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Abstract

We consider the contextual bandit prob-

lem where at each time, the agent only

has access to a noisy version of the context

and the error variance (or an estimator of

this variance). This setting is motivated

by a wide range of applications where the

true context for decision-making is unob-

served, and only a prediction of the context

by a potentially complex machine learn-

ing algorithm is available. When the con-

text error is non-vanishing, classical ban-

dit algorithms fail to achieve sublinear re-

gret. We propose the first online algo-

rithm in this setting with sublinear regret

guarantees under mild conditions. The key

idea is to extend the measurement error

model in classical statistics to the online

decision-making setting, which is nontriv-

ial due to the policy being dependent on

the noisy context observations. We further

demonstrate the benefits of the proposed

approach in simulation environments based

on synthetic and real digital intervention

datasets.

1 Introduction

Contextual bandits (Auer, 2002; Langford and

Zhang, 2007) represent a classical sequential

decision-making problem where an agent aims to

maximize cumulative reward based on context in-

formation. At each round t, the agent observes a
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context and must choose one of K available actions

based on both the current context and previous ob-

servations. Once the agent selects an action, she

observes the associated reward, which is then used

to refine future decision-making. Contextual ban-

dits are typical examples of reinforcement learning

problems where a balance between exploring new ac-

tions and exploiting previously acquired information

is necessary to achieve optimal long-term rewards. It

has numerous real-world applications including per-

sonalized recommendation systems (Li et al., 2010;

Bouneffouf et al., 2012), healthcare (Yom-Tov et al.,

2017; Liao et al., 2020), and online education (Liu

et al., 2014; Shaikh et al., 2019).

Despite the extensive existing literature on contex-

tual bandits, in many real-world applications, the

agent never observes the context exactly. One com-

mon reason is that the true context for decision-

making can only be detected or learned approx-

imately from observable auxiliary data. For in-

stance, consider the Sense2Stop mobile health study,

in which the context is whether the individual is cur-

rently physiologically stressed (Battalio et al., 2021).

A complex predictor of current stress was con-

structed/validated based on multiple prior studies

(Cohen et al., 1985; Sarker et al., 2016, 2017). This

predictor was then tuned to each user in Sense2Stop

prior to their quit-smoke attempt and then following

the user’s attempt to quit smoking, at each minute,

the predictor inputs high-dimensional sensor data on

the user and outputs a continuous likelihood of stress

for use by the decision-making algorithm. In many

such applications in health interventions, models us-

ing validated predictions as contexts are preferred to

raw sensor data because of the high noise in these

settings, and that the decision rules are interpretable

so they can be critiqued by domain experts. The

∗: the authors have equal contribution.



second reason why the context is not observed ex-

actly is because of measurement error. Contextual

variables, such as user preferences in online advertis-

ing, content attributes in recommendation systems,

and patient conditions in clinical trials, are prone to

noisy measurement. This introduces an additional

level of uncertainty that must be accounted for when

making decisions.

Motivated by the above, we consider the linear con-

textual bandit problem where at each round, the

agent only has access to a noisy observation of the

true context. Moreover, the agent has limited knowl-

edge about the underlying distribution of this noisy

observation, as in many practical applications (e.g.

the above-mentioned ones). This is especially the

case when this ‘observation’ is the output of a com-

plex machine learning algorithm. We only assume

that the noisy observation is unbiased, its variance

is known or can be estimated, and we put no other

essential restrictions on its distribution. In health-

care applications, the estimated error variance for

context variables can often be derived from data

in prior studies (e.g. pilot studies). This setting

is intrinsically difficult for two main reasons: First,

when estimating the reward model, the agent needs

to take into account the misalignment between the

noisy context observation and the reward which de-

pends on the true context. Second, even if the re-

ward model is known, the agent may suffer from

making bad decisions at each round because of the

inaccurate context.

Our contributions. We present the first online al-

gorithm MEB (Measurement Error Bandit) with sub-

linear regret in this setting under mild conditions.

MEB achieves Õ(T 2/3) regret compare to a standard

benchmark and Õ(T 1/2) regret compare to a clipped

benchmark with minimum exploration probability

which is common in many applications (Yang et al.,

2020a; Yao et al., 2021). MEB is based on a novel ap-

proach to model estimation which removes the sys-

tematic bias caused by the noisy context observa-

tion. The estimator is inspired by the measurement

error literature in statistics (Carroll et al., 1995;

Fuller, 2009): We extend this classical method with

additional tools in the online decision-making setting

due to the policy being dependent on the measure-

ment error.

1.1 Related work

Our work complements several lines of literature in

contextual bandits, as listed below.

Latent contextual bandit. In the latent contex-

tual bandit literature (Zhou and Brunskill, 2016; Sen

et al., 2017; Hong et al., 2020a,b; Xu et al., 2021; Nel-

son et al., 2022; Galozy and Nowaczyk, 2023), the

reward is typically modeled as jointly depending on

the latent state, the context, and the action. Sev-

eral works (Zhou and Brunskill, 2016; Hong et al.,

2020a,b; Galozy and Nowaczyk, 2023) assume no di-

rect relation between the latent state and the context

while setting a parametric reward model. For exam-

ple, Hong et al. (2020a) assumes the latent state

s ∈ Sl is unknown but constant over time. Hong

et al. (2020b) assume that the latent state evolves

through a Markov chain. Xu et al. (2021) sets a

specific context as well as the latent feature for each

action, and models the reward depending on them

through a generalized linear model. Different from

the aforementioned studies, we specify that the ob-

served context is a noisy version of the latent context

(which aligns with the applications we are address-

ing), and then leverage this structure to design the

online algorithm.

In another line of work, Sen et al. (2017); Nelson

et al. (2022) consider contextual bandit with latent

confounder, where the observed context influences

the reward through a latent confounder variable,

which ranges within a small discrete set. Our setting

is distinct from these works in that the latent con-

text can span an infinite (or even continuous) space.

Bandit with noisy context. In bandit with noisy

context (Yun et al., 2017; Kirschner and Krause,

2019; Yang et al., 2020b; Lin and Moothedath, 2022;

Lin et al., 2022), the agent has access to a noisy

version of the true context and/or some knowledge

of the distribution of the noisy observation. Yun

et al. (2017); Park and Faradonbeh (2022); Jose and

Moothedath (2024) consider settings where the joint

distribution of the true context and the noisy ob-

served context is known (up to a parameter). Other

works, such as Kirschner and Krause (2019); Yang

et al. (2020b); Lin et al. (2022), assume that the

agent knows the exact distribution of the context

each time, and observes no context. By assuming

a linear reward model, Kirschner and Krause (2019)
2



transforms the problem into a linear contextual ban-

dit, and obtains Õ(d
√
T ) regret compared to the pol-

icy maximizing the expected reward over the context

distribution. Yang et al. (2020b); Lin et al. (2022);

Lin and Moothedath (2022) consider variants of the

problem such as multiple linear feedbacks, multiple

agents, and delayed observation of the exact context.

Compared to these works, we consider a practical

but more challenging setting where besides an unbi-

ased noisy observation(prediction) for each context,

the agent only knows the second-moment informa-

tion about the distribution. This does not trans-

form into a standard linear contextual bandit as in

Kirschner and Krause (2019).

Bandit with inaccurate/corrupted context.

These works consider the setting where the context

is simply inaccurate (without randomness), or is cor-

rupted and cannot be recovered. In Yang and Ren

(2021a,b), at each round, only an inaccurate con-

text is available to the decision-maker, and the ex-

act context is revealed after the action is taken. In

Bouneffouf (2020); Galozy et al. (2020), each con-

text xt is completely corrupted with some proba-

bility and the corruption cannot be recovered. In

Ding et al. (2022), the context is attacked by an ad-

versarial agent. Because these works focus more on

adversarial settings for the context observations, the

application of their regret bounds to our setting gen-

erally results in a linear regret. For example, in Yang

and Ren (2021a), the regret of Thompson sampling

is Õ(d
√
T +
√
d
∑

t∈[T ] ∥x̂t−xt∥2), where ∥x̂t−xt∥2
is the error of the inaccurate context. As is typical in

our setting, ∥x̂t−xt∥2 will be non-vanishing through

time, so the second term is linear in T . Given the

applications we consider, we can exploit the stochas-

tic nature of the noisy context observations in our

algorithm to achieve improved performance.

1.2 Notations

Throughout this paper, we use [n] to represent the

set {1, 2, . . . , n} for n ∈ N+. For a, b ∈ R, let a ∧ b

denote the minimum of a and b. Given d ∈ N+, Id
denotes the d-by-d identity matrix, and 1d denotes

the d-dimensional vector with 1 in each entry. For

a vector v ∈ Rd, denote ∥v∥2 as its ℓ2 norm. For

a matrix M ∈ Rm×n, denote ∥M∥2 as its operator

norm. The notation O(X) refers to a quantity that

is upper bounded by X up to constant multiplicative

factors, while Õ(X) refers to a quantity that is upper

bounded by X up to poly-log factors.

2 Measurement error adjustment to

bandit with noisy context

2.1 Problem setting

We consider a linear contextual bandit with context

space X ⊂ Rd and binary action space A = {0, 1}1.

Let T be the time horizon. As discussed above, we

consider the setting where at each time t ∈ [T ], the

agent only observes a noisy version of the context x̃t

instead of the true underlying context xt. Thus, at

time t, the observation ot only contains (x̃t, at, rt),

where at is the action and rt is the corresponding

reward. We further assume that x̃t = xt + ϵt,

where the error ϵt is independent of the history

Ht−1 := {oτ}τ≤t−1, Eϵt = 0, Var(ϵt) = Σe,t. Here,

‘e’ in the subscript means ‘error’. Initially we assume

that (Σe,t)t≥1 is known. In Section 2.4, we consider

the setting where only estimators of (Σe,t)t≥1 are

available. There is no restriction that the distri-

bution of (ϵt)t≥1 belongs to any known (paramet-

ric) family. The reward rt = ⟨θ∗
at
,xt⟩ + ηt, where

E[ηt|Ht−1, ϵt, at] = 0 and (θ∗
a)a∈A are the unknown

parameters. It’s worth noting that besides the pol-

icy, all the randomness here comes from the reward

noise ηt and the context error ϵt. We treat (xt)t≥1

as fixed throughout but unknown to the algorithm

(Unlike Yun et al. (2017), we don’t assume xt are

i.i.d.). Our goal at each time t is to design pol-

icy πt(·|Ht−1, x̃t) ∈ ∆(A) given past history Ht−1

and current observed noisy context x̃t, so that the

agent can maximize the reward by taking action

at ∼ πt(·|Ht−1, x̃t).

If Σe,t is non-vanishing, standard contextual bandit

algorithms are generally sub-optimal. To see this,

notice that rt = ⟨θ∗
at
,xt⟩ + ηt = ⟨θ∗

at
, x̃t⟩ + (ηt −

⟨θ∗
at
, ϵt⟩). This means the error in the reward rt after

observing the noisy context is ηt−⟨θ∗
at
, ϵt⟩, where ϵt

and x̃t are dependent. Thus, E[rt|x̃t, at] ̸= ⟨θ∗
at
, x̃t⟩.

This is in contrast to the standard linear bandit set-

1For simplicity, we state our results under the binary-
action setting, which is common in healthcare (Trella
et al., 2022), economics (Athey et al., 2017; Kitagawa
and Tetenov, 2018) and other applications. However, all
the results presented in this paper can be extended to
the setting with multiple actions. See Appendix C.
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ting, where given the true context xt, E[rt|xt, at] =

⟨θ∗
at
,xt⟩, which ensures the sublinear regret of clas-

sical bandit algorithms such as UCB and Thompson

sampling. Therefore, it is necessary to design an on-

line algorithm that adjusts for the errors (ϵt)t≥1. We

assume that the context, parameters and the reward

are bounded, as below.

Assumption 2.1 (Boundedness). ∀t ∈ [T ],

∥x̃t∥2 ≤ 1; There exists a positive constant Rθ such

that ∀a ∈ {0, 1}, ∥θ∗
a∥2 ≤ Rθ; There exists a positive

constant R such that ∀t ∈ [T ], |rt| ≤ R.

For any policy π = (πt)t, we define the (standard)

cumulative regret as

Regret(T ;π∗) =
∑
t∈[T ]

[Ea∼π∗
t
⟨θ∗

a,xt⟩−Ea∼πt⟨θ∗
a,xt⟩],

(2.1)

where

π∗
t (a) =

{
1, if a = a∗t := argmaxa⟨θ∗

a,xt⟩,
0, otherwise.

(2.2)

We denote the standard benchmark policy π∗ =

(π∗
t )t. This is summarized in the setting below.

Setting 1. (Standard setting) We aim to minimize

Regret(T ;π∗) among the class of all policies.

In many applications including clinical trials, it’s de-

sirable to design the policy under the constraint that

each action is sampled with a minimum probability

p0. One reason for maintaining exploration is that

we can update and re-optimize the policy for future

users to allow for potential non-stationarity (Yang

et al., 2020a). Additionally, keeping the exploration

is also important for after-study analysis (Yao et al.,

2021), especially when the goal of the analysis is not

pre-specified prior to collecting data with the on-

line algorithm. In these situations, it is desirable to

consider only the policies that always maintain an

exploration probability of p0 > 0 for each arm, and

compare the performance to the clipped benchmark

policy (π̄∗
t ):

π̄∗
t (a) =

{
1−p0, if a = a∗t ,

p0, otherwise.
(2.3)

This is summarized in the setting below.

Setting 2. (Clipped policy setting) We minimize

Regret(T ; π̄∗) =
∑
t∈[T ]

[Ea∼π̄∗
t
⟨θ∗

a,xt⟩ −Ea∼πt
⟨θ∗

a,xt⟩]

among the class of policies that explore any action

with probability at least p0.

In this work, we will provide policies with sublinear

regret guarantees in both settings.

2.2 Estimation using weighted

measurement error adjustment

In this section, we focus on learning the reward

model parameters (θ∗
a)a∈A with data Ht after a pol-

icy (πτ (·|x̃τ ,Hτ−1))τ∈[t] has been executed up to

time t ∈ [T ]. Learning a consistent model is impor-

tant in many bandit algorithms for achieving low

regret (Abbasi-Yadkori et al., 2011; Agrawal and

Goyal, 2013). As we shall see in Section 2.3, con-

sistent estimation of (θ∗
a)a∈A plays an essential role

in controlling the regret of our proposed algorithm.

Inconsistency of the regularized least-squares

(RLS) estimator. UCB and Thompson sam-

pling, the two classical bandit algorithms, both

achieve sublinear regret based on the consis-

tency of the estimator θ̂
(t)
a,RLS =

(
λI +∑

τ∈[t] 1{aτ=a}xτx
⊤
τ

)−1(∑
τ∈[t] 1{aτ=a}xτrτ

)
under

certain norms. When x̃τ = xτ + ϵτ is observed in-

stead of xτ , the RLS estimator becomes θ̂
(t)
a,RLSCE =(

λI +
∑

τ∈[t] 1{aτ=a}x̃τ x̃
⊤
τ

)−1(∑
τ∈[t] 1{aτ=a}x̃τrτ

)
.

Here ‘RLSCE’ means the RLS estimator with con-

textual error. However, when Σe,τ = Var(ϵτ ) is

non-vanishing, θ̂
(t)
a,RLSCE is generally no longer con-

sistent, which may lead to bad decision-making (see

Appendix B for details). In the simple case where

(xτ , ϵτ , ητ )τ∈[t] are i.i.d. and there is no action (i.e.

set aτ ≡ 0), the inconsistency of θ̂
(t)
a,RLSCE is studied

in the measurement error model literature in statis-

tics (Fuller, 2009; Carroll et al., 1995), and is known

as attenuation.

A naive measurement error adjustment. A

measurement error model is a type of regression

model designed to accommodate inaccuracies in the

measurement of regressors (i.e., instead of observ-

ing xt, we observe xt + ϵt where ϵt is a noise term

with zero mean). As conventional regression tech-

niques yield inconsistent estimators, measurement

error models rectify this issue with adjustments to

the estimator that consider these errors. In the cur-

rent context when we want to estimate θ∗
a from his-

tory Ht, (x̃τ )τ∈[t] can be viewed as regressors ‘mea-
4



sured with error’, while (rτ )τ∈[t] are dependent vari-

ables. If (ϵτ , ητ )τ∈[t] are i.i.d., Σe,τ ≡ Σe, and

there is no action (i.e. set aτ ≡ 0), θ̂
(t)
0,me :=(

1
t

∑
τ∈[t] x̃τ x̃

⊤
τ −Σe

)−1( 1
t

∑
τ∈[t] x̃τrτ

)
is a consis-

tent estimator for θ∗
0 . When multiple actions are

present, a naive generalization of the above estima-

tor, θ̂
(t)
a,me, is

(∑
τ∈[t]

1{aτ=a}(x̃τ x̃
⊤
τ −Σe)

)−1

·
(∑

τ∈[t]

1{aτ=a}x̃τrτ

)
.

(2.4)

Unfortunately, θ̂
(t)
a,me is inconsistent in the multiple-

action setting, even if the policy (πτ )τ∈[t] is

stationary and not adaptive to history. This

difference is essentially due to the interaction

between the policy and the measurement er-

ror: In the classical measurement error (no ac-

tion) setting, E(x̃τ x̃
⊤
τ ) = xτx

⊤
τ + Σe, and

1
t

∑
τ∈[t] x̃τ x̃

⊤
τ − Σe concentrates around its expec-

tation 1
t

∑
τ∈[t] xτx

⊤
τ . Likewise, 1

t

∑
τ∈[t] x̃τrτ con-

centrates around ( 1
t

∑
τ∈[t] xτx

⊤
τ )θ∗

0 . Combining the

above parts thus yields a consistent estimator of θ∗
0 .

In our setting with multiple actions, however, the

agent picks the action aτ based on x̃τ , so only certain

values of x̃τ lead to aτ = a. Therefore, for those τ ∈
[t] when we pick aτ = a, it’s more likely that x̃τ falls

in certain regions depending on the policy, and we

shouldn’t expect E(x̃τ x̃
⊤
τ ) = xτx

⊤
τ +Σe anymore. In

other words, the policy creates a complicated depen-

dence between x̃τ x̃
⊤
τ and 1{aτ=0} for each τ , which

changes the limit of 1
t

∑
τ∈[t] 1{aτ=a}(x̃τ x̃

⊤
τ − Σe)

(and similarly 1
t

∑
τ∈[t] 1{aτ=a}x̃τrτ ). This leads to

the inconsistency of the naive estimator (See Ap-

pendix B for a concrete example). In Section 3, we

provide examples to show that (2.4) not only de-

viates from the true parameters, but also leads to

suboptimal decision-making.

Our proposed estimator. Inspired by the above

observations, for πτ (a|x̃τ ,Hτ−1) positive, we con-

struct the following estimator for θ∗
a given Ht, which

corrects (2.4) using importance weights:

θ̂(t)
a :=

(
Σ̂

(t)
x̃,a −

1

t

∑
τ∈[t]

πnd
τ (a)Σe,τ

)−1

· Σ̂(t)
x̃,r,a,

(2.5)

where

Σ̂
(t)
x̃,a =

1

t

∑
τ∈[t]

πnd
τ (aτ )

πτ (aτ |x̃τ ,Hτ−1)
1{aτ=a}x̃τ x̃

⊤
τ ,

Σ̂
(t)
x̃,r,a =

1

t

∑
τ∈[t]

πnd
τ (aτ )

πτ (aτ |x̃τ ,Hτ−1)
1{aτ=a}x̃τrτ .

Here, (πnd
τ (·))τ∈[t] is a pre-specified policy (doesn’t

depend on (x̃τ )τ or Hτ−1) that can be chosen by the

algorithm. We only require the following:

Assumption 2.2. Let wt =
√
d·xt, w̃t =

√
d·x̃t be

scaled vectors of xt and x̃t. Then there exist positive

constants ξ, ρ, λ0 s.t. (i) ∀u ∈ Sd−1, E(u⊤w̃t)
4 ≤ ξ,

(ii) Ew̃tw̃
⊤
t ⪯ νId, and (iii) ∀t ≥

√
T , a ∈ {0, 1},

1
t

∑
τ≤t π

nd
τ (a)wτw

⊤
τ ⪰ λ0Id.

Remark 2.1. In Assumption 2.2, (i) and (ii) are

standard moment assumptions. (iii) is mild. Even

restricted to the choice of πnd
τ (a) ≡ 1/2, under mild

conditions, the assumption can be satisfied with de-

terministic (xτ )τ≥1 or stochastic (xτ )τ≥1 such as

an i.i.d. sequence, a weakly dependent station-

ary time series (e.g. multivariate ARMA process

(Fan and Yao, 2017)), or a sequence with periodic-

ity/seasonality with high probability (See Appendix

D for details).

The theorem below gives a high-probability upper

bound on ∥θ̂(t)
a − θ∗

a∥2 (proof in Appendix D).

Theorem 2.1. For any t ∈ [T ], denote qt :=

infτ≤t,a∈{0,1} πτ (a|x̃τ ,Hτ−1). Then under As-

sumptions 2.1 and 2.2, there exist absolute con-

stants C, C1, such that as long as qt ≥
C1 max{d(d+log t)

λ0t
, ξ(d+log t)

λ2
0t
}, with probability at

least 1− 8
t2 , ∀a ∈ {0, 1}, ∥θ̂(t)

a −θ∗
a∥2 is upper bounded

by

C(R +Rθ)d

λ0
max

{
d + log t

qtt
,

√
ν +
√
ξ√

d

√
d + log t

qtt

}
.

(2.6)

Unlike the existing literature on off-policy learn-

ing in contextual bandits (e.g. Wang et al. (2017);

Zhan et al. (2021); Zhang et al. (2021); Bibaut et al.

(2021)), the role of the importance weights here is to

correct the dependence of a policy on the observed

noisy context with error. The proof idea can be

generalized to a large class of off-policy method-of-

moment estimators, which might be of independent

interest (see Appendix D).
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Algorithm 1 MEB (Measurement Error Bandit)

1: Input: (Σe,t)t∈[T ]: variance sequence of

(ϵt)t∈[T ]; (p
(t)
0 )t∈[T ]: minimum selection proba-

bility at time t ∈ [T ]; T0: warm-up stage length

2: for time t = 1, 2, . . . , T do

3: if t ≤ T0 then

4: Set πt(a|x̃t,Ht−1)∈ [p
(t)
0 , 1− p

(t)
0 ], a ∈ {0, 1}

5: Sample at ∼ πt(·|x̃t,Ht−1)

6: else

7: Obtain (θ̂
(t−1)
a )a∈{0,1} from (2.5)

8: ãt ← argmaxa∈{0,1}⟨θ̂
(t−1)
a , x̃t⟩

9: Set πt(a|x̃t,Ht−1) :=

{
1− p

(t)
0 , if a = ãt

p
(t)
0 , otherwise

10: Sample at ∼ πt(·|x̃t,Ht−1)

11: end if

12: end for

2.3 MEB: Online bandit algorithm with

measurement error adjustment

We propose MEB (Measurement Error Bandit), an

online bandit algorithm with measurement error ad-

justment based on the estimator (2.5). The algo-

rithm is presented in Algorithm 1 and is designed for

the binary-action setting, although it can be general-

ized to the case with multiple actions (see Appendix

C). For t ≤ T0, the algorithm is in a warm-up stage

and can pick any policy such that there is a mini-

mum sampling probability p
(t)
0 for each action (Here

p
(t)
0 ∈ (0, 1

2 ]). For instance, the algorithm can do

pure exploration with πt(a|x̃t,Ht−1) ≡ 1
2 . For t >

T0, given the noisy context x̃t, the algorithm com-

putes the best action ãt according to (θ̂
(t−1)
a )a∈{0,1}

calculated from (2.5). Then, it samples ãt with prob-

ability 1− p
(t)
0 and keeps an exploration probability

of p
(t)
0 to sample the other action. In practice, we can

often set p
(t)
0 to be monotonically decreasing in t, in

which case qt = infτ≤t,a∈{0,1} πτ (a|x̃τ ,Hτ−1) = p
(t)
0

for all t ∈ [T ].

Before presenting the regret analysis, we should first

note that our problem is harder than a standard

contextual bandit: xt is unknown, and only x̃t is

observed. Thus, even if (θ∗
a)a∈{0,1} is known, we may

still perform suboptimally if x̃t is too far from xt so

that it leads to a different optimal action. Example

2.1 below shows that in general, we cannot avoid a

linear regret.

Example 2.1. Let d = 1, (θ∗
1 ,θ

∗
0) = (1,−1).

(xt)t∈[T ] are drawn i.i.d. from {±0.2} with equal

probability. P(x̃t = 1|xt = 0.2) = 0.6, P(x̃t =

−1|xt = 0.2) = 0.4; P(x̃t = 1|xt = −0.2) = 0.4,

P(x̃t = −1|xt = −0.2) = 0.6. Intuitively, even if we

know (θ∗
a)a∈{0,1}, there is still a constant probability

at each time t that we cannot make the right choice

due to x̃t and xt having different signs, and xt is

never known (details in Appendix E). This results

in a Ω(T ) regret.

Fortunately, in practice, we expect that the errors

(ϵt)t∈[T ] are relatively ‘small’ in the sense that the

optimal action (given (θ∗
a)a∈{0,1}) is not affected.

Specifically, we assume the following:

Assumption 2.3. There exist a constant ρ ∈ (0, 1)

such that ∀t ∈ [T ], |⟨δθ, ϵt⟩| ≤ ρ|⟨δθ,xt⟩| almost

surely. Here δθ := θ∗
1 − θ∗

0 .

Assumption 2.3 ensures that the perturbation to the

suboptimality gap between the two arms caused by

ϵt is controlled by the true suboptimality gap. In

this way, given (θ∗
a)a∈{0,1}, the optimal action based

on x̃t will not deviate too much from that based on

xt. As a special case, this assumption is satisfied

with if ∀t, |⟨δθ,xt⟩| ≥ Be,t∥δθ∥2/ρ. Here Be,t is an

upper bound of ∥ϵt∥2. Assumption 2.3 can be fur-

ther weakened to the inequalities holding with high

probability (see Appendix E). Note that Assumption

2.3 only guarantees the optimal action is not affected

by (ϵt)t∈[T ] given (θ∗
a)a∈{0,1}. To achieve sublinear

regret, (θ∗
a)a∈{0,1} still needs to be well-estimated.

Thus, even with Assumption 2.3, classical bandit al-

gorithms such as UCB may still suffer from linear re-

gret because of the inconsistent estimator θ̂
(t)
a,RLSCE

(see Appendix B for a concrete example).

We first prove the following theorem, which states

that the regret of MEB can be directly controlled by

the estimation error. In fact, this theorem holds

regardless of the form or quality of the estimation

procedure (i.e. in line 7 of Algorithm 1). The proof

is in Appendix E.

Theorem 2.2. Let Assumption 2.1 and 2.3 hold.

(i) For the standard setting, Algorithm 1 outputs a

policy with Regret(T ;π∗) no more than

2T0Rθ +
2

1−ρ
·

T∑
t=T0+1

(
p
(t)
0 Rθ + max

a∈{0,1}
∥θ̂(t−1)

a − θ∗
a∥2
)
.
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(ii) For the clipped policy setting, Algorithm 1

with the choice of p
(t)
0 ≡ p0 outputs a policy with

Regret(T ; π̄∗) no more than

2T0Rθ +
2(1−2p0)

1−ρ
·

T∑
t=T0+1

max
a∈{0,1}

∥θ̂(t−1)
a −θ∗

a∥2.

The following corollary provides regret guarantees

of MEB by combining Theorem 2.1 and 2.2 (proof in

Appendix E).

Corollary 2.1. Let Assumption 2.1 to 2.3 hold.

There exist universal constants C,C ′ such that:

(i) For the standard setting, ∀T ≥ C ′ max{(1 +

1/λ
9
4
0 )(d+log T )3, (ξ/λ0)

9
4 (d+log T )

4
3 }, with proba-

bility at least 1− 16√
T

, Algorithm 1 with the choice of

T0 = ⌈2dT 2
3 ⌉, p(t)0 = min{ 12 , t

− 1
3 } outputs a policy

with Regret(T ;π∗) no more than

CdT
2
3

{
Rθ

1− ρ
+

(
√
ν+
√
ξ+1)(R + Rθ)

(1− ρ)λ0

√
1 +

log T

d

}
.

(ii) For the clipped policy setting, ∀T ≥ C ′ max{(d+

log T )2/(λ0p0)2, ξ2/λ4
0(1+log T/d)2}, with probabil-

ity at least 1− 16√
T

, Algorithm 1 with the choice of

T0 = ⌈2d
√
T ⌉ and p

(t)
0 ≡ p0 outputs a policy with

Regret(T ; π̄∗) no more than

CdT
1
2

{
Rθ+

(
√
ν+
√
ξ+1)(1−2p0)(R+Rθ)
√
p0(1−ρ)λ0

√
1+

log T

d

}
.

Ignoring other factors, the regret upper bound is

of order Õ(dT 2/3) for the standard setting, and

Õ(d
√
T ) for the clipped policy setting, depending

on the horizon T and dimension d.

In certain scenarios (e.g. when d is large), it is de-

sirable to save computational resources by updating

the estimates of (θ∗
a)a∈{0,1} less frequently in Algo-

rithm 1. Fortunately, low regret guarantees can still

be achieved: Suppose at each time t, the agent only

updates the estimators according to (2.5) at selected

time points t ∈ S ⊆ [T ] (in line 7); Otherwise, the

agent simply makes decisions based on the most re-

cently updated estimators. In Appendix E, we show

that time points to perform the updates can be very

infrequent, such as (nk)k∈N+ (n ≥ 2, n ∈ N+), while

still achieving the same rate of regret upper bound

as in Corollary 2.1.

2.4 MEB given estimated error variance

In practice, the agent might not have perfect knowl-

edge about Σe,t, the variance of the error ϵt. In

this section, we discuss the situation where at each

time t, the agent does not know Σe,t, and only has a

(potentially adaptive) estimator Σ̂e,t for Σe,t. This

estimator may be derived from auxiliary data or out-

side knowledge. In this case, in Algorithm 1, we

need to replace the estimator (2.5) with the follow-

ing estimator for decision-making (i.e. in line 7 of

Algorithm 1):

θ̃(t)
a :=

(
Σ̂

(t)
x̃,a −

1

t

∑
τ∈[t]

πnd
τ (a)Σ̂e,τ

)−1 · Σ̂(t)
x̃,r,a.

(2.7)

In Appendix F, we show that with this modification,

the additional regret of Algorithm 1 is controlled by

d ·
∑T

t=T0+1
maxa∈{0,1} ∥∆t(a)∥2

up to a constant depending on the assumptions.

Here, for each t, ∆t(a) := 1
t

∑
τ∈[t] π

nd
τ (a)(Σ̂e,τ −

Σe,τ ) is the weighted average of the estimation er-

rors (Σ̂e,τ−Σe,τ )τ∈[t]. In practice, it is reasonable to

assume that ∆t(a) is small so as not to significantly

affect the overall regret: For example, suppose the

agent gathers more auxiliary data over time so that

∥d(Σ̂e,t−Σe,t)∥2 ≲
√

d/t, then the additional regret

term will be O(
√
dT ) up to a constant depending on

the assumptions.

3 Simulation results

In this section, we complement our theoretical anal-

yses with simulation results on a synthetic envi-

ronment with artificial noise and reward models as

well as a simulation environment based on the real

dataset, HeartStep V1 (Klasnja et al., 2018).

Compared algorithms. In both simulation en-

vironments, we compare the following algorithms:

Thompson sampling (TS) with normal priors (Russo

et al., 2018), Linear Upper Confidence Bound (UCB)

approach (Chu et al., 2011), MEB (Algorithm 1), and

MEB-naive (MEB plugged in with the naive measure-

ment error estimator (2.4) instead of (2.5)). See Ap-

pendix A for a detailed description of the algorithms.
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3.1 Synthetic environment

We first test our algorithms on a synthetic environ-

ment. We consider a contextual bandit environment

with d = 5, T = 50000. In the reward model, we set

θ∗
0 = (5, 6, 4, 6, 4), θ∗

1 = (6, 5, 5, 5, 5), and ηt drawn

i.i.d. from N (0, σ2
η). Let (xt)t∈[T ] be independently

sampled from N (µx, Id), where µx = 1d. We fur-

ther set Σe,t ≡ Σe := Id/4 and consider indepen-

dent (ϵt)t∈[T ] with Normal distributionwith covari-

ance Σe. We independently generate bandit data

for nexp = 100 times, and compare among the can-

didate algorithms in terms of estimation quality and

cumulative regret with a moderate exploration prob-

ability p0 = 0.2.

3.2 HeartStep V1 simulation environment

We also construct a simulation environment with

HeartSteps dataset. HeartSteps is a physical activ-

ity mobile health application, whose primary goal is

to help the user prevent negative health outcomes

and adopt and maintain healthy behaviors, for ex-

ample, higher physical activity level. HeartSteps V1

is a 42-day mobile health trial (Dempsey et al., 2015;

Klasnja et al., 2015; Liao et al., 2016), where partic-

ipants are provided a Fitbit tracker and a mobile

phone application. One of the intervention com-

ponents is a contextually-tailored physical activity

suggestion that may be delivered at any of the five

user-specified times during each day. The delivery

times are roughly separated by 2.5 hours.

Construction of the simulated environment.

We follow the simulation setups in Liao et al. (2020).

The true context at the time t is denoted by xt with

three main components xt = (It, Zt, Bt). Here, It
is an indicator variable of whether an intervention

(At = 1) is feasible (e.g. It is 0 when the participant

is driving a car, a situation where the suggestion

should not be sent). Zt contains some features at

time t. Bt is the true treatment burden, which is

a function of the participant’s treatment history2.

Specifically, Bt+1 = λBt + 1{At=1}. We assume that

(It)t∈[T ] and (Zt)t∈[T ] are sampled i.i.d with the em-

pirical distribution from the Heartstep V1 dataset,

2Note this violates contextual bandits assumption
and leads to an MDP. We believe this is a good setup to
test the robustness of our proposed approach.

and (Bt)t∈[T ] is given by the aforementioned transi-

tion model.

The reward model is rt(x, a;θ) = x⊤α+af(x)⊤β+

ηt, where x is the full context, f(x) is a subset of x

that is considered to have an impact on the treat-

ment effects, and θ = (α⊤,β⊤)⊤ ∈ R9. Here ηt is

the Gaussian noise on the reward observation, whose

variance σ2
η is chosen to be 0.1, 1.0, and 5.0 respec-

tively (Liao et al., 2016). For a detailed list of vari-

ables in the context, see Table 2 in Appendix A.

The true parameters (θ∗
a)a∈{0,1} is estimated from

GEE (Generalized Estimating Equations) with re-

wards being the log-transformed step count collected

30 minutes after the decision time.

In light of the measurement error setting in this

paper, we consider an observation noise on Bt for

the following reasons: 1) The burden Bt can be

understood as a prediction of the burden level of

the participant, which is particularly crucial in mo-

bile health studies; 2) Other variables are nor-

mally believed to have low or no observation noise.

Thus, we assume that the agent only observes x̃t =

(It, Zt, B̃t), where B̃t = Bt + ϵt and ϵt is drawn i.i.d.

from normal distribution with mean zero and vari-

ance σ2
ϵ .

3.3 Results

Table 1 (a) and (b) shows the average regret (cu-

mulative regret divided by T ) in both the synthetic

environment and the real-data environment based

on HeartStep V1. We use the same set of σ2
ϵ ∈

{0.1, 1.0, 2.0}, while different σ2
η reflect the change

of absolute values in coefficients in two different en-

vironments (σ2
η = 5.0 is the level of reward noise

in HeartStep V1). MEB shows significantly smaller

average regret compared to other baseline methods

under most combinations of σ2
η and σ2

ϵ . 1. In certain

instances, MEB-naive exhibits performance compa-

rable to MEB. This is attributed to its ability to

reduce the variance of model estimation while in-

curring some bias compared to MEB, rendering it a

feasible alternative in practical contexts. Notably,

in two extreme scenarios, UCB surpasses both MEB

and MEB-naive. This is as expected, since when

contextual noise is sufficiently negligible, traditional

bandit algorithms are anticipated to outperform the

proposed algorithms. An estimation error plot can
8



be found in Appendix A, which also demonstrates

that MEB has a lower estimation error.

Table 1: Average regret for both synthetic envi-

ronment and real-data environment under different

combinations of σ2
η and σ2

ϵ . The results are averages

over 100 independent runs and the standard devia-

tions are reported in the full table in Appendix A.

(a) Average regret in the synthetic environment over 50000
steps with clipping probability p = 0.2.

σ2
η σ2

ϵ TS UCB MEB MEB-naive

0.01 0.1 0.047 0.046 0.027 0.038

0.1 0.1 0.047 0.047 0.026 0.039

1.0 0.1 0.048 0.048 0.027 0.038

0.01 1.0 0.757 0.647 0.198 0.371

0.1 1.0 0.769 0.721 0.205 0.392

1.0 1.0 0.714 0.697 0.218 0.404

0.01 2.0 1.492 1.504 0.358 0.616

0.1 2.0 1.195 1.333 0.368 0.584

1.0 2.0 1.299 1.476 0.416 0.625

(b) Average regret in the real-data environment over 2500
steps with clipping probability p = 0.2.

σ2
η σ2

ϵ TS UCB MEB MEB-naive

0.05 0.1 0.027 0.027 0.022 0.024

0.1 0.1 0.026 0.024 0.020 0.020

5.0 0.1 1.030 0.743 0.831 1.173

0.05 1.0 0.412 0.408 0.117 0.112

0.1 1.0 0.309 0.316 0.085 0.087

5.0 1.0 1.321 0.918 1.458 1.322

0.05 2.0 0.660 0.634 0.144 0.148

0.1 2.0 0.740 0.704 0.151 0.155

5.0 2.0 1.585 2.415 1.577 1.436

4 Discussion and conclusions

We propose a new algorithm, MEB, which is the

first algorithm with sublinear regret guarantees in

contextual bandits with noisy context, where we

have limited knowledge of the noise distribution.

This setting is common in practice, especially where

only predictions for unobserved context are avail-

able. MEB leverages the novel estimator (2.5), which

extends the conventional measurement error adjust-

ment techniques by considering the interplay be-

tween the policy and the measurement error.

Limitations and future directions. Several

questions remain for future investigation. First, is

Õ(T 2/3) the optimal rate of regret compared to the

standard benchmark policy (2.3), as in some other

bandits with semi-parametric reward model (e.g. Xu

and Wang (2022))? Providing lower bounds on the

regret helps us understand the limit of improvement

in the online algorithm. Second, we assume that the

agent has an unbiased prediction of the true context.

It is important to understand how biased predictions

affect the results. Last but not least, it’s interesting

to see our method can be extended to more com-

plicated decision-making settings (e.g. Markov de-

cision processes).
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A Additional details for simulation studies

A.1 Compared algorithms

In both simulation environments, we compare the following algorithms: Thompson sampling (TS, see details

in Algorithm 2) given normal priors (Russo et al., 2018), Linear Upper Confidence Bound (UCB, see details

in Algorithm 3) approach (Chu et al., 2011), MEB (Algorithm 1), and MEB-naive (MEB plugged in with the

naive measurement error estimator (2.4) instead of (2.5)). To make a fair comparison between algorithms,

we use the same regularization parameter l = 1 for all algorithms. The hyper-parameter ρ, C is set to be σ2
η

for all results for TS and UCB.
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Algorithm 2 Linear Thompson Sampling (TS)

1: Input: T : total number of steps; ρ: variance of (ηt)t∈[T ]; l: prior variance; p0: minimum selection

probability; µ0,a = 0 and Σ0,a = lI

2: for time t = 1, 2, . . . , T do

3: Observe x̃t = xt + ϵt
4: Generate posterior sample (θ̃t,a)a∈A from N (µt−1,a,Σt−1,a)

5: Set ãt ← argmaxa∈A⟨θ̃t,a, x̃t⟩

6: Sample at ∼ πt(·|x̃t,Ht−1), where πt(a|x̃t,Ht−1) :=

{
1− (K − 1)p0, if a = ãt

p0, otherwise

7: Observe reward rt = ⟨θ⋆
at
,xt⟩+ ηt

8: Set Vt,a = lI +
∑t

t′=1 1{at′=a}x̃tx̃
⊤
t , bt =

∑t
t′=1 1{at′=a}x̃trt

9: Update µt,a = V −1
t,a bt,a and Σt,a = ρV −1

t,a

10: end for

Algorithm 3 Linear UCB (UCB)

1: Input: T : total number of steps; C > 0; l: regularization; p0: minimum selection probability; V0,a = lI

and b0,a = 0

2: for time t = 1, 2, . . . , T do

3: Observe x̃t = xt + ϵt
4: Estimate θ̂t,a = V −1

t−1,abt−1,a

5: Set µ̂a = ⟨θ̂t,a, x̃t⟩+ C
√
x̃⊤
t V

−1
t,a x̃t

6: Set ãt ← argmaxa∈A µ̂a

7: Sample at ∼ πt(·|x̃t,Ht−1), where πt(a|x̃t,Ht−1) :=

{
1− (K − 1)p0, if a = ãt

p0, otherwise

8: Observe reward rt = ⟨θ⋆
at
,xt⟩+ ηt

9: Set Vt,a = lI +
∑t

t′=1 1{at′=a}x̃tx̃
⊤
t , bt =

∑t
t′=1 1{at′=a}x̃trt

10: end for

We further compare with robust linear UCB (Algorithm 1 in Ding et al. (2022)) that is shown to achieve

minimax rate for adversarial linear bandit.

A.2 Additional details for HeartStep V1 study

Table 2 presents the list of variables to include in the reward model and in the feature construction for

algorithms. Recall that our reward model is rt(x, a,θ) = x⊤α + af(x)⊤β + ηt. All the variables are

included in x while only those considered to have an impact on treatment effect will be included in f(x).
16



Table 2: List of variables in HeartSteps V1 study.

Variable Type Treatment?

Availability (It) Discrete No

Prior 30-minute step count Continuous No

Yesterday’s step count Continuous No

Prior 30-minute step count Continuous No

Location Discrete Yes

Current temperature Continuous No

Step variation level Discrete Yes

Burden variable (Bt) Continuous Yes

A.3 Additional results on estimation error
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Figure 1: Log-scaled L2 norm of θ̂1 − θ∗
1 of four algorithms in the synthetic environment over 50000 steps

under σ2
ϵ ∈ {0.1, 1.0, 2.0} and σ2

η ∈ {0.01, 0.1, 1.0}.
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Figure 2: Log-scaled L2 norm of θ̂1−θ∗
1 of four algorithms in the real-data environment based on HeartStep

V1 over 2500 steps under σ2
ϵ ∈ {0.1, 1.0, 2.0} and σ2

η ∈ {0.05, 0.1, 5.0}.
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A.4 Average regret with standard deviation

Table 3: Average regret for both synthetic environment and real-data environment under different combina-

tions of σ2
η and σ2

ϵ . The numbers in parentheses are the standard deviations calculated from 100 independent

runs.

(a) Average regret in the synthetic environment over 50000 steps with clipping probability p = 0.2.

σ2
η σ2

ϵ TS UCB MEB MEB-naive RobustUCB

0.01 0.1 0.047 (0.0015) 0.046 (0.0015) 0.027 (0.0011) 0.038 (0.0013) 0.050 (0.0051)

0.1 0.1 0.047 (0.0015) 0.047 (0.0015) 0.026 (0.0011) 0.039 (0.0013) 0.049 (0.0048)

1.0 0.1 0.048 (0.0015) 0.048 (0.0015) 0.027 (0.0011) 0.038 (0.0013) 0.044 (0.0047)

0.01 1.0 0.757 (0.0164) 0.647 (0.0145) 0.198 (0.0079) 0.371 (0.0107) 0.652 (0.0050)

0.1 1.0 0.769 (0.0160) 0.721 (0.0156) 0.205 (0.0080) 0.392 (0.0110) 0.753 (0.0056)

1.0 1.0 0.714 (0.0155) 0.697 (0.0150) 0.218 (0.0083) 0.404 (0.0112) 0.589 (0.0047)

0.01 2.0 1.492 (0.0281) 1.504 (0.0283) 0.358 (0.0129) 0.616 (0.0169) 1.608 (0.0102)

0.1 2.0 1.195 (0.0244) 1.333 (0.0260) 0.368 (0.0131) 0.584 (0.0164) 1.064 (0.0079)

1.0 2.0 1.299 (0.0257) 1.476 (0.0277) 0.416 (0.0139) 0.625 (0.0170) 1.881 (0.0114)

(b) Average regret in the real-data environment over 2500 steps with clipping probability p = 0.2.

σ2
η σ2

ϵ TS UCB MEB MEB-naive RobustUCB

0.05 0.1 0.027 (0.0067) 0.027 (0.0070) 0.022 (0.0057) 0.024 (0.0058) 0.025 (0.0079)

0.1 0.1 0.026 (0.0057) 0.024 (0.0053) 0.020 (0.0046) 0.020 (0.0046) 0.028 (0.0079)

5.0 0.1 1.030 (0.0287) 0.743 (0.0262) 0.831 (0.0267) 1.173 (0.0343) 1.400 (0.0447)

0.05 1.0 0.412 (0.0355) 0.408 (0.0351) 0.117 (0.0148) 0.112 (0.0143) 0.226 (0.0020)

0.1 1.0 0.309 (0.0293) 0.316 (0.0299) 0.085 (0.0112) 0.087 (0.0116) 0.206 (0.0125)

5.0 1.0 1.321 (0.0417) 0.918 (0.0304) 1.458 (0.0422) 1.322 (0.0388) 1.065 (0.0400)

0.05 2.0 0.660 (0.0343) 0.634 (0.0322) 0.144 (0.0129) 0.148 (0.0133) 0.304 (0.0241)

0.1 2.0 0.740 (0.0505) 0.704 (0.0489) 0.151 (0.0145) 0.155 (0.0149) 0.432 (0.0386)

5.0 2.0 1.585 (0.0454) 2.415 (0.0816) 1.577 (0.0508) 1.436 (0.0462) 1.345 (0.0423)

B Additional explanations on the regularized least-squares (RLS) estimator

the naive estimator (2.4) under noisy context

B.1 Inconsistency of the RLS estimator

Measurement error model and attenuation. As briefly mentioned in the main text, a measurement

error model is a regression model designed to accommodate inaccuracies in the measurement of regressors.

Suppose that there is no action (i.e. set aτ ≡ 0), and (xτ , ϵτ , ητ )τ∈[t] are i.i.d., then the measurement error

model is a useful tool to learn θ∗
0 from Ht collected as follows:{

rτ = ⟨θ∗
0 ,xτ ⟩+ ητ ,

x̃τ = xτ + ϵτ .
(B.1)

Here in the measurement error model’s perspective, (x̃τ )τ∈[t] are regressors ‘measured with error’, and

(rτ )τ∈[t] are dependent variables.

Regression attenuation, a phenomenon intrinsic to measurement error models, refers to the observation that

when the predictors are subject to measurement errors, the Ordinary Least Squares (OLS) estimators of

regression coefficients become biased (see, for instance, Carroll et al. (1995)). Specifically, in simple linear
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regression, the OLS estimator for the slope tends to be biased towards zero. Intuitively, this is because the

measurement errors effectively ‘dilute’ the true relationship between variables, making it appear weaker than

it actually is.

Inconsistency of the RLS estimator. Before presenting a concrete numerical example to show the

inconsistency of the RLS estimator and that it leads to bad decision-making, below we first apply the theory

of measurement error model to give a heuristic argument of why the RLS estimator is inconsistent even in

the simplified situation where there is no action (i.e. set aτ ≡ 0), and (xτ , ϵτ , ητ )τ∈[t] are i.i.d..

From Section 3.3.2 in Carroll et al. (1995), given data (x̃τ , rτ )τ∈[t] from (B.1) with multiple covariates (in the

simplified case with no action as described above), the OLS estimator for θ∗
0 , denoted as θ̂OLS,t

0 , consistently

estimates not θ∗
0 but

θ̃∗
0 = (Σx + Σe)

−1Σxθ
∗
0 , (B.2)

where Σx = Var(xτ ), Σe = Var(ϵτ ). In addition, given fixed λ, the regularized least squares (RLS) estimator

θ̂RLS,t
0 (λ) =

(
λ

t
I +

1

t

∑
τ∈[t]

x̃τ x̃
⊤
τ

)−1(
1

t

∑
τ∈[t]

x̃τrτ

)
=

(
λ

t
I +

1

t

∑
τ∈[t]

x̃τ x̃
⊤
τ

)−1(
1

t

∑
τ∈[t]

x̃τ x̃
⊤
τ

)
θ̂OLS,t
0 ,

where 1
t

∑
τ∈[t] x̃τ x̃

⊤
τ → Var(x̃τ ) = Var(xτ ) + Var(ϵτ ), and λ/t→ 0 as t→∞. This means that as t→∞,

θ̂RLS,t
0 (λ) and θ̂OLS,t

0 converges to the same limit, which is θ̃∗
0 . Thus, for fixed λ, as t grows, ∥θ̂RLS,t

0 (λ)−θ∗
0∥2

converges to ∥θ̃∗
0 − θ∗

0∥2 and does not converge to zero in general.

Finally, recall that in classical bandit algorithms such as UCB, the sublinear regret relies on the key property

that with high probability, for all t, ∥θ̂RLS,t
0 (λ) − θ∗

0∥Vt
≤ β, where Vt = λI +

∑
τ∈[t] x̃τ x̃

⊤
τ , β = Õ(

√
d).

Here for a vector v ∈ Rd and positive definite matrix M ∈ Rd×d, ∥v∥M :=
√
v⊤Mv. We argue that this

requirement generally no longer holds in the setting with measurement error (ϵτ )τ≥1. In fact, notice that

since x̃τ is i.i.d. in this simplified setting, and Vt = λI +
∑

τ∈[t] x̃τ x̃
⊤
τ , we expect that 1

tVt concentrates

around Var(x̃t). As long as λmin(Var(x̃t)) > 0, with high probability, for all t, 1
tVt ≻ c for some constant c.

If this holds,

∥θ̂RLS,t
0 (λ)− θ∗

0∥Vt
≥
√
ct∥θ̂RLS,t

0 (λ)− θ∗
0∥2,

while the last term ∥θ̂RLS,t
0 (λ)−θ∗

0∥2 converges to a nonzero limit ∥θ̃∗
0−θ∗

0∥2. This indicates that in general,

∥θ̂RLS,t
0 (λ)− θ∗

0∥Vt scales with a rate of at least
√
t, and will not be uniformly bounded by Õ(

√
d) for all t.

An example. The following is an example where given the errors (ϵτ )τ∈[t], the RLS estimator in the

classical bandit algorithms inconsistently estimates the true reward model, and in addition, it leads to bad

decision-making (linear regret) in the classic bandit algorithms.

Example B.1. Consider the standard setting described in Section 2.1. Let T = 10000, d = 2, θ∗
1 = (1, 0)⊤,

θ∗
0 = (−1, 0)⊤. Let xt sampled i.i.d. from Unif(S), where S = {(1, 3)⊤, (−3, 1)⊤, (−1,−3)⊤, (3,−1)⊤}.

Condition on xt, ϵt is uniformly sampled from ((ρ0x
[1]
t , ρ0x

[1]
t )⊤, (−ρ0x[1]

t ,−ρ0x[1]
t )⊤), independent from any

other variable in the history. Here ρ0 = 0.9, x
[1]
t denotes the first entry in xt. We also let ηt be i.i.d. drawn

from N(0, 0.01).

We conduct 100 independent experiments. For each experiment, we generate data according to the above,

and test the performance of UCB (Algorithm 1 in Chu et al. (2011)) and Thompson sampling with normal

priors (Russo et al., 2018) using noisy context x̃t instead of the true context. We choose the regularization

parameter λ = 1 in the RLS estimator. Additionally, in UCB (Chu et al., 2011), we choose the parameter

α = 1. Figure 3 summarizes the estimation error of the RLS estimator and the cumulative regret of

both algorithms with respect to time t, showing both the average and standard error across the random

experiments. We see that the RLS estimator is unable to estimate the true reward model well. Moreover,

it is clear that the regret of both UCB and Thompson sampling is linear in the time horizon. Intuitively,
20
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Figure 3: Estimation error of the RLS estimator and cumulative regret of UCB (Chu et al., 2011) and

Thompson sampling (Russo et al., 2018) under contextual error in Example B.1. The red and pink line

corresponds to Thompson sampling and UCB respectively. The solid lines indicate the mean values, while

the shaded bands represent the standard error across the independent experiments.

this is because the direction of θ̃∗
0 in (B.2) is twisted compared to θ∗

0 , which not only leads to inconsistent

estimators, but also the optimal action altered.

Finally, we note that in this setup, Assumption 2.3 is satisfied. This demonstrates that even if the errors

(ϵt)t≥1 do not affect the optimal action given (θ∗
a)a∈{0,1}, the poor performance of the RLS estimator may

still lead to linear regret in classical bandit algorithms.

B.2 Inconsistency of the naive measurement error adjusted estimator (2.4)

Example B.2. Let d = 1, xτ ≡ 1 for all τ , and ϵτ ∼ Unif(−2, 2) sampled independently. For the reward

model, let θ∗
0 = −1, θ∗

1 = 1, ητ ∼ Unif(−0.1, 0.1) sampled independently. So in order to maximize expected

reward, we should choose action 1 if xτ is positive and action 0 otherwise. Suppose the agent takes the

following policy that is stationary and non-adaptive to history:

πτ (A) =

{
2
31{A=1} + 1

31{A=0}, if x̃τ > ρ
1
31{A=1} + 2

31{A=0}, otherwise.

Here, ρ is a pre-specified constant. Figure 4 (a) plots the mean and standard deviation of θ̂
(t)
0,me (as in (2.4))

given 100 independent experiments for each t = 1, . . . , 10000, where ρ = −0.5, 0, 0.5. Observe that as t

grows, θ̂
(t)
0,me converges to different limits for different policies. In general, the limit is not equal to θ∗

0 = −1.

In contrast, Figure 4 (b) shows the mean and standard deviation of θ̂
(t)
0 (as in (2.5)) given 100 independent

experiments under the same setting with the same three policies as in Figure 4 (a). Unlike the naive estimator

(2.4), the proposed estimator (2.5) quickly converges around the true value −1 for all three candidate policies.

C Generalization to K ≥ 2 actions

In this section, we assume that A = {1, 2, . . . ,K} instead of {0, 1}. The standard and clipped benchmark

become

π∗
t (a) =

{
1, if a = a∗t = argmaxa⟨θ∗

a,xt⟩
0, otherwise,

(C.1)
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Figure 4: Estimated value of θ∗
0 given the naive estimator (2.4) in (a) and our proposed estimator (2.5) in

(b) under different policies under 100 independent experiments. The green, blue, and red line corresponds

to the policy with parameter ρ = −0.5, 0, and 0.5 respectively. The solid lines indicate the mean values,

while the shaded bands represent the standard deviation across the independent experiments.

Algorithm 4 MEB with K actions

1: Input: (Σe,t)t∈[T ]: covariance sequence of (ϵt)t∈[T ]; (p
(t)
0 )t∈[T ]: minimum selection probability at each

time t; T0: length of pure exploration

2: for time t = 1, 2, . . . , T do

3: if t ≤ T0 then

4: Sample at ∼ πt(·|x̃t,Ht−1), where πt(a|x̃t,Ht−1) ∈ [p
(t)
0 , 1− (K − 1)p

(t)
0 ] for all a ∈ A

5: else

6: Obtain updated estimators (θ̂
(t−1)
a )a∈A from (2.5)

7: ãt ← argmaxa∈A⟨θ̂
(t−1)
a , x̃t⟩

8: Sample at ∼ πt(·|x̃t,Ht−1), where πt(a|x̃t,Ht−1) :=

{
1− (K − 1)p

(t)
0 , if a = ãt

p
(t)
0 , otherwise

9: end if

10: end for

and

π̄∗
t (a) =

{
1− (K − 1)p0, if a = a∗t ,

p0, otherwise.
(C.2)

In the K-arm setting, we can still estimate θ∗
a using (2.5) for each a ∈ A. Using the same proof ideas as

Theorem 2.1, we get the following guarantees for estimation error (proof omitted):

Theorem C.1. For any t ∈ [T ], let qt = infτ∈[t],a∈A πτ (a|x̃τ ,Hτ−1). Then under Assumption 2.1 and 2.2,

there exist constants C and C1 such that as long as qt ≥ C1 max
{

d(d+log t)
λ0t

, ξ(d+log t)
λ2
0t

}
, with probability at

least 1− 4K
t2 ,

∥θ̂(t)
a − θ∗

a∥2 ≤
C(R + Rθ)d

λ0
max

{
d + log t

qtt
,

√
ν +
√
ξ√

d

√
d + log t

qtt

}
, ∀a ∈ A.

MEB with K actions is shown in Algorithm 4. As in Theorem 2.2, we can control the regret of Algorithm 4

by the estimation error of (2.5). Here, Assumption 2.3 needs to be generalized to the following to adapt to

multiple actions:
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Assumption C.1. There exists a constant ρ ∈ (0, 1) such that ∀t ∈ [T ], ∀a1, a2 ∈ A, |⟨θ∗
a1
− θ∗

a2
, ϵt⟩| ≤

ρ|⟨θ∗
a1
− θ∗

a2
,xt⟩| almost surely.

The theorem below is a generalization of Theorem 2.2 to multiple actions (The proof is only slightly different

from Theorem 2.2; We briefly discuss the difference in Appendix G.1).

Theorem C.2. Let Assumption 2.1 and C.1 hold.

(i) For the standard setting, Algorithm 4 outputs a policy with Regret(T ;π∗) no more than

2T0Rθ +
2

1−ρ
·

T∑
t=T0+1

[
(K − 1)p

(t)
0 Rθ +max

a∈A
∥θ̂(t−1)

a − θ∗
a∥2
]
.

(ii) For the clipped policy setting, Algorithm 4 with the choice of p
(t)
0 ≡ p0 outputs a policy with

Regret(T ; π̄∗) no more than

2T0Rθ +
2(1−Kp0)

1−ρ
·

T∑
t=T0+1

max
a∈A
∥θ̂(t−1)

a −θ∗
a∥2.

Combining Theorems C.1 and C.2, we obtain the following corollary.

Corollary C.1. Let Assumption 2.1, 2.2 and C.1 hold. There exist universal constants C,C ′ such that:

(i) For the standard setting, ∀T ≥ C ′ max{(1 + 1/λ
9
4
0 )(d + log T )3, (ξ/λ0)

9
4 (d + log T )

4
3 }, with probability

at least 1− 8K√
T

, Algorithm 4 with the choice of T0 = ⌈2dT 2
3 ⌉, p

(t)
0 = min{ 12 , t

− 1
3 } outputs a policy with

Regret(T ;π∗) no more than

CdT
2
3

{
(K − 1)Rθ

1−ρ
+

(
√
ν +
√
ξ + 1)(R+Rθ)

(1−ρ)λ0

√
1 +

log T

d

}
.

(ii) For the clipped policy setting, ∀T ≥ C ′ max{(d+ log T )2/(λ0p0)2, ξ2/λ4
0(1 + log T/d)2}, with probability

at least 1−8K√
T

, Algorithm 4 with the choice of T0 = ⌈2d
√
T ⌉ and p

(t)
0 ≡ p0 outputs a policy with Regret(T ; π̄∗)

no more than

CdT
1
2

{
Rθ +

(
√
ν +
√
ξ + 1)(1−Kp0)(R+Rθ)
√
p0(1−ρ)λ0

√
1 +

log T

d

}
.

D Analysis of the proposed estimator (2.5)

D.1 Proof of Theorem 2.1

We fix some t ∈ [T ], and control ∥θ̂(t)
a − θ∗

a∥2 for a ∈ {0, 1}. Towards this goal, we combine analysis of the

two random terms Σ̂
(t)
x̃,a and Σ̂

(t)
x̃,r,a in the lemma below.

Lemma D.1. Under the same assumptions of Theorem 2.1, there exists an absolute constant C such that

with probability at least 1− 4/t2, both of the followings hold:

∥∥∥∥Σ̂(t)
x̃,a −

1

t

∑
τ∈[t]

πnd
τ (a)(xτx

⊤
τ + Σe,τ )

∥∥∥∥
2

≤ C max

{
d + log t

qtt
,

√
ξ

d
·

√
d + log t

qtt

}
, (D.1)

∥∥∥∥Σ̂(t)
x̃,r,a −

(
1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ

)
θ∗
a

∥∥∥∥
2

≤ CRmax

{
d + log t

qtt
,

√
ν

d
·

√
d + log t

qtt

}
. (D.2)
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Proof of Lemma D.1 is in Section G.2.

Denote ∆1 = Σ̂
(t)
x̃,a −

1
t

∑
τ∈[t] π

nd
τ (a)(xτx

⊤
τ + Σe,τ ), ∆2 = Σ̂

(t)
x̃,r,a −

(
1
t

∑
τ∈[t] π

nd
τ (a)xτx

⊤
τ

)
θ∗
a. Then

θ̂(t)
a =

(
Σ̂

(t)
x̃,a −

1

t

∑
τ∈[t]

πnd
τ (a)Σe,τ

)−1

· Σ̂(t)
x̃,r,a

=

(
1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ + ∆1

)−1

·

(1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ

)
θ∗
a + ∆2


= θ∗

a − J1 + J2,

where

J1 :=

1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ + ∆1

−1

·∆1θ
∗
a, J2 :=

1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ + ∆1

−1

·∆2.

It’s easy to verify that under the event where both (D.1) and (D.2) hold, whenever

C max

{
d + log t

qtt
,

√
ξ

d
·

√
d + log t

qtt

}
≤ λ0

2d
, (D.3)

we have

∥J1∥2 ≤
2CRθd

λ0
max

{
d + log t

qtt
,

√
ξ

d
·

√
d + log t

qtt

}
and

∥J2∥2 ≤
2CRd

λ0
max

{
d + log t

qtt
,

√
ν

d
·

√
d + log t

qtt

}
.

(D.3) can be ensured by t ≥ C1 max{d(d+log t)
λ0qt

, ξ(d+log t)
λ2
0qt

}, where C1 = max{2C, 4C2}. Given these guaran-

tees, we have with probability at least 1− 4/t2,

∥θ̂(t)
a − θ∗

a∥2 ≤ ∥J1∥2 + ∥J2∥2 ≤
2C(R + Rθ)d

λ0
max

{
d + log t

qtt
,

√
ν +
√
ξ√

d
·

√
d + log t

qtt

}
.

Thus we conclude the proof.

D.2 Additional comments on Assumption 2.2

Following Remark 2.1, all the following examples of {xτ} allow the existence of λ0 with πnd
τ (a) ≡ 1/2 given

any reasonably big t with high probability:

• {
√
dxτ} is an i.i.d. sequence satisfying dExτx

⊤
τ ⪰ λ1Id, λ1 > 0;

• {
√
dxτ} is a weakly-dependent stationary time series (a common example is the multivariate ARMA

process under regularity conditions, see e.g. (Banna et al., 2016)). The stationary distribution P satisfies

dEx∼Pxx
⊤ ⪰ λ2Id, λ2 > 0;

• {
√
dxτ} is a periodic time series such that there exists t0 ∈ N+ which satisfies

d
t0

∑
τ∈(kt0+1,(k+1)t0]

xτx
⊤
τ ⪰ λ3Id a.s. ∀k ∈ N.
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D.3 Generalization to off-policy method-of-moment estimation

(2.5) can be generalized to a class of method-of-moment estimators for off-policy learning. In this section,

we delve into the general framework of off-policy method-of-moment estimation. This framework proves

valuable in scenarios where a fully parametric model class for the reward is unavailable, yet there is a desire

to estimate certain model parameters using offline batched bandit data.

For simplicity, we assume that (Xt, Yt(a) : a ∈ A)t∈[T ] are drawn i.i.d. from an unknown distribution P.

At each time t ∈ [T ], the action At is drawn from a policy πt(·|Xt,Ht−1), and the agent observes only

ot = (Xt, At, Yt(At)) together with the action selection probabilities πt. Define the history up to time t as

Ht = {oτ}τ≤t. For a0 ∈ A, we’re interested in estimating θ∗
a0

, a d-dimensional parameter in P(a0), which is

the joint distribution of {Xt, Yt(a0)}.
Remark D.1. When the context is i.i.d., the problem of estimating {θ∗

a}a∈A in Section 2.2 is a special case

of this setup by taking x̃t as Xt and rt as Yt.

The traditional method-of-moment estimator looks for functions f1, . . . , fd as well as a mapping ϕ : Rd → Rd,

such that

θ∗
a0

= ϕ
(
E(X,Y )∼P(a0)f1(X,Y ), . . . ,E(X,Y )∼P(a0)fd(X,Y )

)
.

Then, if given i.i.d. samples (Ut, Vt)t∈[n] from P(a0), the estimator takes the form

θ̂a0
= ϕ

(
1

T

∑
t∈[T ]

f1(Ut, Vt), . . . ,
1

T

∑
t∈[T ]

fd(Ut, Vt)

)
.

In fact, the naive estimator (2.4) is of this form. It is clear that we cannot use this estimator for offline

batched data HT : There are no i.i.d. samples from P(a0) because of the policy {πt}t∈[T ]. Instead, we propose

the following estimator:

θ̂a0
= ϕ

(
1

T

∑
t∈[T ]

Wtf1(Xt, Yt), . . . ,
1

T

∑
t∈[T ]

Wtfd(Xt, Yt)

)
,

where Wt = 1{At=a0}
πnd(At)

πt(At|Xt,Ht−1)
for a data-independent probability distribution πnd on A. Similar to the

proof of Theorem 2.1, it’s not difficult to see that θ̂a0
is consistent under mild conditions. In fact, (2.5) is

a special case of this estimator when πnd
τ does not depend on τ . A more detailed analysis is left for future

work.

E Analysis of MEB

E.1 Additional comments on Example 2.1

In example 2.1, the joint distribution of (xt, x̃t) is:

P((xt, x̃t) = (0.2, 1)) = 0.3, P((xt, x̃t) = (0.2,−1)) = 0.2,

P((xt, x̃t) = (−0.2, 1)) = 0.2, P((xt, x̃t) = (−0.2,−1)) = 0.3.

The optimal action given (θ∗
a)a∈{0,1} and xt is

a∗t (xt) = argmax
a
⟨θ∗

a,xt⟩ =

{
1, if xt = 0.2,

0, if xt = −0.2.

In the standard bandit setting, the benchmark policy is

π∗
t (a) =

{
1, if a = a∗t (xt),

0, otherwise.
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For any policy π = (πt)t≥1, the instantaneous regret at time t is

Regrett(πt, π
∗
t ) = 0.4Eat∼πt(·|x̃t,Ht−1)1{at ̸=a∗

t (xt)}.

Even if both (θ∗
a)a∈{0,1} and the joint distribution of (xt, x̃t) are known, πt can only depend on x̃t and

history, and cannot be based on xt. Thus, there is always a (constant) positive probability that the action

at sampled from πt does not match a∗t (xt) (otherwise, at sampled from πt(·|x̃t,Ht−1) should be equal to

a∗t (xt) a.s.). Thus, the standard cumulative regret will be linear in the time horizon.

E.2 Proof of Theorem 2.2

We first prove the lemma below. Its proof is in Appendix G.3.

Lemma E.1. Under Assumption 2.3, we have a∗t = a†t := argmaxa⟨θ∗
a, x̃t⟩. Consequently, π∗

t = π†
t , π̄∗

t = π̄†
t

(given a fixed minimum action selection probability p0), where

π†
t (a) =

{
1, if a = a†t ,

0, otherwise,
π̄†
t (a) =

{
1− p0, if a = a†t ,

p0, otherwise.

In the below, we define

R̂egrett(π, π
∗) := Ea∼π∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩,

R̂egrett(π, π̄
∗) := Ea∼π̄∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩.

Standard setting. In the standard setting, we give the lemma below (proof in Appendix G.4).

Lemma E.2. Under the assumptions of Theorem 2.2, at any time t > T0,

R̂egrett(π, π
∗) ≤ 2p

(t)
0 Rθ + 2 max

a∈{0,1}
∥θ̂(t−1)

a − θ∗
a∥2.

Note that for any time t > T0, the instantaneous regret at time t: Regrett(π, π
∗) = (π∗

t (1)−πt(1))⟨θ∗
1−θ∗

0 ,xt⟩,
and that R̂egrett(π, π

∗) = (π∗
t (1)− πt(1))⟨θ∗

1 − θ∗
0 , x̃t⟩. Moreover,

|⟨θ∗
1 − θ∗

0 , x̃t⟩| =|⟨θ∗
1 − θ∗

0 ,xt⟩+ ⟨θ∗
1 − θ∗

0 , ϵt⟩|
≥|⟨θ∗

1 − θ∗
0 ,xt⟩| − |⟨θ∗

1 − θ∗
0 , ϵt⟩|

≥1

ρ
|⟨θ∗

1 − θ∗
0 , ϵt⟩| − |⟨θ∗

1 − θ∗
0 , ϵt⟩|

=
1− ρ

ρ
|⟨θ∗

1 − θ∗
0 , ϵt⟩|.

Here we used Assumption 2.3. Thus we have

Regrett(π, π
∗) = R̂egrett(π, π

∗)− (π∗
t (1)− πt(1))⟨θ∗

1 − θ∗
0 , ϵt⟩

≤ R̂egrett(π, π
∗) + |π∗

t (1)− πt(1)| · ρ

1− ρ
|⟨θ∗

1 − θ∗
0 , x̃t⟩|

=
1

1− ρ
R̂egrett(π, π

∗).

Combining Lemma E.2, we obtain that for any t > T0,

Regrett(π, π
∗) ≤ 2

1− ρ

(
p
(t)
0 Rθ + max

a∈{0,1}
∥θ̂(t−1)

a − θ∗
a∥2
)
.

Finally, when t ≤ T0, since ∥xt∥ ≤ 1, ∥θ∗
a∥ ≤ Rθ, the instantaneous regret Regrett(π, π

∗) ≤ 2Rθ. We

conclude the proof by summing up all the instantaneous regret terms.

Clipped policy setting. In the clipped policy setting, we give the lemma below (proof in Appendix G.5).
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Lemma E.3. Under the assumptions of Theorem 2.2, at any time t > T0,

R̂egrett(π, π̄
∗) ≤ 2(1− 2p0) max

a∈{0,1}
∥θ̂(t−1)

a − θ∗
a∥2.

Note that the instantaneous regret at time t: Regrett(π, π̄
∗) = (π̄∗

t (1) − πt(1))⟨θ∗
1 − θ∗

0 ,xt⟩, and that

R̂egrett(π, π̄
∗) = (π̄∗

t (1)− πt(1))⟨θ∗
1 − θ∗

0 , x̃t⟩. Similar to the standard setting, for t > T0, under Assumption

2.3, we have

Regrett(π, π̄
∗) ≤ 1

1− ρ
R̂egrett(π, π̄

∗) ≤ 2(1− 2p0)

1− ρ
max

a∈{0,1}
∥θ̂(t−1)

a − θ∗
a∥2.

We conclude the proof by summing up all the instantaneous regret terms, and noticing that for t ≤ T0,

Regrett(π, π̄
∗) ≤ 2Rθ.

Results with a high-probability version of Assumption 2.3. As briefly mentioned in the main

paper, Assumption 2.3 can be weakened to the inequalities holding with high probability. Now instead of

Assumption 2.3, we assume the following:

Assumption E.1. There exist constants ρ ∈ (0, 1), ce ∈ [0, 1] such that
∑T

t=1 P(Ac
t) ≤ ce. Here At denotes

the event {|⟨δθ, ϵt⟩| ≤ ρ|⟨δθ,xt⟩|}, and δθ = θ∗
1 − θ∗

0 .

It’s easy to see that the result of Lemma E.1 hold at time t under the event At. Further, following the same

arguments, we obtain that under Assumption 2.1, the results for either the standard setting or the clipped

policy setting hold under the event ∩Tt=T0+1At. Therefore, with Assumption 2.1 and E.1, in either setting,

the results in Theorem 2.2 hold with probability at least 1− ce.

E.3 Proof of Corollary 2.1

Standard setting. First, notice that qt = minτ≤t,a∈{0,1} πτ (a|x̃t,Hτ−1) = p
(t)
0 , since p

(t)
0 is monotonically

decreasing in t. Theorem 2.1 indicates that, as long as ∀t > T0,

p
(t)
0 ≥ C1 max

{
d(d + log t)

λ0t
,
ξ(d + log t)

λ2
0t

}
, (E.1)

then with probability at least 1− 8
t2 , ∀a ∈ {0, 1},

∥θ̂(t)
a − θ∗

a∥2 ≤
C(R +Rθ)d

λ0
max

{
d + log t

qtt
,

√
ν +
√
ξ√

d

√
d + log t

qtt

}
(E.2)

Plug it into Theorem 2.2, we have that with high probability,

Regret(T ;π∗) ≤ 2Rθ · ⌈2dT 2/3⌉+
2

1− ρ
I1,

where

I1 =

T∑
t=T0+1

(
p
(t)
0 Rθ + max

a
∥θ̂(t−1)

a − θ∗
a∥2
)

≤
T∑

t=T0+1

t−
1
3Rθ +

T−1∑
t=T0

C(R +Rθ)d

λ0
max

{
d + log t

t
2
3

,

√
ν +
√
ξ√

d

√
d + log t

t
2
3

}

≤ 2RθT
2
3 +

C(R +Rθ)d

λ0
·
T−1∑
t=T0

d + log t

t
2
3

+
C(R +Rθ)d

λ0
·
T−1∑
t=T0

√
ν +
√
ξ√

d

√
d + log t

t
2
3

≤ 2RθT
2
3 +

3C(R +Rθ)

λ0
d(d + log T )T

1
3 +

3C(
√
ν +
√
ξ)(R +Rθ)

2λ0

√
d(d + log T )T

2
3

≤ 2RθT
2
3 +

C ′

λ0
(
√
ν +

√
ξ + 1)(R +Rθ)

√
d(d + log T )T

2
3 ,
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for a universal constant C ′, where the last inequality holds if in addition, T ≥ [d(d + log T )]
3
2 .

The proof is concluded by combining the above requirement for T as well as (E.1).

Clipped policy setting. Similar to the standard setting, according to Theorem 2.1, as long as ∀t > T0,

p0 ≥ C1 max

{
d(d + log t)

λ0t
,
ξ(d + log t)

λ2
0t

}
, (E.3)

then with probability at least 1− 8
t2 , ∀a ∈ {0, 1},

∥θ̂(t)
a − θ∗

a∥2 ≤
C(R +Rθ)d

λ0
max

{
d + log t

p0t
,

√
ν +
√
ξ√

d

√
d + log t

p0t

}
(E.4)

Plug it into Theorem 2.2, we have that with high probability,

Regret(T ; π̄∗) ≤ 2Rθ · ⌈2dT 1/2⌉+
2(1− 2p0)

1− ρ
I2,

where

I2 =

T∑
t=T0+1

max
a
∥θ̂(t−1)

a − θ∗
a∥2

≤
T−1∑
t=T0

C(R +Rθ)d

λ0
max

{
d + log t

p0t
,

√
ν +
√
ξ√

d

√
d + log t

p0t

}

≤ C(R +Rθ)d

λ0

T−1∑
t=T0

d + log t

p0t
+

C(R +Rθ)d

λ0

T−1∑
t=T0

√
ν +
√
ξ√

d

√
d + log t

p0t

≤ 2C(R +Rθ)

λ0
d(d + log T ) log T +

2C(R +Rθ)

λ0

√
ν +
√
ξ

√
p0

√
d(d + log T )

√
T

≤ 2C(R + Rθ)(
√
ν +
√
ξ + 1)

λ0
√
p0

√
d(d + log T )

√
T ,

where the last inequality holds if in addition, T ≥ d(d + log T ) log2 T .

The proof is concluded by plugging the above into the regret upper bound formula and combining the

requirements for T .

Results with a high-probability version of Assumption 2.3. Recall that Assumption E.1 is a weakened

version of Assumption 2.3 with a high-probability statement. Given Assumptions 2.1, 2.2, and E.1 (instead

of 2.3), in the standard setting, the results of Theorem 2.1 hold as long as (E.2) or (E.4) for all t > T0,

a ∈ {0, 1} and under the event ∩Tt=T0+1At. Thus, we deduce that the regret upper bound in (i) hold with

probability at least 1−16/
√
T −ce. Similarly, given Assumptions 2.1, 2.2, and E.1, in the clipped benchmark

setting, the regret upper bound in (ii) hold with probability at least 1− 16/
√
T − ce.

E.4 MEB with infrequent model update

As mentioned at the end of Section 2.3, in certain scenarios (e.g. when d is large), we can save computational

resources by updating the estimates of (θ∗
a)a∈{0,1} less frequently. In Algorithm 5, we propose a variant of

Algorithm 1. At each time t, given the noisy context x̃t, the algorithm computes the best action ãt according

to the most recently updated estimators of (θ∗
a)a∈{0,1}. Then, it samples ãt with probability 1 − p

(t)
0 and

keeps an exploration probability of p
(t)
0 to sample the other action. In the meantime, the agent only has
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Algorithm 5 MEB with infrequent model update

Input: (Σe,t)t∈[T ]: covariance sequence of (ϵt)t; (p
(t)
0 )t∈[T ]: minimum selection probability at each time

t; S ⊂ [T ]: set of time points to update model estimates

θ̂a ← 0, ∀a ∈ {0, 1} % θ̂a stores the most recent updated estimate of θ∗
a, only update if t ∈ S

for time t = 1, 2, . . . , T do

if mins∈S s ≥ t then

Sample at ∼ πt(·|x̃t,Ht−1), where πt(a|x̃t,Ht−1) ∈ [p
(t)
0 , 1− p

(t)
0 ] for all a ∈ {0, 1}

% If the model has never been learned before, explore with equal probability

continue

end if

ãt ← argmaxa∈{0,1}⟨θ̂a, x̃t⟩

Sample at ∼ πt(·|x̃t,Ht−1), where πt(a|x̃t,Ht−1) :=

{
1− p

(t)
0 , if a = ãt

p
(t)
0 , otherwise

if t ∈ S then

θ̂a ← θ̂
(t)
a as in (2.5)

end if

end for

to update the estimate of (θ∗
a)a∈{0,1} once in a while to save computation power: The algorithm specifies a

subset S ⊂ [T ] and updates the estimators according to (2.5) only when t ∈ S.

Under mild conditions, Algorithm 5 achieves the same order of regret upper bound as Algorithm 1, as seen

from Theorem E.1 and Corollary E.1 below. They are modified versions of Theorem 2.2 and Corollary 2.1.

Theorem E.1. Let smin := mins∈S s be the first time Algorithm 5 updates the model. Suppose Assumption

2.1 and 2.3 hold.

(i) For the standard setting, for any T0 ≥ smin, Algorithm 5 outputs a policy such that

Regret(T ;π∗) ≤ 2T0Rθ +
2

1− ρ

∑
t∈(T0,T ]

(
p
(t)
0 Rθ + max

a∈{0,1}
∥θ̂(st)

a − θ∗
a∥2
)
.

(ii) For the clipped policy setting, for any T0 ≥ smin, Algorithm 5 with the choice of p
(t)
0 ≡ p0 outputs a

policy such that

Regret(T ; π̄∗) ≤ 2T0Rθ +
2(1− 2p0)

1− ρ

∑
t∈(T0,T ]

max
a∈{0,1}

∥θ̂(st)
a − θ∗

a∥2.

Here for any t ∈ [T ], st := max{s ∈ S : s < t}.

The proof of Theorem E.1 is very similar to that of Theorem 2.2, and is thus omitted.

Corollary E.1. Let Assumption 2.1 to 2.3 hold. There exist constants C,C ′ such that:

(i) In the standard setting, as long as the set of model update times S satisfies: (a) smin ≤
dT 2/3; (b) ∀t ∈ (dT 2/3, T ], st = max{s ∈ S : s < t} ≥ αt for some constant α ∈
(e−d, 1), then ∀T ≥ C ′/α · max

{
(1 + 1/λ

9
4
0 )(d + log T )3, (ξ/λ0)

9
4 (d + log T )

4
3

}
, with probability at

least 1 − 16√
T

, Algorithm 5 with the choice of p
(t)
0 = min{ 12 , t

−1/3} achieves Regret(T ;π∗) ≤

CdT
2
3

{
Rθ

α + Rθ

1−ρ + (
√
ν+

√
ξ+1)(R+Rθ)

α1/3λ0(1−ρ)

√
1 + log T

d

}
.
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(ii) In the clipped policy setting, as long as the set of model update times S satisfies: (a) smin ≤ d
√
T ; (b)

∀t ∈ (d
√
T , T ], st = max{s ∈ S : s < t} ≥ αt for some constant α ∈ (e−d, 1), then for any T s.t. T ≥

C ′/α ·max{(d+log T )2/(λ0p0)2, ξ2/λ4
0(1+log T/d)2}, with probability at least 1− 16√

T
, Algorithm 5 with

the choice of p
(t)
0 ≡ p0 achieves: Regret(T ; π̄∗) ≤ Cd

√
T

{
Rθ

α + (
√
ν+

√
ξ+1)(1−2p0)(R+Rθ)
λ0(1−ρ)

√
αp0

√
1 + log T

d

}
.

The proof of Corollary E.1 can be directly obtained by combining Theorem 2.1 and E.1 with T0 = dT 2/3/α

in the standard setting and T0 = dT 1/2/α in the clipped benchmark setting. Thus, the proof is omitted here.

In Corollary E.1, condition (a) and (b) essentially requires Algorithm 5 not to start learning the model too

late, and to keep updating the learned model at least at time points with a ‘geometric’ growth rate. This

covers a wide range of choices of S in practice. Two typical examples of S could be: (1) S = {t ∈ [T ] : t =

kt0 for some k ∈ N+} (the model is learned every t0 time points routinely, where t0 is a constant integer);

(2) If 1/α ∈ N+, S = {t ∈ [T ] : t = (1/α)k for some k ∈ N+} (the model only needs to be learned O(log T )

times to save computation).

F Analysis with estimated error variance

We consider the setting where at each time t, the agent does not have access to Σe,t, but has a (potentially

adaptive) estimator Σ̂e,t. In this setting, we estimate the model using (2.7) instead of (2.5) and plug into

Algorithm 1. The following theorem controls the estimation error of θ̃
(t)
a . Note that compared to Theorem 2.1,

the additional error caused by inaccuracty of Σ̂e,t can be controlled by ∆t(a) := 1
t

∑
τ∈[t] π

nd
τ (a)(Σ̂e,τ−Σe,τ ),

the weighted average of the estimation errors (Σ̂e,τ −Σe,τ )τ∈[t].

Theorem F.1. Recall that qt := infτ≤t,a∈{0,1} πτ (a|x̃τ ,Hτ−1). Then under Assumptions 2.1 and 2.2, there

exist constants C and C ′
1 such that as long as qt ≥ C ′

1 max
{

d(d+log t)
λ0t

, ξ(d+log t)
λ2
0t

}
and maxa∈{0,1} ∥∆t(a)∥2 ≤

λ0

4d , with probability at least 1− 8
t2 ,

∥θ̃(t)
a − θ∗

a∥2 ≤
C(R + Rθ)d

λ0
max

{
d+log t

qtt
,

√
ξ +
√
ν√

d
·

√
d+log t

qtt

}
+

2Rθd

λ0
∥∆t(a)∥2, ∀a ∈ {0, 1}. (F.1)

The proof of Theorem F.1 is in Appendix G.6.

By combining Theorem F.1 and 2.2 (with (2.7) instead of (2.5)), we obtain the following regret bounds for

Algorithm 1 with (2.7) as the plug-in estimator.

Corollary F.1. Suppose Assumption 2.1 to 2.3 hold. Then there exist universal constants C,C ′′ such that:

(i) In the standard setting, if maxt∈[dT 2/3,T ] maxa∈{0,1} ∥∆t(a)∥2 ≤ λ0

4d , T ≥ C ′′ max{(1 + 1/λ
9
4
0 )(d +

log T )3, (ξ/λ0)
9
4 (d + log T )

4
3 }, by choosing T0 = ⌈2dT 2

3 ⌉, p
(t)
0 = min{ 12 , t

− 1
3 }, and (2.7) instead of

(2.5) in Algorithm 1, with probability at least 1− 16√
T

,

Regret(T ;π∗) ≤ CdT
2
3

{
Rθ

1− ρ
+

(
√
ν+
√
ξ+1)(R + Rθ)

(1− ρ)λ0

√
1 +

log T

d

}
+

4Rθd

(1− ρ)λ0

T∑
t=T0−1

max
a∈{0,1}

∥∆t(a)∥2.

(ii) In the clipped policy setting, as long as maxt∈[d
√
T ,T ] maxa∈{0,1} ∥∆t(a)∥2 ≤ λ0

4d , T ≥ C ′′ max{(d +

log T )2/(λ0p0)2, ξ2/λ4
0(1 + log T/d)2}, by choosing T0 = ⌈2d

√
T ⌉, p(t)0 ≡ p0, and (2.7) instead of (2.5) in

Algorithm 1, with probability at least 1− 16√
T

,

Regret(T ; π̄∗) ≤ CdT
1
2

{
Rθ+

(
√
ν+
√
ξ+1)(1−2p0)(R+Rθ)
√
p0(1−ρ)λ0

√
1+

log T

d

}
+

4(1−2p0)Rθd

(1− ρ)λ0

T∑
t=T0−1

max
a∈{0,1}

∥∆t(a)∥2.
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The proof is in Appendix G.7.

G Additional proofs

G.1 Proof of Theorem C.2

The proof of Theorem C.2 is very similar to Theorem 2.2, and we only need to note the difference in Lemma

E.2 and E.3 (for the standard setting and the clipped policy setting respectively), as stated below. Recall

that

R̂egrett(π, π
∗) := Ea∼π∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩,

R̂egrett(π, π̄
∗) := Ea∼π̄∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩.

Standard setting. At any time t > T0, we have

R̂egrett(π, π
∗) = Ea∼π∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩

= ⟨θ∗
a∗
t
, x̃t⟩ −

[
(1− (K − 1)p

(t)
0 )⟨θ∗

ãt
, x̃t⟩+

∑
a ̸=ãt

p
(t)
0 ⟨θ∗

a, x̃t⟩
]

= p
(t)
0

∑
a ̸=a∗

t

⟨θ∗
a∗
t
− θ∗

a, x̃t⟩+ 1{a∗
t ̸=ãt}(1−Kp

(t)
0 )⟨θ∗

a∗
t
− θ∗

ãt
, x̃t⟩

≤ 2(K − 1)p
(t)
0 Rθ + 1{a∗

t ̸=ãt}⟨θ
∗
a∗
t
− θ∗

ãt
, x̃t⟩. (G.1)

Here note that Lemma E.1 still holds under Assumption C.1, so a∗t = argmaxa⟨θ∗
a,xt⟩ = argmaxa⟨θ∗

a, x̃t⟩,
ãt = argmaxa⟨θ̂

(t−1)
a , x̃t⟩.

Note that a∗t ̸= ãt implies that {
⟨θ∗

a∗
t
, x̃t⟩ ≥ ⟨θ∗

ãt
, x̃t⟩

⟨θ̂(t−1)
a∗
t

, x̃t⟩ ≤ ⟨θ̂(t−1)
ãt

, x̃t⟩

which leads to

⟨θ∗
a∗
t
, x̃t⟩ ≥ ⟨θ∗

ãt
, x̃t⟩ ≥ ⟨θ̂(t−1)

ãt
, x̃t⟩ −max

a
∥θ̂(t−1)

a − θ∗
a∥2

≥ ⟨θ̂(t−1)
a∗
t

, x̃t⟩ −max
a
∥θ̂(t−1)

a − θ∗
a∥2 ≥ ⟨θ∗

a∗
t
, x̃t⟩ − 2 max

a
∥θ̂(t−1)

a − θ∗
a∥2,

and further implies
∣∣∣⟨θ∗

a∗
t
− θ∗

ãt
, x̃t⟩

∣∣∣ ≤ 2 maxa ∥θ̂(t−1)
a − θ∗

a∥2. Plugging in the above to (G.1) leads to

R̂egrett(π, π
∗) ≤ 2(K − 1)p

(t)
0 Rθ + 2 max

a
∥θ̂(t−1)

a − θ∗
a∥2.

The rest of the proof can be done in the same way as the proof of Theorem 2.2.

Clipped policy setting. At any time t > T0, we have

R̂egrett(π, π̄
∗) = Ea∼π∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩

≤ (1−Kp0)1{a∗
t ̸=ãt}

∣∣∣⟨θ∗
a∗
t
− θ∗

ãt
, x̃t⟩

∣∣∣ . (G.2)

Here recall that a∗t = argmaxa⟨θ∗
a, x̃t⟩, ãt := argmaxa⟨θ̂

(t−1)
a , x̃t⟩.

Note that a∗t ̸= ãt implies that {
⟨θ∗

a∗
t
, x̃t⟩ ≥ ⟨θ∗

ãt
, x̃t⟩

⟨θ̂(t−1)
a∗
t

, x̃t⟩ ≤ ⟨θ̂(t−1)
ãt

, x̃t⟩
31



which leads to

⟨θ∗
a∗
t
, x̃t⟩ ≥ ⟨θ∗

ãt
, x̃t⟩ ≥ ⟨θ̂(t−1)

ãt
, x̃t⟩ −max

a
∥θ̂(t−1)

a − θ∗
a∥2

≥ ⟨θ̂(t−1)
a∗
t

, x̃t⟩ −max
a
∥θ̂(t−1)

a − θ∗
a∥2 ≥ ⟨θ∗

a∗
t
, x̃t⟩ − 2 max

a
∥θ̂(t−1)

a − θ∗
a∥2,

and further implies
∣∣∣⟨θ∗

a∗
t
− θ∗

ãt
, x̃t⟩

∣∣∣ ≤ 2 maxa ∥θ̂(t−1)
a − θ∗

a∥2.

Plugging in the above to (G.2) leads to

R̂egrett(π, π̄
∗) ≤ 2(1−Kp0) max

a
∥θ̂(t−1)

a − θ∗
a∥2

for t > T0. The rest of the proof can be done in the same way as the proof of Theorem 2.2.

G.2 Proof of Lemma D.1

We first analyze Σ̂
(t)
x̃,a. Notice that Σ̂

(t)
x̃,a = 1

t

∑
τ∈[t] Vτ,a, where Vτ,a =

πnd
τ (Aτ )

πτ (Aτ |x̃τ ,Hτ−1)
1{Aτ=a}x̃τ x̃

⊤
τ . For any

fixed u ∈ Sd−1 := {u′ ∈ Rd : ∥u′∥2 = 1}, (vu,τ,a := uτ [Vτ,a − E[Vτ,a|Hτ−1]]u)τ is a martingale difference

sequence. Moreover, we can verify that |vu,τ,a| ≤ 2
qt

and

Var(vu,τ,a|Hτ−1) ≤ E[(u⊤Vτ,au)2|Hτ−1] = E

[(
πnd
τ (Aτ )

πτ (Aτ |x̃τ ,Hτ−1)

)2

1{Aτ=a}(u⊤x̃τ x̃
⊤
τ u)2

∣∣∣∣Hτ−1

]

= Eϵτ ,Aτ∼πnd
τ (·)

[(
πnd
τ (Aτ )

πτ (Aτ |x̃τ ,Hτ−1)

)
1{Aτ=a}(u⊤x̃τ x̃

⊤
τ u)2

∣∣∣∣Hτ−1

]
≤ 1

qt
E(u⊤x̃τ )4 ≤ ξ

d2qt
.

According to Freedman’s Inequality (Freedman, 1975), for any γ1, γ2 > 0,

P

∑
τ∈[t]

vu,τ,a ≥ γ1,
∑
τ∈[t]

Var(vu,τ,a|Hτ−1) ≤ γ2

 ≤ e
− γ2

1
2( 2

qt
γ1+γ2)

.

Set γ2 = ξt
d2qt

, and we obtain P
(∑

τ∈[t] vu,τ,a ≥ γ1

)
≤ e

− d2qtγ
2
1

2(2d2γ1+ξt) . Applying the same analysis to (−vu,τ,a)τ

and combining the results gives P
(
|
∑

τ∈[t] vu,τ,a| ≥ γ1

)
≤ 2e

− d2qtγ
2
1

2(2d2γ1+ξt) .

Denote Mt = 1
t

∑
τ∈[t](Vτ,a − E[Vτ,a|Hτ−1]), then the above means that ∀u ∈ Sd−1,

P
(
|u⊤Mtu| ≥

γ1
t

)
≤ 2e

− d2qtγ
2
1

2(2d2γ1+ξt) . (G.3)

Let N be a 1
4 -net of Sd−1, |N | ≤ 9d. ∀u ∈ Sd−1, find u′ ∈ N s.t. ∥u− u′∥2 ≤ 1

4 , and we have

|u⊤Mtu− u′⊤Mtu
′| ≤ |u⊤Mt(u− u′)|+ |u′⊤Mt(u− u′)| ≤ 1

2
∥Mt∥2.

This implies that

∥Mt∥2 = sup
u∈Sd−1

|u⊤Mtu| ≤ sup
u′∈N

|u′⊤Mtu
′|+ 1

2
∥Mt∥2,

and thus supu∈N |u⊤Mtu| ≥ 1
2∥Mt∥2. Combining the above and (G.3), we obtain that for any γ1 > 0,

P
(
∥Mt∥2 ≥

2γ1
t

)
≤ P

(
sup
u∈N

|u⊤Mtu| ≥
γ1
t

)
≤ 9d · P

(
|u⊤Mtu| ≥

γ1
t

)
= 2 · 9d · e−

d2qtγ
2
1

2(2d2γ1+ξt) .
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By choosing γ1 = 24 max{d+log t
qt

,
√
ξ
d ·
√

t(d+log t)
qt

}, and noticing that

Mt = Σ̂
(t)
x̃,a −

1
t

∑
τ∈[t] E[Vτ,a|Hτ−1], we have

P

∥∥∥∥Σ̂(t)
x̃,a −

1

t

∑
τ∈[t]

E[Vτ,a|Hτ−1]

∥∥∥∥
2

≥ 48 max

{
d + log t

qtt
,

√
ξ

d
·

√
d + log t

qtt

} ≤ 2

t2
. (G.4)

At the same time, we have

E[Vτ,a|Hτ−1] = Eϵτ

[
EAτ∼πτ (·|x̃τ ,Hτ−1)

[
πnd
τ (Aτ )

πτ (Aτ |x̃τ ,Hτ−1)
1{Aτ=a}x̃τ x̃

⊤
τ

∣∣ϵτ ,Hτ−1

]∣∣∣∣Hτ−1

]
= Eϵτ

[
EAτ∼πnd

τ (·)
[
1{Aτ=a}x̃τ x̃

⊤
τ

∣∣ϵτ ,Hτ−1

]∣∣∣∣Hτ−1

]
= Eϵτ

[
πnd
τ (a) · x̃τ x̃

⊤
τ

∣∣∣∣Hτ−1

]
= πnd

τ (a)(xτx
⊤
τ + Σe,τ ). (G.5)

Here we’ve used the facts that (i) {πnd
τ }τ is data-independent; (ii) E[ϵτ |Hτ−1] = 0, Var[ϵτ |Hτ−1] = Σe,τ .

Plug (G.5) into (G.4), and we get

P

∥∥∥∥Σ̂(t)
x̃,a −

1

t

∑
τ∈[t]

πnd
τ (a)(xτx

⊤
τ + Σe,τ )

∥∥∥∥
2

≥ 48 max

{
d + log t

qtt
,

√
ξ

d
·

√
d + log t

qtt

} ≤ 2

t2
. (G.6)

The analysis for Σ̂
(t)
x̃,r,a is similar. Write Σ̂

(t)
x̃,r,a = 1

t

∑
τ∈[t] Zτ,a, Zτ,a :=

πnd
τ (Aτ )

πτ (Aτ |x̃τ ,Hτ−1)
1{Aτ=a}x̃τrτ .

Then for any u ∈ Sd−1, it’s easy to verify that |(Zτ,a − E[Zτ,a|Hτ−1])⊤u| ≤ 2R
qt

, and Var((Zτ,a −
E[Zτ,a|Hτ−1])⊤u|Hτ−1) ≤ E[(Z⊤

τ,au)2|Hτ−1] ≤ νR2

qtd
. Applying Freedman’s Inequality leads to

P
(
|z⊤

t u| ≥ γ1
t

)
≤ 2e

− dqtγ
2
1

4Rdγ1+2R2νt , (G.7)

where zt := 1
t

∑
τ∈[t](Zτ,a − E[Zτ,a|Hτ−1]).

Recall that N is a 1
4 -net of Sd−1, |N | ≤ 9d. ∀u ∈ Sd−1, find u′ ∈ Sd−1 s.t. ∥u − u′∥ ≤ 1/4, then

|z⊤
t u− z⊤

t u′| ≤ 1
4∥zt∥2, and thus

∥zt∥2 = sup
u∈Sd−1

|z⊤
t u| ≤ sup

u′∈N
|z⊤

t u′|+ 1

4
∥zt∥2

which implies that supu∈N |z⊤
t u| ≥ 3

4∥zt∥2. Taking this and (G.7) into account, we derive that

P
(
∥zt∥2 ≥

4

3

γ1
t

)
≤ P

(
sup
u∈N

|z⊤
t u| ≥ γ1

t

)
≤ 9d · 2e−

dqtγ
2
1

4Rdγ1+2R2νt

By choosing γ1 = 24Rmax

{
d+log t

qt
,
√
ν ·
√

(d+log t)t
dqt

}
and noticing that zt = Σ̂

(t)
x̃,r,a−

1
t

∑
τ∈[t] E[Zτ,a|Hτ−1],

we obtain

P

∥∥∥∥Σ̂(t)
x̃,r,a −

1

t

∑
τ∈[t]

E[Zτ,a|Hτ−1]

∥∥∥∥
2

≥ 32Rmax

{
d + log t

qtt
,

√
ν

d
·

√
d + log t

qtt

} ≤ 2

t2
. (G.8)
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Finally, because

E[Zτ,a|Hτ−1] = Eϵτ

[
EAτ∼πτ (·|x̃τ ,Hτ−1),ητ

[
πnd
τ (Aτ )

πτ (Aτ |x̃τ ,Hτ−1)
1{Aτ=a}x̃τrτ

∣∣Hτ−1, ϵτ

] ∣∣∣∣Hτ−1

]
= Eϵτ

[
EAτ∼πnd

τ (·),ητ

[
1{Aτ=a}x̃τrτ |Hτ−1, ϵτ

] ∣∣∣∣Hτ−1

]
= Eϵτ

[
EAτ∼πnd

τ (·),ητ

[
1{Aτ=a}x̃τ (x⊤

τ θ
∗
a + ητ )|Hτ−1, ϵτ

] ∣∣∣∣Hτ−1

]
= Eϵτ

[
πnd
τ (a)Eητ

[
x̃τ (x⊤

τ θ
∗
a + ητ )|Hτ−1, ϵτ

] ∣∣∣∣Hτ−1

]
= πnd

τ (a)Eϵτ

[
x̃τx

⊤
τ θ

∗
a

∣∣∣∣Hτ−1

]
= πnd

τ (a)(xτx
⊤
τ )θ∗

a,

Plug in (G.8), and we obtain

P

∥∥∥∥Σ̂(t)
x̃,r,a −

[
1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ

]
θ∗
a

∥∥∥∥
2

≥ 32Rmax

{
d + log t

qtt
,

√
ν

d
·

√
d + log t

qtt

} ≤ 2

t2
. (G.9)

Combining (G.9) and (G.6), we conclude the proof.

G.3 Proof of Lemma E.1

We only need to prove

sign(⟨θ∗
1 − θ∗

0 ,xt⟩) = sign(⟨θ∗
1 − θ∗

0 , x̃t⟩). (G.10)

If ⟨θ∗
1 − θ∗

0 ,xt⟩ = 0, (G.10) is a direct consequence of Assumption 2.3. If ⟨θ∗
1 − θ∗

0 ,xt⟩ ≠ 0, without loss of

generality, suppose ⟨θ∗
1 − θ∗

0 ,xt⟩ > 0. Then according to Assumption 2.3,

⟨θ∗
1 − θ∗

0 , x̃t⟩ = ⟨θ∗
1 − θ∗

0 ,xt⟩+ ⟨θ∗
1 − θ∗

0 , ϵt⟩ ≥ (1− ρ)⟨θ∗
1 − θ∗

0 ,xt⟩ > 0.

Thus (G.10) is true.

G.4 Proof of Lemma E.2

We have

R̂egrett(π, π
∗) = Ea∼π∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩

= ⟨θ∗
a∗
t
, x̃t⟩ − [(1− p

(t)
0 )⟨θ∗

ãt
, x̃t⟩+ p

(t)
0 ⟨θ∗

1−ãt
, x̃t⟩]

= 1{a∗
t=ãt}p

(t)
0 ⟨θ∗

a∗
t
− θ∗

1−a∗
t
, x̃t⟩+ 1{a∗

t ̸=ãt}(1− p
(t)
0 )⟨θ∗

a∗
t
− θ∗

1−a∗
t
, x̃t⟩

≤ 2p
(t)
0 Rθ + 1{a∗

t ̸=ãt}⟨θ
∗
a∗
t
− θ∗

1−a∗
t
, x̃t⟩. (G.11)

Here recall that a∗t = argmaxa⟨θ∗
a,xt⟩ = argmaxa⟨θ∗

a, x̃t⟩, ãt := argmaxa∈{0,1}⟨θ̂
(t−1)
a , x̃t⟩.

Note that a∗t ̸= ãt implies that {
⟨θ∗

a∗
t
, x̃t⟩ ≥ ⟨θ∗

1−a∗
t
, x̃t⟩

⟨θ̂(t−1)
a∗
t

, x̃t⟩ ≤ ⟨θ̂(t−1)
1−a∗

t
, x̃t⟩

which leads to

⟨θ∗
a∗
t
, x̃t⟩ ≥ ⟨θ∗

1−a∗
t
, x̃t⟩ ≥ ⟨θ̂(t−1)

1−a∗
t
, x̃t⟩ −max

a
∥θ̂(t−1)

a − θ∗
a∥2

≥ ⟨θ̂(t−1)
a∗
t

, x̃t⟩ −max
a
∥θ̂(t−1)

a − θ∗
a∥2 ≥ ⟨θ∗

a∗
t
, x̃t⟩ − 2 max

a
∥θ̂(t−1)

a − θ∗
a∥2,
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and further implies
∣∣∣⟨θ∗

a∗
t
− θ∗

1−a∗
t
, x̃t⟩

∣∣∣ ≤ 2 maxa ∥θ̂(t−1)
a − θ∗

a∥2.

Plugging in the above to (G.11) leads to

R̂egrett(π, π
∗) ≤ 2p

(t)
0 Rθ + 2 max

a
∥θ̂(t−1)

a − θ∗
a∥2.

G.5 Proof of Lemma E.3

At any time t > T0, we have

R̂egrett(π, π̄
∗) = Ea∼π̄∗

t
⟨θ∗

a, x̃t⟩ − Ea∼πt
⟨θ∗

a, x̃t⟩
= [(1− p0)⟨θ∗

a∗
t
, x̃t⟩+ p0⟨θ∗

1−a∗
t
, x̃t⟩]− [(1− p0)⟨θ∗

ãt
, x̃t⟩+ p0⟨θ∗

1−ãt
, x̃t⟩]

≤ (1− 2p0)1{a∗
t ̸=ãt}

∣∣∣⟨θ∗
a∗
t
− θ∗

1−a∗
t
, x̃t⟩

∣∣∣ . (G.12)

Here recall that a∗t = argmaxa⟨θ∗
a,xt⟩ = argmaxa⟨θ∗

a, x̃t⟩, ãt := argmaxa∈{0,1}⟨θ̂
(t−1)
a , x̃t⟩.

Note that a∗t ̸= ãt implies that {
⟨θ∗

a∗
t
, x̃t⟩ ≥ ⟨θ∗

1−a∗
t
, x̃t⟩

⟨θ̂(t−1)
a∗
t

, x̃t⟩ ≤ ⟨θ̂(t−1)
1−a∗

t
, x̃t⟩

which leads to

⟨θ∗
a∗
t
, x̃t⟩ ≥ ⟨θ∗

1−a∗
t
, x̃t⟩ ≥ ⟨θ̂(t−1)

1−a∗
t
, x̃t⟩ −max

a
∥θ̂(t−1)

a − θ∗
a∥2

≥ ⟨θ̂(t−1)
a∗
t

, x̃t⟩ −max
a
∥θ̂(t−1)

a − θ∗
a∥2 ≥ ⟨θ∗

a∗
t
, x̃t⟩ − 2 max

a
∥θ̂(t−1)

a − θ∗
a∥2,

and further implies
∣∣∣⟨θ∗

a∗
t
− θ∗

1−a∗
t
, x̃t⟩

∣∣∣ ≤ 2 maxa ∥θ̂(t−1)
a − θ∗

a∥2.

Plugging in the above to (G.12) leads to

R̂egrett(π, π̄
∗) ≤ 2(1− 2p0) max

a
∥θ̂(t−1)

a − θ∗
a∥2

G.6 Proof of Theorem F.1

Fix t ∈ [T ] such that the conditions of Theorem 2.3 hold. Fix a ∈ {0, 1}. As in Appendix D, define

∆1 := Σ̂
(t)
x̃,a −

1
t

∑
τ∈[t] π

nd
τ (a)(xτx

⊤
τ + Σe,τ ), ∆2 := Σ̂

(t)
x̃,r,a −

(
1
t

∑
τ∈[t] π

nd
τ (a)xτx

⊤
τ

)
θ∗
a. We also let ∆3 :=

−∆t(a) = − 1
t

∑
τ∈[t] π

nd
τ (a)(Σ̂e,τ −Σe,τ ). Recall Lemma D.1: with probability at least 1− 4/t2,

∥∆1∥2 ≤ C max

{
d + log t

qtt
,

√
ξ

d

√
d + log t

qtt

}
, ∥∆2∥2 ≤ CRmax

{
d + log t

qtt
,

√
ν

d

√
d + log t

qtt

}
.

Meanwhile,

θ̃(t)
a =

(
Σ̂

(t)
x̃,a −

1

t

∑
τ∈[t]

πnd
τ (a)Σ̂e,τ

)−1

· Σ̂(t)
x̃,r,a

=

(
1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ + ∆1 + ∆3

)−1

·

(1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ

)
θ∗
a + ∆2


= θ∗

a − J ′
1 + J ′

2,
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where

J ′
1 :=

[
1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ + ∆1 + ∆3

]−1

(∆1 + ∆3)θ∗
a, J

′
2 :=

[
1

t

∑
τ∈[t]

πnd
τ (a)xτx

⊤
τ + ∆1 + ∆3

]−1

∆2.

Under the events where both (D.1) and (D.2) hold, whenever

C max

{
d + log t

qtt
,

√
ξ

d

√
d + log t

qtt

}
≤ λ0

4d
(G.13)

and ∥∆3∥2 ≤ λ0

4d , we have

∥J ′
1∥2 ≤

2dRθ

λ0

(
C max

{
d + log t

qtt
,

√
ξ

d

√
d + log t

qtt

}
+ ∥∆3∥2

)
and

∥J ′
2∥2 ≤

2CdR

λ0
max

{
d + log t

qtt
,

√
ν

d

√
d + log t

qtt

}
.

(G.13) can be ensured by t ≥ C ′
1 max

{
d(d+log t)

λ0qt
, ξ(d+log t)

λ2
0qt

}
, where C ′

1 = max{4C, 16C2}. Given these

guarantees, we have with probability at least 1− 4/t2,

∥θ̃(t)
a − θ∗

a∥ ≤ ∥J ′
1∥2 + ∥J ′

2∥2 ≤
2C(R + Rθ)d

λ0
max

{
d + log t

qtt
,

√
ξ +
√
ν√

d

√
d + log t

qtt

}
+

2Rθd

λ0
∥∆t(a)∥2.

Thus we conclude the proof.

G.7 Proof of Corollary F.1

Standard setting. Notice that p
(t)
0 is monotonically decreasing in t. Theorem F.1 indicates that, as long

as ∀t > T0,

p
(t)
0 ≥ C ′ max

{
d(d + log t)

λ0t
,
ξ(d + log t)

λ2
0t

}
, (G.14)

then with probability at least 1− 8
t2 , ∀a ∈ {0, 1},

∥θ̂(t)
a − θ∗

a∥2 ≤
C(R +Rθ)d

λ0
max

{
d + log t

t
2
3

,

√
ν +
√
ξ√

d

√
d + log t

t
2
3

}
+

2Rθd

λ0
∥∆t(a)∥2 (G.15)

Plug it into Theorem 2.2, we have that with high probability,

Regret(T ;π∗) ≤ 2Rθ · ⌈2dT 2/3⌉+
2

1− ρ
I ′1,

where

I1 =

T∑
t=T0+1

(
p
(t)
0 Rθ + max

a
∥θ̃(t−1)

a − θ∗
a∥2
)

≤
T∑

t=T0+1

t−
1
3Rθ +

T−1∑
t=T0

[
C(R +Rθ)d

λ0
max

{
d + log t

t
2
3

,

√
ν +
√
ξ√

d

√
d + log t

t
2
3

}
+ max

a

2Rθd

λ0
∥∆t(a)∥2

]

≤ 2RθT
2
3 +

C ′

λ0
(
√
ν +

√
ξ + 1)(R +Rθ)

√
d(d + log T )T

2
3 +

2Rθd

λ0

∑
t≥T0

∥∆t(a)∥2,
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for a universal constant C ′, where the last inequality holds if in addition, T ≥ [d(d + log T )]
3
2 .

The proof is concluded by combining the above requirement for T as well as (G.14).

Clipped policy setting.

Similar to the standard setting, according to Theorem F.1, as long as ∀t > T0,

p0 ≥ C1 max

{
d(d + log t)

λ0t
,
ξ(d + log t)

λ2
0t

}
, (G.16)

then with probability at least 1− 8
t2 , ∀a ∈ {0, 1},

∥θ̃(t)
a − θ∗

a∥2 ≤
C(R +Rθ)d

λ0
max

{
d + log t

p0t
,

√
ν +
√
ξ√

d

√
d + log t

p0t

}
+

2Rθd

λ0
∥∆t(a)∥2 (G.17)

Plug it into Theorem 2.2, we have that with high probability,

Regret(T ; π̄∗) ≤ 2Rθ · ⌈2dT 1/2⌉+
2(1− 2p0)

1− ρ
I ′2,

where

I ′2 =

T∑
t=T0+1

max
a
∥θ̃(t−1)

a − θ∗
a∥2

≤
T−1∑
t=T0

[
C(R +Rθ)d

λ0
max

{
d + log t

p0t
,

√
ν +
√
ξ√

d

√
d + log t

p0t

}
+ max

a

2Rθd

λ0
∥∆t(a)∥2

]

≤ 2C(R + Rθ)(
√
ν +
√
ξ + 1)

λ0
√
p0

√
d(d + log T )

√
T +

2Rθd

λ0

T−1∑
t=T0

max
a
∥∆t(a)∥2,

where the last inequality holds if in addition, T ≥ d(d + log T ) log2 T .

The proof is concluded by plugging the above into the regret upper bound formula and combining the

requirements for T .
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Aurélien Bibaut, Maria Dimakopoulou, Nathan Kallus, Antoine Chambaz, and Mark van Der Laan. Post-

contextual-bandit inference. Advances in neural information processing systems, 34:28548–28559, 2021.

Djallel Bouneffouf. Online learning with corrupted context: Corrupted contextual bandits. arXiv preprint

arXiv:2006.15194, 2020.

Djallel Bouneffouf, Amel Bouzeghoub, and Alda Lopes Gançarski. A contextual-bandit algorithm for mobile
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