
Clustering Items From Adaptively Collected Inconsistent Feedback

Shubham Gupta Peter Staar Christian de Sainte Marie
IBM Research
Orsay, France

IBM Research
Rüschlikon, Switzerland

IBM France Lab
Orsay, France

Abstract

We study clustering in a query-based model
where the learner can repeatedly query an
oracle to determine if two items belong to
the same cluster. However, these queries are
costly and the oracle’s responses are marred
by inconsistency and noise. The learner’s
goal is to adaptively make a small number
of queries and return the correct clusters for
all n items with high confidence. We develop
efficient algorithms for this problem using the
sequential hypothesis testing framework. We
derive high probability upper bounds on their
sample complexity (the number of queries
they make) and complement this analysis
with an information-theoretic lower bound.
In particular, we show that our algorithm for
two clusters is nearly optimal when the or-
acle’s error probability is a constant. Our
experiments verify these findings and high-
light a few shortcomings of our algorithms.
Namely, we show that their sample complex-
ity deviates from the lower bound when the
error probability of the oracle depends on
n. We suggest an improvement based on a
more efficient sequential hypothesis test and
demonstrate it empirically.

1 INTRODUCTION

This paper explores a query-based clustering problem.
The learner receives n items to cluster and has access
to an oracle that, given a pair of items, can answer
the question “are these items in the same cluster?”
We consider a noisy and inconsistent variant of this
oracle: when asked the same query multiple times, it

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

independently flips a biased coin each time, returning
the correct answer with probability p for same-cluster
items and an incorrect answer with probability q < p
for different-cluster items. This is in contrast with
consistent oracles that sample a noisy response once
for each item pair, but return the same value every
time this pair is queried (Mazumdar and Saha, 2017a).
The learner’s goal is to return the underlying ground-
truth clusters with high confidence while minimizing
the number of queries made to the oracle.

As a motivating example, consider the problem of iden-
tifying plant species in a newly discovered complex (a
collection of visually similar species). Saryan et al.
(2020) advocate using clustering for a data-driven so-
lution to this problem. For instance, one can show two
plant samples to a taxonomist and ask them if they
belong to the same species. Unfortunately, as Saryan
et al. (2020) point out, the answers to these queries
are neither reliable nor consistent across experts as the
similarity between the samples baffles them as well. In
such a case, one stands to gain by aggregating infor-
mation from multiple experts before returning the final
clusters. The challenge lies in doing this with as few
queries as possible to save both time and money.

Besides species delimitation, this model may provide
a simple theoretical abstraction for many other appli-
cations. For example, clustering compatible molecules
is useful for developing more potent drugs (Twarog
et al., 2020). This compatibility is tested via drug-
interaction experiments that are noisy due to natu-
ral biological variations in the samples. One can view
each experiment as a query to a noisy oracle and use
our approach for clustering molecules. This pattern
also extends to some crowdsourcing applications where
workers make errors. Aggregating information across
repeated queries in a principled manner is crucial for
accurate results (see Firmani et al. (2016); Luo et al.
(2018); Vaughan (2018) and the references therein).
We explore an alternative motivation for our model in
Appendix A with an eye towards privacy. There, we
argue why one might want to simulate our model, even
if the actual item-item relationships are more complex.



Clustering Items From Adaptively Collected Inconsistent Feedback

Davidson et al. (2014) studied this problem in the spe-
cial case where p = 1

2 + ϵ, q = 1
2 − ϵ, and ϵ ∈ (0, 1/2]

is known to the learner. This assumes that the oracle
is correct more than 50% of the time, and the learner
knows the error rate. We remove both of these restric-
tions. Our oracle can be arbitrarily noisy as long as
q < p and we do not require p and q to be known. Yun
and Proutiere (2014) also treat p and q as unknowns,
but with a different end goal. They want to minimize
the clustering error after a fixed number of queries,
while we want to minimize the number of queries to
get zero clustering error with a desired confidence level.

Mazumdar and Saha (2017a) studied this problem un-
der the consistent oracle assumption mentioned above
(same answer for repeated queries). This oracle is
more suitable for problems like finding clusters in a
social network where each edge, once observed, is ei-
ther present or absent. However, in many applications
like the ones mentioned above, it is possible to gain
additional information from repeated queries (e.g., if
the first drug-interaction experiment fails, it does not
mean that all subsequent experiments will also fail).
An inconsistent oracle is a better model in such cases.

To see this further, note that a consistent oracle yields
one bit of information for each item pair. The noisier
an oracle, the more bits the learner needs to effectively
cluster the items. However, the maximum number of
bits that can be collected is constrained by the number
of item pairs. This becomes problematic when dealing
with a small set of items or with clusters that only
have a few items. For instance, the error probability
of Mazumdar and Saha (2017a)’s algorithm depends
on n. They also assume that each cluster has at least
Ω(lnn) items. Therefore, assuming the oracle to be
consistent when it is not adds avoidable limitations.

We restrict our focus to the cases where repeated
queries are allowed and the oracle is inconsistent. We
present a statistically sound and nearly optimal clus-
tering method that works for arbitrarily small item
sets with a constant error probability irrespective of
the cluster size and the noise level in the oracle.

Contributions and Results: The total number of
queries made by an algorithm is called its sample com-
plexity. Here is a summary of our contributions.

1) In Section 3, we establish a Ω(n/d(p, q)) informa-
tion theoretic lower bound on the sample complexity
of any algorithm for our problem. Here, d(p, q) =
p ln(p/q) + (1− p) ln((1− p)/(1− q)) is the Kullback-
Leibler (KL) divergence between two Bernoulli distri-
butions with success probability p and q, respectively.
Our proof adapts ideas from the best-arm identifica-
tion literature (Kaufmann et al., 2016), and is valid
for all 0 < q < p < 1.

2) In Section 4, we present a hypothesis testing based
meta-algorithm for dividing items into two clusters.
We explain how a circular dependence between p, q
and the cluster memberships makes this problem chal-
lenging when p and q are unknown. Our algorithm
for two clusters, SplitItemsH, implements this meta-
algorithm using a test based on Hoeffding’s lemma.
For k ≥ 2 clusters, our algorithm, QBClusterH, re-
peatedly calls SplitItemsH on leftover items until ev-
erything is clustered, without knowing k in advance.

3) In Section 5, we analyze the correctness and sample
complexity of our algorithms. Specifically, we show the
near optimality of SplitItemsH for constant p and q.

4) In Section 6, we present numerical evidence to sup-
port our analysis and evaluate the robustness of our
algorithms to model misspecification. We also high-
light a few limitations of our work. In particular, we
show that the sample complexity of SplitItemsH de-
viates from the lower bound when p and q depend on n.
Experiments confirm that this is easily fixed by using
a stronger hypothesis test in our meta-algorithm.

Related Work: Clustering algorithms have long used
different oracles to aid the otherwise unsupervised
clustering process. For example, some oracles label
a small subset of items directly (Ashtiani and Ben-
David, 2015; Gadde et al., 2016). Others provide feed-
back on the clusters by recommending merge or split
operations (Balcan and Blum, 2008; Awasthi et al.,
2017). We consider yet another type of oracle that can
noisily tell if a pair of items belong to the same cluster
(Davidson et al., 2014; Yun and Proutiere, 2014).

Ashtiani et al. (2016) used a noise free variant of this
oracle to reduce the computational cost of distance-
based clustering algorithms like k-means (MacQueen,
1967)). Several follow-up works have strengthened
their results for different variants of distance-based
clustering (Ailon et al., 2018b; Gamlath et al., 2018;
Bressan et al., 2020a; Li et al., 2021), correlation clus-
tering (Ailon et al., 2018a; Saha and Subramanian,
2019; Bressan et al., 2020b), and graph partitioning
(Mazumdar and Saha, 2017b). In all cases, the oracle
is noise free whereas we consider a noisy oracle.

Mazumdar and Saha (2017a) introduced a noisy but
consistent oracle, as explained earlier. They assumed
that p and q are known and centered around 1/2, and
presented two algorithms, one computationally effi-
cient but query sub-optimal, and the other inefficient
but query optimal. Algorithms that are both efficient
and optimal were later developed, first for two clus-
ters (Larsen et al., 2020), and then for the general
case (Peng and Zhang, 2021; Xia and Huang, 2022).
Others have studied variants where the oracle can also
say “I don’t know” (Kim and Ghosh, 2017) or return



Shubham Gupta, Peter Staar, Christian de Sainte Marie

an adversarially chosen answer (Pia et al., 2022). Also
see (Mitzenmacher and Tsourakakis, 2016, 2020) for
related problems. In contrast, our oracle is inconsis-
tent and supports unknown and arbitrary q < p. The
tradeoffs of these choices are explained above in detail.

Our ideas are inspired from the literature on best-arm
identification (BAI) (Bubeck et al., 2009; Lattimore
and Szepesvári, 2020). Think of each possible cluster-
ing of items as an arm and the ground-truth clustering
as the best arm. Then, the goal is to use queries to
quickly find the best arm. However, we can’t simply
use existing BAI algorithms for two reasons: 1) The
number of possible clusterings (and hence arms) grows
exponentially with the number of items and clusters.
2) Our oracle provides local feedback on an item pair
instead of global feedback on an entire configuration
of clusters. Therefore, we cannot “pull” an arm in the
traditional sense. See Gentile et al. (2014) and Yang
et al. (2022) for examples of clustering arms where the
feedback from each arm is directly observable.

Finally, our oracle is reminiscent of the planted-
partition model for graph partitioning (Abbe, 2018).
Assume that the items correspond to the nodes in a
graph. The oracle adds an edge between two items
with probability p (resp. q) if they belong to the same
(resp. different) cluster. However, unlike the tradi-
tional planted-partition model, our oracle allows item
pairs to be queried multiple times, which is useful in
applications like species delimitation where the queries
are noisy but repeatable. Yun and Proutiere (2014)
also use a similar model and highlight this distinction,
though, as explained above, for a different problem.

2 PROBLEM SETTING

Let [n] be the set {1, 2, . . . , n} for any integer n > 0
and I{prop} indicate the truth value of a proposition
prop. We consider the problem of partitioning a given
set of n items by adaptively choosing items pairs to
query a noisy oracle that tells if these items are in the
same cluster. We call this the Query-Based Clustering
(QBC) problem, and define it formally below.

Definition 2.1 (QBC). An instance of the Query-
Based Clustering (QBC) problem is specified by a five
tuple ν = (n, ρ, k, p, q), where n is the number of items,
ρ : [n] → [k] maps items to one of the k ≥ 2 non-empty
clusters, and 0 ≤ q < p ≤ 1 are model parameters.
Querying a pair of items {i, j}, where i ̸= j, returns a
binary feedback Oij sampled as follows:

P (Oij = 1) =

{
p if ρ(i) = ρ(j)

q otherwise.
(1)

The learner only knows n, while k, p, q, and ρ are

unknown. Its goal is to return a cluster assignment
function ρ̂ : [n] → [k̂] that matches the ground-truth

clusters in ρ with high probability. That is, k̂ = k and
there is a permutation function π : [k] → [k] such that
π(ρ̂(i)) = ρ(i) for all items i. Denoting this event by
ρ̂ = ρ, the learner must execute a δ-probably approxi-
mately correct (δ-PAC) algorithm defined below.

Definition 2.2 (δ-PAC algorithm). An algorithm is
called δ-PAC with confidence parameter δ ∈ [0, 1] if,
for any QBC instance ν = (n, ρ, k, p, q), it terminates
after a finite number of queries τ and returns a ρ̂ that
satisfies ρ̂ = ρ with probability at least 1− δ.

The number of queries τ made by an algorithm is called
its sample complexity. Our goal is to develop δ-PAC
algorithms with a low sample complexity. In the next
section, we begin with a lower bound on the sample
complexity of any δ-PAC algorithm for our problem.

3 LOWER BOUND

The learner receives feedback from the oracle accord-
ing to eq. (1) each time it makes a query. We want
to ask if the evidence collected until time t is enough
to ensure with high probability that the observations
are from a QBC instance ν with cluster assignment ρ
and not any other instance ν′ with a different assign-
ment ρ′ ̸= ρ. To test the statistical limits of how fast
this question can be answered, we consider the log-
likelihood ratio of the observations under ν and ν′.

More concretely, let O(1), . . . , O(t) be the observations
received by an algorithm. We use ℓν(O(1), . . . , O(t))
to denote the likelihood of these observations un-
der instance ν, and define the log-likelihood ratio as

Lν,ν′(t) := ln ℓν(O(1),...,O(t))
ℓν′ (O(1),...,O(t)) . Intuitively, one can be

confident that the observations are coming from ν in-
stead of ν′ if Lν,ν′(t) is high, and vice versa. There-
fore, deriving an upper and a lower bound on Lν,ν′(t)
provides a limit on the minimum number of queries
needed before Lν,ν′(t) becomes high (or low) enough
to identify the correct instance with high confidence.

In Appendix B, we compute an expression for the
log-likelihood ratio and derive these bounds using a
change-of-measure argument from the bandits litera-
ture (Lai and Robbins, 1985; Kaufmann et al., 2016).
We then find a set of “challenging” instances ν′ that
match ν in the cluster assignment of all but one item,
and get the fundamental limit summarized below.

Theorem 3.1 (Lower bound). Let ν = (n, ρ, k, p, q)
be a QBC instance with 0 < q < p < 1. Assume
that each cluster has at least two items. The sample
complexity τ of any δ-PAC algorithm satisfies Eν [τ ] ≥

n

2max{d(p,q), d(q,p)k−1 } ln 1
2.4δ .



Clustering Items From Adaptively Collected Inconsistent Feedback

We described how our model relates to the planted
partition model towards the end of Section 1. The
fundamental limits for clustering under that model as-
sume only one observation for each item pair but study
the case with infinite items. They show that cluster-
ing eventually becomes impossible as p and q get close,
even if one queries infinitely many item pairs (each pair
queried only once). For example, when p = A lnn

n and

q = B lnn
n for some A > B > 0, exact recovery is possi-

ble with probability 1−on(1) iff
√
A−

√
B >

√
k (Abbe

and Sandon, 2015). The remark below describes how
Theorem 3.1 complements these fundamental limits.

Remark 3.1 (Finite items, repeated queries). Instead
of saying that even infinite queries will not help, The-
orem 3.1 finds the minimum number of possibly re-
peated queries that will in fact allow cluster recovery
for any fixed n. This is achieved by shifting the query-
ing budget from one query for an infinite number of
item pairs to several queries for finitely many pairs.

4 ALGORITHMS

With a lower bound at hand, we now move towards de-
veloping efficient and nearly-optimal algorithms. Sec-
tion 4.1 considers the simpler case of two clusters. Sec-
tion 4.2 extends these ideas to the general case.

4.1 SplitItemsH for Two Clusters

Let N denote the set of items to be partitioned into
two clusters. We face two challenges.

1) Oracle noise: Our oracle is noisy. If it had no
noise, we could have simply fixed an anchor item a
and, for each item i ∈ N\{a}, queried {a, i} to check
if a and i are in the same cluster. This partitions N
into two clusters using O(n) queries, an improvement
over the naive baseline that ignores the transitivity of
cluster memberships and queries all O(n2) item pairs.

2) Unknown p and q: Even with noise, determining
item i’s cluster would have been a relatively simple
exercise if p and q were known. One can query {a, i}
repeatedly until the hypothesis E[Oai] = p is accepted
or rejected with high confidence, where Oai is the feed-
back from eq. (1). Unfortunately, the unknown value
of p is needed to even formulate this hypothesis.

A natural instinct is to first estimate p and q and then
test the hypothesis described above. For instance, one
can divide the observations for p and q in separate
buckets and average each bucket. However, dividing
the observations requires knowing the cluster mem-
berships. This creates a circular dependency between
(p, q) and the clusters. As an alternative, one may
randomly select a small subset of items and repeat-

edly query all pairs in this set to estimate p and q
(Abbe et al., 2020). However, this assumes that all
clusters are sufficiently large. For example, when one
of the two clusters is very small, the first step may not
select any item from it, leading to incorrect estimates.

The meta-algorithm below proposes a different sequen-
tial hypothesis testing strategy that does not require
knowing p or q and works as long as all clusters have
at least two items. We define αai := E[Oai].

Meta-Algorithm 1. Assume that each cluster has at
least two items. Pick an anchor a and query item pairs
{a, i} for all i ∈ N\{a} at each step. Let Hij be the
hypothesis that αai > αaj . The algorithm terminates
when, for each item i ∈ N\{a}, there is an item ji /∈
{a, i} for which Hiji can be accepted/rejected with
high confidence. Put item i in the same cluster as a if
Hiji was accepted and in the other cluster otherwise.

Testing αai > αaj instead of αai = p eliminates the
need to know p in advance. Because we know that αai

takes only two values p and q, αai must be p and αaj

must be q if the test αai > αaj succeeds, making the
cluster assignments in Meta-Algorithm 1 valid.

The final missing piece is how to safely test these
hypotheses. The remark below first presents a best-
arm identification (BAI) view of this problem (Bubeck
et al., 2009). We then describe a test based on Hoeffd-
ing’s inequality, and an algorithm based on this test.

Remark 4.1 (Best-arm identification). Think of the
pair {a, i} as an arm with expected reward αai. Test-
ing the hypothesis Hij is equivalent to solving a BAI
problem between arms {a, i} and {a, j}. In this sense,
Meta-Algorithm 1 simultaneously solves |N | − 2 BAI
problems for each item, assigning them to a cluster as
soon as at least one of these problems terminate.

A common approach to solving a two-arm BAI prob-
lem involves using the samples to construct confidence
intervals for the arm means. A winner is declared
once these intervals stop overlapping. Our first algo-
rithm, SplitItemsH, uses confidence intervals Iai(t) =
[lai(t), uai(t)] derived from a Hoeffding-style inequal-
ity. See Appendix C for a proof of the lemma below.

Lemma 4.1. Define β(t, δ) = ln 2(t+1)t2|N |2
δ . Let a be

the anchor chosen by SplitItemsH. Set

µ̂ai(t) =
1

t

t∑
s=1

Oai(s), lai(t) = µ̂ai(t)−
√
β(t, δ)

2t
,

and uai(t) = µ̂ai(t) +

√
β(t, δ)

2t
,

(2)
where Oai(s) is the outcome of querying item pair



Shubham Gupta, Peter Staar, Christian de Sainte Marie

Algorithm 1 SplitItemsH(N , δ) for k = 2

1: Input: Set of items N , confidence parameter δ

2: Sample an anchor a
unif∼ N

3: Set t = 1, C1 = {a}, C2 = ϕ, and U(1) = N\{a}
4: while |U(t)| > 0 do
5: # Query the oracle

6: Sample item pairs {a, i} for all i ∈ N\{a}
7: Update µ̂ai(t), lai(t) and uai(t) using eq. (2)
8: Update p̂l(t) and q̂u(t) using eq. (3)
9:

10: # Update the clusters

11: C1 = C1 ∪ {i ∈ U(t) : lai(t) > q̂u(t)}
12: C2 = C2 ∪ {i ∈ U(t) : uai(t) < p̂l(t)}
13:

14: # Update unassigned items

15: U(t+ 1) = U(t)\(C1 ∪ C2); t = t+ 1
16: end while
17: Return: C1 and C2

{a, i} at time s. Further, define,

p̂l(t) := max
i∈N\{a}

lai(t) and q̂u(t) := min
i∈N\{a}

uai(t).

(3)

Then, the event {∀t ≥ 1, p ≥ p̂l(t) ∧ q ≤ q̂u(t) ∧ ∀i ∈
N\{a}, αai ∈ [lai(t), uai(t)]} happens with probability
at least 1− δ.

Hypothesis Hij is accepted at time t if lai(t) > uaj(t)
(i.e., the confidence intervals stop overlapping). Notice
how our confidence intervals are valid at all steps. This
bounds the probability of any hypothesis Hij being
mistakenly accepted/rejected at any time t by δ. Fol-
lowing Meta-Algorithm 1, we assign item i to the same
cluster as a if there is a j ∈ N\{a, i} such that Hij

is accepted, or equivalently when lai(t) > q̂u(t). Simi-
larly, i is assigned to the other cluster if uai(t) < p̂l(t).
Algorithm 1 summarizes this procedure.

Lines 11 and 12 in Algorithm 1 show that SplitItemsH
uses p̂l(t) and q̂u(t) as proxies for p and q, respectively.
Because the problem becomes much simpler if p and
q were known, it is natural to quantify the penalty, if
any, that we pay for using p̂l(t) and q̂u(t) instead of
p and q. The next remark addresses this issue. See
Algorithm 1 for the definition of clusters C1 and C2.
Remark 4.2 (Penalty for not knowing p and q). Con-
sider two cases. 1) If we know p and q, we can as-
sign item i to C1 (resp. C2) when lai(t) > q (resp.
uai(t) < p). This requires uai(t) − lai(t) < p − q in
the worst case; e.g., when αai = p and uai ≈ p. 2)
If we use p̂l(t) and q̂u(t) instead of p and q, the worst
case happens when uai(t) ≈ p for items with αai = p
and lai(t) ≈ q for items with αai = q. Now, we need
uai(t) − lai(t) < (p − q)/2 before the confidence in-

tervals separate. Therefore, not knowing p and q re-
quires us to shrink the confidence intervals by twice
as much, which amounts to four times the queries by
Lemma 4.1. Hence, SplitItemsH pays only a constant
multiplicative penalty in Case 2.

Appendix C shows that it is possible to stop querying
an item pair {a, i} as soon as item i is assigned to
a cluster. However, this makes the algorithm more
complex without improving its worst case guarantees.
Next, we describe our algorithm for k ≥ 2 clusters.

4.2 QBClusterH for k ≥ 2 Clusters

QBClusterH works in phases. The jth phase begins
with a set of unclustered items N j ⊆ N (with N 1 =
N ), and calls SplitItemsH to divide them into two
groups Cj

1 and Cj
2. Cj

1 has all items in the same cluster

as the anchor aj ∈ N j chosen in SplitItemsH and Cj
2

has the remaining items. The pure cluster Cj
1 is added

as the jth output cluster Cj and the set of unclustered

items is set to N j+1 = Cj
2. We need two more details.

First, we must set the confidence parameter δj for
the jth call to SplitItemsH. We use δj = δ/j(j + 1),
where δ is confidence in the final output expected by
the user. This ensures that all calls to SplitItemsH

succeed (and hence the final output is correct) with
probability at least 1−∑j δ

j ≥ 1− δ.

Second, we need to address a boundary condition for
the last cluster. When there are k clusters, all the
items in N k will belong to the same cluster with high
probability, making αaki = p for all ak, i ∈ N k. In
this case, we will make endless queries as the assign-
ment conditions in Lines 11 and 12 in Algorithm 1
will never be satisfied. To fix this, we modify p̂l(t) to
be the highest lai(t) value that we have seen thus far
across all phases and anchor-item pairs, and make a
corresponding change to q̂u(t). Appendix C shows that
this does not affect our confidence bound. Crucially,
the assignment conditions will now be eventually sat-
isfied as p̂l(t) and q̂u(t) are not reset in each phase.

It is noteworthy that QBClusterH only requires n and
δ as input. If you additionally provide k, the number
of clusters, it can also work with a more general oracle,
as described in the remark below. See Appendix C for
the pseudocode of QBClusterH.

Remark 4.3 (A more general oracle). Consider an
oracle that is more accurate for some clusters than
others. That is, it has P(Oij = 1) = pℓ when i and j
are in the ℓth cluster and P(Oij = 1) = q otherwise,
where pℓ > q for all ℓ ∈ [k]. When k is known in
advance, one can set δj = δ/(k − 1) in QBClusterH,
and stop after k−1 phases, assigning all leftover items
to the last cluster. In this case, the boundary con-



Clustering Items From Adaptively Collected Inconsistent Feedback

dition discussed above is irrelevant, and the calls to
SplitItemsH can be completely independent, allow-
ing them to find clusters with different pℓ values with
the total probability of error at most

∑k
j=1 δ

j = δ.
Here, the assumption that k is known is important.
As pℓ can be arbitrarily close to q, this extra informa-
tion is useful to differentiate the case where pℓ ≈ q for
the chosen anchor from the case where all remaining
items are in the same cluster. One can alternatively
assume that pℓ − q > ϕ for all ℓ, where ϕ is known.

In what follows, we focus on the simpler oracle from
eq. (1) for which the algorithm need not know k. Our
guarantees can be trivially adapted to the oracle in
Remark 4.3 when k is known.

5 ANALYSIS

Suppose we have a sequential hypothesis test Ψ(ϵ)
and paired samples (xt, yt) from two Bernoulli ran-
dom variables X ∼ Ber(µ1) and Y ∼ Ber(µ2). We say
that Ψ(ϵ) has succeeded if it never terminates when
µ1 = µ2, and uses a random but finite number of sam-
ples to correctly verify if µ1 > µ2 otherwise. We as-
sume that Ψ(ϵ) succeeds with probability at least 1−ϵ.
We first describe the intuition behind our analysis in
terms of Meta-Algorithm 1. Let Ψij be an instance of
the test Ψ(ϵ) for the hypothesis Hij . Assume that ϵ
is set so that all tests Ψij succeed with probability at
least 1 − δ. Under this event, it is easy to see that:
1) all cluster assignments are correct, and 2) the algo-
rithm terminates in finite time. This makes it δ-PAC.

For the sample complexity, we focus on tests Ψij where
items i and j are in different ground-truth clusters.
These items will be assigned a cluster as soon as at
least one such test succeeds. The key is to find bounds
Tij(p, q, δ) such that all of these tests are guaranteed to
succeed after collecting Tij(p, q, δ) samples with prob-
ability at least 1− δ. In this case, the algorithm runs
for at most T = maxi,j Tij(p, q, δ) steps, making one
query for each item i ∈ N\{a} in each step. This
results in an O(nT ) bound on the sample complexity
with high probability. Note that the max above is over
item pairs in different ground-truth clusters. Next, we
apply these ideas to our algorithms.

Correctness: In Appendix D.1, we use Lemma 4.1
to show that all tests in SplitItemsH succeed with
probability 1 − δ, and use this to argue that the
algorithm is δ-PAC. QBClusterH adjusts the confi-
dence level in each phase to ensure that all calls to
SplitItemsH succeed with probability 1 − δ. In this
event, the algorithm runs for exactly k phases, where k
is the (unknown) number of clusters, and isolates one

cluster correctly in each phase. This makes it δ-PAC.

Theorem 5.1 (Correctness of the algorithms). As-
sume that each ground-truth cluster has at least two
items. Then, SplitItemsH and QBClusterH are δ-
PAC for k = 2 and k ≥ 2 clusters, respectively.

Sample Complexity: For SplitItemsH, suppose
items i and j have αai = p and αaj = q for the cho-
sen anchor a. We use Lemma 4.1 in Appendix D.2
to show that Ψij succeeds with high probability after

collecting at most Tij(p, q, δ) = O
(

1
(p−q)2 ln

n2

δ(p−q)2

)
samples, resulting in the following bound.

Theorem 5.2 (Sample complexity of SplitItemsH).
Let ν = (n, ρ, 2, p, q) be an arbitrary QBC instance with
two clusters, each with at least two items. The num-
ber of queries made by SplitItemsH is bounded by

O
(

n
(p−q)2 ln

n2

δ(p−q)2

)
with probability at least 1− δ.

For QBClusterH, we again focus on the event where
all calls to SplitItemsH have succeeded. This happens
with probability at least 1−δ. Moreover, the algorithm
runs for exactly k phases under this event, one for each
cluster. The sample complexity of QBClusterH is then
the sum of the sample complexity of each phase. In the
worst case, smaller clusters are eliminated first, and
each phase still sees roughly O(n) items. Using the
result from Theorem 5.2 and noting that the smallest
confidence level is the one from the last phase, we get
the following worst-case sample complexity.

Theorem 5.3 (Sample complexity of QBClusterH).
Let ν = (n, ρ, k, p, q) be an arbitrary QBC instance with
k ≥ 2 clusters, each with at least two items. The worst-
case sample complexity of QBClusterH is bounded by

O
(

nk
(p−q)2 ln

n2k2

δ(p−q)2

)
with probability at least 1− δ.

In Appendix D.4, we derive a more general bound for
QBClusterH that explicitly depends on the size of each
cluster. The next two remarks discuss these results in
the context of our lower bound.

Remark 5.1 (Optimality of SplitItemsH). For fixed
values of p and q, the bound in Theorem 5.2 matches
our lower bound up to logarithmic factors. However,
when p and q also depend on n, (as in Remark 3.1),
d(p, q) − 2(p − q)2 becomes an n dependent positive
quantity by Pinsker’s inequality1, widening the gap
between the two bounds. We empirically validate this
in our experiments and show that using a more efficient
hypothesis test in Meta-Algorithm 1 fixes this issue.

1Pinsker’s inequality states
√

1
2
d(p, q) ≥ |p − q| in this

context. The quantity on the right is the total variation
distance between two Bernoulli distributions with success
probability p and q, respectively.



Shubham Gupta, Peter Staar, Christian de Sainte Marie

Remark 5.2 (Optimality of QBClusterH). Suppose
d(p, q) < d(q, p)/(k − 1). This, for example, happens
when q = 0.5 and p is close to 1. In this case, for fixed
p and q, the bound in Theorem 5.3 matches our lower
bound up to logarithmic factors. This means that our
bounds are nearly tight in the worst-case sense.

As in Remark 5.1, a more efficient hypothesis test im-
proves the sample complexity of QBClusterH when p
and q vary with n. We demonstrate this in Section 6.

Also interesting is the case where d(p, q) ≥ d(q, p)/(k−
1). Here, the bound in Theorem 5.3 differs from our
lower bound by a multiplicative k factor. We believe
that Theorem 3.1 can be strengthened for these values
of p and q. After all, even in the noise free setting,
each item needs at least one query per cluster in the
worst case, leading to a Ω(nk) queries. The noisy case
should only be worse.

6 EXPERIMENTS

This section has three objectives: 1) empirically vali-
date Theorems 5.2 and 5.3, 2) show that a more effi-
cient hypothesis test reduces the gap between our up-
per and lower bounds when p and q vary with n, and
3) demonstrate the robustness of our algorithms to
a simple model misspecification. All our experiments
use δ = 0.05. The error bars in the plots correspond
to standard deviation2.

Validating Theorems 5.2 and 5.3: We generate
QBC instances by taking n items and randomly dividing
them into k clusters, each with at least two items. We
then fix p = 0.2 and q = 0.1, and simulate our oracle
via eq. (1). This oracle is wrong 80% of the time in
answering queries about items from the same cluster.

Let us first focus on the plots related to SplitItemsH

and QBClusterH in Figure 1. SplitItemsS and
QBClusterS are different algorithms that will be in-
troduced in the next part of this section. In Figure 1a,
we fix k = 2 and show that the sample complexity
of SplitItemsH varies as O(n lnn). QBClusterH ex-
hibits a similar pattern in Figure 1b when k = 4. The
O(k ln k) variation for a fixed n = 80 is demonstrated
in Figure 1c. Together, these observations empirically
validate Theorems 5.2 and 5.3.

Using a more efficient test: The confidence in-
tervals in Lemma 4.1 use Hoeffding’s inequality. As a
consequence, they approximately shrink as O(1/

√
t),

which explains why the sample complexities in The-
orems 5.2 and 5.3 vary as 1/(p − q)2. We argued in

2Code available at: https://github.com/IBM/
aistats-24-inconsistent-feedback-clustering

Remark 5.1 that this dependence on p and q can be
improved. One way to achieve this is discussed below.

Recall that Meta-Algorithm 1 solves several BAI prob-
lems by constructing confidence intervals for arm
means using Lemma 4.1 (see Remark 4.1). While these
intervals are easy to understand and analyze, they are
not the most sample efficient. We develop two new
algorithms, called SplitItemsS and QBClusterS, that
are identical to the corresponding algorithms from Sec-
tion 4, except that they use better confidence intervals
borrowed from Kaufmann et al. (2016).

More specifically, let ψ(t, ϵ) = ln t(ln(3t))2

ϵ , and define

lai(t) = inf{z < µ̂ai(t) : td(µ̂ai(t), z) ≤ ψ(2t, ϵ)},
uai(t) = sup{z > µ̂ai(t) : td(µ̂ai(t), z) ≤ ψ(2t, ϵ)},

(4)
where µ̂ai(t) is the empirical mean for item pair {a, i}
defined in Lemma 4.1. Kaufmann et al. (2016) showed
that these confidence intervals are asymptotically op-
timal. Informally speaking, what this means in our
context is that the sample complexity of a test based
on these intervals approximately varies with d(p, q) in-
stead of (p− q)2. In Appendix E, we use a result from
Kaufmann and Kalyanakrishnan (2013) to argue that
an analog of Lemma 4.1 is valid for these confidence
intervals when ϵ = δ/|N |2. We also make a more pre-
cise statement about their optimality and provide the
pseudocode for the new algorithms.

Next, we want to verify if these new intervals actu-
ally help. To do so, we simulate our oracle as be-
fore, but use p = 2 lnn

n and q = lnn
n . As p and q

now depend on n, so does the ratio d(p, q)/(p − q)2,
which introduces a gap between our upper and lower
bounds (see Remark 5.1). In particular, one can eas-
ily use these values of p and q in Theorem 5.2 to
verify that the sample complexity of SplitItemsH

should increase as O(n3/ lnn) in this case. Figure 2
confirms this prediction. More importantly, it shows
that SplitItemsS does not suffer from the same issue.
Its sample complexity grows as Õ (n/d(p, q)), which
matches our lower bound up to logarithmic factors,
even when p and q vary with n.

It is important to emphasize that this gap between
our bounds in relevant only when p and q are not
constants. Figure 1 shows that SplitItemsS and
QBClusterS perform better than SplitItemsH and
QBClusterH even for fixed p and q, but only by a
constant multiplicative factor. The order of sample
complexity changes only when p and q vary with n.

Model misspecification: In this part, we study the
consequences of having an oracle that does not behave
as expected. Let η ≥ 0 be a perturbation param-

https://github.com/IBM/aistats-24-inconsistent-feedback-clustering
https://github.com/IBM/aistats-24-inconsistent-feedback-clustering


Clustering Items From Adaptively Collected Inconsistent Feedback

10 20 30 40 50 60 70 80
Number of items (n)

0

20

40

60

80

S
am

pl
e

co
m

pl
ex

ity
(τ

)

×104 p = 0.2, q = 0.1, k = 2

SplitItemsH

SplitItemsS

y ∝ n ln(n)/(p− q)2

y ∝ n ln(n)/d(p, q)

(a) τ vs n, k = 2 clusters

20 30 40 50 60 70 80
Number of items (n)

0

50

100

150

S
am

pl
e

co
m

pl
ex

ity
(τ

)

×104 p = 0.2, q = 0.1, k = 4

QBClusterH

QBClusterS

y ∝ n ln(n)/(p− q)2

y ∝ n ln(n)/d(p, q)

(b) τ vs n, k = 4 clusters

2 4 6 8 10
Number of clusters (k)

0

10

20

30

40

S
am

pl
e

co
m

pl
ex

ity
(τ

)

×105 p = 0.2, q = 0.1, n = 80

QBClusterH

QBClusterS

y ∝ k ln(k)/(p− q)2

y ∝ k ln(k)/d(p, q)

(c) τ vs k, n = 80 items

Figure 1: Variation in the sample complexity of our algorithms with respect to the number of items (n) and the
number of clusters (k). These results empirically validate our upper bounds in Theorem 5.2 and Theorem 5.3.

10 20 30 40 50 60 70 80
Number of items (n)

0

5

10

15

20

25

S
am

pl
e

co
m

pl
ex

ity
(τ

)

×105
p = 2 ln(n)/n, q = ln(n)/n, k = 2

SplitItemsH

SplitItemsS

y ∝ n3/ ln(n)

y ∝ n ln(n)/d(p, q)

Figure 2: Sample complexity of SplitItemsH and
SplitItemsS when p and q vary with n.

eter. We use it to generate a random perturbation
δij ∼ Uniform[−η,+η] for each pair of items. Instead
of using the feedback model in eq. (1), we now simulate
an oracle that uses the following feedback model.

P (Oij = 1) =

{
p+ δij if ρ(i) = ρ(j)

q + δij otherwise.
(5)

As before, ρ : [n] → [k] encodes the ground-truth clus-
ters. This model reduces to the one in eq. (1) when
η = 0. In other cases, it uses different probability
values across item pairs. We set p = 0.7 and q = 0.3.

Figure 3 shows the accuracy and query complexity of
our algorithms as a function of the robustness param-
eter η. First, consider the accuracy plot and notice
that the algorithms make no mistakes for η ≤ 0.1.
To see why this happens, note that the probability

0.8

0.9

1.0
A

cc
ur

ac
y

0.00 0.04 0.08 0.12 0.16 0.20 0.24
Perturbation parameter (η)

4

6

8

#Q
ue

rie
s

(τ
)

×104

p = 0.7, q = 0.3, n = 80, k = 4

QBClusterH QBClusterS

Figure 3: Variation in the performance of QBClusterH
and QBClusterS vs the perturbation in the oracle.

values used by the oracle fall in one of the two clus-
ters, one centered around p (the p-cluster) and the
other centered around q (the q-cluster). Let pmin and
pmax be the smallest and largest values in the p-cluster.
Analogously define qmin and qmax for the q-cluster. If
pmin − qmax < pmax − pmin, the confidence intervals
for pmin and pmax may stop overlapping before the
intervals for pmin and qmax do so, which leads to an
incorrect cluster assignment. However, as p = 0.7 and
q = 0.3, this will never happen with high probability
unless η > 0.1. Even for η > 0.1, the accuracy of the
algorithms degrades gracefully, showing their robust-
ness to this type of model misspecification. The p and
q cluster actually overlap for η > 0.2, but, even then,
we get more than 75% accuracy.



Shubham Gupta, Peter Staar, Christian de Sainte Marie

Next, consider the sample complexity. As qmax and
pmin get closer, the algorithm needs more queries to
resolve these values. This accounts for the increase in
complexity as η goes from 0 to 0.1. After this point,
as discussed above, it gets easier to resolve pmax from
pmin than it is to resolve qmax from pmin, which leads
to fewer queries, albeit at the cost of more mistakes.

Finally, it is important to highlight the non-systematic
nature of the perturbations introduced above: they are
independently selected from a uniform distribution for
each item pair. One may encounter more systematic
perturbations in practice which may lead to a less-
than-elegant decline in performance. For example, if
the ground truth clusters are hierarchical, sub-clusters
will have increasing P(Oij = 1) values as one gets
deeper in the hierarchy. In this case, P(Oij = 1) val-
ues are selected from different “levels” based on the
distance between items i and j in the hierarchy. Run-
ning our algorithms in such scenarios would almost
certainly fail since the cluster with the anchor need
not be a pure cluster. Adapting the key ideas from our
algorithms to such problems is an interesting direction
for future work (Emamjomeh-Zadeh and Kempe, 2018;
Ghoshdastidar et al., 2019).

7 CONCLUSION

This paper studies the problem of clustering items by
querying a noisy and inconsistent oracle. We devel-
oped efficient algorithms using sequential hypothesis
testing, and derived high-probability upper bounds on
their sample complexity. We showed that these bounds
match an information-theoretic lower bound up to log-
arithmic factors in many interesting cases. We also
empirically demonstrated a way to close this gap and
highlighted the robustness of our algorithms. This
still leaves many avenues for improvement. Our lower
bound can be strengthened for some values of p and q
when k > 2 (see Remark 5.2). It would also be inter-
esting to study oracles based on more realistic models
like the Stochastic Block Model (Holland et al., 1983)
or other type of clustering problems like hierarchical
clustering (Emamjomeh-Zadeh and Kempe, 2018).

Acknowledgements

We would like to thank Michele Dolfi for his help in
making our code publicly available and Yagmur Gizem
Cinar for her valuable feedback on an initial version of
this paper.

References

Emmanuel Abbe. Community detection and stochas-
tic block models: Recent developments. Journal of

Machine Learning Research, 18(177):1–86, 2018.

Emmanuel Abbe and Colin Sandon. Community de-
tection in general stochastic block models: Funda-
mental limits and efficient algorithms for recovery.
2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, pages 670–688, 2015.

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and
Yiqiao Zhong. Entrywise eigenvector analysis of ran-
dom matrices with low expected rank. The Annals
of Statistics, 48(3):1452–1474, 2020.

Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal.
Approximate correlation clustering using same-
cluster queries. LATIN 2018: Theoretical Informat-
ics, pages 14–27, 2018a.

Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and
Amit Kumar. Approximate clustering with same-
cluster queries. In Proceedings of the 9th Innova-
tions in Theoretical Computer Science Conference
(ITCS 2018), 94:40:1–40:21, 2018b.

Hassan Ashtiani and Shai Ben-David. Representation
learning for clustering: A statistical framework. In
Proceedings of Uncertainty in Artificial (UAI), 2015.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-
David. Clustering with same-cluster queries. Ad-
vances in Neural Information Processing Systems,
29, 2016.

Pranjal Awasthi, Maria Florina Balcan, and Kon-
stantin Voevodski. Local algorithms for interactive
clustering. Journal of Machine Learning Research,
18(3):1–35, 2017.

Maria-Florina Balcan and Avrim Blum. Clustering
with interactive feedback. Algorithmic Learning
Theory, Lecture Notes in Computer Science, 5254,
2008.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi,
and Andrea Paudice. Exact recovery of mangled
clusters with same-cluster queries. Advances in Neu-
ral Information Processing Systems, 33, 2020a.

Marco Bressan, Nicolò Cesa-Bianchi, Andrea Paudice,
and Fabio Vitale. Correlation clustering with adap-
tive similarity queries. Advances in Neural Informa-
tion Processing Systems, 32, 2020b.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz.
Pure exploration in multi-armed bandits prob-
lems. In Algorithmic Learning Theory, pages 23–37.
Springer Berlin Heidelberg, 2009.

Serban D. Constantin and T.R.N. Rao. On the theory
of binary asymmetric error correcting codes. Infor-
mation and Control, 40(1):20–36, 1979.

Susan Davidson, Sanjeev Khanna, Tova Milo, and
Sudeepa Roy. Top-k and clustering with noisy com-



Clustering Items From Adaptively Collected Inconsistent Feedback

parisons. ACM Transactions on Database Systems,
39(4):1–39, 2014.

Ehsan Emamjomeh-Zadeh and David Kempe. Adap-
tive hierarchical clustering using ordinal queries.
Proceedings of the 2018 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 415–
429, 2018.

Donatella Firmani, Barna Saha, and Divesh Srivas-
tava. Online entity resolution using an oracle. In
Proceedings of the VLDB Endowment, 9(5):384–395,
2016.

Akshay Gadde, Eyal En Gad, Salman Avestimehr, and
Antonio Ortega. Active learning for community de-
tection in stochastic block models. In Proceedings
of the 2016 IEEE International Symposium on In-
formation Theory (ISIT), pages 1889–1893, 2016.

Buddhima Gamlath, Sangxia Huang, and Ola Svens-
son. Semi-supervised algorithms for approximately
optimal and accurate clustering. In Proceedings
of the 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018), 107:
57:1–57:14, 2018.

Claudio Gentile, Shuai Li, and Giovanni Zappella. On-
line clustering of bandits. In Proceedings of the 31st
International Conference on Machine Learning, 32
(2):757–765, 2014.

Debarghya Ghoshdastidar, Michaël Perrot, and Ulrike
von Luxburg. Foundations of comparison-based hi-
erarchical clustering. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Paul Holland, Kathryn B. Laskey, and Samuel Lein-
hardt. Stochastic blockmodels: First steps. Social
Networks, 5:109–137, 1983.

Emilie Kaufmann and Shivaram Kalyanakrishnan. In-
formation complexity in bandit subset selection.
In Proceedings of the 26th Annual Conference on
Learning Theory, 30:228–251, 2013.

Emilie Kaufmann, Olivier Cappé, and Aurélien Gariv-
ier. On the complexity of best-arm identification
in multi-armed bandit models. Journal of Machine
Learning Research, 17(1):1–42, 2016.

Taewan Kim and Joydeep Ghosh. Semi-supervised ac-
tive clustering with weak oracles. arXiv preprint,
arxiv/1709.03202, 2017.

Tze Leung Lai and Herbert Robbins. Asymptotically
efficient adaptive allocation rules. Advances in Ap-
plied Mathematics, 6(1):4–22, 1985.

Kasper Green Larsen, Michael Mitzenmacher, and
Charalampos E. Tsourakakis. Clustering with a
faulty oracle. In Proceedings of The Web Confer-
ence 2020, pages 2831–2834, 2020.

Tor Lattimore and Csaba Szepesvári. Bandit Algo-
rithms. Cambridge University Press, 2020.

Yi Li, Yan Song, and Qin Zhang. Learning to clus-
ter via same-cluster qeries. In Proceedings of the
20th ACM International Conference on Information
and Knowledge Management (CIKM), pages 978–
987, 2021.

Yucen Luo, Tian Tian, Jiaxin Shi, Jun Zhu, and
Bo Zhang. Semi-crowdsourced clustering with deep
generative models. Advances in Neural Information
Processing Systems, 31, 2018.

James MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 5.1: Statistics:281–297,
1967.

Arya Mazumdar and Barna Saha. Clustering with
noisy queries. Advances in Neural Information Pro-
cessing Systems, 30, 2017a.

Arya Mazumdar and Barna Saha. Query complexity of
clustering with side information. Advances in Neural
Information Processing Systems, 30, 2017b.

Michael Mitzenmacher and Charalampos E.
Tsourakakis. Predicting signed edges with
o(n1+o(1) log n) queries. arXiv preprint,
arxiv/1609.00750, 2016.

Michael Mitzenmacher and Charalampos E.
Tsourakakis. Joint alignment from pairwise differ-
ences with a noisy oracle. Internet Mathematics,
2020.

Pan Peng and Jiapeng Zhang. Towards a query-
optimal and time-efficient algorithm for clustering
with a faulty oracle. In Proceedings of 34th An-
nual Conference on Learning Theory, 134:3662–
3680, 2021.

Alberto Del Pia, Mingchen Ma, and Christos Tzamos.
Clustering with queries under semi-random noise.
In Proceedings of the 35th Annual Conference on
Learning Theory, 178:1–36, 2022.

Barna Saha and Sanjay Subramanian. Correlation
clustering with same-cluster queries bounded by op-
timal cost. In Proceedings of the 27th Annual Eu-
ropean Symposium on Algorithms (ESA 2019), 144:
81:1–81:17, 2019.

Preeti Saryan, Shubham Gupta, and Vinita Gowda.
Species complex delimitations in the genus hedy-
chium: A machine learning approach for cluster dis-
covery. Appl Plant Sci, 8(7):e11377, 2020.

David Siegmund. Sequential Analysis. Springer-
Verlag, 1985.

Nathaniel R. Twarog, Michele Connelly, and Anang A.
Shelat. A critical evaluation of methods to interpret



Shubham Gupta, Peter Staar, Christian de Sainte Marie

drug combinations. Scientific Reports, 10(5144),
2020.

Jennifer Wortman Vaughan. Making better use of the
crowd: How crowdsourcing can advance machine
learning research. Journal of Machine Learning Re-
search, 18:1–46, 2018.

Jinghui Xia and Zengfeng Huang. Optimal cluster-
ing with noisy queries via multi-armed bandit. In
Proceedings of the 39th International Conference on
Machine Learning, 162:24315–24331, 2022.

Junwen Yang, Zixin Zhong, and Vincent Y. F. Tan.
Optimal clustering with bandit feedback. arxiv
preprint, arXiv/2202.04294, 2022.

Se-Young Yun and Alexandre Proutiere. Community
detection via random and adaptive sampling. In pro-
ceedings of the 27th Conference on Learning Theory,
35:138–175, 2014.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes. See Section 2 for problem setting, Sec-
tion 4 for algorithms, Theorem 3.1 for a lower
bound, and Theorems 5.2 and 5.3 for the up-
per bound.

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. Yes. We analyze the sample complex-
ity of our algorithms in Theorems 5.2 and 5.3.
Each step of our algorithms involves simple
calculations for O(n) items, and hence has
complexity O(n).

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes. Our code is available
on Github.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes. See Theorem 3.1
for a lower bound and Theorems 5.2 and 5.3
for the upper bound.

(b) Complete proofs of all theoretical results.
Yes. All proofs are included in the appen-
dices.

(c) Clear explanations of any assumptions. Yes.
The assumptions are explained when they are
used in the proofs.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes. Our code is available for repro-
ducing all the results.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.
Section 6 includes all details needed for re-
production.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, see Section 6

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). No. All our experiments
were run on a MacBook Pro (2021). We did
not use any other compute resources.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Not Applicable

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable



Clustering Items From Adaptively Collected Inconsistent Feedback

Clustering Items From Adaptively Collected Inconsistent Feedback:
Supplementary Material

A AN ALTERNATIVE MOTIVATION FOR OUR ORACLE

One can reasonably argue that our feedback model in eq. (1) is too simplistic for many practical applications.
For example, in distance-based clustering, items are often represented by vectors, which makes some items “more
similar” than others. The error probability of the oracle should ideally be a function of the similarity between
the queried items in this case. In Section 6, we experiment with such an oracle. We show that our algorithms
work well, even when p and q values vary across item pairs, as long as these values are “well separated” between
same- and different-cluster pairs. In this section, we argue that eq. (1) may itself be useful in some applications,
especially when the oracle is perfect.

To see this, suppose that the oracle makes no errors: given a pair of items, it can always correctly tell if they
are in the same cluster. Instead of the noise being present in the oracle, this time the noise comes from the
communication channel that the learner uses to receive feedback. In particular, eq. (1) corresponds to the case of
a Binary Asymmetric Channel (BAC) (Constantin and Rao, 1979). BACs are characterized by having different
error probabilities for 0 → 1 and 1 → 0 type errors, and have been extensively studied in the literature. In
our context, when the oracle sends a 1 (items are in the same cluster), the channel makes a 1 → 0 error with
probability 1− p, transmitting a 1 only with probability p. Similarly, it makes a 0 → 1 error with probability q,
transforming a 0 sent by the oracle (items in different cluster) into a 1 with probability q. As before, the goal is
to determine when enough evidence has been collected to correctly cluster the items without knowing the exact
properties of the channel (i.e., the value of p and q).

Perfect oracles are useful in many practical applications. They expose the clusters to the learners while hiding the
details of how these clusters were obtained. For example, an online marketplace might want to expose market
segments to an advertizing agency, while hiding fine-grained private information about the users’ purchasing
behavior that was used to arrive at these market segments. The advertizing agency pays for each query in this
case. It is useful to simulate a perfect oracle in such privacy-aware applications, even if the underlying items
exhibit a more intricate relationship.

B ADDITIONAL DETAILS REGARDING THE LOWER BOUND

Let V be a family of QBC instances that share the same value of n, p, and q but have non-matching cluster
assignments. For any instance ν ∈ V with cluster assignment ρ, define Cij := I{ρ(i) = ρ(j)}. Further, let ∆ :=

{W ∈ [0, 1]n×n : ∀i, j, Wij =Wji and
∑

i>j Wij = 1} and W̃ij :=Wij(Cij−C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)],
where d(x, y) := x ln (x/y) + (1− x) ln ((1− x)/(1− y)) is the binary relative entropy function. As discussed in
Section 3, the following lemma derives an expression for the expected log-likelihood ratio, and provides an upper
bound on this quantity.

Lemma B.1. Let V be a family of QBC instances that share the same value of n, p, and q but have non-matching
cluster assignments. Let F(t) be the σ-algebra generated by the item pair selections made by the algorithm and
the feedback returned by the oracle up to and including time t.

1. For any ν ̸= ν′ ∈ V and almost-surely finite stopping time τ with respect to (F(t))t, the expected log-likelihood
ratio under instance ν is given by

Eν [Lν,ν′(τ)] =
∑
i>j

Eν [Tij(τ)](Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)] ,

where, Tij(t) =
∑t

s=1 I{Pair {i, j} was sampled at time s}, Cij = I{ρ(i) = ρ(j)}, C ′

ij = I{ρ′(i) = ρ′(j)}, and
d(x, y) := x ln (x/y) + (1− x) ln ((1− x)/(1− y)) is the binary relative entropy function.



Shubham Gupta, Peter Staar, Christian de Sainte Marie

2. Let ∆ := {W ∈ [0, 1]n×n : ∀i, j, Wij =Wji and
∑

i>j Wij = 1}. The following holds

inf
ν′ ̸=ν∈V

Eν [Lν,ν′(τ)] ≤ Eν [τ ] sup
W∈∆

inf
ν′ ̸=ν∈V

∑
i>j

Wij(Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)] . (6)

Proof. Let ν, ν′ ∈ V be two QBC instances with cluster assignment functions ρ and ρ′ respectively. The log-
likelihood ratio Lν,ν′(t) of observations (O(s))s≤t under instances ν and ν′ is defined as

Lν,ν′(t) = ln
Πt

s=1Pν(O(s)|i(s), j(s))
Πt

s=1Pν′(O(s)|i(s), j(s)) ,

where {i(s), j(s)} is the item pair queried by the algorithm at time s. Because Pν(O(s)|i(s), j(s)) =(
pO(s)(1− p)1−O(s)

)I{ρ(i(s))=ρ(j(s))} (
qO(s)(1− q)1−O(s)

)I{ρ(i(s)) ̸=ρ(j(s))}
for any instance ν, the expression above

can be written as

Lν,ν′(t) =
∑
i>j

t∑
s=1

I{{i(s), j(s)} = {i, j}}(Cij − C
′

ij)

[
O(s) ln

p

q
+ (1−O(s)) ln

1− p

1− q

]
. (7)

Define a sequence of i .i .d . random samples (Yij(s))s≥1 for all item pairs i > j, obtained after successively probing
these pairs. The log-likelihood ratio can be equivalently written as

Lν,ν′(t) =
∑
i>j

Tij(t)∑
s=1

(Cij − C
′

ij)

[
Yij(s) ln

p

q
+ (1− Yij(s)) ln

1− p

1− q

]
.

Under problem instance ν, we have P(Yij(s) = 1) = Cijp+ (1− Cij)q, and hence the expected log-likelihood is
given by

Eν [Lν,ν′(t)] =
∑
i>j

Tij(t)(Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)] .

By Wald’s lemma (Siegmund, 1985), for a random stopping time τ with respect to (F(t))t, for any δ-PAC
algorithm for which P(τ < +∞) = 1, we get

Eν [Lν,ν′(τ)] =
∑
i>j

Eν [Tij(τ)] (Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)] .

This proves the first part of the lemma. For the second part, note that

inf
ν′ ̸=ν∈V

Eν [Lν,ν′(τ)] = inf
ν′ ̸=ν∈V

∑
i>j

Eν [Tij(τ)] (Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)]

= Eν [τ ] inf
ν′ ̸=ν∈V

∑
i>j

Eν [Tij(τ)]

Eν [τ ]
(Cij − C

′

ij) [Cijd(p, q)− (1− Cij)d(q, p)]

≤ Eν [τ ] sup
W∈∆

inf
ν′ ̸=ν∈V

∑
i>j

Wij(Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)] .

The last inequality uses the fact that the total sample complexity Eν [τ ] =
∑

i>j Eν [Tij(τ)] is the sum of the
number of times each item pair is pulled. This finishes the proof of the second part.

In the bound above, τ is a random stopping time that depends only on the observations collected in the past. As
we make no assumption on how τ is calculated as long as it depends only on the past observations, the inequality
above is valid for any δ-PAC algorithm. We analogously show a lower bound on infν′ ̸=ν∈V Eν [Lν,ν′(τ)] that is
satisfied by any δ-PAC algorithm. This bound is a simple consequence of Lemma 1 from Kaufmann et al. (2016).

Lemma B.2. With the same notation as Lemma B.1, any δ-PAC algorithm satisfies the following for any
instance ν ∈ V

inf
ν′ ̸=ν∈V

Eν [Lν,ν′(τ)] ≥ ln
1

2.4δ
.



Clustering Items From Adaptively Collected Inconsistent Feedback

Proof. The following lemma is equivalent to Lemma 19 from Kaufmann et al. (2016), and can be derived in
exactly the same way by using the definition of Lν,ν′(t) from eq. (7).

Lemma B.3 (Lemma 19 from Kaufmann et al. (2016)). With the same notation as Lemma B.1, for every event
E ∈ F(τ) and instances ν ̸= ν′ ∈ V, we have Eν [Lν,ν′(τ)] ≥ d(Pν(E), d(Pν′(E))).

Pick an arbitrary instance ν ∈ V. Let E = {ρ̂ = ρ} be the event that the cluster estimate ρ̂ returned by a δ-PAC
algorithm upon termination matches the cluster assignment ρ in instance ν. Clearly, E ∈ F(τ). Moreover,
by Definition 2.2, Pν(E) ≥ 1 − δ when the observations are drawn from instance ν and Pν′(E) < δ when the
observations are drawn from an arbitrary instance ν′ ̸= ν with a different cluster assignment function ρ′. For
this event E ,

d(Pν(E),Pν′(E)) ≥ d(1− δ, δ) ≥ ln
1

2.4δ
,

where the last inequality can be easily verified. Using this event in Lemma B.3 gives

Eν [Lν,ν′(τ)] ≥ 1

2.4δ
.

As the above is true for an arbitrary instance ν′ ̸= ν, taking an infimum over all such ν′ on the left hand side
yields the desired result.

We are now ready to prove our main result on the lower bound in Theorem 3.1.

Combining lemmas B.1 and B.2 gives a lower bound on Eν [τ ] in terms of δ, p, and q. The expression on the
right hand side of eq. (6) is a bit cumbersome. We simplify it in proof of Theorem 3.1 in the next section by
restricting the infimum to a smaller class of “challenging” alternative instances ν′ that differ from the instance
ν in the cluster assignment of only one item.

B.1 Proof of Theorem 3.1

Proof. Fix an arbitrary instance ν = (n, ρ, k, p, q) from V. For any δ-PAC algorithm, combining Lemma B.1
with Lemma B.2 results in

Eν [τ ] ≥
1

supW∈∆ infν′ ̸=ν∈V
∑

i>j Wij(Cij − C
′
ij) [Cijd(p, q)− (1− Cij)d(q, p)]

ln
1

2.4δ
. (8)

While this is a valid lower bound, the quantity on the right hand side of the equation above is not easy to compute.
We constrain the infimum in the denominator further to make the calculations easier while still preserving the
inequality. Towards this end, define V̄ν ⊆ V to be a class of instances that agree with ν on the cluster assignment
of all but one items while still having k clusters.

V̄ν :=

{
νℓm = (n, ρℓm, k, p, q) ∈ V : ρℓm(i) =

{
ℓ if i = m

ρ(i) otherwise.
, m ∈ [n], ℓ ∈ [k]\{ρ(m)}

}

Clearly, all instances in V̄ν have a different cluster assignment function compared to ν as item m is transferred
from its original cluster ρ(m) in ν to the ℓth cluster in νℓm, where ℓ ̸= ρ(m). There are still k clusters in νℓm
because we assume that each cluster has at least two items. For any function f(W, ν, ν′),

sup
W∈∆

inf
ν′ ̸=ν∈V

f(W, ν, ν′) ≤ sup
W∈∆

inf
ν′∈V̄ν

f(W, ν, ν′). (9)

To see this, consider any solution W∗ of the optimization problem on the left hand side. For this W∗,

sup
W∈∆

inf
ν′ ̸=ν∈V

f(W, ν, ν′) = inf
ν′ ̸=ν∈V

f(W∗, ν, ν′) ≤ inf
ν′∈V̄ν

f(W∗, ν, ν′) ≤ sup
W∈∆

inf
ν′∈V̄ν

f(W, ν, ν′).

Applying eq. (9) to f(W, ν, ν′) =
∑

i>j Wij(Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)] in eq. (8) gives

Eν [τ ] ≥
1

supW∈∆ infν′∈V̄ν

∑
i>j Wij(Cij − C

′
ij) [Cijd(p, q)− (1− Cij)d(q, p)]

ln
1

2.4δ
. (10)



Shubham Gupta, Peter Staar, Christian de Sainte Marie

Let Cm,ℓ
ij = I{ρℓm(i) = ρℓm(j)} for any instance νℓm ∈ V̄ν . For all m ∈ [n] and ℓ ∈ [k]\{ρ(m)}, the difference

Cij − Cm,ℓ
ij satisfies

Cij − Cm,ℓ
ij =


1 if ((i = m ∧ ρ(j) = ρ(m)) ∨ (j = m ∧ ρ(i) = ρ(m))) ∧ (i ̸= j)

−1 if ((i = m ∧ ρ(j) = ℓ) ∨ (j = m ∧ ρ(i) = ℓ)) ∧ (i ̸= j)

0 otherwise.

(11)

Therefore, for any W ∈ ∆,

inf
ν′∈V̄ν

∑
i>j

Wij(Cij − C
′

ij)[Cijd(p, q)− (1− Cij)d(q, p)]

= min
m∈[n]
ℓ ̸=ρ(m)

∑
i>j

Wij(Cij − Cm,ℓ
ij ) [Cijd(p, q)− (1− Cij)d(q, p)]

= min
m∈[n]
ℓ ̸=ρ(m)

d(p, q)∑
i ̸=m

WimI{ρ(i) = ρ(m)}+ d(q, p)
∑
i ̸=m

WimI{ρ(i) = ℓ}


= min

m∈[n]
ℓ ̸=ρ(m)

(
d(p, q)Hmρ(m) + d(q, p)Hmℓ

)
.

The first equality follows from the definition of V̄ν , the second from eq. (11) and the symmetry of Wij and Cij ,
and the third by defining Hmℓ to be the total weight in W assigned by item m to items in cluster ℓ for all m ∈ [n]
and ℓ ∈ [k]. That is,

Hmℓ =
∑
i ̸=m

WmiI{ρ(i) = ℓ} =
∑
i̸=m

WimI{ρ(i) = ℓ}.

Let H = {H ∈ [0, 1]n×k : Hmℓ =
∑

i ̸=mWmiI{ρ(i) = ℓ} , W ∈ ∆} be the set of all matrices H whose entries
have the form specified above. The optimization problem in eq. (10) can now be equivalently written as

sup
W∈∆

inf
ν′∈V̄ν

∑
i>j

Wij(Cij − C
′

ij) [Cijd(p, q)− (1− Cij)d(q, p)]

= sup
H∈H

min
m∈[n]
ℓ ̸=ρ(m)

d(p, q)Hmρ(m) + d(q, p)Hmℓ.

It is easy to see that an optimal solution H∗ ∈ H for the optimization problem above must ensure that
d(p, q)H∗

mρ(m) + d(q, p)H∗
mℓ = c for all m ∈ [n] and ℓ ∈ [k]\{ρ(m)} for the largest possible constant c. The

optimal value corresponding to such a H∗ would then be c. Moreover, because of the constraints on W, the
matrix H∗ must also satisfy

∑n
m=1

∑k
ℓ=1H

∗
mℓ = 2. We consider three cases, mentioning an optimal solution H∗

in each case that satisfies all the requirements above.

Case 1 - d(p, q) > d(q, p)/(k − 1): H∗
mℓ =

2
n if ℓ = ρ(m) and 0 otherwise with optimal c = 2d(p,q)

n .

Case 2 - d(p, q) < d(q, p)/(k − 1): H∗
mℓ =

2
n(k−1) if ℓ ̸= ρ(m) and 0 otherwise with optimal c = 2d(q,p)

n(k−1) .

Case 3 - d(p, q) = d(q, p)/(k − 1): H∗
mℓ =

2
nk for all m, ℓ. The value of optimal c = 2d(q,p)

n(k−1) =
2d(p,q)

n .

In all cases, the optimal value c is bounded above by 2
n max{d(p, q), d(q, p)/(k − 1)}. Using this bound on the

optimal value of the optimization problem in eq. (10) gives

Eν [τ ] ≥
n

2max
{
d(p, q), d(q,p)k−1

} ln
1

2.4δ
,

which completes the proof.



Clustering Items From Adaptively Collected Inconsistent Feedback

C ADDITIONAL DETAILS REGARDING THE ALGORITHM

We prove Lemma 4.1 in Appendix C.1, provide more details about QBClusterH in Appendix C.2, and show how
the learner can safely stop querying item pair {a, i} as soon as item i is assigned to a cluster in Appendix C.3.

C.1 Confidence Intervals in SplitItemsH

We prove a slightly more general result than Lemma 4.1, which will be useful in Appendix C.3. Towards this
end, the following concentration bound for the sum of a random number of independent sub-Gaussian random
variables will be useful.

Lemma C.1. Let X1, X2, . . . be independent sub-Gaussian random variables with ln E
[
eλXt

]
≤ λ2/8 for

all t ≥ 1. Define Z1, Z2, . . . to be Bernoulli random variables such that Zt+1 is Ft-measurable, where
Ft := σ(X1, X2, . . . , Xt) is the σ-algebra generated by X1, . . . , Xt. The following holds:

P

∀t ≥ 1,

∣∣∣∣∣
t∑

s=1

XsZs

∣∣∣∣∣ ≤
√∑t

s=1 Zs

2
ln

2t2(t+ 1)

δ

 ≥ 1− δ.

Proof. Fix an arbitrary t ≥ 1 and define S(t) =
∑t

s=1XsZs and T (t) =
∑t

s=1 Zs. Further, for all t ≥ 1 and a
constant λ ∈ R, define M(t) as

M(t) = exp

(
λS(t)− λ2T (t)

8

)
.

(M(t))t is a super-martingale with respect to (Ft)t. To see this, note that

E[M(t+ 1)|Ft] = E

[
exp

(
λS(t+ 1)− λ2T (t+ 1)

8

) ∣∣∣Ft

]
=M(t)

(
E

[
exp

(
λXt+1 −

λ2

8

)]
I{Zt+1 = 1}+ I{Zt+1 = 0}

)
≤M(t),

where the last inequality follows from our assumption that E
[
eλXt+1

]
≤ exp(λ2/8). As (M(t))t is a super-

martingale, E[M(t)] ≤ E[M(1)] ≤ 1. Now consider the event Eℓ(t) = {S(t) ≥ ϵ ∧ T (t) = ℓ} for a fixed natural
number ℓ between 1 and t. Using a Markov style inequality,

P(Eℓ(t)) ≤ e−λϵ E [exp (λS(t)) I{T (t) = ℓ}]

≤ e−λϵ+λ2ℓ
8 E

[
exp

(
λS(t)− λ2T (t)

8

)
I{T (t) = ℓ}

]
≤ e−λϵ+λ2ℓ

8 E [M(t)]

≤ exp

(
−λϵ+ λ2ℓ

8

)
.

Taking a supremum over all values of λ ∈ R gives P(Eℓ(t)) ≤ exp
(
− 2ϵ2

ℓ

)
. Therefore, as T (t) ≤ t,

P

(
S(t) ≥

√
T (t)

2
ln

2t2(t+ 1)

δ
∧ T (t) = ℓ

)
≤ δ

2t2(t+ 1)
ℓ = 1, 2, . . . , t.

As T (t) = 0 implies that Zs = 0 for all s ≤ t, we must have S(t) = 0 whenever T (t) = 0. Therefore, P(E0(t)) = 0
for any ϵ > 0. Taking a union bound over the events Eℓ(t) for all possible values of ℓ gives

P

(
S(t) ≥

√
T (t)

2
ln

2t2(t+ 1)

δ

)
≤

t∑
ℓ=0

δ

2t2(t+ 1)
=

δ

2t(t+ 1)
.

One can analogously show a high probability lower bound on S(t). Combining the two bound gives

P

(
|S(t)| ≥

√
T (t)

2
ln

2t2(t+ 1)

δ

)
≤ δ

t(t+ 1)
.



Shubham Gupta, Peter Staar, Christian de Sainte Marie

Taking a union bound over all time steps t = 1, 2, . . . and noting that
∑

t≥1
1

t(t+1) = 1 produces the desired

result.

We now prove a more general variant of Lemma 4.1 that does not assume that each item pair of the form {a, i}
is sampled at each step by the algorithm. While SplitItemsH does sample every such item pair at each step, we
later show in Appendix C.3 that this can be avoided in practice, slightly reducing the number of queries made
by the algorithm. The result below will be useful over there.

Lemma C.2. Define β(t, δ) = ln 2(t+1)t2|N |2
δ . Let a be an anchor item. Define N\{a} = J (1) ⊇ J (2) ⊇ J (3) . . .

such that item pair {a, i} is queried at time t if and only if i ∈ J (t). Define Zai(t) = I{i ∈ J (t)} and
Tai(t) =

∑t
s=1 Zai(s), and set

µ̂ai(t) =
1

Tai(t)

Tai(t)∑
s=1

Oai(s), lai(t) = µ̂ai(t)−
√
β(t, δ)

2Tai(t)
, and uai(t) = µ̂ai(t) +

√
β(t, δ)

2Tai(t)
, (12)

where Oai(s) is the outcome of querying item pair {a, i} at time s. Further, define,

p̂l(t) := max
i∈N\{a}

lai(t) and q̂u(t) := min
i∈N\{a}

uai(t). (13)

Assume that J (t) is fully determined by the queries and observations made until time t. Then, the event
{∀t ≥ 1, p ≥ p̂l(t) ∧ q ≤ q̂u(t) ∧ ∀i ∈ N\{a}, αai ∈ [lai(t), uai(t)]} happens with probability at least 1− δ.

Proof. Consider a fixed anchor a and another item i ∈ N\{a}. Define (Yai(t))t≥1 to be a sequence of i .i .d .

observations of the random variable Oai from eq. (1), and let Ỹai(t) = Yai(t)−αai, where recall that αai = E[Oai].
As J (t+ 1) ⊆ J (t), the learner observes Oai(t) = Yai(t) if the item pair {a, i} is queried at time t.

Let F(t) := σ(a, (Yaj(s))s≤t,j∈N\{a}, (Zaj(s))s≤t,j∈N\{a}). As the decision to keep an item in J (t) only
depends on the samples collected till time t, the random variable Zai(t + 1) is F(t)-measurable. Define
Sai(t) =

∑t
s=1(Oai(s) − αai)Zai(s) =

∑t
s=1(Yai(s) − αai)Zai(s) =

∑t
s=1 Ỹai(s)Zai(s). Note that (Ỹai(t))t≥1

are independent and it can be easily verified that they satisfy lnE
[
exp(λỸai(t))

]
≤ λ2/8. By Lemma C.1,

P

(
∀t ≥ 1,

∣∣∣∣Sai(t)

Tai(t)

∣∣∣∣ ≤
√

1

2Tai(t)
ln

2t2(t+ 1)|N |2
δ

)
≥ 1− δ

|N |2 .

Moreover,

Sai(t)

Tai(t)
=

1

Tai(t)

t∑
s=1

(Oai(s)− αai)Zai(s) =
1

Tai(t)

Tai(t)∑
s=1

(Oai(s)− αai) = µ̂ai(t)− αai.

With lai(t) = µ̂ai(t)−
√

β(t,δ)
2Tai(t)

and uai(t) = µ̂ai(t) +
√

β(t,δ)
2Tai(t)

, we get

P(∀t ≥ 1, αai ∈ [lai(t), uai(t)]) ≥ 1− δ

|N |2 .

The bound above is true for arbitrary choices of a fixed anchor item a and another item i ∈ N\{a}. Taking a
union bound over all possible choices of a and i gives

P(∀t ≥ 1, i ∈ N\{a}, αai ∈ [lai(t), uai(t)]) ≥ 1− δ.

The anchor a in the equation above is randomly chosen.

Proving the validity of p̂l(t) and q̂u(t) is now easy. Let E = {∀t ≥ 1, i ∈ N\{a}, αai ∈ [lai(t), uai(t)]} be the
event that the confidence intervals above are valid for all t ≥ 1. Then,

P((∀t ≥ 1, p̂l(t) ≤ p ∧ q̂u(t) ≥ q) ∧ E) = P(∀t ≥ 1, p̂l(t) ≤ p ∧ q̂u(t) ≥ q | E) P(E)
≥ P(∀t ≥ 1, p̂l(t) ≤ p ∧ q̂u(t) ≥ q | E) (1− δ)

≥ 1− δ.

(14)



Clustering Items From Adaptively Collected Inconsistent Feedback

Algorithm 2 QBClusterH(n, δ) more than two clusters

1: Input: Set of items N and confidence level δ
2: Arbitrarily order items in N
3: Set j = 1 and N j = N
4: while |N j | > 0 do
5: Cj

1, Cj
2 = SplitItemsH(N j , δ/j(j + 1)) where aj is the first item in N j and eq. (15) is used

6: Set Cj = Cj
1 and N j+1 = Cj

2

7: Set j = j + 1
8: end while
9: Return: C1, . . . , Cj−1

The first inequality uses the fact that P(E) ≥ 1− δ. To see the second inequality, note that under the event E ,

p̂l(t) = min
i∈N\{a}

lai(t) = min

 min
i∈N\{a}
αai=p

lai(t) , min
i∈N\{a}
αai=q

lai(t)

 ≤ min{p, q} ≤ p.

One can similarly show that q̂u(t) ≥ q under the event E , and hence the second inequality in eq. (14). This
finishes the proof.

Lemma 4.1 turns out to be a special case of Lemma C.2. In Lemma 4.1, we set J (t) = N\{a} for all t as
SplitItemsH samples all pairs of the form {a, i} for i ∈ N\{a} at each step t. This clearly satisfies all the
requirements imposed on J (t) in Lemma C.2. For this choice, we get Zai(t) = 1 and Tai(t) = t for all i ∈ N\{a}
and t ≥ 1. Using these values in Lemma C.2 recovers Lemma 4.1.

C.2 More Details About QBClusterH

As described in Section 4.2, QBClusterH proceeds in phases, calling SplitItemsH on the remaining items in each
phase until everything is clustered. Recall that SplitItemsH uses the estimates p̂l(t) and q̂u(t) from Lemma 4.1
to calculate a lower bound on p and an upper bound on q, respectively. In Lemma 4.1, these estimates are
written for one call to SplitItemsH, and hence they use a fixed anchor a. We now present a way to compute
these estimates by combining the observations collected across phases.

We index phases by j. Focus on phase j, and let N j ⊆ N be the set of items that SplitItemsH was asked to
partition in this phase. For doing so, the algorithm choses an anchor aj ∈ N j , runs for Tj steps, and returns two

clusters Cj
1, Cj

2 ⊆ N j , where Cj
1 has all items that are believed to be in the same cluster as aj and Cj

2 = N j\Cj
1

has the remaining items. We add a superscript j to the estimates p̂l(t) and q̂u(t) used in SplitItemsH to clearly
mark the phase. These estimates are now calculated as

p̂jl (t) := max

{
max

i∈N j\{aj}
laji(t), p̂j−1

l (Tj−1)

}
and q̂ju(t) := min

{
min

i∈N j\{aj}
uaji(t), q̂j−1

u (Tj−1)

}
. (15)

For these to be valid, we define p̂0l (T0) = −∞ and q̂0u(T0) = +∞. The estimate p̂jl (t) now corresponds to
the maximum lij(t) value seen till now across all item pairs sampled in phases j or earlier. One can make an
analogous statement about q̂ju(t).

We additionally (arbitrarily) order all items in N at the beginning, and then always choose the first unclustered
item in N j as the anchor aj in phase j. Now, the item pairs queried at time t in phase j completely depend on the
past observations (including observations from earlier phases). This ensures that all assumptions in Lemma C.2
are satisfied, and hence these estimates remain valid. Algorithm 2 summarizes the pseudocode for QBClusterH.

We want to make one final remark about this algorithm. Consider what happens at the beginning of the (j+1)th

phase in QBClusterH. The algorithm has found j clusters C1, C2, . . ., Cj by this time with high confidence. One
might be tempted to condition on the event that these clusters are correct, and calculate confidence intervals
[p̂jl , p̂

j
u] and [q̂jl , q̂

j
u] around p and q by combining past observations from item pairs within and across clusters



Shubham Gupta, Peter Staar, Christian de Sainte Marie

Algorithm 3 A more efficient implementation of SplitItemsH(N , δ) for k = 2

1: Input: Set of items N and confidence parameter δ

2: Sample an anchor a
unif∼ N

3: Set t = 1, C1 = {a}, C2 = ϕ, U(1) = N\{a}, and W = ϕ
4: while |U(t)| > 0 do
5: # Sample item pairs and update confidence intervals

6: Sample item pairs {a, i} for all i ∈ U(t) ∪W
7: Update µ̂ai(t), lai(t) and uai(t) for all i ∈ N\{a} using Lemma C.2
8: Update p̂l(t) and q̂u(t) using Lemma C.2
9:

10: # Assign items to clusters

11: C1 = C1 ∪ {i ∈ U(t) : lai(t) > q̂u(t)}
12: C2 = C2 ∪ {i ∈ U(t) : uai(t) < p̂l(t)}
13:

14: # Record first additions to C1 and C2
15: if t = min{s ≤ t : ∃i, j ∈ U(s), lai(s) > q̂u(s) ∧ uaj(s) < p̂l(s)} then
16: Set W = {i, j} for randomly chosen i ∈ C1\{a} and j ∈ C2
17: end if
18:

19: U(t+ 1) = U(t)\(C1 ∪ C2)
20: t = t+ 1
21: end while
22: Return: C1 and C2

C1, . . . , Cj , respectively. That is, one can collect all old samples for item pairs that are now known to lie in the
same cluster to get a sharper estimate of p, and do the same with items across clusters to get a sharper estimate
of q. The hope is that such p̂jl and q̂ju will offer a tighter lower and upper bound on p and q as compared to
eq. (15).

Unfortunately, we can’t do this. The tool we have for computing such confidence intervals is Lemma C.1. Think
of Zt in Lemma C.1 as indicating if observation Xt should be included in the sum or not. In our case, we want
to include an observation Oai(t) in estimating p only if items a and i belong together in one of the already found
clusters. Thus, the “Zt value” for the observation Oai(t) depends on whether item i was at some point moved to
the same cluster as the anchor a by SplitItemsH. This decision, however, depends not just on Oai(t), but also
on other observations for the pair {a, i} that were potentially collected after the observation Oai(t). Therefore,
this “Zt value” for Oai(t) is not completely determined by things that happen before time t, and hence we violate
the assumption that Zt is Ft−1-measurable in Lemma C.1

C.3 Avoiding Unnecessary Queries in SplitItemsH

Algorithm 3 presents a slightly more efficient variant of SplitItemsH. There are two key changes. First, at each

(

(

(

( (

(

(

(

(

(

Figure 4: An example demonstrating the role of W in
Algorithm 3.

step t, Algorithm 3 only samples item pairs {a, i}
where i ∈ U(t) ∪ W. Ignore the set W for now,
this means that the algorithm keeps sampling an
item pair {a, i} only if item i is currently unassigned.
In contrast, Algorithm 1 samples pairs {a, i} for all
i ∈ N\{a}. The set U(t) is completely determined
by the past observations. We show later that this
is also true for the set W. Therefore, we get valid
confidence intervals by setting J (t) = U(t) ∪ W in
Lemma C.2. The correctness of this algorithm can
be argued in the same way as SplitItemsH once the
validity of these confidence intervals is established.

The algorithm will sometimes run into problems if



Clustering Items From Adaptively Collected Inconsistent Feedback

it only samples items in U(t). The second addition in Algorithm 3 is the set W which addresses this issue. The
utility of W is best explained through an example. Figure 4 shows such an example with six items. Let a = 6
be the anchor (not shown in the figure). The figure shows the confidence intervals Iai(t) of the remaining five
items with respect to the anchor. Assume that the ground truth clusters are Y1 = {1, 2, 3, 6} and Y2 = {4, 5}.
All confidence intervals correctly contain the respective αai values (marked by dotted lines in Figure 4). The
figure also shows the current value of p̂l(t) and q̂u(t) as per Lemma C.2. Clearly, at this stage, the algorithm
will have C1 = {1, 2, 6}, C2 = {4, 5}, and U(t) = {3} using the conditions in Lines 11 and 12 in Algorithm 3.
Let p − p̂l(t) = ϵ and p̂l(t) − q̂u(t) = ω. If we only sample the item pair {a, 3} based on the contents of U(t),
the value of p̂l(t) and q̂u(t) will not change. We may then need to collect enough samples to reduce the length
of Ia3(t) to ϵ + ω in the worst case3 before la3(t) becomes greater than q̂u(t) and item 3 is moved to C1. The
problem, however, is that ϵ and ω may be arbitrarily small, and hence we may need arbitrarily many queries.
Algorithm 3 addresses this issue by querying additional items to continuously improve p̂l(t) and q̂u(t) so that ω
cannot be arbitrarily small. To do this, it adds the first items added to C1\{a} and C2 to a set W in Lines 15
to 17. It then samples item pairs of the form {a, i} for all i ∈ U(t)∪W. This ensures that at least one item from
each cluster is continuously sampled, which makes p̂l(t) and q̂u(t) converge to p and q, respectively, preventing
ω from becoming arbitrarily small. Note again that the items in the set W at time t are completely determined
by the past observations.

D ADDITIONAL DETAILS REGARDING THE ANALYSIS

In this section, we prove the correctness of SplitItemsH and QBClusterH and analyze their sample complex-
ity. We also show that these arguments, with a bit more work, apply to the more efficient implementation of
SplitItemsH from Appendix C.3 as well.

Let l̃ai(t) = maxs≤t lai(s) and ũai(t) = mins≤t uai(s). It is easy to see that if lai(s) and uai(s) are valid for all

s ≤ t, then αai ∈ [l̃ai(t), ũai(t)]. We can, therefore, equivalently use l̃ai(t) and ũai(t) to define the confidence
interval for αai. These confidence intervals will be valid for all t ≥ 1 and all items i ∈ N\{a} with probability at
least 1− δ by Lemma 4.1 (or Lemma C.2). We can similarly use p̃l(t) = maxs≤t p̂l(s) and q̃u(t) = mins≤t q̂u(s)
instead of p̂l(t) and q̂u(t). Besides being valid with high probability, these estimates have the desirable property
of being monotonic. That is,

l̃ai(t+ 1) ≥ l̃ai(t), ũai(t+ 1) ≤ ũai(t), p̃l(t+ 1) ≥ p̃l(t), and q̃u(t+ 1) ≤ q̃u(t).

Thus, the confidence intervals can only shrink, the lower bound on p can only go up, and the upper bound on
q can only come down as more queries are made. We use these modified estimates both in our implementation
and in our analysis, but for simplicity we don’t use the new notation.

Let a be an anchor item. In Algorithm 1, for any item i ∈ N\{a}, the value of the lower end lai(t) of the
confidence interval Iai(t) := [lai(t), uai(t)] continuously increases with t, as we query all item pairs {a, i} for
i ∈ N\{a}. Therefore, the estimate p̂l(t) = maxi∈N\{a} lai(t) also improves with time. One can analogously
argue that q̂u(t) also continuously improves as more queries are made. The following lemma quantifies this
improvement and shows that it also happens for the variant of SplitItemsH in Appendix C.3, even though this
variant does not sample all item pairs.

Lemma D.1. Assume that each ground truth cluster has at least two items. With β(t, δ) defined in Lemma 4.1,
the estimates p̂l(t) and q̂u(t) in Algorithms 1 and 3 satisfy the following with probability at least 1− δ.

p̂l(t) ≥ p− 2
√
β(t, δ)/2t and q̂u(t) ≤ q + 2

√
β(t, δ)/2t ∀t ≥ 1.

Proof. Let E = {∀t ≥ 1, p ≥ p̂l(t) ∧ q ≤ q̂u(t) ∧ ∀i ∈ N\{a}, αai ∈ [lai(t), uai(t)]} be the event that the
estimates ρ̂l(t), q̂u(t), and Iai(t) are valid at all time t and for all items i ∈ N\{a} and a randomly chosen anchor
a.

The proof is fairly simple for Algorithm 1. Consider an item i such that αai = p. Such an i always exists as each
cluster has at least two items. Under the event E , by Lemma 4.1,

lai(t) ≥ p− (uai(t)− lai(t)) = p− 2
√
β(t, δ)/2t.

3In the worst case, we will have p = ua3(t) making Ia3(t) valid but very lopsided. Note that the confidence intervals
need not be centered around the (unknown) true mean.



Shubham Gupta, Peter Staar, Christian de Sainte Marie

As p̂l(t) = maxj∈N\{a} laj(t), we therefore get p̂l(t) ≥ lai(t) ≥ p− 2
√
β(t, δ)/2t. One can analogously show that

q̂u(t) ≤ q + 2
√
β(t, δ)/2t.

Now lets move to Algorithm 3. We first argue that at least one item besides a is eventually added to both C1
and C2. Suppose for the sake of contradiction that this doesn’t happen. In this case, U(t) = N\{a} for all t.
Take two items i, j ∈ N\{a} such that αai = p and αaj = q. As more samples are collected, lai(t) approaches p

and uaj(t) approaches q under the event E as limt→∞
√
β(t, δ)/2t = 0. Therefore, we must have lai(t) > uaj(t)

for large enough (but finite) t as p > q. This triggers the movement of item i to cluster C1 and item j to cluster
C2 (see Lines 11 and 12), leading to a contradiction.

Let t1 be the first time step where this happens and let i1 and j1 be in the set of items moved to C1 and C2,
respectively, at this step. Without loss of generality, we assume that W = {i1, j1} in Lines 15 to 17. This
means that pairs {a, i1} and {a, j1} will be queried at all t ≥ t1. These pairs were also queried for all t < t1 as
i1, j1 ∈ U(t) for t < t1. Therefore, at any time t, the confidence intervals associated with these items is given by

lai1(t) = µ̂ai1(t)−
√
β(t, δ)/2t uai1(t) = µ̂ai1(t) +

√
β(t, δ)/2t,

laj1(t) = µ̂aj1(t)−
√
β(t, δ)/2t uaj1(t) = µ̂aj1(t) +

√
β(t, δ)/2t.

As αai1 = p and αaj1 = q, under the event E ,

lai1(t) ≥ p− (uai1 − lai1) = p− 2
√
β(t, δ)/2t, and

uaj1(t) ≤ q + (uaj1 − laj1) = q + 2
√
β(t, δ)/2t.

As before, p̂l(t) ≥ lai1(t) and q̂u(t) ≤ uaj1(t).

Noting that the event E happens with probability at least 1 − δ for both Algorithm 1 and Algorithm 3 by
Lemma 4.1 and Lemma C.2, respectively, finishes the proof.

The proof above, in part, shows that p̂l(t) → p and q̂u(t) → q as t becomes large. The difference between
p̂l(t) and q̂u(t) can therefore not remain arbitrarily close to zero as more samples are collected. However, this is
possible for Algorithm 3 only because it continuously samples items in the set W, justifying the use of this set
in the algorithm.

D.1 Proof of Theorem 5.1

Proof. We divide the proof into two parts, the first showing the correctness of SplitItemsH and the second
dedicated to QBClusterH.

Correctness of SplitItemsH: Let E = {∀t ≥ 1, p ≥ p̂l(t) ∧ q ≤ q̂u(t) ∧ ∀i ∈ N\{a}, αai ∈ [lai(t), uai(t)]}
be the event that the estimates ρ̂l(t), q̂u(t), and Iai(t) are valid at all time t and for all items i ∈ N\{a} and
a randomly chosen anchor a. We show that all cluster assignments are correct and the algorithm terminates in
finite time under event E , which happens with probability at least 1− δ by Lemma 4.1. Keep in mind that p > q
by Definition 2.1.

1. Correctness of the assignments: An item i is moved to cluster C1 if lai(t) > q̂u(t) in Line 11. Under the
event E ,

αai ≥ lai(t) > q̂u(t) ≥ q.

As αai takes only two values p and q, this implies that αai = p, and hence items a and i belong to the same
cluster. The decision to move item i to cluster C1 is therefore correct. One can similarly show that, under
event E , an item i is not in the same cluster as a if uai(t) < p̂l(t), making C2 the correct choice for i if there
are only two clusters.

2. Termination: The algorithm terminates when U(t) is empty. Assume for the sake of contradiction that this
never happens and let item i ∈ U(t) for all t ≥ 1. The item pair {a, i} is sampled at all time steps, and hence

lai(t) = µ̂ai(t)−
√
β(t, δ)/2t and uai(t) = µ̂ai(t) +

√
β(t, δ)/2t.



Clustering Items From Adaptively Collected Inconsistent Feedback

Assuming αai = p, we have lai(t) ≥ p− (uai(t)− lai(t)) = p− 2
√
β(t, δ)/2t. Let t′ be the smallest value of t

such that √
β(t, δ)

2t
<
p− q

4
. (16)

Note that such a t′ is finite as p > q and limt→∞

√
β(t,δ)
2t = 0. At this time step t′, by Lemma D.1,

lai(t
′)− q̂u(t

′) ≥ p− q − 4
√
β(t′, δ)/2t′ > 0,

where the last inequality follows from eq. (16). Thus, at a finite time t′, we have lai(t
′) > q̂u(t

′), and item i
will be moved from U(t′) to C1 by Line 11. As i ̸= U(t′ +1), this contradicts our assumption that i ∈ U(t) for
all t ≥ 1.

One can similarly show that if αai = q then eventually item i is moved to C2 after a finite number of steps.
Therefore, there can be no item that stays forever in the set of unclustered items U(t), and hence the algorithm
eventually terminates.

As E happens with probability at least 1 − δ and the algorithm terminates in finite time with correct cluster
assignment for all items under E , we conclude that Algorithm 1 is δ-PAC.

Correctness of QBClusterH: Algorithm 2 makes one call to SplitItemsH in each phase until all items are
clustered. We say that the jth phase has succeeded if the returned clusters satisfy Cj

1 = {i ∈ N j : αaji = p}
and Cj

2 = N j\Cj
1, where a

j is the anchor chosen in the call to SplitItemsH in this phase. As SplitItemsH

is δ-PAC4, the probability of the jth call succeeding in finite time is at least 1 − δj , where QBClusterH uses
δj = δ

j(j+1) . Suppose there are k ground truth clusters and assume that the first k phases succeed. This happens

with probability at least 1 −∑k
j=1 δ

j ≥ 1 − δ. In each call, the cluster containing the anchor for that call is

correctly isolated from the set of unclustered items N j+1 in finite time. This gives the correct k ground truth
clusters in the end in finite time, making QBClusterH δ-PAC.

One can follow the same steps as above to show that Algorithm 3 is δ-PAC by using Lemma C.2 instead of
Lemma 4.1. We now show a high probability upper bound on the sample complexity of our algorithms. Note
that the proof below applies as is to Algorithm 3 as well.

D.2 Proof of Theorem 5.2

Proof. Let E = {∀t ≥ 1, p ≥ p̂l(t) ∧ q ≤ q̂u(t) ∧ ∀i ∈ N\{a}, αai ∈ [lai(t), uai(t)]} be the event that the
estimates ρ̂l(t), q̂u(t), and Iai(t) are valid at all time t and for all items i ∈ N\{a} and a randomly chosen anchor
a. In what follows, assume that the event E has occurred.

Most of the pieces for proving Theorem 5.2 are already in place. Pick an item i with αai = p, and let t′ be the
smallest value of t such that eq. (16) holds. If i ∈ U(t′), then, as we show in the proof of Theorem 5.1, at time t′,

lai(t
′) > q̂u(t

′).

Item i will therefore be moved out of U(t) at time t′ by Line 11. If item i /∈ U(t′), then it was removed from U(t)
at some time t < t′. In either case, SplitItemsH queries the pair {a, i} at most t′ times. One can analogously

4Note that when the first k− 1 phases succeed, the kth call to SplitItemsH only receives items from one cluster. This
violates Theorem 5.1’s assumption of having two clusters with at least two items each. However, one can still follow the
arguments from the proof of Theorem 5.1, and use the estimates from eq. (15), to show that the last call will still succeed
with high probability.



Shubham Gupta, Peter Staar, Christian de Sainte Marie

show that at most t′ queries are made even when αai = q. Now, t′ is the smallest natural number that satisfies√
β(t′, δ)

2t′
<
p− q

4
⇒ β(t′, δ)

2t′
<

(p− q)2

16

(a)⇒ 1

2t′
ln

2(t′ + 1)t′2n2

δ
<

(p− q)2

16
(b)⇒ t′ >

40

(p− q)2
ln

32n2

δ(p− q)2

In the calculations above, n denotes the number of items and (a) follows from the definition of β(t, δ) in
Lemma 4.1. Implication (b) uses the following fact that can be easily verified numerically (also see Appendix D.3).

Fact 1. Let α ∈ (0, 1/4) and β ≥ 4. Then, 1
2x ln(βx2(x+ 1)) < α for all x > 2.5

α ln
(

β
α

)
.

More precisely, implication (b) follows from the right hand side of implication (a) by setting α = (p−q)2

16 and

β = 2n2

δ in Fact 1. Fact 1 can be used because (p−q)2

16 < 1/4 and 2n2

δ > 4 when n ≥ 2. Using the smallest integer
value of t′ that satisfies the right hand side of (b), we conclude that the maximum number of times item pair
{a, i} is queried is bounded by

t′ ≤ 40

(p− q)2
ln

(
32n2

δ(p− q)2

)
+ 1.

We can now bound the total number of queries τ made by the algorithm by adding the maximum number of
queries for all items in N\{a}. As this calculation is valid under event E , we get with probability at least 1− δ
(by Lemma 4.1),

τ ≤ (n− 1)

(
40

(p− q)2
ln

(
32n2

δ(p− q)2

)
+ 1

)
= O

(
n

(p− q)2
ln

n2

δ(p− q)2

)
.

D.3 More details about Fact 1

Define f(x) = 1
2x ln(β(x+ 1)3). Then, for any β ≥ 1 and x ≥ 1, we have

1

2x
ln(βx2(1 + x)) ≤ f(x).

Therefore, to show Fact 1, it suffices to show that f(x) < α for all x > 2
α ln β

α . Note that,

f(x) =
1

2x
ln(β(x+ 1)3) =

1

2x
ln(β) +

3

2x
ln(x+ 1).

Let f1(x) = 1
2x ln(β) and f2(x) = 3

2x ln(x + 1). It is easily seen that both f1(x) and f2(x) are monotonically
decreasing functions. Moreover,

f1(x) <
α

4
⇒ x >

2

α
ln(β) =: x1.

Let x2 := 2.5
α ln( 4

α ). Then,

f2(x2) = α
3

5 ln(4/α)
ln

(
2.5

α
ln

(
4

α

)
+ 1

)
.

One can numerically verify that 3
5 ln(4/α) ln

(
2.5
α ln

(
4
α

)
+ 1
)
< 3

4 for all α ∈ (0, 1/4). Therefore, f(x2) <
3
4α.

Choosing x0 = max{x1, x2}, we get f(x) < α for all x > x0. All that remains is to show that x0 ≤ 2.5
α ln β

α . To
see this, note that

x1 =
2

α
lnβ <

2.5

α
lnβ <

2.5

α
ln
β

α
∀β > 1 and α ∈ (0, 1/4).

Similarly,

x2 =
2.5

α
ln

4

α
≤ 2.5

α
ln
β

α
∀β ≥ 4 and α ∈ (0, 1/4).

Therefore, for all β ≥ 4 and α ∈ (0, 1/4), we have max{x1, x2} ≤ 2.5
α ln β

α , and hence f(x) < α for all x > 2.5
α ln β

α .



Clustering Items From Adaptively Collected Inconsistent Feedback

D.4 Proof of Theorem 5.3

In this section, we prove a slightly more general variant of Theorem 5.3. Recall that QBClusterH arbitrarily
orders items in N before the clustering begins. Then, in each phase, it discovers one pure cluster whose identity
is determined by the anchor chosen in that step. This means that clusters are discovered in arbitrary order.
However, the size of the cluster found in phase j determines how many queries will be needed in subsequent
phases. For example, if |Cj

1| is large, |N j+1| will be smaller, reducing the number of items to be clustered in the
next phase. Therefore, the worst case happens when clusters are discovered in the increasing order of their sizes.
This is the worst-case expression that is derived in the result below.

Theorem D.1. For any QBC instance ν = (n, ρ, k, p, q) with k ≥ 2 clusters, let ni denote the number of
items in the ith ground-truth cluster. Assume without loss of generality that the clusters are indexed such that
n1 ≤ n2 ≤ . . . ≤ nk. Further, assume that n1 ≥ 2. Then, with probability at least 1 − δ, QBClusterH makes at
most τ queries such that,

τ = O

 k∑
j=1

n−∑j−1
i=1 ni

(p− q)2
ln

(
(n−∑j−1

i=1 ni)
2j(j + 1)

δ(p− q)2

) .

Proof. Let n̂j = |Cj
1|, where recall that Cj

1 is the pure cluster returned by SplitItemsH in the jth phase.

QBClusterH then requests SplitItemsH to cluster ñj+1 = n −∑j
i=1 n̂i items in the (j + 1)th iteration. This

takes at most O
(

ñj+1

(p−q)2 ln
ñ2
j+1j(j+1)

δ(p−q)2

)
queries with probability at least 1− δj by Theorem 5.2 if all previous calls

to SplitItemsH have succeeded.

We argued in the proof of Theorem 5.1 that, with probability at least 1 − δ, QBClusterH runs for exactly k
phases, successfully isolating one pure cluster from the rest in each phase. This recovers the correct k ground-
truth clusters at the end. In the worst case, clusters are discovered in increasing order of their sizes, making
n̂i = ni for i = 1, 2, . . . , k. Adding the sample complexity of each phase gives us the sample complexity of
QBClusterH.

Theorem 5.3 is a special case of this result. For instance, one can obtain it by setting n1 = n2 = . . . = nk−1 = 2,
nk = n− 2(k − 1), and replacing the j inside ln with its maximum value k.

E MORE DETAILS ABOUT SplitItemsS AND QBClusterS

In this section, we provide more details about SplitItemsS and QBClusterS. Let us start with SplitItemsS.
We borrow a more efficient way to solve the best-arm identification problem from Kaufmann et al. (2016). The
solution uses a test based on the so-called SGLRT stopping rule5.

The test goes as follows. Suppose X ∼ Bernoulli(µ1) and Y ∼ Bernoulli(µ2) are independent, and we have
paired samples (xt, yt)t≥1 from these random variables. Let µ̂1(t) = 1

t

∑
s≤t xs and µ̂2(t) = 1

t

∑
s≤t ys be the

empirical means at time t. For a given ϵ ∈ (0, 1), the test terminates when

1

2

[
d

(
µ̂1(t),

µ̂1(t) + µ̂2(t)

2

)
+ d

(
µ̂1(t),

µ̂1(t) + µ̂2(t)

2

)]
>

2

t
ln

(
t(ln(3t))2

ϵ

)
, (17)

where d(x, y) is the binary relative entropy function defined in Section 3. Let ξ be the random termination time.
By checking if µ̂1(ξ) > µ̂2(ξ), the test correctly accepts/rejects the hypothesis µ1 > µ2 with probability at least
1− ϵ.

Kaufmann et al. (2016) showed that this test is equivalent to the following procedure. Obtain paired samples
{xt, yt}t≥1. Let the confidence interval for µ1 and µ2 at time t be given by [l1(t), u1(t)] and [l2(t), u2(t)],

5SGLRT stands for Sequential Generalized Likelihood Ratio Test



Shubham Gupta, Peter Staar, Christian de Sainte Marie

respectively. Then, for j = 1, 2, set

lj(t) = inf

{
z < µ̂j(t) : td(µ̂j(t), z) ≤ ln

2t(ln(6t))2

ϵ

}
,

uj(t) = sup

{
z > µ̂j(t) : td(µ̂j(t), z) ≤ ln

2t(ln(6t))2

ϵ

}
,

where µ̂1(t) and µ̂(t) are the empirical estimates of µ1 and µ2 using the first t samples. The test terminates
when the confidence intervals separate out, or in other words, when l1(t) > u2(t) or l2(t) > u1(t). See the proof
of Lemma 11 in Kaufmann et al. (2016) for more details.

This test is asymptotically optimal in the sense that it satisfies P
(
lim supϵ→0

ξ
ln(1/ϵ) ≤

2(1+η)
d(µ1,µ2)

)
= 1 for all η > 0

(Kaufmann et al., 2016).

In our context, let N be the set of items to be grouped into two clusters. Define ψ(t, δ) = ln t(ln(3t))2|N |2
δ and let

lai(t) = inf{z < µ̂ai(t) : td(µ̂ai(t), z) ≤ ψ(2t, δ)},
uai(t) = sup{z > µ̂ai(t) : td(µ̂ai(t), z) ≤ ψ(2t, δ)}.

For the lai(t) and uai(t) defined above, the following statement is a simple consequence of Lemma 4 in Kaufmann
and Kalyanakrishnan (2013).

P(αai ∈ [lai(t), uai(t)]) ≥ 1− δ

t(ln(6t))2|N |2 .

Taking a union bound over t ≥ 1, we get

P(∀t ≥ 1, αai ∈ [lai(t), uai(t)]) ≥ 1− δ

|N |2 .

As this is true for arbitrary choices of anchor a and item i ∈ N\{a}, we can again take a union bound and get

P(∀t ≥ 1,∀i ∈ N\{a}, αai ∈ [lai(t), uai(t)]) ≥ 1− δ,

where a is a randomly chosen anchor item. Therefore, these confidence intervals are correct with high probability,
as in Lemma 4.1.

SplitItemsS replicates SplitItemsH as is, except that it uses the confidence intervals described above for all
calculations, thereby implementing the test based on the SGLRT stopping rule in Meta-Algorithm 1. Given the
high-probability validity of these confidence intervals (argued above), the proof of correctness of SplitItemsS
follows along the same lines as the proof of Theorem 5.1. The fact that these intervals are asymptotically optimal
explains the lower sample complexity of the algorithm, especially when p and q change with n.

QBClusterS is defined exactly as Algorithm 2 except that it calls SplitItemsS instead of SplitItemsH at each
iteration.


	INTRODUCTION
	PROBLEM SETTING
	LOWER BOUND
	ALGORITHMS
	SplitItemsH for Two Clusters
	QBClusterH for k 2 Clusters

	ANALYSIS
	EXPERIMENTS
	CONCLUSION
	AN ALTERNATIVE MOTIVATION FOR OUR ORACLE
	ADDITIONAL DETAILS REGARDING THE LOWER BOUND
	Proof of theorem:lowerbound

	ADDITIONAL DETAILS REGARDING THE ALGORITHM
	Confidence Intervals in SplitItemsH
	More Details About QBClusterH
	Avoiding Unnecessary Queries in SplitItemsH

	ADDITIONAL DETAILS REGARDING THE ANALYSIS
	Proof of theorem:correctness
	Proof of theorem:samplecomplexityalgname2
	More details about fact:numericalrelation
	Proof of theorem:samplecomplexityalgnamek

	MORE DETAILS ABOUT SplitItemsS AND QBClusterS

