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Abstract

The Geometric Algebra Transformer (GATr)
is a versatile architecture for geometric deep
learning based on projective geometric alge-
bra. We generalize this architecture into a
blueprint that allows one to construct a scal-
able transformer architecture given any geo-
metric (or Clifford) algebra. We study ver-
sions of this architecture for Euclidean, pro-
jective, and conformal algebras, all of which
are suited to represent 3D data, and evaluate
them in theory and practice. The simplest Eu-
clidean architecture is computationally cheap,
but has a smaller symmetry group and is not
as sample-efficient, while the projective model
is not sufficiently expressive. Both the confor-
mal algebra and an improved version of the
projective algebra define powerful, performant
architectures.

1 INTRODUCTION

Geometric problems require geometric solutions, such
as those developed under the umbrella of geometric
deep learning (Bronstein et al., 2021). The primary
design principle of this field is equivariance to sym-
metry groups (Cohen and Welling, 2016): network
outputs should transform consistently under symmetry
transformations of the inputs. This idea has sparked
architectures successfully deployed to problems from
molecular modelling to robotics.

In parallel to the development of modern geometric
deep learning, the transformer (Vaswani et al., 2017)
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rose to become the de-facto standard architecture
across a wide range of domains. Transformers are
expressive, versatile, and exhibit stable training dy-
namics. Crucially, they scale well to large systems,
mostly thanks to the computation of pairwise interac-
tions through a plain dot product and the existence of
highly optimized implementations (Rabe and Staats,
2021; Dao et al., 2022).

Only recently have these two threads been woven to-
gether. While different equivariant transformer archi-
tectures have been proposed (Fuchs et al., 2020; Jumper
et al., 2021; Liao and Smidt, 2022), most involve expen-
sive pairwise interactions that either require restricted
receptive fields or limit the scalability to large systems.
Brehmer et al. (2023) introduced the Geometric Alge-
bra Transformer (GATr), to the best of our knowledge
the first equivariant transformer architecture based
purely on dot-product attention. The key enabling
idea is the representation of data in the projective
geometric algebra. This algebra supports the embed-
ding of various kinds of 3D data and has an expressive
invariant inner product.

In this paper, we generalize the GATr architecture to
arbitrary geometric (or Clifford) algebras. Given any
such algebra, we show how to construct a scalable,
equivariant transformer architecture. We focus on the
Euclidean and conformal geometric algebra in addition
to the projective algebra used by Brehmer et al. (2023)
and discuss how all three can represent 3D data.

We compare GATr variations based on these three
algebras. Theoretically, we study their expressivity,
the representation of 3D positions, and the ability to
compute attention based on Euclidean distances. In
experiments, we compare the architectures on n-body
modelling tasks and the prediction of wall shear stress
on large artery meshes. We also comment on normal-
ization and training stability issues.

All variations of the GATr architecure prove viable,
with unique strengths. While the Euclidean architec-
ture is the simplest and most memory-efficient, it has a
smaller symmetry group and is less sample-efficient. In
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its simplest form, the projective algebra is not expres-
sive enough, but it performs well in an improved, more
complex version. While the conformal algebra makes
normalization more challenging, it offers an elegant
formulation of 3D geometry and strong experimental
results.

2 GEOMETRIC ALGEBRAS

Geometric algebra We start with a brief introduc-
tion to geometric algebra (GA). An algebra is a vector
space that is equipped with an associative bilinear
product V × V → V .

Given a vector space V with a symmetric bilinear inner
product, the geometric or Clifford algebra G(V ) can be
constructed in the following way: choose an orthogonal
basis ei of the original d-dimensional vector space V .
Then, the algebra has 2d dimensions with a basis given
by elements ej1ej2 ...ejk =: ej1j2...jk , with 1 ≤ j1 < j2 <
... < jk ≤ d, 0 ≤ k ≤ d. For example, for V = R3,
with orthonormal basis e1, e2, e3, a basis for the algebra
G(R3) is

1, e1, e2, e3, e12, e13, e23, e123. (1)

An algebra element spanned by basis elements with k
indices is called a k-vector or a vector of grade k. A
generic element whose basis elements can have varying
grades is called a multivector. A multivector x can be
projected to a k-vector with the grade projection ⟨x⟩k.

The product on the algebra, called the geometric prod-
uct, is defined to satisfy eiej = −ejei if i ̸= j and
eiei = ⟨ei, ei⟩, which by bilinearity and associativity
fully specifies the algebra. As an example, for G(R3),
we can work out the following product

e23e12 = (e2e3)(e1e2) = (−e3e2)(−e2e1)
= e3(e2e2)e1 = e3⟨e2, e2⟩e1 = e3e1 = −e1e3 = −e13.

(2)

GAs are equipped with a linear bijection ̂ej1j2...jk =
(−1)kej1j2...jk , called the grade involution, a linear bi-
jection ˜ej1j2...jk = ejk...j2j1 , called the reversal, an inner
product ⟨x, y⟩ = ⟨xỹ⟩0, and an inverse x−1 = x̃/⟨x, x⟩,
defined if the denominator is nonzero. A group element
u ∈ Pin(V ) acts on an algebra element x ∈ G(V ) by
(twisted) conjugation: u[x] = uxu−1 if u ∈ Spin(V )
and u[x] = ux̂u−1 otherwise. This action is linear,
making G(V ) a representation of Pin(V ). From the
geometric product, another associative bilinear product
can be defined, the wedge product ∧. For k-vector x
and l-vector y, this is defined as x ∧ y = ⟨xy⟩k+l.

All real inner product spaces are equivalent to a space
of the form Rp,q,r, with an orthogonal basis with p basis

elements that square to +1 (⟨ei, ei⟩ = 1), q that square
to -1 and r that square to 0. Similarly, all GAs are
equivalent to an an algebra of the form G(Rp,q,r). We’ll
write G(p, q, r) := G(Rp,q,r),Pin(p, q, r) := Pin(Rp,q,r).

Geometric algebras for 3D space We consider
three GAs to model three dimensional geometry. The
first is G(3, 0, 0), the Euclidean GA (EGA), also known
as Vector GA. The k-vectors have as geometric inter-
pretation respectively: scalar, vectors, pseudovectors,
pseudoscalar. A unit vector x in Pin(3, 0, 0) represents
a mirroring through the plane normal to x. Combined
reflections generate all orthogonal transformation, mak-
ing the EGA a representation of O(3), or of E(3), in-
variant to translations.

To represent translation-variant quantities (e.g. posi-
tions), we can use G(3, 0, 1), the projective GA (PGA).
Its base vector space R3,0,1 adds to the three Euclidean
basis elements, the basis element e0 which squares to
0 (“homogeneous coordinates”). A unit 1-vector in the
PGA is written as v = n − δe0, for a Euclidean unit
vector n ∈ R3, and δ ∈ R, and represents a plane
normal to n, shifted δ from the origin. The 2-vectors
represent lines and 3-vectors points (Dorst and De Ken-
inck). The group Pin(3, 0, 1) is generated by the unit
vectors representing reflections through shifted planes,
generating all of E(3), including translations.

The final algebra we consider is G(4, 1, 0), the conformal
GA (CGA, (Dorst et al., 2009)). Its base vector space
R4,0,1 adds to the three Euclidean basis elements ei,
the elements e+ and e− which square to +1 and −1
respectively. Alternatively, it is convenient to choose a
non-orthogonal basis ∞ = e−−e+ and o = (e−+e+)/2,
such that ⟨∞,∞⟩ = ⟨o, o⟩ = 0 and ⟨∞, o⟩ = −1. Planes
in the CGA are represented by a 1-vector n− δ∞, for
a Euclidean unit vector n and δ ∈ R. The Euclidean
group E(3) is generated by all such planes, which form
a subgroup of Pin(4, 1, 0). The CGA contains a point
representation by a null 1-vector p = o+p+ ∥p∥2∞/2,
for a Euclidean position vector p ∈ R3. The different
ways in which points are represented in these three
algebras are visualized in Figure 1.

3 THE GENERALIZED
GEOMETRIC ALGEBRA
TRANSFORMER

In this section, we first summarize the prior work, and
then discuss how to generalize it from the PGA to the
other algebras than model Euclidean geometry.
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Figure 1: The representations of points in the EGA, PGA and CGA, shown with one spatial dimension for
visualization clarity. The dashed lines shows the possible coordinates of points.

3.1 The original Geometric Algebra
Transformer

Our work builds on the Geometric Algebra Trans-
former (GATr) architecture introduced by Brehmer
et al. (2023). This architecture is a transformer archi-
tecture (Vaswani et al., 2017) modified in two ways.
First, inputs, outputs, and hidden states consist not
only of the usual scalar vector spaces, but also of multi-
ple copies of the projective geometric algebra G(3, 0, 1).
Second, all GATr layers are equivariant with respect
to E(3), the symmetry group of 3D space.

To satisfy these objectives, the authors construct the
most general E(3)-equivariant linear maps G(3, 0, 1) →
G(3, 0, 1) and modify the nonlinearities and normaliza-
tion layers to equivariant counterparts. In the MLP,
they let the inputs interact via the geometric product
and another bilinear interaction, the join. In the atten-
tion mechanism, they compute an invariant attention
weight between key k and query q – more on this later.

3.2 Generalizing GATr to arbitrary algebras

We now generalize the GATr architecture from the
projective algebra to include also the Euclidean and
conformal algebras. Given a choice of algebra, the
generalized GATr architecture uses (many copies of)
the algebra as its feature space and is equivariant to
E(3) transformations. We will refer to the resulting
architecture for the EGA, PGA and CGA as E-GATr,
P-GATr, and C-GATr, respectively.

The general GATr construction involves the following
modifications to a generic transformer:

1. constrain the linear layers to be equivariant,

2. switch normalization layers and nonlinearities to
their equivariant counterparts,

3. let the inputs to the MLP interact via the geomet-
ric product,

4. compute an invariant attention weight between

key k and query q via the algebra’s inner product
⟨k, q⟩.

We will discuss the construction of equivariant linear
maps in Sec. 3.3 and the choice of normalization layers
in Sec. 3.4.

As discussed in Sec. 2, three algebras offer natural em-
beddings for 3D data: the Euclidean algebra G(3, 0, 0),
the projective algebra G(3, 0, 1), and the conformal
algebra G(4, 1, 0). We thus construct GATr variants
based on these three algebras and refer to them as
E-GATr, P-GATr, and C-GATr, respectively.

The projective and conformal algebras are faithful rep-
resentations of E(3). The Euclidean algebra, however,
only transforms by the group O(3) of rotations and
mirroring. To make E-GATr E(3) equivariant, we cen-
ter inputs, for instance by moving the center of mass
to the origin, and make the network O(3)-equivariant.

The GATr architecture introduced in Brehmer et al.
(2023) was based on the PGA, but differs from P-
GATr in two key ways: the MLP uses the join in
addition to the geometric product; and in addition
to PGA inner product attention, it uses a map from
PGA 3-vectors representing points to CGA 1-vectors
representing points and uses the CGA inner product
on those. See Brehmer et al. (2023) for details. We
refer to this version as improved P-GATr (iP-GATr).

3.3 Constructing equivariant maps

In any geometric algebra, for all u ∈ Pin(V ), x, y ∈
G(V ), we have that u[xy] = u[x]u[y]. Hence, the ge-
ometric product is equivariant. Also, any k-vector
transforms into a k-vector by the action of Pin(V ),
making the grade projection equivariant. As the GA
inner product results in a scalar, it is invariant. Further-
more, in the PGA, there is a E(3)-invariant non-scalar
multivector e0. Hence, multiplication with e0 is also
E(3)-equivariant. The EGA has no such invariant mul-
tivectors (other than 1).

In Brehmer et al. (2023), it was proven that in the
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EGA and PGA, all E(3)-equivariant linear maps can
be constructed from linear combinations of geometric
product, grade projections and invariant multivectors.
To generalize this to include the CGA, in this paper we
use a numerical approach to finding equivariant maps.

Let G(V ) denote the EGA, PGA or CGA. As discussed
above, we have an action of the Euclidean group E(3)
on the algebra, here denoted as a group representation
ρ, so that for each g ∈ E(3), ρ(g) : G(V ) → G(V ) is
a linear bijection, respecting the group multiplication
structure of E(3). Any map ϕ : G(V ) → G(V ) is said
to be equivariant if for any g ∈ E(3), the following
equation is satisfied:

ρ(g) ◦ ϕ = ϕ ◦ ρ(g)

If ϕ is a linear map, it is equivalently a vector vec(ϕ)
in the vector space G(V ) ⊗ G(V )∗, where G(V )∗ is
the dual vector space, the vector space of linear maps
G(V ) → R. This vector space is also equipped with a
E(3) action ρ⊗ρ∗, where ρ∗(g) := ρ(g−1)T is the called
the representation adjoint to ρ. Hence, the equivari-
ance constraint of ϕ : G(V ) → G(V ) is equivalent to
invariance of vec(ϕ) ∈ G(V ) ⊗ G(V )∗, thus satisfying
for each g ∈ E(3):

(ρ⊗ ρ∗)(g)vec(ϕ) = ϕ

⇐⇒ ((ρ⊗ ρ∗)(g)− 1)vec(ϕ) = 0 (3)

This constraint can be solved by sampling sufficiently
many g ∈ E(3), row-stacking the matrices ((ρ⊗ρ∗)(g)−
1) and numerically computing its null-space. However,
this may require impractically many sampler, and thus
computational cost. Later, we’ll discuss equivariant
multilinear maps, for which this issue is even more
pressing. A more efficient approach, as also discussed
for generic Lie groups by Finzi et al. (2021), is to
solve the constraint via the Lie algebra. Please see the
Appendix for more details.

In the GAs we consider, for any rototranslation g ∈
SE(3) ⊆ Spin, there is a bivector X that represents
an infinitesimal transformation, or Lie algebra element:
exp(X) = g, where we use the GA exponential that is
defined through the Taylor series:

exp(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + ...

Filling in g = exp(X) and collecting linear terms, we
find the action of the infinitesimal X on the algebra,
which is a Lie algebra representation dρ(X) sending
v 7→ dρ(X)(v) = Xv − vX. Similarly, from the invari-
ance constraint in Eq. (3), we can collect the linear
terms in X and obtain an infinitesimal equivariance
constraint:

d(ρ⊗ ρ∗)(X)vec(ϕ) = 0 (4)

where d(ρ⊗ ρ∗)(X) = dρ(X)⊗ 1− 1⊗ dρT (X). This
constraint should be statisfied for all X that generate
SE(3) in the algebra. For the EGA and PGA, these are
all bivectors, and for the CGA these are the bivectors
generated by e1, e2, e3,∞. The Lie algebra constraint
Equation 4 is linear inX, so we can require it just on the
6 dimensional basis of the SE(3)-generating bivectors.
For full E(3)-equivariance including mirroring, we add
one additional mirror constraint as in Equation 3.

Applying this strategy to the EGA, PGA and CGA,
and studying the resulting null-space, we find that the
pattern found by Brehmer et al. (2023) generalizes
to the CGA: all equivariant linear maps are linear
combinations of grade projections and multiplication
with invariant multivectors, which are e0 for the PGA
and ∞ for the CGA. Thus, for parameters α, β, γ, δ,
these can be parameterized as follows. For the EGA,
we find

ϕ(x) =

3∑
k=0

αk⟨x⟩k.

For the PGA, we find

ϕ(x) =

4∑
k=0

αk⟨x⟩k +

4∑
k=1

βk⟨e0x⟩k.

Finally, for the CGA, we find

ϕ(x) =

5∑
k=0

αk⟨x⟩k

+

5∑
k=1

βk⟨∞⟨x⟩k⟩k−1

+

4∑
k=0

γk⟨∞⟨x⟩k⟩k+1

+

4∑
k=1

δk∞⟨∞⟨x⟩k⟩k−1.

The CGA equivariant linear maps have a different struc-
ture from the PGA maps, because when multiplying a
k-vector in the PGA by e0, one obtains a k + 1-vector,
because e0 has an inner product of 0 with all other vec-
tors. On the other hand, in the CGA, ⟨∞, o⟩ = −1, so
multiplying a k-vector with ∞ results in a multivector
with grades k − 1 and k + 1.

3.4 Normalization layers

Transformers typically use layer normalization after or,
more recently, before the self-attention mechanism and
the MLP (Xiong et al., 2020). GATr is no exception
and proposes an equivariant modification of LayerNorm,



Pim de Haan, Taco Cohen, Johann Brehmer

which for n multivector channels is given by

G(p, q, r)n → G(p, q, r)n : x 7→ x√
1
n

∑n
i=1⟨xi, xi⟩+ ϵ

.

To ensure equivariance, this leaves out the shift to zero
mean used typically in normalization.

This approach works when q = r = 0, as then the
inner product is directly related to the magnitude of
the multivector coefficients, which the normalization
layer is designed to keep controlled. However, for the
PGA, with r = 1, the 8 dimensions containing e0
do not contribute to the inner product, making their
magnitudes no longer well-controlled. We found that
a reasonably high magnitude of ϵ = 0.01 suffices to
stabilize training.

For the CGA, with q = 1, the situation is worse. First,
as the inner products can be negative, the channels can
cancel each other out. In a first attempt to address this,
we add the absolute value around the inner product:

G(p, q, r)n → G(p, q, r)n : x 7→ x√
1
n

∑n
i=1|⟨xi, xi⟩|+ ϵ

However, also within one multivector some dimension
contribute negatively to the inner product and, for
example, a scalar and pseudoscalar can cancel out to
give a 0-norm (null) multivector. The coefficients of
such a multivector grow by 1/

√
ϵ with each normaliza-

tion layer. Empirically, we found that setting ϵ = 1
stabilizes training, but harms model performance.

Instead, we found it beneficial to use the following norm
in the CGA, which applies the absolute value around
each multivector grade separately:

G(p, q, r)n → G(p, q, r)n

x 7→ x√
1
n

∑n
i=1

∑5
k=0|⟨⟨xi⟩k, ⟨xi⟩k|⟩+ ϵ

This approach mostly addressed stability concerns.
However, due to the fact that we still cannot fully
control the magnitude of the coefficients, we found it
necessary to train C-GATr at 32-bit floating-point pre-
cision, whereas the other GATr variants trained well
at 16-bit precision (bfloat16).

4 THEORETICAL COMPARISON

We analyze the GATr variants theoretically from three
angles: their ability to epress any equivariant multilin-
ear map, their ability to encode absolute positions and
their ability to compute attention based on distances.

4.1 Multilinear expressivity

To understand better the trade-offs between the GATr
variants, we’d like to understand whether they are
universal approximators. We will study the slightly
simpler question of whether the algebras can express
any multilinear map G(V )l → G(V ), a map from l
multivectors to one multivector, linear in each of the
inputs. First, we study the case of non-equivariant
maps, proven in the Appendix.

Proposition 1. Let l ≥ 1.

(1) If and only if the inner product of Rp,q,r is
non-degenerate (r = 0), any multilinear map
G(p, q, r)l → G(p, q, r) can be constructed from ad-
dition, geometric products, grade projections and
constant multivectors.

(2) Furthermore, any multilinear map G(p, 0, 1)l →
G(p, 0, 1) can be constructed from addition, geo-
metric products, the join bilinear, grade projections
and constant multivectors.

Proof sketch. For a non-degenerate geometric algebra
G(V ), the GA inner product is a non-degenerate inner
product. Hence, after picking a basis bi of the algebra,
any linear map ϕ : G(V ) → G(V ) can be written as:

ϕ(x) =
∑
ij

αijbi⟨x, bj⟩

for coefficients αij ∈ R. This argument easily general-
izes from linear maps to multilinear maps.

On the other hand, if the algebra is degenerate, let e0
denote an orthogonal basis vector that squares to 0.
Then consider map ϕ : G(V ) → G(V ) sending e0 to the
scalar 1, and all orthogonal multivectors to 0. This
map can not be expressed by the algebra, as the only
way to annihilate the e0 is multiplication by e0, which
results in 0, not 1.

However, in the algebra G(p, 0, 1) with the join, any mul-
tivector can be outer multiplied into the pseudoscalar,
which becomes a scalar when joined with 1, from which
any multivector can be constructed.

Thus, the EGA and CGA can express any non-
equivariant non-linear map with just the geometric
product as bilinear operation, while the PGA requires
the join.

For GATr, we are primarily interested in equivariant
maps. Here, we don’t have a theoretical result, but a
conjecture.

Conjecture 2. Let l ≥ 2. For the EGA and the
CGA, and not for the PGA, any E(3)-equivariant
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(resp. SE(3)-equivariant) multilinear map G(p, q, r)l →
G(p, q, r) can be constructed out of a combination of
the geometric product, grade projection and invariant
multivectors. For PGA, any SE(3)-equivariant multi-
linear map can be expressed when additionally using
the join.

The approach of numerically finding linear maps as
described in Section 3.3 can be easily extended to mul-
tilinear maps, see the Appendix for details. Comparing
those to maps constructable within the algebra, we
were able to numerically verify the conjecture up to
l = 4. These results suggest that the EGA and CGA,
and PGA with the join are sufficiently expressive, while
the PGA without the join is not.

4.2 Absolute positions

The PGA and CGA can represent the absolute position
of points: multivectors that are invariant to exactly one
rotational SO(3) subgroup of SE(3) – rotations around
that point. In contrast, the multivectors of the EGA are
invariant to translations, so it can represent directions
but not positions. A typical work-around, which we
use in our EGA experiments, is to not use absolute
positions, but positions relative to some special point,
such as the center of mass of a point cloud, which
are translation-invariant. This has as downside that
the interactions between point-pairs depends on the
center of mass. Alternatively, positions can be treated
not as generic features in the network, but get special
treatment, so that only the position difference between
points is used. However, this design decision precludes
using efficient dot-product attention in transformers
(Brehmer et al., 2023).

One difference in the absolute point representations in
the PGA and CGA, is that the PGA trivector represent
oriented points that flip sign under a mirror. This
makes it impossible to construct e.g. a mirror-invariant
from a point cloud to R. On the other hand, the CGA
contains both oriented and unoriented points, so is able
to construct mirror-invariant maps from point clouds.

4.3 Distance-based attention

It is desirable when using transformers with geometric
systems, that the attention weights between objects
can be modulated by their distance. In GATr, the
attention logits are the GA inner product between a
key and query multivector.

Distance-based attention appears most naturally in the
C-GATr architecture. In the CGA, a Euclidean position
vector p ∈ R3 is represented as p = o+ p+ ∥p∥2∞/2,
and inner products between points directly compute
the Euclidean distance. In the E-GATr, using the

Figure 2: n-body modelling. We show the mean
squared error as a function of the number of training
samples. We compare E-GATr, P-GATr, iP-GATR, and
C-GATr to the equivariant SE(3)-Transformer (Fuchs
et al., 2020) and SEGNN (Brandstetter et al., 2022a)
as well as to a vanilla transformer.

positions relative to a center of mass, the inner product
of a query consisting of three multivectors (∥q∥2, 2q, 1)
and a key (−1,k,−∥k∥2) computes negative squared
distance.

However, in P-GATr, dot-product attention cannot
compute distances. We prove a stronger statement: any
inner product must be constant in point coordinates.

Proposition 3. Let ω : R3 → G(3, 0, 1), x 7→ x1e032 +
x2e013+x3e021+e123 be the point representation of the
PGA. For all Spin-equivariant maps ϕ, ψ : G(3, 0, 1) →
G(3, 0, 1), for positions x, y ∈ R3, the inner product
⟨ϕ(ω(x)), ψ(ω(y))⟩ is constant in both x and y.

Proof. The inner product in the PGA is equal to the
Euclidean inner product on the Euclidean subalgebra
G(3, 0, 0) (given a basis, this is the subalgebra spanned
by elements e1, e2, e3, but not e0), ignoring the basis
elements containing e0. Translations act invariantly
on the the Euclidean subalgebra. Therefore, for any
v ∈ G(3, 0, 1), if we consider the map R3 → R : x 7→
⟨ϕ(ω(x)), v⟩, this map is invariant to translations, and
thus constant. Filling in v = ϕ(ω(y)) proves constancy
of ⟨ϕ(ω(x)), ψ(ω(y))⟩ in x. Constancy in y is shown
similarly.

In iP-GATr, this is addressed by computing CGA points
from PGA points, and using the CGA inner product
in the attention; see Brehmer et al. (2023) for details.
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Method Approx. error

E-GATr 6.2 %
P-GATr 7.2 %
iP-GATr 5.5 %
C-GATr 5.5 %

Transformer 10.5 %
PointNet++ (Qi et al., 2017) 12.3 %
GEM-CNN (De Haan et al., 2021) 7.7 %

Table 1: Arterial wall-shear-stress estimation. We
show the mean approximation error in percent on the
prediction of arterial wall shear stress (Suk et al., 2022).
We compare E-GATr, P-GATr, iP-GATr, and C-GATr.
As baselines, we show the Transformer results from
Brehmer et al. (2023), and two baselines from Suk et al.
(2022).

5 EXPERIMENTS

We empirically compare the variants in a n-body mod-
elling experiment and a hemodynamic estimation task.

5.1 n-body modelling

We first benchmark the GATr variants on an n-body
modelling problem. Given masses, initial positions,
and initial velocities of 16 point masses interacting
with Newtonian gravity, the goal is to predict the final
positions after 100 time steps. To make the problem
more challenging, we consider a dataset in which each
sample has a variable number of clusters, each with a
variable number of bodies.

Figure 2 shows the prediction error as a function of the
number of training samples. We find that the E-GATr,
iP-GATr, and C-GATr models achieve an excellent
performance when trained on sufficient data, outper-
forming or matching the equivariant baselines SE(3)-
Transformer (Fuchs et al., 2020) and SEGNN (Brand-
stetter et al., 2022a) and a vanilla transformer. The
naive P-GATr does not perform well, a consequence of
its fundamentally limited expressivity, discussed in the
previous section.

The C-GATr and iP-GATr model are more sample ef-
ficient than all baselines and the E-GATr model. We
attribute this to their larger symmetry group: they are
equivariant with respect to any combination of transla-
tions and rotations, while E-GATr is only equivariant
with respect to the much smaller group of rotations
around the center of mass.

5.2 Arterial wall-shear-stress estimation

Next, we test the GATr variants on a more complex
problem: predicting the wall shear stress exerted by
blood flow on the arterial wall, using a benchmark
dataset proposed by Suk et al. (2022). This is a chal-
lenging problem for machine learning because the ge-
ometric objects are complex—the artery wall is pa-
rameterized as a mesh of around 7000 nodes—and the
dataset only consists of 1600 meshes. We describe the
experimental setup in more detail in the Appendix.

Table 1 shows our results, with baseline results taken
from Brehmer et al. (2023) and Suk et al. (2022). All
GATrs outperform the baselines. C- & iP-GATr which
use distance-aware attention, perform best. We found
that C-GATr can suffer from instabilities, as discussed
in Sec. 3.4.

6 RELATED WORK

Geometric deep learning Constructing neural net-
works that are equivariant to symmetry groups (Cohen
and Welling, 2016) is a cornerstone of contemporary
geometric deep learning (Bronstein et al., 2021). Par-
ticularly related are the methods that process 3D point
clouds in a manner equivariant to the Euclidean symme-
tries of translation, rotations, and, if desired, mirroring.
Typically, these employ linear message passing or trans-
former architectures (Thomas et al., 2018; Fuchs et al.,
2020; Satorras et al., 2021; Brandstetter et al., 2022a;
Batatia et al., 2022; Batzner et al., 2022; Frank et al.,
2022).

Geometric algebras in deep learning Geometric
(or Clifford) algebras were first conceived in the 19th
century Grassmann (1844); Clifford (1878) and have
been used widely in quantum physics (Dirac and Fowler,
1928). More recently, geometric algebras have gained
a devoted following in computer graphics Dorst et al.
(2007).

The application to GAs in neural networks is not new
(Bayro-Corrochano et al., 1996), but has recently expe-
rienced a resurgence. Brandstetter et al. (2022b) uses
EGA networks to study differential equations, while
Ruhe et al. (2023a) use the EGA and PGA for message
passing. Neither of those architectures is equivariant,
however. Equivariant GA networks were proposed by
Ruhe et al. (2023b) using a message passing architec-
ture, and Brehmer et al. (2023) using a transformer
architecture based on the PGA. This paper extends the
equivariant GA transformer to other algebras related
to 3D Euclidean geometry.
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E-GATr P-GATr iP-GATr C-GATr

Simplicity
Representational richness
Expressivity

Memory
Stability
Performance

Table 2: Algebras ranked from (best) to (worst) along theoretical qualities (top) and empirical
observations (bottom). Alligator figure from Twemoji library by Twitter licensed under CC-BY 4.0

7 CONCLUSION

The geometric algebra transformer is a powerful method
to build E(3) equivariant models that scale to large
problems due to the transformer backend. In this work,
we have generalized the original GATr model, which
was based on the projective geometic algebra, to new
geometric algebras: the Euclidean and conformal alge-
bras. This construction involved finding the equivariant
linear maps and effective normalization layers. From
a theoretical analysis of the GATr variants, we found
that the Euclidean E-GATr and conformal C-GATr
have sufficient expressivity, due to the non-degeneracy
of the algebra, while the projective P-GATr does not.
Addition of the join bilinear operation, as was done in
the original improved projective iP-GATr, can address
these issues at the cost of additional complexity in
the model. E-GATr can not represent translations or
absolute positions, and thus must rely on centering to
be E(3) equivariant. This reduces the symmetry group
and thus sample efficiency. In our experiments, we find
that E-GATr has the lowest computational cost, but
indeed tends to overfit faster. P-GATr lacks expressiv-
ity and thus doesn’t perform well, while the original
iP-GATr and C-GATr perform best. Of these, C-GATr
enjoys the simplicity of just relying on geometric prod-
ucts, while iP-GATr needs the complexity of the join
bilinear operation, as well as a hand-crafted attention
method. On the other hand, iP-GATr appears more
stable in training than C-GATr. Overall, we find a
nuanced trade-off between the variants, which we score
in Table 2.
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Supplementary material

1 CONSTRUCTING GENERIC MULTILINEAR MAPS

Proposition 1. Let l ≥ 1.

(1) If and only if the inner product of Rp,q,r is non-degenerate (r = 0), any multilinear map G(p, q, r)l → G(p, q, r)
can be constructed from addition, geometric products, grade projections and constant multivectors.

(2) Furthermore, any multilinear map G(p, 0, 1)l → G(p, 0, 1) can be constructed from addition, geometric products,
the join bilinear, grade projections and constant multivectors.

Proof. Proof of (1), “⇒”: First, let r = 0. Then let ei be an orthogonal basis of Rp,q,0 where each ei squares to ±1.
This gives a basis ei, with multi-index i ∈ 2p+q, of the algebra G(p, q, 0). This basis is also orthogonal and each
element ei1i2...ik squares to ⟨ei1i2...ik , ei1i2...ik⟩ = ⟨ei1i2...ik ˜ei1i2...ik⟩0 = ei1ei2 ...eikeik ...ei2ei1 =

∏
k⟨ek, ek⟩ = ±1.

Now, let ϕ : G(p, q, 0) → G(p, q, 0) be any linear map. For each basis element of the algebra, let xi := ϕ(ei)/⟨ei, ei⟩.
Then ϕ can then be written as:

ψ(w) =
∑

i∈2p+q+r

xi⟨w ẽi⟩0

It is easy to see that for any basis element ei, ϕ(ei) = ψ(ei), hence the linear maps coincide.

For a multilinear map ϕ : G(p, q, 0)l → G(p, q, 0), a similar construction can be made:

ϕ(w1, ..., wl) =
∑

i1∈2p+q+r

...
∑

il∈2p+q+r

xi1,...,il⟨w1 ẽi1⟩0...⟨wl ẽil⟩0

with xi1,...,il =
ϕ(ei1 , ..., eil)

⟨ei1 , ei1⟩...⟨eil , eil⟩

Proof of (1), “⇐”: Let r > 0. Let e0 ∈ Rp,q,r denote a nonzero radical vector, meaning that for all x ∈ Rp,q,r,
⟨e0, x⟩ = 0. Consider the multilinear map ϕ : G(p, q, r)l → G(p, q, r) sending input (e0, ..., e0) 7→ 1 and all other
inputs to 0. This map can not be constructed from within the algebra. To see this, consider any nonzero k-vector
e0 ∧ y for a (k − 1)-vector y. The only way of mapping e0 ∧ y to a scalar involves multipication with e0, which
results in a zero scalar component.

Proof of (2): Now consider the projective algebra G(p, 0, 1) equipped with the join ∨, a bilinear operation
G(p, 0, 1)× G(p, 0, 1) → G(p, 0, 1) mapping algebra basis elements ei ∨ ej to ±ek, where k contains all indices that
occur in both i and j, as long as all p+1 indices are present as at least once in either i or j. Otherwise, ei ∨ ej = 0.
See Dorst and De Keninck for details. In particular, the join satisfies e012...p ∨ 1 = 1.

With the join in hand, any linear map ϕ : G(p, 0, 1) → G(p, 0, 1) can be written as:

ψ(w) =
∑

i∈2p+1

xi⟨(w ∧ e\i) ∨ 1⟩0

where xi := ϕ(ei) and e\i contains all indices absent in i, in an order such that ei ∧ e\i = e012...p. For any basis
element ej, ⟨(ej ∧ e\i) ∨ 1⟩0 = 1 if j = i and 0 otherwise, because if j lacks any index in i, the join yields a zero,
and if it j has any indices not in i, the join results in a non-scalar, which becomes zero with the grade projection.
Therefore, ψ(ei) = ϕ(ei) for all basis elements ei, and the linear maps are equal. As before, this construction
easily generalizes to multi-linear maps.
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2 NUMERICALLY COMPUTING EQUIVARIANT MULTIlinear maps

2.1 Lie group equivariance constraint solving via Lie algebras

First, let’s discuss in generality how to solve group equivariance constraints via the Lie algebra, akin to Finzi
et al. (2021).

Let G be a Lie group, g be its algebra. Let exp : g → G be the Lie group exponential map.

A group representation (ρ, V ) induces a Lie algebra representation: dρ : g → gl(V ), linearly sending X ∈ g to a
linear map dρ(X) : V → V , satisfying ρ(exp(X)) = exp(dρ(X)), where the latter exp is the matrix exponential.

Given a real Lie algebra representation (ρ, V ), there is a dual representation (ρ∗, V ∗) satisfying ρ∗(g) = ρ(g−1)T .
It is easy to see that dρ∗(X) = −dρ(X)T .

For two group representations (ρ1, V1) and (ρ2, V2), there is a tensor representation (ρ1 ⊗ ρ2, V1 ⊗ V2) with Lie
algebra representation d(ρ1 ⊗ ρ2) = 1V1

⊗ dρ2 + dρ1 ⊗ 1V2
.

(ρ1, V1) and (ρ2, V2), a linear map ϕ : V1 → V2 is equivariant if and only if ϕ is invariant to the group representation
ρ2 ⊗ ρ∗1, when flattening vec(ϕ) ∈ V2 ⊗ V ∗

1 : for all g ∈ G,

ρ2(g)ϕ = ϕρ1(g) ⇐⇒ (ρ2 ⊗ ρ∗1)(g)vec(ϕ) = vec(ϕ)

Any Lie group G is equal to a semi-direct product G0 ⋊D, for G0 ⊆ G the subgroup connected to the identity
and D a discrete group. Let B be a set of basis elements of the Lie algebra. Then exp(span(B)) = G0.

First, consider a connected Lie group G0, and a basis B of the Lie algebra, and a representation (ρ, V ). Then

∀g ∈ G0, ρ(g)v = v

⇐⇒ ∀X ∈ g, ρ(exp(X))v = v

⇐⇒ ∀X ∈ g, exp(dρ(X))v = v

⇐⇒ ∀X ∈ g, dρ(X)v = 0

⇐⇒ ∀X ∈ B, dρ(X)v = 0

where in for the final step, we note that dρ is linear, so linearly dependent algebra vectors generate linearly
dependent csontraints, and just constraining by a basis of the algebra suffices.

To test invariance to a non-connected Lie group, we need to additionally constrain for the discrete group D,
generated by D′ ⊂ D, leading to:

∀g ∈ Gρ(g)v = v ⇐⇒

{
dρ(X)v = 0 ∀X ∈ B

(ρ(g)− 1V )v = 0 ∀g ∈ D′

If V is d-dimensional There are thus |B|+ |D′| d× d matrices and v needs to be in the null space of each of these,
or equivalently in the null space of the concatenated ((|B|+ |D′|)d)× d matrix. This can be done numerically
via e.g. scipy.linalg.nullspace. When ρ can be decomposed into subrepresentations (ρa ⊕ ρb, Va ⊕ Vb), the
invariant vectors can be found separately, making computing the null space more efficient.

Combining the framing of equivariance as invariance, and finding invariant vectors via a null space, we can find
the linear equivariant maps ϕ : V1 → V2 by finding the nullspace of:

∀g ∈ Gρ2(g)ϕ = ϕρ1(g) ⇐⇒

{
(dρ2 ⊗ 1V ∗

1
− 1V2

⊗ dρT1 )(X)vecϕ = 0 ∀X ∈ B

((ρ2 ⊗ ρ∗1)(g)− 1V )vecϕ = 0 ∀g ∈ D′

To find equivariant multilinear maps ϕ : Vi1 ⊗ Vi2 ⊗ ...⊗ Vil → V , we simply set ρ1 = ρi1 ⊗ ρi2 ⊗ ...⊗ ρil , with
dρ1 = dρi1 ⊗ 1Vi2

⊗ ...+ 1Vi1
⊗ dρi2 ⊗ ...+ ....



2.2 GA equivariance solving of linear maps

For the GA, we’ll consider V = G(p, q, r) and ρ(u)(x) = ux̂u−1. Define dρ(X)(v) = Xv − vX. Any GA has the
exponential map endomorphism, defined through the Taylor series:

exp : G(p, q, r) → G(p, q, r) : x 7→ 1 + x+
1

2!
x2 +

1

3!
x3 + ...

EGA Now, for the EGA, the bivectors G(3, 0, 0)2 are the Lie algebra spin(3, 0, 0) of the connected Lie group
Spin(3, 0, 0) of even number of reflections. The Lie group exponential map is the GA exponential map. The
entire Pin group decomposes as Pin(3, 0, 0) = Spin(3, 0, 0)⋊ {1, e1}. The bivectors have a basis spin(3, 0, 0) =
G(3, 0, 0)2 = span(e12, e23, e13). Therefore, a linear map ϕ : G(3, 0, 0) → G(3, 0, 0) is equivariant to Pin(3, 0, 0),
and hence to O(3), which it doubly covers, and E(3) with trivial action under translation, if and only if:

{
(dρ⊗ 1− 1⊗ dρT )(X)vecϕ = 0 ∀X ∈ {e12, e23, e13}
((ρ⊗ ρ∗)(e1)− 1V )vecϕ = 0

Studying the nullspace, we find that all equivariant linear maps can be written as linear combinations of grade
projections, giving 4 independent maps:

ϕ : G(3, 0, 0) → G(3, 0, 0) : x 7→
3∑

k=0

αk⟨x⟩k

PGA For the PGA, similarly, Pin(3, 0, 1) doubly covers E(3). The group Spin(3, 0, 1) is its connected subgroup,
whose algebra are the bivectors, and the Pin group decomposes as the Spin group and a mirroring. A linear map
ϕ : G(3, 0, 1) → G(3, 0, 1) is therefore equivariant to Pin(3, 0, 1), and hence E(3), if and only if:

{
(dρ⊗ 1− 1⊗ dρT )(X)vecϕ = 0 ∀X ∈ {e12, e23, e13, e01, e02, e03}
((ρ⊗ ρ∗)(e1)− 1V )vecϕ = 0

Studying the nullspace, we find that all equivariant linear maps can be written as linear combinations of grade
projections and multiplications with e0, leading to 9 independent maps:

ϕ : G(3, 0, 1) → G(3, 0, 1) : x 7→
4∑

k=0

αk⟨x⟩k +

4∑
k=1

βk⟨e0x⟩k

This result is in accordance with what was shown analytically in Brehmer et al. (2023).

CGA Let ι : G(3, 0, 1) → G(4, 0, 1) be the algebra homomorphism with ι(ei) = ei, ι(e0) = ∞. For the CGA,
E(3) is doubly covered by the subgroup ι(Pin(3, 0, 1)) of Pin(4, 1, 0), hence a linear map ϕ : G(4, 1, 0) → G(4, 1, 0)
is equivariant to ι(Pin(3, 0, 1)), and hence E(3), if and only if:

{
(dρ⊗ 1− 1⊗ dρT )(X)vecϕ = 0 ∀X ∈ {e12, e23, e13, e∞1, e∞2, e∞3}
((ρ⊗ ρ∗)(e1)− 1V )vecϕ = 0

Studying the nullspace, we find that all equivariant linear maps can be written as linear combinations of grade
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projections and multiplications with ∞, giving 20 independent maps in total:

ϕ : G(4, 1, 0) →G(4, 1, 0)

x 7→
5∑

k=0

αk⟨x⟩k

+

5∑
k=1

βk⟨∞⟨x⟩k⟩k−1

+

4∑
k=0

γk⟨∞⟨x⟩k⟩k+1

+

4∑
k=1

δk∞⟨∞⟨x⟩k⟩k−1

SE(3) equivariance To consider SE(3) equivariance, we just have to be equivariant tot the connected part
rotational of the Lie group, so remove the mirror constraint in the above equations. For the EGA, PGA and
CGA, we find numerically that the SE(3)-equivariant maps are the same as the E(3)-equivariant linear maps,
but possibly combined with multiplication with the pseudoscalar: e123 for the EGA, e0123 for the PGA and
e123 ∧ o ∧∞ for the CGA. This is because the pseudoscalar is an invariant, up to a sign flip due to mirroring,
thus SE(3) invariant.

2.3 Multilinear equivariant map solving

To find multilinear equivariant maps efficiently, we found it necessary to separate out the grades. For any
geometric algebra, the Pin(p, q, r) representation decomposes into sum of a representation (ρk,G(p, q, r)k) of
k-vectors, for each grade k. Then we use the above procedure to find the equivariant multilinear maps ϕ :
G(p, q, r)i1 ⊗ G(p, q, r)i2 ⊗ ...⊗ G(p, q, r)il → G(p, q, r)o, taking as inputs an i1-vector, and i2-vector, ..., and an
il-vector and outputting an o-vector.

2.4 Numerically testing expressivity

In the above subsections, we show how one can compute all equivariant multilinear maps for a given algebra. In
the main paper, we stated the following conjecture:
Conjecture 2. Let l ≥ 2. For the EGA and the CGA, and not for the PGA, any E(3)-equivariant (resp. SE(3)-
equivariant) multilinear map G(p, q, r)l → G(p, q, r) can be constructed out of a combination of the geometric
product and E(3)-equivariant (resp. SE(3)-equivariant) linear maps. For PGA, any SE(3)-equivariant multilinear
map can be expressed using equivariant linear maps, the geometric product and the join.

To test this, we explicitly construct all linear maps via the algebra. Let ϕαµν be a basis for the linear equivariant
maps of an algebra, so that for each α, ya =

∑
b ϕ

α
abxb is an equivariant linear map, where roman indices enumerate

multivector indices. Also, let Φβ
abc be a basis for the bilinears in the algebra, so that for each β, za =

∑
bc Φ

β
abcxbyc

is a bilinear. For most algebras, we’ll just consider the geometric product, but for the PGA, we can also consider
the join, which is only SE(3)-equivariant (Brehmer et al., 2023, Prop 7). Then, for example, for l = 2, all bilinear
maps constructable for two inputs x1, x2 from the linears and bilinears are:∑

bc

Ωσαβγδ
abc x1bx

2
c =

∑
bcdef

ϕαabΦ
β
bcd (ϕ

γ
cex

σ1
e )

(
ϕδdfx

σ2

f

)
where σ ∈ S2 is a permutation over the two inputs. This approach can be recursively applied to construct any
multilinear map from the bilinears and linears. As the algebra is not commutative, we need to take care to
consider all permutations of the inputs. For computational efficiency to soften the growth in the number of Greek
basis indices, during the reduction for multilinear maps, we apply a singluar value decomposition of the basis of
maps, re-express the basis in the smallest number of basis maps.

With this strategy, we were able to verify the above conjecture for 2 ≤ l ≤ 4.



3 EXPERIMENT DETAILS

n-body modelling dataset We create an n-body modelling dataset, in which the task is to predict the final
positions of a number of objects that interact under Newtonian gravity given their initial positions, velocities, and
velocities. The dataset is created like the n-body dataset described in Brehmer et al. (2023), with one exception:
rather than a single cluster of bodies, we create a variable number of clusters, each with a variable number of
bodies, such that the total number of bodies in each sample is 16. This makes the problem more challenging. Each
cluster is generated as described in Brehmer et al. (2023), and the clusters have locations and overall velocities
relative to each other sampled from Gaussian distributions.

Arterial wall-shear-stress dataset We use the dataset of human arteries with computed wall shear stress by
Suk et al. (2022). We use the single-artery version and focus on the non-canonicalized version with randomly
rotated arteries. There are 1600 training meshes, 200 validation meshes, and 200 evaluation meshes, each with
around 7000 nodes.

Models and training Our GATr variants are discussed in the main paper. We mostly follow the choices used
in Brehmer et al. (2023), except for the choice of algebra, attention, and normalization layers. For the linear
maps, we evaluated two initialization methods: initialize all basis maps with a Kaiming-like scheme, or initialize
the linear maps to be the identity on the algebra, and Kaiming-like in the channels. For iP-GATr and P-GATr,
we found that the former worked best, for C-GATr we found the latter to work best and for E-GATr we found no
difference.

We choose model and training hyperparameters as in Brehmer et al. (2023), except that for the n-body experiments,
we use wider and deeper architectures with 20 transformer blocks, 32 multivector channels, and 128 scalar channels.

Baselines For the n-body modelling experiment, we run Transformer, SE(3)-Transformer, and SEGNN
experiments, with hyperparameters as discussed in Brehmer et al. (2023).

For the artery experiments, baseline results are taken from Brehmer et al. (2023) and Suk et al. (2022).
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