initial Step (a) without
relying on any structural bias. In the discrete case, it
is equivalent to setting F “ tx ÞÑ θJϕpxq | θ P R|X |u,
where ϕpxq is a |X |-dimensional one-hot encoding vec-
tor. Maximizing such a model corresponds to choos-
ing x for which θx is highest. However, if the input
space X is not fully covered by the data, such an
optimization process may end up outputting a novel
design x whose ground-truth value fpxq is very low,

but its random prediction f̂pxq happens to be high,
thus adversarially exploiting the model’s errors. One
may want to tackle this problem by, instead of assign-
ing random values to unobserved designs, modeling
them pessimistically—for example, by setting them to
f̂pxq “ ´8. The resulting solution is:

x̂ “ argmax
xPX

f̂pxq “ argmax
xPD

f̂pxq, (1)

which implies that the performance of the output de-
sign is bounded by the performance of the examples

1When X is discrete, we can always use this fully expres-
sive class. However, when X is continuous, one must use
a restricted distribution class, e.g., Π “ tN px, σ2

q;x P X}
for small σ2.

in the offline data. Hence, in either case, the perfor-
mance of DDO is expected to be poor when the data
distribution ppxq does not cover regions with high out-
put values in terms of fpxq. This issue is particularly
severe when the space X is large, which tends to cause
ppx‹q to be low.

To tackle this problem our work explores reasonable
structural bias that can be incorporated into surrogate
model classes F , mitigates the problem of insufficient
coverage, and can be learned from the offline data.

Notation. We write V to denote the index set of
input variables. If X Ď Rd, then V “ rds fi t1, . . . , du.
Thus, xV and x are equivalent. For a subset S Ď V, we
denote xS as the vector of variables with indexes in S
and XS as its domain. We denote the rest of the vector
in x by x´S . Furthermore, a À b stands for inequality
up to a problem-dependent constant. The notation
N pµ, σ2q denotes a normal distribution with mean µ
and variance σ2, and we use N to denote N p0, Iq for
simplicity.

4 FUNCTIONAL GRAPHICAL
MODELS

We present the concept of functional independence,
which characterizes the structural relationship be-
tween inputs and outputs. We then build on this defi-
nition to introduce a graphical representation of func-
tional independences between variables, which we refer
to as Functional Graphical Models (FGMs). Then, we
will show how to apply these concepts to DDO.

4.1 Functional Independence

We define the concept of functional independence,
which decomposes the structure of functions mapping
from X to real numbers. This concept can be used
as a useful inductive bias when constructing surrogate
functions for DDO.

Definition 1 (Functional Independence). Let
A,B, S Ď V. We say that xA and xB are functionally
independent given xS if, there exist functions f´pBzSq

and f´pAzSq, such that for every x P X ,

fpxq “ f´pBzSqpxVzpBzSqq ` f´pAzSqpxVzpAzSqq.

If S “ H and there exist mutually disjoint supersets A
of A and B of B such that f´Bpx´Bq “ fApxAq, and
f´Apx´Aq “ fBpxBq the independence is absolute.

Intuitively, functional independence of xA and xB

given xS states that, once we fix the value of xS , the
two sets of variables can be optimized independently.
This is a desirable property for DDO because each in-
put subspace is covered denser by the dataset if viewed
individually rather than jointly with another subspace.
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Figure 1: The clique set of this graph is given by

tt0, 1, 2u, t2, 3, 4u, t4, 5, 6uu. Hence, if it is a FGM of fpxq,

then fpxq “ f0,1,2px0,1,2q ` f2,3,4px2,3,4q ` f4,5,6px4,5,6q.

Intuitively, this allows an optimization algorithm to
decompose the original problem into two smaller ones
with more effective data. We will formalize this intu-
ition in Section 5.

Our first result offers alternative criteria for defining
functional independence when X is contained in an
Euclidian space. These properties play a key role in
discovering structure in unknown functions, as we will
discuss in Section 6.

Lemma 1. Suppose fpxq is twice-continuously differ-
entiable w.r.t. x. Let A,B, S Ď V. Then, the following
statements are equivalent.

1. xA and xB are functionally independent given xS.

2. For every x P X ,

Bf

BxAzS
pxq “ F´pBzSqpxVzpBzSqq,

for some function F´pBzSqpxVzpBzSqq that does not
take xpBzSq as input.

3. For every x P X ,

B2f

BxAzSBxBzS
pxq “ 0.

Detailed proofs are provided in Appendix B.

In the following subsection, we introduce a graphical
representation of functional independence that enables
encoding structures within high-dimensional functions
and leads to a provably efficient approach to DDO.

4.2 FGMs

We first define functional graphical models (FGMs),
a general framework for working with functional inde-
pendence. An example is shown in Figure 1.

Definition 2 (Functional Graphical Model (FGM)).
A graph G “ pV, Eq is an FGM of a function fpxq

if, for any i, j P V such that i ‰ j, pi, jq R E, we
have that xi and xj are functionally independent given
xVzti,ju. FGM with the smallest set E is referred to as
the minimal FGM of f .

Our construction of FGMs is analogous to that of
probabilistic graphical models (PGMs), where the ab-
sence of an edge indicates probabilistic conditional in-
dependence between two random variables [13, 18].
As we prove in Appendix B.1, a result similar to the
Hammersley-Clifford theorem in PGMs [5] holds for
FGMs, decomposing arbitrary functions as follows.

Theorem 1 (Function Decomposition). Assumue that
ş

X exp fpxqdx exists and let G be any FGM of fpxq

and C be its set of maximal cliques (clique set). Then,
there exist functions tfCpxCq, C P Cu, such that

fpxq “
ÿ

CPC
fCpxCq.

We provide an illustrative example of application of
this theorem in Figure 1.

4.3 DDO via FGMs

Consider a DDO algorithm that incorporates FGMs by
decomposing its surrogate model, following Theorem
1, over the maximal cliques of the FGM of f . Then,
DDO can be instantiated as follows:

π̂FGM “ argmax
πPΠ

Ex„πrf̂pxqs, f̂pxq “
ÿ

CPC
f̂CpxCq,

tf̂CuCPC “ argmin
tf̄CPFCuCPC

Epx,yq„D

”´

ÿ

CPC
f̄CpxCq ´ y

¯2ı

,

where each FC is a function class that consists of maps
from XC to R.

Now, consider an illustrative simple case where X is
discrete. In this case, natural choices of Π and FC

would be fully expressive classes: Π “ ∆pΠq,FC “

txC ÞÑ θJ
CϕCpxCq | θC P R|XC |u where ϕC is a one-hot

encoding vector over XC . Then, the abovementioned
method is equivalent to choosing

argmax
xPX

tϕJpxqEx„DrϕpxqϕpxqJs´1Epx,yq„Drϕpxqysu,

ϕpxq “ rϕpx1qJ, ¨ ¨ ¨ ,ϕpxCqJsJ. (2)

Importantly, this method differs from just choosing an
optimal x in the dataset D, i.e., x̂sim in Eq. (1) which
corresponds to a method without any inductive bias.

In practice, we must still estimate FGMs from the data
and handle the continuous space X . We will delve into
the practical implementation of this in Section 6.

5 FGMs ENABLE
SAMPLE-EFFICIENT
DATA-DRIVEN OPTIMIZATION

In this section, we present our main result, demon-
strating that functions represented by FGMs can be
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optimized efficiently with much less stringent data
coverage assumptions than those needed for standard
data-driven optimization. 2

5.1 REGRET GUARANTEES

First, we review the regret guarantee of the näıve ap-
proach in Step (a) and Step (b). A standard regret
guarantee in this setting [4] states that, with probabil-
ity 1 ´ δ, the following holds:

Jpπ‹q ´ Jpπ̂q
looooooomooooooon

Regret againstπ‹

À max
π̄PΠ

max
xPX

ˇ

ˇ

ˇ

ˇ

π̄pxq

ppxq

ˇ

ˇ

ˇ

ˇ

loooooooomoooooooon

Coveragepaq

ˆ

c

logp|F |{δq

n
loooooomoooooon

Complexitypa1q

, (3)

where π‹ is an optimal design among Π, i.e., π‹ “

argmaxπPΠ Jpπq.

The coverage term (a) measures the discrepancy be-
tween a distribution in Π and a data distribution p.
The term (a’) signifies the size of the function class
F . Note this |F | could be easily replaced with the
covering number when F is infinite [36].

Our main result shows that DDO with FGMs enjoys
a much more favorable regret guarantee:

Theorem 2 (Regret of DDO with FGMs). Let C be
the set of maximal cliques of an FGM of fpxq and
fpxq “

ř

CPC fCpxCq be its FGM decomposition. Un-
der the following assumptions @C P C,

(1) the function approximator classes are centered

Ex„prf̄CpxCqs “ 0,@f̄C P FC ,

(2) the correlations between cliques are well-controlled

max
tf̄CPFCu

Corrrf̄C1
pxC1

q, f̄C2
pxC2

qs ď σ,

(3) the models are well-specified, sp that fC P FC , and

(4) |f̄CpxCq| ď 1 for any xC P XC , f̄C P FC ,

the following result holds with probability 1 ´ δ

Jpπ‹q ´ Jpπ̂FGMq À
c

1

1 ´ σ
looomooon

Corrpb2q

max
CPC

max
π̄PΠ

max
xCPXC

ˇ

ˇ

ˇ

ˇ

π̄pxCq

ppxCq

ˇ

ˇ

ˇ

ˇ

loooooooooooooomoooooooooooooon

Coveragepbq

c

|C|
ř

C logp|FC |{δq

n
loooooooooooomoooooooooooon

Complexitypb1q

,

where ppxCq, π̄pxcq denote the marginal distributions
of xC with respect to ppxq and πpxq.

While the bound of the näıve approach in Eq. (3)
implies that MBO without FGM structure necessi-
tates the data distribution ppxq to cover the optimal

2Note our theory in this section still holds when an
observation y has a bounded measurement error ϵ, i.e.,
y “ fpxq ` ϵ.

Figure 2: Consider a function fpx1, x2q “ ´px1 ´1q2 ´

px2 ´ 2q2. Clearly, the singleton cliques tx1u and tx2u

are functionally independent, while the data coming
from a correlated normal distribution are not statisti-
cally independent. While the dataset does not jointly
cover the optimal solution x‹ “ p1, 2q, it does cover
individual components x‹

1 “ 1, x‹
2 “ 2, and thus a

method that can learn the component functions can
compose them into x‹.

design itself, the FGM factorization only necessitates
the data distribution to cover components within each
clique in the optimal design. This is a significantly less
stringent requirement, as the best design in the offline
data might be much less effective than the best design
achievable by combining favorable settings of the val-
ues in each of the cliques, as illustrated in Figure 2,
and analyzed deeper below.

Coverage term. The term (b) corresponds to cov-
erage that takes into account the FGM factorization.
This term quantifies how a distribution π P Π differs
from a data distribution p in terms of marginals with
respect to xC . The following lemma demonstrates that
term (b) is smaller than the coverage term (a) across
the entire space X :

Lemma 2 (Improvement of Coverage terms). For any
π P ∆pX q, we have

max
CPC

max
xCPXC

πpxCq

ppxCq
ď max

xPX

πpxq

ppxq
.

Consider the following illustrative example: suppose
the space X is discrete, denoted by X “ X1 b X2 b

¨ ¨ ¨bXd where X1 “ X2 “ ¨ ¨ ¨ “ Xd. Now, let’s assume
that fpxq “

ř

C fCpxCq, and ppx1, x2, ¨ ¨ ¨ , xdq follows
a jointly independent uniform distribution. Term (a)
exhibits exponential growth with the dimension d:

max
π̄P∆pX q

max
xPX

π̄px1, x2, ¨ ¨ ¨ , xdq

ppx1, x2, ¨ ¨ ¨ , xdq
“ |X1|d. (4)

Therefore, the näıve data-driven optimization proce-
dure suffers from a curse of dimensionality, requiring
an exponentially large number of samples to obtain a
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near-optimal design as the dimension increases. On
the contrary, the term (b) remains reasonably small:

max
π̄P∆pX q

max
CPC

max
xCPXC

π̄pxCq

ppxCq
ď |X1|maxC dC (5)

where dC represents the dimension of xC . Thus, the
DDO with FGMs can effectively overcome the curse of
dimensionality when maxC dC is reasonably small.

Furthermore, in a more extreme example, illustrated
in Figure 2, the coverage term (b) is bounded, but
the coverage term (a) is infinite. This illustrates that
DDO with FGMs can identify the optimal design,
when DDO without FGMs cannot do so even with in-
finite samples. It’s worth noting that in this scenario,
a discerning reader might express concerns about the
potential explosion of the additional term pb2q, which
could adversely affect the regret of DDO with FGMs.
However, as we will discuss in Section 5.2, this term
pb2q is moderately constrained.

Statistical complexity term. We can anticipate
that pb1q is generally much smaller than pa1q because
the function class for the surrogate model has more
structure. Let’s examine a specific scenario, where
X1 “ ¨ ¨ ¨ “ Xd and each Xi is discrete. Suppose that
F is a linear combination of all polynomial basis func-
tions over rx1, ¨ ¨ ¨ , xds, i.e., the fully expressive class.
In this case, a standard argument based on covering
[36] shows that the term pa1q would be on the order
of Op

a

|X1|d{nq, because the number of parameters in
the model is |X | “ |X1|d. Now, let’s consider the term
pb1q. When we set each FC to be a linear combina-
tion of all polynomial basis functions over the entire
XC , its order becomes Op

a

|C||X1|maxC dC {nq, because
the number of parameters in the model is bounded
from above by |C||X1|maxC dC . Again, this implies that
DDO with FGMs can effectively overcome the curse of
dimensionality when maxC dC is reasonably small.

Summary. Theorem 2 reveals that the original
data-driven optimization problem naturally breaks
down into subproblems for each clique C P C. More
specifically, this result shows that, while the näıve ap-
proach requires the data distribution to cover the op-
timal design, with FGMs, it is only necessary for the
data distribution to cover the optimal values of each
clique separately. With non-trivial FGMs, as we see
in Eq. (4) and Eq. (5), the difference in the number
of samples needed to obtain a near-optimal design be-
tween DDO with FGMs and näıve DDO (i.e., DDO
without FGMs) can be exponential 3. Furthermore,
although there could be a potential concern related to
the additional term pb2q, in certain instances, DDO

3Note the term (b”) is still 1 in this case. Hence, we
can ignore the term (b”) for the comparison.

with FGMs has the capability to learn the optimal de-
sign, whereas the näıve DDO approach cannot achieve
this even with an infinite amount of data. The intu-
ition for this is that näıve DDO requires the samples
from the data distribution to randomly set all of the
variables to near-optimal values in at least some of
the training points in the offline data, whereas DDO
with FGMs only requires some training points for each
clique to have near-optimal values, and does not re-
quire any single training point to have near-optimal
values for all cliques. In the näıve case, this can lead
to catastrophic sample complexity, essentially reduc-
ing the method to selecting the best point in the offline
data (i.e., the näıve approach in Eq. 1), whereas with
FGMs and relatively small cliques, it is possible to re-
combine the best values for each clique and find good
designs potentially with exponentially fewer samples.

Note that the literature on additive models [10] has
previously explored their role in reducing statistical
complexity. In contrast, we characterize the coverage
term in the context of DDO. It’s important to highlight
that simply reducing statistical complexity polynomi-
ally (i.e., improving the term pa1q) is insufficient for
overcoming the curse of dimensionality, because the
term paq might still grow exponentially.

5.2 Assumptions on DDO with FGMs

Theorem 2 shows that DDO with FMGs enjoys favor-
able regret guarantees under a set of assumptions of
the DDO problem. In this section, we’ll discuss these
assumptions in more detail to provide the reader with
intuition about our main result The first and last as-
sumptions are primarily technical. The first one can
always be satisfied with negligible error by substitut-
ing fCpxpiqq and ypiq with fCpxpiqq ´ ExC„DrfpxCqs

and ypiq ´Ey„Drys. The third assumption is standard,
and we can easily account for potential misspecifica-
tion errors in the theorem. The second assumption
is substantial. When σ “ 1, our guarantee is essen-
tially void. In essence, this assumption implies that
each clique exhibits mild independence, automatically
breaking down the entire problem into subproblems.
Technically, this enables us to translate the error of
f̂pxq “

ř

C f̂CpxCq for the entire graph into the error

of f̂C for each individual clique.

Readers might have concerns about whether the sec-
ond assumption could potentially lead to issues, par-
ticularly in cases where cliques overlap. In this con-
text, it’s important to note that no two cliques over-
lap completely, nor is one entirely contained within
another, since they are elements of the set of maxi-
mal cliques of the FGM. Furthermore, this assumption
can be significantly relaxed. In the second assumption,
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while the maximum is taken over the entire function
class FC , we can replace it with a much smaller set
consistent with fpxq, as we demonstrate in Appendix
C. Secondly, in many cases, we can still observe huge
improvements in terms of regret, especially when the
FGM cliques are much smaller than the whole graph.
We illustrate this empirically in Section 7.

5.3 Relation with Pessimism

Most of the common recent approaches to offline DDO
can be characterized by pessimism, displayed in algo-
rithms through, for example, additional losses that pe-
nalize exploring out-of-distribution designs [37, 22, 35].
To facilitate the comparison between the näıve pro-
cedure without FGMs and the one with FGMs, in
our work, we did not include pessimistic penalties
for searching outside of offline data in the algorithms.
When we incorporate pessimism into the algorithms,
we can formally show that it alleviates distribution
shift in that we can obtain a regret bound where
maxπ̄PΠ in the coverage term is replaced with just an
optimal design π‹ [28, 38]. In this sense, pessimism al-
leviates the distributional shift problem. However, in
the instance we show, even if we replace maxπ̄PΠ with
an optimal design π‹, the coverage term in Eq. (4) for
the procedure without FGMs is still Op|X1|dq, and the
coverage term in Eq. (5) for the procedure with FGMs
is still Op|X1|maxC dC q. Consequently, pessimism itself
cannot resolve distribution shift when the optimal de-
sign is not well-covered by the data distribution ppxq.
On the contrary, FGMs relax the requirement for the
data coverage of the whole design space X into a much
milder one of coverage of subspaces induced by indi-
vidual cliques.

5.4 Relation with Offline RL

The decomposition provided by FGMs inspires
thoughts about their connection to offline RL. As we
alluded to before, offline RL can be formulated as an
instance of DDO with a known FGM. To see this,
let us denote the horizon of a given RL problem by
H. The goal is to maximize the expected value of
the return Rps1, a1, . . . , sH , aHq, which decomposes as
řH

t“1 rpst, atq. Hence, the FGM of the return consists
of edges pst, atq, which also form its cliques. In this
specific setting, however, we cannot control all vari-
ables directly, since an RL agent can only optimize its
actions, which in turn affect the stochastic states. In
this paper, we focus our attention on problems where
all variables are optimizable, but we see the setting of
partially-controllable variables as an exciting avenue
for future work.

6 GRAPH DISCOVERY

So far, we’ve shown how functions with known FGMs
can be optimized effectively and under much milder
coverage conditions than näıve DDO. However, in
many cases, we do not know the FGM for a given
function. Next, we’ll discuss how to construct FGMs
only from offline data practically, provided that the
data satisfies a Gaussian distribution assumption:

Assumption 1. The inputs in the offline data follow
the standard Gaussian distribution, x „ N p0, Iq.

This assumption may appear strong. However,
whitening to remove correlations is a common pro-
cedure in machine learning, and in cases where the
data distribution has higher order moments, we can
use more advanced representation learning methods,
such as variational auto-encoders [17, 29, 6, VAE]. In-
deed, these methods are designed specifically to ac-
quire latent representations of the data that follow the
standard Gaussian distribution.

To derive our graph discovery method, we start with
the following lemma, known as the second-order Stein’s
identity [32, 7]:

Lemma 3. Let x̄ P Rdx and i ‰ j P rdxs. Then

B2

Bx̄j x̄i
Ex„N

“

fpx̄ ` xq
‰

“ Ex„N rxixjfpx̄ ` xqs.

Below, we demonstrate how this lemma can be used
to discover FGMs from data in combination with the
third criterion (in Lemma 1) for functional indepen-
dence. Suppose that xi and xj are not linked in a
FGM of f , such that pi, jq R E . By that criterion,

B2

Bx̄jBx̄i
Ex„N

“

fpx̄ ` xq
‰

“ Ex„N

”

B2f

Bx̄jBx̄i
px̄ ` xq

ı

“ Ex„N r0s “ 0.

Letting x̄ “ 0dx , for pi, jq R E , we have
Ex„N

“

xixjfpxq
‰

“ 0. 4 Hence, to reconstruct edges
in the unknown FGM of f , one can take M samples
txpkq, ypkquMk“1 and estimate

Ĥij “
1

M

M
ÿ

k“1

x
pkq

i x
pkq

j ypkq, (6)

and infer that an edge is absent if Ĥij is close to zero.
In our experiments, we found that a good implementa-
tion of the notion of closeness is via a Gaussian hypoth-
esis test, |Ĥij | ă cα{2{

?
M , where cα{2 is the top-α{2

quantile of the standard Gaussian distribution.

4Note that while it’s uncertain whether the reverse
claims hold in general, this graph discovery method re-
mains practical for providing a suitable graph for our down-
stream tasks, i.e., DDO.
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(a) Regret (lower-better) (b) Value (higher-better)

Figure 3: Figure (3a): regret (lower-better) of DDO with

(blue) and without (orange) FGM, against dimension in

the toy quadratic problem. Averaged over 50 runs, show-

ing 95%-confidence intervals. Figure (3b): value (higher-

better) of DDO with MLP neural networks, for Gaussian

data, with (blue) and without (orange) FGM, against the

iteration of gradient ascent. Averaged over 128 designs,

showing one-tenth of standard deviation.

7 EXPERIMENTS

In this section, we present numerical experiments to
verify our theoretical findings and examine how read-
ily applicable they are in practice. We start with the
setting where the FGM is known, and then explore
FGM discovery methods with learned latent spaces.

DDO with known FGMs. To empirically validate
the regret results from Section 5, we conducted a
numerical experiment with a quadratic ground-truth
function fpxq “ x1x2 ` x2x3 ` ¨ ¨ ¨ ` xd´1xd ` xdx1,

where @i;Xi “ t0, 1u, and the approximation f̂pxq is
a learned quadratic function. We generate the data
from a uniform distribution and compare näıve DDO
in Eq. (1) with DDO using FGMs in Eq. (2). Fig-
ure 3a shows that, as predicted by Theorem 2, the
regret of DDO with FGMs remains near zero even as
the problem dimensionality increases, while the regret
of näıve DDO explodes. We then ran a more complex
version of this experiment, which we visualize in Fig-
ure 3b. Here, the data is drawn from the standard
Gaussian distribution and the ground-truth function
is a random mixture of radial-basis functions (which
we describe in more detail below). We fitted 1) a neu-
ral network, and 2) a neural network with FGM de-
composition (see Appendix C for details), and then
optimized the input into each of them with gradient
ascent to obtain an estimate of the optimal x. We plot
the value of these solutions (standardized to have zero
mean and unit variance), since the regret is not ana-
lytically tractable. The results likewise show a large
improvement in performance from utilizing FGMs.

DDO with unknown FGMs. Next, we study the
effectiveness of our algorithms in several synthetic
examples where the FGM is not provided a priori,
and where functional independencies must be discov-
ered automatically, including in high-dimensional do-

Figure 4: Values of fpx̂q, where x̂ „ π, along the
course of gradient ascent on π, for 11-, 21-, 31-, and 41-
dimensional problems (x-axis: iterations, y-axis: de-
sign values). The evaluation is over the top-128 designs
from a sample of 1024. Lack of curve indicates gener-
ation of invalid designs. As the dimensionality grows,
the FGM decomposition becomes more ciritical.

mains. The data is generated as follows. We con-
struct the ground-truth function fpxq by, first, setting
the set of maximal cliques C of its FGM to be trian-
gles t0, 1, 2u, t2, 3, 4u, t4, 5, 6u, . . . , td´2, d´1, du. Cru-
cially, these cliques overlap, introducing dependencies
between their variables. See Figure 1 for an illustra-
tion of the case with d “ 7. The target function fpxq

is a mixture of radial-basis functions,

fpxq “
ÿ

CPC
wC ¨ expp´||xC ´ µC ||2q,

where the centers tµC | C P Ĉu are sampled from
a Gaussian distribution and the positive weights
twC | C P Ĉu are also random. We evaluate y “ fpxq

on N ground-truth inputs drawn from the standard
Gaussian distribution, x „ N p0d, Idq. We then replace
the ground-truth Gaussian inputs x with observable
designs xobs P Rdobs obtained by bijectively compos-
ing a random affine map with the softplus nonlinear-
ity. With a slight abuse of notation, the bijection as-
sures that the reparameterization y “ fpxobsq is well-
defined. As such, the resulting DDO dataset takes the

form tx
piq
obs, y

piquNi“1, with designs xobs following a non-
Gaussian distribution and laying in a subset of Rdobs .

It is important to note that, since the image of the
softplus is the set of positive real numbers, the valid
values of xobs (those for which there exists a ground-
truth x) form only a subset of Rdobs . Thus, one way
for a DDO method to fail is to generate a design xobs

for which there exsits no xpxobsq.
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Since we do not assume access to the function’s FGM,
nor Gaussianity of the data, we begin by learning
marginally-Gaussian representations zpxobsq of the de-
signs. In our experiments, we choose to learn them
with Variational Auto-Encoders [17, VAE]. Viewing
the design values as a function of the Gaussian repre-
sentations, y “ fpzq, we then compute the estimator
from Eq. (6) to infer the FGM of fpzq and extract its
clique set Ĉ. We then learn a predictive neural net-
work model that decomposes over these cliques, and
perform gradient ascent with respect to it over the z
variable. Then, we decode the representation of such
a design ẑ with our VAE decoder to propose a new
design candidate x̂obs. We summarize the entire algo-
rithm for DDO with FGMs in Algorithm 1.

Algorithm 1 DDO with FGMs

1: Input: dataset D “ txpiq, ypiquNi“1

2: Preprocess txpiquNi“1 so that they approximately
follow the standard Gaussian distribution.

3: Approximate the cliques of the FGM of fpxq with
Equation (6)

4: Learn the functions f̂CpxCq by minimizing the
mean squared error

Epx,yq„p

“`
ř

CPĈ f̂CpxCq ´ y
˘2‰

5: π̂ “ argmaxπ Ex„π

“
ř

CPĈ f̂CpxCq
‰

.
6: Invert the preprocessing step for x „ π̂.

We compare this method with näıve gradient ascent
(GA), reward-weighted regression [26, RWR]—to see
the effectiveness of näıve methods in the tasks we de-
signed; conservative objective models [35, COMs]—
to compare to an off-the-shelf state-of-the-art method;
and an ablative method that learns VAE representa-
tions and performs gradient ascent directly on them
(VAE-GA), similarly to [9]—to isolate the benefits of
FGM decomposition on top of the learned latent space.

Results in Figure 4 show that incorporating FGMs into
DDO leads to better designs compared to baselines,
and the gap increases with the dimensionality of the
problem, as expected from Theorem 2. It is also worth
noting that the näıve baselines—GA and RWR—tend
to generate invalid designs quite quickly.

One may wonder if Gaussianity of both the distribu-
tion of the ground-truth inputs x and the VAE prior
simplifies the task for our algorithm, since the VAE
preprocessing step could learn to invert our non-linear
data transformation. This, however, is very unlikely
given that there are infinitely many bijective repa-
rameterizations of x that could explain fpxq perfectly
and be also Gaussian (e.g., rotations of x). Never-
theless, as a sanity check, we re-ran the experiments

Figure 5: Values of fpx̂q, where x̂ „ π, along the
course of gradient ascent on π, for 41-, and 61-
dimensional problems (x-axis: iterations, y-axis: de-
sign values). The evaluation is over the top-128 de-
signs from a sample of 1024. Lack of curve indicates
generation of invalid designs. The unobserved base
distribution generating the data was an even mixture
of two Gaussian distributions N p´1, Iq and N p1, Iq.

with the ground-truth inputs x sampled from a mix-
ture of Gaussians, rather than the unimodal Gaussian
distribution. This way we made sure that the repre-
sentations learned by the VAE are significantly dis-
tinct from the ground-truth inputs, as well as made
the multi-modality of the observed designs xobs more
explicit. Figure 5 shows that our findings are preserved
under this setting.

8 CONCLUSION

We showed how DDO can be made feasible and
tractable by incorporating graphical factorization
structure. We capture this structure with functional
graphical models (FGMs), and we prove that a func-
tion can decompose over its maximal cliques analo-
gously to how probabilistic graphical models (PGMs)
decompose probability distributions. We then showed
theoretically that DDO with FGMs admits sample-
efficient optimization without requiring that the data
distribution to directly cover optimal designs, instead
only requiring coverage of optimal values for indi-
vidual cliques of the FGM. While we did verify our
findings experimentally, our experiments serve mainly
as numerical verification of our theoretical findings.
Enabling data-efficient optimization in practical real-
world settings will require additional development of
our proposed algorithmic framework, and presents a
number of exciting challenges for future work. For ex-
ample, while our proposed FGM discovery approach is
relatively simple and pragmatic, the general problem
of discovering such functional independence relation-
ships might relate to other fields that are concerned
with recovery structure: discovery of probabilistic in-
dependence relationships, causal inference, and struc-
ture learning. Incorporating ideas from these fields
into the FGM framework might not only constitute
an exciting direction for future work, but might also
lead to powerful new methods that can discover signif-
icantly improved designs from suboptimal datasets.
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tion, choose your answer from the three possible op-
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erencing the appropriate section of your paper or pro-
viding a brief inline description (1-2 sentences). Please
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section does not count towards the page limit. Not
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result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Not Applicable] We use deep neural
networks in our algorithms which prevents us
from analyzing some of the algorithms’ prop-
erties.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]
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(b) Complete proofs of all theoretical results.
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(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
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(a) Citations of the creator If your work uses ex-
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(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A Auxiliary Facts

Theorem 3 (Hammersley-Clifford [5]). Let G “ pV, Eq be a simple graph with clique set C, and let x “ xV „ p,
where ppxq is a strictly positive probability distribution. If p is Markov with respect to G, then, @x P X ,

ppxq “
ź

CPC
ϕCpxCq,

for some functions ϕCpxCq ą 0.

Lemma 3. Let x̄ P Rdx and i ‰ j P rdxs. Then

B2

Bx̄j x̄i
Ex„N

“

fpx̄ ` xq
‰

“ Ex„N rxixjfpx̄ ` xqs.

Proof. We start from proving a known result. Namely,

B

Bx̄i
Ex„N

“

fpx̄ ` xqs “ Ex„N rxifpx̄ ` xqs. (7)

To do it, we use integration by parts,

B

Bx̄i
Ex„N rfpx̄ ` xqs “ Ex„N

”

B

Bx̄i
fpx̄ ` xq

ı

“ Ex„N

”

B

Bxi
fpx̄ ` xq

ı

“ Ex´i„N

”

ż

xi

dxi
1

?
2π

exp
´

´1

2
x2i

¯

B

Bxi
fpx̄ ` xq

ı

“ Ex´i„N

”” 1
?
2π

exp
´

´1

2
x2i

¯

fpx̄ ` xq

ı8

´8
`

ż

xi

dxi
xi

?
2π

exp
´

´1

2
x2i

¯

fpx̄ ` xq

ı

“ Ex´i„N

”

0 `

ż

xi

dxi
xi

?
2π

exp
`´1

2
x2i

˘

fpx̄ ` xq

ı

“ Ex„N rxifpx̄ ` xqs.

Now, applying this result twice,

B2

Bx̄j x̄i
Ex„N

“

fpx̄ ` xqs “
B

Bx̄j

B

Bx̄i
Ex„N rfpx̄ ` xqs

“
B

Bx̄j
Ex„N rxifpx̄ ` xqs “ Ex„N rxixjfpx̄ ` xqs,

as required.
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B Omitted Proofs Of Our Results

B.1 Proof of Lemma 1

Lemma 1. Suppose fpxq is twice-continuously differentiable w.r.t. x. Let A,B, S Ď V. Then, the following
statements are equivalent.

1. xA and xB are functionally independent given xS.

2. For every x P X ,

Bf

BxAzS
pxq “ F´pBzSqpxVzpBzSqq,

for some function F´pBzSqpxVzpBzSqq that does not take xpBzSq as input.

3. For every x P X ,

B2f

BxAzSBxBzS
pxq “ 0.

Proof. 1 ðñ 2: Let us, for clarity, write A “ AzS and B “ BzS. We suppose that 1 holds as in Definition 1,

Bf

BxA
pxq “ F´BpxVzBq. (8)

Integrating it with respect to xA gives

fpxq “

ż

xA

F´BpxVzBqdxA ` f´ApxVzAq

“ f´BpxVzBq ` f´ApxVzAq,

for some f´B and f´A. This proves statement 2 and allows us to recover Equation (8) for A (B) by differentiating
with respect to xA (xB).

1 ðñ 3: Suppose that 1 holds as in Definition 1. Since the right-hand side of the equation is not a function of
xB , differentiating the equation with respect to xB gives 0, which proves statement 3. We recover statement 1
from statement 3 by integrating with respect to xB (or xA).

B.2 Proof of Theorem 1

Theorem 1 (Function Decomposition). Assumue that
ş

X exp fpxqdx exists and let G be any FGM of fpxq and
C be its set of maximal cliques (clique set). Then, there exist functions tfCpxCq, C P Cu, such that

fpxq “
ÿ

CPC
fCpxCq.

Proof. Consider a probability distribution defined by

ef pxq “
exp fpxq

Z
, where Z fi

ż

x

exp fpxqdx.

Then, let i and j be nodes in G that are not linked: pi, jq R E . By Definition 2, it follows that

ef pxq “
exp

`

f´ipx´iq ` f´jpx´jq
˘

Z

“
exp f´ipx´iq

?
Z

exp f´jpx´jq
?
Z

.
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That is, measure ef pxq factorizes over tVztiu,Vztjuu. Hence, random variables xi and xj are (probabilistically)
independent given xVzti,ju [33]. As the pair pi, jq was arbitrary, this implies that ef pxq satisfies the pairwise
Markov property with respect to G (equivalently, G is an I-map of ef pxq). As the measure induced by ef pxq is
strictly positive, Hammersley-Clifford Theorem [5] implies that ef pxq factorizes according to G. That is, for the
clique set C of G, there exist positive functions tuCpxCq | C P Cu, such that

ef pxq “
ź

CPC
uCpxCq.

Taking the logarithm on both sides, we get

fpxq “
ÿ

CPC
log uCpxCq ` logZ fi

ÿ

CPC
fCpxCq ` logZ.

That is, the original function fpxq can be expressed as a sum of functions of cliques of graph G (up to an input-
independent constant). Of course, the constant can be subsumed into the decomposing functions. This lets us
conclude the proof of the theorem.

B.3 Proof of Theorem 2

Theorem 2 (Regret of DDO with FGMs). Let C be the set of maximal cliques of an FGM of fpxq and fpxq “
ř

CPC fCpxCq be its FGM decomposition. Under the following assumptions @C P C,

(1) the function approximator classes are centered

Ex„prf̄CpxCqs “ 0,@f̄C P FC ,

(2) the correlations between cliques are well-controlled

max
tf̄CPFCu

Corrrf̄C1
pxC1

q, f̄C2
pxC2

qs ď σ,

(3) the models are well-specified, sp that fC P FC , and

(4) |f̄CpxCq| ď 1 for any xC P XC , f̄C P FC ,

the following result holds with probability 1 ´ δ

Jpπ‹q ´ Jpπ̂FGMq À
c

1

1 ´ σ
looomooon

Corrpb2q

max
CPC

max
π̄PΠ

max
xCPXC

ˇ

ˇ

ˇ

ˇ

π̄pxCq

ppxCq

ˇ

ˇ

ˇ

ˇ

loooooooooooooomoooooooooooooon

Coveragepbq

c

|C|
ř

C logp|FC |{δq

n
loooooooooooomoooooooooooon

Complexitypb1q

,

where ppxCq, π̄pxcq denote the marginal distributions of xC with respect to ppxq and πpxq.

Proof. Following the standard literature of regression [1] and using Assumption (3), by leveraging fC P FC , we
can obtain with probability 1 ´ δ,

Ex„p

”

`

f̂pxq ´ fpxq
˘2

ı

ď Stat, Stat “ D ˆ

ř

CPC logp|FC |{δq

n
. (9)

where f̂pxq “
ř

C f̂CpxCq, fpxq “
ř

C fCpxCq, and D is universal constant, noting logp|F |q “
ř

C logp|FC |q.

Note this statement states that the MSE guarantee is ensured for the whole f̂pxq.

Now, we have

Ex„p

“`

f̂pxq ´ fpxq
˘2‰

“ Ex„p

«

´

ÿ

C

tf̂CpxCq ´ fCpxCqu

¯2
ff

“
ÿ

C

Ex„p

”

tf̂CpxCq ´ fCpxCqu2
ı

`
ÿ

C1‰C2

Ex„p

”

tf̂C1
pxC1

q ´ fC1
pxC1

qutf̂C2
pxC2

q ´ fC2
pxC2

qu

ı

.



Functional Graphical Models

Here, using Assumption (1) and (2), note

Ex„p

”

tf̂C1
pxC1

q ´ fC1
pxC1

qutf̂C2
pxC2

q ´ fC2
pxC2

qu

ı

ď σ ˆ

"

Ex„p

”

tf̂C1
pxC1

q ´ fC1
pxC1

qu2
ı1{2

*

ˆ

#

Ex„p

„

!

f̂C2
pxC2

q ´ fC2
pxC2

q

)2
ȷ1{2

+

.

Hence, we get

Ex„prtf̂pxq ´ fpxqu2s (10)

ě
ÿ

C

Ex„p

”

tf̂CpxCq ´ fCpxCqu2
ı

` σ ˆ

"

Ex„p

”

tf̂C1pxC1q ´ fC1pxC1qu2
ı1{2

*

ˆ

#

Ex„p

„

!

f̂C2pxC2q ´ fC2pxC2q

)2
ȷ1{2

+

(11)

ě σ

#

ÿ

C

Ex„p

”

tf̂CpxCq ´ fCpxCqu2
ı1{2

+2

` t1 ´ σu
ÿ

CPC
Ex„p

”

tf̂CpxCq ´ fCpxCqu2
ı

. (12)

ě t1 ´ σu
ÿ

CPC
Ex„p

”

tf̂CpxCq ´ fCpxCqu2
ı

. (13)

Therefore, we have

ÿ

CPC
Ex„prtf̂CpxCq ´ fCpxCqu2s ď

1

1 ´ σ
ˆ Stat. (14)

Then, for any policy π P Π, we get

Jpπq ´ Jpπ̂q ď Jpπq ´ Ex„πrf̂pxqs ` Ex„πrf̂pxqs ´ Ex„π̂rf̂pxqs ` Ex„π̂rf̂pxqs ´ Jpπ̂q

“ Jpπq ´ Ex„πrf̂pxqs ` Ex„π̂rf̂pxqs ´ Jpπ̂q

“ Ex„πrfpxqs ´ Ex„πrf̂pxqs ` Ex„π̂rf̂pxqs ´ Ex„π̂rfpxqs.

We use the following to upper-bound last terms:

|Ex„πrfpxq ´ f̂pxqs| ď
ÿ

CPC
Ex„πr|fCpxCq ´ f̂CpxCq|s (Triangle inequality)

ď

"

max
CPC

max
xCPXC

πpxCq

ppxCq

*

ÿ

CPC
Ex„pr|fCpxq ´ f̂Cpxq|s (Importance sampling)

ď

"

max
CPC

max
xCPXC

πpxCq

ppxCq

*

ÿ

CPC

b

Ex„prtfCpxCq ´ f̂CpxCqu2s (Jensen’s inequality)

ď

"

max
CPC

max
xCPXC

πpxCq

ppxCq

*

a

|C|

d

ÿ

CPC
Ex„prtfCpxCq ´ f̂CpxCqu2s (CS inequality)

“ max
CPC

max
xCPXC

πpxCq

ppxCq
ˆ

a

|C| ˆ

c

Stat

1 ´ σ
. (Use Ineq. 14)

Finally, combining everything, we have

Jpπq ´ Jpπ̂q ď 2max
πPΠ

max
CPC

max
xCPXC

πpxCq

ppxCq
ˆ

a

|C|Stat

À max
πPΠ

max
CPC

max
xCPXC

πpxCq

ppxCq
ˆ

c

|C|
ř

CPC logp|FC |{δq

n
ˆ

c

1

1 ´ σ
.
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B.4 Proof of Lemma 2

Lemma 2 (Improvement of Coverage terms). For any π P ∆pX q, we have

max
CPC

max
xCPXC

πpxCq

ppxCq
ď max

xPX

πpxq

ppxq
.

Proof. Let x “ rxJ
C , tx1uJ

CsJ. Then,

max
x1
C

πpxq

ppxq
“

πpxCq

ppxCq
ˆ max

x1
C

πpx1
C |xCq

ppx1
C |xCq

ě
πpxCq

ppxCq
. (15)

Here, we use maxx1
C

πpx1
C |xCq

ppx1
C |xCq

ě 1. This is because if maxx1
C

πpx1
C |xCq

ppx1
C |xCq

ă 1, we would get contradiction:

1 “
ÿ

x1
C

πpx1
C |xCq ď

ÿ

x1
C

ppx1
C |xCqmax

x1
C

πpx1
C |xCq

ppx1
C |xCq

ă
ÿ

x1
C

ppx1
C |xCq “ 1.

Finally, using Eq. 15, we obtain

max
x

πpxq

ppxq
“ max

xC

max
x1
C

πpxq

ppxq
ě max

xC

πpxCq

ppxCq
.
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C Details of Experiments

We conducted our experiments in a Google Colab with TPU. One can access it via the following link:

https://colab.research.google.com/drive/1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing.

In all runs, all neural networks were two-hidden layer MLPs, with 256 hidden units. Each of them was trained
with Adam [16] optimization algorithm with batch size of 128. Hyperparameters for COMs were taken from the
COMs paper [35] and we did not observe any improvement by tuning them. As hyperparameters for all other
methods are a subset of hyperparameters of COMs, we used the same hyperparameters, except that methods
that use VAEs [17] have 10 times smaller gradient ascent learning rate. We also used the common choice for
temperature τ “ 0.05 for reward-weighted regression [26, 25, 19].

To represent a decomposed function fpxq “
ř

CPC fCpxCq, we use a single neural-network model of
the same class as for all other methods. In our experiments, it was a multi-layer perceptron (MLP). The
decomposition was implemented by duplicating the input (row) vector x |C| times and stacking the copies
horizontally. Each copy corresponded to one of the cliques. Then, for each clique we masked out inputs that
were not included. That is, we multiplied the stacked copies of x by the matrix C such that Cij “ 1 if xj is in
the ith clique, and 0 otherwise. That is, we form the following input

»

—

—

—

—

–

C11x1 . . . C1dxd

. . .

C|C|1x1 . . . C|C|dxd

fi

ffi

ffi

ffi

ffi

fl

We pass the rows to the MLP in parallel and return the mean of the |C| output values—this is equivalent to the
summation from Theorem 1 in terms of represtational power but we believe it may be more numerically stable
when |C| Ñ 8.

https://colab.research.google.com/drive/1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing
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