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Abstract

Recently, nonlinear ICA has surfaced as a pop-
ular alternative to the many heuristic mod-
els used in deep representation learning and
disentanglement. An advantage of nonlinear
ICA is that a sophisticated identifiability the-
ory has been developed; in particular, it has
been proven that the original components can
be recovered under sufficiently strong latent
dependencies. Despite this general theory,
practical nonlinear ICA algorithms have so
far been mainly limited to data with one-
dimensional latent dependencies, especially
time-series data. In this paper, we introduce
a new nonlinear ICA framework that employs
t-process (TP) latent components which ap-
ply naturally to data with higher-dimensional
dependency structures, such as spatial and
spatio-temporal data. In particular, we de-
velop a new learning and inference algorithm
that extends variational inference methods
to handle the combination of a deep neural
network mixing function with the TP prior,
and employs the method of inducing points
for computational efficacy. On the theoretical
side, we show that such TP independent com-
ponents are identifiable under very general
conditions. Further, Gaussian Process (GP)
nonlinear ICA is established as a limit of the
TP Nonlinear ICA model, and we prove that
the identifiability of the latent components
at this GP limit is more restricted. Namely,
those components are identifiable if and only
if they have distinctly different covariance
kernels. Our algorithm and identifiability the-
orems are explored on simulated spatial data
and real world spatio-temporal data.
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1 INTRODUCTION

Inferring semantically useful low-dimensional latent
features from high dimensional real world data is a
central goal in unsupervised feature learning. Many
well-established approaches such as independent com-
ponent analysis (ICA) and dictionary learning employ
linear transformations, whereas recent approaches, such
as nonlinear versions of ICA (Hyvérinen et al., 2023),
and variational autoencoders (Kingma and Welling,
2014), typically assume that the transformation from
the latent to the observed space is highly nonlinear,
often modeled as a deep neural network.

Moving from linear to nonlinear generative models is
likely to provide superior performance in many tasks,
but also comes with challenges in interpretability and
estimation. On the interpretability side, the problem
is that many of these models are not identifiable — that
is, they do not discover the ground-truth latent fea-
tures, even in the limit of infinite data (Hyvérinen
and Pajunen, 1999; Locatello et al., 2019). Without
access to the ground-truth latent features, we can ex-
pect worse performance and difficulties in interpreting
results in several important tasks such as classifica-
tion (Klindt et al., 2021; Banville et al., 2021), transfer
learning (Khemakhem et al., 2020b), and causal infer-
ence (Monti et al., 2019; Wu and Fukumizu, 2020). In
order to overcome these challenges, there has been an
increased interest in developing identifiable generative
models and the related theory. Much of this work has
been in the context of nonlinear ICA as it would provide
a way to perform principled disentanglement learning,
that is, without their usual problem of unidentifiability
(Locatello et al., 2019; Hyvérinen et al., 2023).

The central approach taken in such works has been to
provide inductive biases that allow the models to be
identified. The type of inductive biases used can be
roughly divided into two groups. The first group as-
sumes additional observed ’auxiliary’ data (Hyvérinen
and Morioka, 2016; Hyvarinen et al., 2019; Khemakhem
et al., 2020a), such as audio that goes with the video
data, or explicit knowledge about the time points at
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which non-stationary process switches distributions.
Such auxiliary data is not always available, however.
To cope with this, Hyvarinen and Morioka (2017); Halva
and Hyvarinen (2020); Halva et al. (2021) instead as-
sume purely latent structures that allow identi ability.
These latent structures have been primarily di erent
types of temporal dependencies, with applications on
time-series data such as brain imaging. The only work
that goes beyond temporal dependencies seems to be
Halva et al. (2021) who provide general theorems with
su cient conditions that allow model identi ability
with arbitrarily high dimensional latent dependencies,
such as spatial data. Nevertheless, their work is mainly
theoretical as the algorithm in Halva et al. (2021) only
applies to time-series data. In fact, no unsupervised
learning method exists for performing non-linear ICA
on data with more complex latent dependencies. This
is a severe limitation as it hinders the applications of
nonlinear ICA on many domains such as spatial data,
where one would expect 2D dependencies, or spatio-
temporal with 3D latent structures. These types of
dependencies are ubiquitous, for example, in remote
sensing and data used in meteorological, earth and
other environmental sciences.

A well-known approach to modelling spatial dependen-
cies would be to use Gaussian Processes (GP). However,
the importance of non-Gaussianity is well-known in
the linear ICA literature; whether this is the case in
nonlinear ICA has not been thoroughly studied until
now however. In this paper, we consider this via Stu-
dent's t-Processes (TP)(Yu et al., 2007; Shah et al.,
2014) of which GPs are a special case. In particular,
we introduce Student's t-process nonlinear ICA (tp-
NICA) which resolves the aforementioned limitations
of temporal models by assuming TP latent compo-
nents. Most importantly, unlike previous works, our
model and the accompanying algorithm allow arbitrar-
ily high dimensional latent dependencies. This makes
the model particularly attractive for disentangling iden-

ti able features from spatial data such as images or
geographically structured data, as we will demonstrate
in our experiments.

Thus, the rst major contribution of our paper is ex-
tending nonlinear ICA algorithms beyond time-series
to spatial and other data with high-dimensional depen-
dencies, without necessitating any additional auxiliary
data. We also show the identi ability of the model by
adapting the theory of Halva et al. (2021). Further, we
establish GP nonlinear ICA (gp-NICA) as the limit of
the tp-NICA model, but show that its identi ability is
more constrained: the gp-NICA model is identi able
if and only if all the di erent processes have unique
covariance kernels.

Our second major contribution is a new learning and in-

ference algorithm for our tp-NICA model. In particular,
our algorithm shows how to overcome two fundamental
challenges: i) intractability that results from a non-
conjugate non-exponential family latent prior combined
with a nonlinear, neural network, observation likeli-
hood, and ii) the expensive, cubic, computational cost
typically associated with GPs and TPs. Our algorithm
resolves these challenges by constructing a variational
lower bound that utilizes the in nite GP-mixture rep-
resentation of TPs, and by employing pseudo-points
from sparse GP literature for computational e cacy,
as well as other advances in variational inference.

2 BACKGROUND

In this section we provide a brief technical background
of some of the key concepts that we employ in our tp-
NICA model and our learning and inference algorithm.

2.1 Identi ability and Nonlinear ICA

A probabilistic model is considered identi able if it
is possible, at least in theory, to learn the model's
ground-truth parameters. An unidenti able model
fails to satisfy this condition, and thus, any parameter
estimates for such a model may not correspond to
the ground-truth parameters. Formally, a model
is identi able up to some equivalence relation

if ;) = px(x:€) =) €, where px(x; )
denotes the probability distribution of a random
variable x parameterized by Importantly for
the present work, the most basic formulation of
nonlinear ICA, nam@lx a factorial prior on some latent
componentsp(s) = ., p(s") along with a nonlinear
mixing function x = f(s), has been shown to be catas-
trophically unidenti able (Hyvéarinen and Pajunen,
1999) an in nite number of possible solutions exist.

Several successful advances have been made over the

recent years in developing alternative, identi able,

nonlinear ICA models. Of these, the most relevant to

ours is Halva et al. (2021), whose Structured Nonlinear
ICA (SNICA) framework de nes a general set of

su cient identi ability conditions. These also apply

to our model, and as such we will discuss them here in
more detail. The SNICA framework utilizes a noisy

version of the classic nonlinear ICA model

xp=f(s)+ " 8 2L; 1)
wherelL is an indexing set that could be arbitrarily high-
dimensional (e.g. 2 dimensional for spatial data). Halva
et al. (2021) provide two main identi ability results.
First, the noise-free mixture f(s)) can be identi ed
from the noisy model, for arbitrary noise in (1), under
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mild conditions that relate to the behaviour and non-
Gaussianity of the noise-free mixture. Second, the
ground-truth de-mixing function f ! can be obtained
from the distribution of f(s;) up to permutation and
coordinate-wise transformations as long as conditions
that govern su ciently strong statistical dependency
between index locations, and the condition of non quasi-
Gaussianity, are satised. Halva et al. (2021) also
proposed a specic practical algorithm based upon
their framework where the latent components follow
autoregressive and hidden Markov models. While it
was shown to be successful for temporal data, it cannot
be applied on spatial data in any reasonable way, which
is our main concern in this paper.

2.2 Gaussian Processes and t-Processes

Gaussian process (GP) is a stochastic processes that
speci es the joint distribution of in nitely many ran-
dom variables such that any nite sample of those
variables obeys a multivariate Gaussian distribution.
Since GPs can represent the joint-distribution of in-
nitely many random variables, they are used as priors
for continuous functions as well as latent processes.
The dependencies between any variables in a GP are
captured by a kernel function (x;;x;j), wherex; rep-
resents some input variable, such as location in space.
For temporal data these could be one dimensional in-
dices, while for spatial data they could, for example, be
locations on a lattice. The crucial aspect, for this paper,
is that the input variables can have an arbitrarily high
dimension. GPs are also a limiting case of Student's-
Processes (TP), as we show next.

If x 2 RY follows a multivariate-t distribution with

> 0 degrees of freedom, we writex t ( ; ), with
its p.d.f given by
oo 1 (39
p)= FjjF o2 )
(2)
_+d
+(x )T ko)
where ( ) is the Gamma function. When !'1 this

becomes a Gaussian p.d.f. Following Yu et al. (2007),
we can de net Processes as follows:

Denition 1  (t-Process). A random function y :
RY ! R follows a t-Process TP (h; )) with > 0
degrees of freedom, mean functiorh( ) and covariance
kernel
n> 0:

(Xi; xj).

It thus follows that a GP is the limit of a TP as the
degrees of freedom parameter tends to in nity.

It is also well-known that a t-distribution can be re-
framed as in nite mixture of Gaussian distributions
with each Gaussian's covariance scaled by a Gamma
distributed random variable. This extends also to T Ps
as per the following proposition (Yu et al., 2007):

Proposition 1 (T P as in nite mixture). TP (h; )
can be sampled by repeatedly sampling a Gamma dis-
tributed random variable Gamma(5; ) followed
by' GP (h;%):

2.3 Variational Inference

Our inference and learning algorithm combines several
advances in variational inference and sparse GP litera-
ture and thus we provide a short background here. In
the factored variational approach the posterior over a la-
tent y is assumed tcdactorize over some partitiorz ;-
such that q(y) := 2z G (yj) is tractable, which
allows a variational lower bound to be computed and
optimized. Such approximations do not typically work
for models with complex observation likelihoods such
as neural networks. In black-box variational inference
(BBVI) (Ranganath et al., 2014) an approximate pos-
terior distribution q(yj j i) with free-form variational
has its own free-form variational parameters, thus al-
lowing for inference in complex distributions. The high
variance of the gradients in BBVI is problematic how-
ever; Rezende et al. (2014); Kingma and Welling (2014)
instead introduced the reparametrization trick which
provides lower-variance gradients with respect to the
variational parameters = ( ; ). Further, to deal
with the intractable posterior q(y), VAEs (Kingma and
Welling, 2014) approximate it with a diagonal Gaus-
sian:yi jxi N (m(xi); (xi)?l) wherem(); () are
the outputs of an encoder neural network. Since VAEs
assume factorial posteriors, they are not suited for mod-
els with structured latent dependencies. Johnson et al.
(2016) resolve this by assuming an approximate poste-
rior in the form of q(y) / p(y)l (xjy), wherel (xjy)
is an approximate likelihood term chosen to be conju-
gate to the desired structured exponential family prior
(such as a HMM). The approximate likelihood is again
formed by an encoder neural network. This approach
has inspired deep generative models with GP priors
(see Casale et al. (2018); Pearce (2020); Ashman et al.
(2020); Jazbec et al. (2021)). For instance, Ashman
et al. (2020) assume an approximate posterior:

| 0
ay”) 7 p(y™) 3y

t=1

@)

with o) = %, oy, wherey® GP O, (x)gn
are observations atm locations of the indexing set
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L, where the approximate likelihood () takes Gaus-
sian form. Naive implementations of GPs su er from
cubic computational cost. Sparse GPs address this
with the so called pseudo-points (Snelson and Ghahra-
mani, 2005; Quifionero-Candela and Rasmussen, 2005)
which essentially summarize the GP at a much smaller
number of pseudo-locations. These locations can be
learned in a variational framework (Titsias, 2009; Hens-
man et al., 2013, 2015). In practice many of the GP-
VAE methods discussed above utilize these pseudo-
points. For instance, (3).in Ashman et al. (2020)
becomeq(y®) / piy™) *t, (x;u;z;L) where

u are pseudo-observations at pseudo-locationd and
L<<m .

3 MODEL DEFINITION

To de ne our proposed model,t-Process nonlinear ICA
(tp-NICA), we start by assuming there exist N statis-

tically independent latent features s() = (s{"))5, for

dimension. While previous theoretical works have some-
times allowed L to also have any dimension, practical
NICA algorithms have only allowed for one-dimensional
indices, temporal index in particular. Here, our main
application areas are spatial and spatio-temporal data
and henceL will usually be two- or three-dimensional,
in other words, it's a subset of N> or N3, so that we
could equivalently write s = (5,52 = (sﬁ';l))k” IN-
Our algorithm will also be able to handle any other
higher dimensionalL and thus is not limited to spatial
or spatio-temporal data.

To allow for high-dimensional L, we assume that each
of the independent components follows @-Process (TP)
over the indexing setL. TPs are a natural prior for
independent components due to their non-Gaussianity
and ability to model complex dependencies, but they
have not previously been considered for NICA. Com-
pared to GPs, they are also more exible as the degree
of freedom parameter controls the heaviness of the dis-
tribution’s tails; allowing for heavy tails is useful as it
is a characteristic that has been empirically observed
in independent components (Hyvarinen et al., 2009).
Thus, we de ne

s TP o (h®; O (4)
with h:L! Rand :L2! R. The joint distri-
bution of the ind&pendenfn components is de ned as
PSS, )= oy p(sl(l);:::;sl(:n)) for m 2 N? and
. Additionally, we assume that the
observed data is created from the latent components
by a nonlinear mixing function that operates at each
index of L so that f : RN I RM with M > N is
injective. We also assume observation noise denoted

by ", 2 RM that is i.i.d across the M dimensions as
well as with respect to the independent components.
The noise can take any arbitrary distribution in theory
but in practice we will usually assume a Gaussian dis-
tribution. As such, the observed data is generated as
per Equation (1) at each index| 2 L. Note that this
implies p(xijs;) = p(x;  f(s1)). Finally, the full joint
distribution factorizes as

poa, is) B 6)

i=1

p(xl:m ; S1:m) =
i=1

Finally, if we take the degrees of freedom parameter
in (4) to in nity, but otherwise keep the model as
de ned above, we establish the Gaussian Process NICA
(gp-NICA) model in the limit and as a special case of

the tp-NICA model

4 IDENTIFIABILITY

The tp-NICA model introduced above falls within the
identi ability framework of Halva et al. (2021), thus
leading to the following identi ability result:

Theorem 1 (Identi ability of tp-NICA) Assuming
that the assumptions (A1), (A2) and (A3) of Theorem 1
in Halva et al. (2021) apply*, then the tp-NICA model is
identi able such that p(x;f)= p(x;¢) =) f ' €1,
where denotes equivalence up to permutation and
coordinate-wise bijective transformation of the elements
of the de-mixing functionf 1.

Our proof of this theorem (in Appendix B) relies
on showing that t-processes are not (locally) quasi-
Gaussian, which is a su cient condition for identi abil-
ity (Halva et al., 2021). This however does not preclude
the possibility that GP components could lead to iden-
ti able models in some instances. Indeed, Halva et al.
(2021) show that a noise-free variant of their model
with GP independent components can be identi ed
under the su cient condition that the di erent GPs
have distinct kernel functions. This raises the question
whether non-Gaussianity isnecessaryfor identi ability.
Our Theorem 2 below shows that this is indeed the
case. Subsequently, the gp-NICA model is identi able
if and only if each component has a distinct covariance
kernel, which is in contrast to tp-NICA where such
necessary conditions do not apply.

Theorem 2 (Necessity of distinct covariance kernels
with GP independent components). Assume that
we have a model otherwise de ned as in Section

1These assumptions are explained in Appendix B



Hermanni Halva

1 Jonathan So ?, Richard E. Turner

2 Aapo Hyvarinen !

3 except that in place of theT P distributed com-
ponents, the model hasGP distributed components:
(i)
s

p(x;¢) =) f 1 € 1if and only if the covariance
kernels of the di erent components are unique so that
(s;s) 6 (s ) 8o

Note that Theorem 2 considers the noise-free case be-
cause it is more general. To see this, notice that any
necessary conditions for the noise-free case must be
satis ed also by the noisy case. Our proof (in Appendix
B) follows directly by extending a related theory for
linear ICA by Belouchrani et al. (1997).

5 LEARNING AND INFERENCE

The marginal log-likelihood of the tp-NICA model can
be written as:
Zyn
L =log p(x) = log

szl

W .
p(X|, jSI,). p(s?) ds; (6)

i=1

Maximization of this marginal log-likelihood is clearly

intractable: p(x; j ;) is a nonlinear observation like-
lihood parameterized by a deep neural network and
Gaussian output noise, whilstp(s()) is a TP which is

non-exponential family and thus non-conjugate, making
it di cult to approximate p(x; j s;) with a conjugate-

likelihood (recall Section 2.3). Another challenge, as
with GPs, is the apparent cubic computational cost.

Therefore, we make two alterations to(6). First, as
a step towards tractability, recall Proposition 1. This
allows us to write the TP priors as in nite mixtures
of GPs scaled by gamma random variable . Second,
we introduce additional pseudo-variables,u, to control
the computation complexity of our algorithm. These
pseudo-variables can be considered as additional latent
variables at some extra input locations (Section 2.3
and Appendix A.3). Importantly, note that the u are
not observed and thus no additional data is needed;
they are merely mathematically convenient additional
latent variables that we integrate out. With these
additions we can compute a tractable lower bound to
our new marginal likelihood (see Appendix A for all
derivations):
z

L =log

ZZ
p(x;s;u; )dudsd

> EBq( ) Eqesuj ) [logp(x j s;u)l
KL[g(s;uj ) kp(siuj )l
> By )lqusj )['(?Z?IO(X j S)l
KL [g(u j ?Zk p(u j )]}] |<|-[CI( {)zk n( )9; )
() ()

KL[a( ) kp( )]

where we denoteg(s | ) = Rp(sj u; )g(uj )du.
The second bound is due to our choosing to approx-
imate g(sj u; ) = p(sju; ), which allows for the
computational bene ts of using the pseudo-points. Fur-
ther, we choose the following non-factorial posterior
approximation for the pseudo-latents:

q(u; )=c(4:(?Uj D )q((;g)
_ Tm () Ty p® 05 0) @®
Z( 5 5)
W R
o 5 Oy;
i=1
where J is the number of pseudo-locations,u; =
(ul(j'))izl;N, and u® = (ul(j'))jzl;J. Crucially,

separating the TP prior into Gamma and GP
distributions has now allowed us to approximate
the previously intractable pseudo-likelihood term
with,, a conjugate Gaussian factor (uj; ;)
exp (W Wju; 2ulm;j) , where(m;;W;) 2

j are free-form variational parameters akin to Ran-
ganath et al. (2014), in particular W are parameterized
as Cholesky factors. Notice that in(8) the approximate
Gaussian factor andp(u® j (; (1)) factorize over dif-
ferent indices, and consequently the resulting Gaussian
q(uj ; ; ) has a sparse, but non-factorized, form,
which is in contrast to previous works that assume
various limiting factorizations of the posterior.

The nal lower bound in (7) allows su cient tractabil-
ity to estimate our model parameters and to perform
inference. Terms( );( ) can be computed in closed-
form as they are just KL divergence betweenGP and
Gamma distributions, respectively. The data-likelihood
denoted ( ) is parameterized by a decoder network and
thus remains intractable so that we take the VAE ap-
proach of reparametrized gradients after sampling from
é(sj ) which is a Gaussian. Finally, we also take repa-
rameterized gradients of the outer expectation over the
Gamma distributed g( (); )g . In practice, we use
autograd to take gradients through all of (7) and then
optimize all the model parameters and the free-form
variational parameters ( ;Z) with stochastic gradient
descent, whereZ are locations of the pseudo-latents. A
step-by-step description is detailed in Algorithm 1. For
gp-NICA the Gamma expectation and KL-divergence
terms in equation (7) disappear, but otherwise the
same algorithm can be utilized.

6 EXPERIMENTS

In this section we explore the performance of the tp-
NICA and gp-NICA models on simulated spatial as well
as real world data. Our code will be openly available
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Algorithm 1

Estimate tp-NICA lower bound and take gradients

Require:
of posterior

model parameters

function ELBOGradients ( ; ;X;N¢;Ng)
f B gi=1: N, iid al 5 )
fL ¢ Ot=1: P f 8,1 N,  Conditionallnference
L % Lo Kuo( s )ke( )l
r L;r L Autograd(L; ; )

return L;r L;r L;thgtzl;N[
end function
function Conditionallnference

fBsOs=1: N, i e(sib; ;)
Le & &5 logp(x jbs)

return L,; B,
end function

(b; 5 ;% Ns)

KL[g(uj bx; ) kp(ujh; )]

= ((

samplesN¢, number of posterior s samplesNg

. N ¢ Samples from approximate posterior

(fBge=1: N5 5 X Ns)
. Approximates (7)
. Compute gradients with re-parametrization trick

. N g samples as per Sec. A.5

. KL as per Sec A.6
. Qt = fBsOs=1: N

Figure 1. A simple illustration of (a) two TP indepen-
dent components, (b) their four-dimensional mixture +
observation noise (c) the inferred components at the end
of tp-NICA training with MCC = 0:95. Three mixing
layers were used. Comparison of (a) and (c) illustrates
well how the recovered components are identi able up
to component-wise bijective transformations.

at https://github.com/cambridge-mig/tp-nica.

6.1 Experiments on Simulated Data

We rst tested how well the algorithms are able to
estimate the ground-truth latent components from sim-
ulated spatial data. Since the identi ability theorems
hold in the limit of in nite data and universal con-
sistent estimators, it is of interest to see how these
theorems are obeyed in practice in scenarios where
the data and the estimator methods stray away from
such theoretical ideals. For the simulation, we sampled
spatial 32 32 latent components on a regular lattice,
using a squared-exponential kernel. Both tp-NICA and
gp-NICA were estimated on their own data. We con-
sidered speci cations with 6 and 12 latent components,
which were mixed into 12 and 24 32x32 observations,
respectively, using a mixing neural network. The depth

of the neural network was varied from one to four layers
to simulate di erent levels of nonlinearity (one layer of
mixing corresponds to linear ICA). Two data sets were
generated, one where the squared exponential kernels'
parameters were engineered to be distinctly di erent
for each component, and another where the kernels for
all the components were forced to be the same. Figure
1 illustrates the type of data generated and displays an
example of successful demixing by the tp-NICA model.

Identi ability was measured by the mean absolute cor-
relation coe cient (MCC) between the ground truth
and estimated independent components. Recall that
our theorems show that the model parameters are
identi able up to permutation of the components and
component-wise bijective transformation both of
these present problems to using the MCC as a per-
formance metric. First, to deal with the arbitrariness
in the components' ordering, the ground-truth and the
estimated components were matched to each other us-
ing a linear sum assignment algorithm (Crouse, 2016)
prior to computing the MCC. Second, since each com-
ponent is identi able up to a bijective transformation,

a Pearson correlation is not appropriate and we instead
use Spearman rank correlation to compute the MCC.

None of the previous NICA algorithms are able to
exploit spatial dependencies so there is no natural com-
petitive benchmark. Nevertheless, we have included
linear ICA and iVAE (Khemakhem et al., 2020a) as
naive baselines. These both models treat the spatial
locations as independent. Further, iVAE requires some
observed auxiliary data, which here we have taken to
be the locations of the latent variables (i.e. the same
input as into the GP kernels).

Our results in Figure 2 largely correspond to theory:
For data where kernels are forced to have distinctly
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Figure 2: Mean absolute correlation coe cients be-
tween ground-truth independent components and their
estimates for tp,gp-NICA, and iVAE and linear ICA
baselines. gp-,tp-NICA are estimated on their own
data, while the baseline models were estimated on data
from both models with nearly identical results. Results
shown for varying levels of non-linearity (hnumber of
layers) for (a) distinctly di erent covariance kernels
between the components, and (b) components with
equivalent kernels. The error bars show standard devi-
ation from ve di erent random seeds.

di erent parameters, both tp-NICA and gp-NICA per-
form well, and much better than the naive baselines.
The performance deteriorates slowly for all models as
nonlinearity increases, which is to be expected due to
limited data, computation, and estimation methods.
For the setting with equal kernels across components,
tp-NICA has 0.05-0.15-points higher MCC, showing
that it's indeed more identi able in this scenario as
theory predicts. However, in contrast to theory, the
gp-NICA model is not completely unidenti able and as
the number of mixing layers increases the two models
performance converges. This is likely because in prac-
tice constraints such as the use of speci c kernel and
speci ¢ MLP mixing function imposes inductive biases
which is in contrast to the theoretical assumptions of
arbitrary mixing function and arbitrary covariance ker-
nels. Also, in the most nonlinear setting, the di culty
of estimating the mixing likely dominates the results,
rather than identi ability. Further implementation de-
tails and additional simulated experiments are found
in the Appendix.

6.2 Experiments on Real Spatio-temporal
Data

We also tested our models on real spatio-temporal data.
In particular, we used data from the Computer Vi-
sion for Agriculture (CV4A) Kenya Crop Type dataset
(RadiantEarthFoundation, 2020). This dataset was
originally designed for an entirely di erent supervised
classi cation task, but we adapted it into a suitable test
environment for our model. Our modi ed dataset con-
tains Sentinel-2 L2A satellite imagery of over 4000 elds
of crop of 10m spatial resolution, processed to 32x32
images. The image data from the satellite is multi-
spectral (16 dimensions) and for each eld, covers the
growing season from early June until early August (6
time-points for each eld). This type of data can be
extremely valuable in helping farmers increase produc-
tivity via scalable agricultural monitoring as well as
helping to reach sustainability goals (RadiantEarth-
Foundation, 2020).

We rst trained the tp-NICA model in a fully unsu-
pervised fashion on this data. To exploit both spatial
and temporal dependencies over the crop growth-cycle,
each independent component was taken to be spatio-
temporal: 6 time-points (avg. 10 days apart) over the
32x32 spatial grid. 100 inducing points and the squared-
exponential kernel were used. The inferred independent
components were evaluated on a supervised classi ca-
tion task of nding the correct temporal ordering of
the satellite images; that is 4000 satellite images
from all of the 6 time-points were classi ed into those 6
time-points based only on the learned independent com-
ponents using a Random Forest (RF) classi er. Figure
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Figure 3: Examples of two nonlinear independent com-
ponents inferred from the CV4A data. Horizontal axis
shows how the components evolve over a eld's growth-
cycle.

3 depicts the type of spatio-temporal dependencies that
the tp-NICA model learned. The results are displayed
in Table 1, based on 10-fold cross-validation, to ensure
generalization. The results show that tp-NICA and
gp-NICA perform much better than the baseline RF
classi er on the original image data. These results
highlight the challenge of this task a successful clas-
si cation requires that the learned features contain
salient temporal and spatial structure that is shared
across majority of the images. We also found that
tp-NICA performed consistently better than gp-NICA,
likely due to its ability to model any fatter tails in the
data; indeed, tp-NICA models with small d.o.f. param-
eters performed the best (see Appendix). These results
are very promising as remote agricultural monitoring
of crops' growth cycles could have a massive benet to
farmers.

7 RELATED WORK

Unlike previous works, tp-NICA is built to exploit
arbitrarily high-dimensional latent dependencies. It
is, in particular, the rst nonlinear ICA model that is
built for analysing spatial and spatio-temporal data.
Nevertheless, it shares several features with, and has
been inspired by, several previous works.

The typical approach in existing nonlinear ICA works
has been to exploit various inductive biases and latent
dependencies in order to show model identi ability.
One approach to this has come in the form of additional
auxiliary information (Hyvarinen and Morioka, 2016;
Hyvéarinen et al., 2019; Khemakhem et al., 2020a). It
could be argued that the tp-NICA and gp-NICA models
fall under this category as the covariance kernels take
as input the spatial indices, which could thus seen as
auxiliary data. A critical di erence is, however, that
this auxiliary data is obvious and readily available.

Another approach in nonlinear ICA has been to iden-
tify models using their latent dependencies: Halva and

Hyvarinen (2020) used a HMM of the latent compo-
nents, while Hyvarinen and Morioka (2017); Schell and
Oberhauser (2023) exploited general temporal depen-
dencies. A model using very general dependencies was
proposed by Halva et al. (2021), whose SNICA identi-
ability framework also subsumes our model. Despite
the generality of their identi ability theory, their prac-
tical SNICA algorithm only applies to time-series or
other one-dimensional dependencies.

In terms of identi ability theory, we established the
necessary condition that GP latent components are
identi able only if the covariance kernels of the com-
ponents are distinct. This is a fundamental result as

it was previously unclear whether the su cient condi-
tions in Halva et al. (2021) about the distinctness of the
kernels were necessary or whether perhaps GPs were
identi able even more generally. This result follows
rather directly from Belouchrani et al. (1997).

On the algorithmic side, our work is most similar to
Ashman et al. (2020); Jazbec et al. (2021) who de ne
GP latent components with a neural network likelihood
function. Like those authors, we employed the ideas
of Hensman et al. (2013, 2015) on inducing points
for computational scalability. In fact, their models
are almost equivalent to the gp-NICA benchmark we
used in our experiments. The tp-NICA model di ers
from these works in that by assuming t-process latent
components, we are able to perform nonlinear ICA
with components that are more generally identi able.
Also, our use of the t-process leads to a very di erent
inference algorithm as TPs are not in the exponential
family, and thus non-conjugate, hence requiring a novel
approach; we solved this by re-phrasing our objective
in terms of in nite mixture of GPs scaled by a Gamma
random variable. Furthermore, unlike those two papers,
we used free-form variational parameters (Ranganath
et al., 2014) rather than amortizing our inference; we
utilize the reparametrization trick in optimizing these
free-form parameters, thus combining the strengths of
BBVI (Ranganath et al., 2014) and VAE(Kingma and
Welling, 2014) approaches. Finally, unlike Ashman et al.
(2020); Jazbec et al. (2021) and most other previous
works in VAEs, we do not assume a factored posterior
approximation, but rather assume that the approximate
likelihood term only factors over time but not between
components this allows us to parameterize it in terms
of block diagonal matrix of Cholesky factors, where
blocks size equals the number of components. Finally,
we mention that Student-t distribution was previously
considered in linear ICA by Tipping and Lawrence
(2005).

Limitations Because of the non-factorial posterior,
the computational complexity of our full algorithm
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Table 1: Average cross-entropies and accuracies from Random Forest (RF) classi cation of the images into
temporal order based on the learned independent components for tp- and gp-NICA. Baseline of classifying the
actual images without feature extraction (RF only) is given. =2 and I=3 indicate the number of mixing layers
assumed in the model. Standard deviations across the 10-fold cross-validation are displayed.

Random RF gp-NICA (I=2)  gp-NICA (I=3)  tp-NICA (I=2, nu=4) tp-NICA (I=3, nu=4)
baseline only + RF + RF + RF + RF

Avg. cross-entropy 1:81 0:01 133 0:02 119 001 13 001 0.97 001 108 0:.02

Avg. accuracy 0:17 001 027 001 05 001 047 0:02 0.58 0:01 052 0:02

scales asO((NJ)3) the number of independent com-
ponents is typically very small, but nevertheless the
multiplicative cost can be unfeasible in the rare case
of very large number of components. This is not a
big limitation, since this complexity can be reduced to
0(J?3) by fully factorizing the Gaussian approximate
posterior this is the complexity seen typically with
sparse GPs, though this may come at the cost of less
accurate posteriors. For our experiments this was not
necessary, and non-factorized posterior provided bet-
ter performance. Computational cost can be reduced
also by amortizing the inference, though this again
comes at the cost of an amortization gap in the lower
bound. Another practical challenge is that t-Processes
are non-ergodic. Considering a time signal for simplic-
ity, a single in nitely long time-series does not have a
marginal following a Student's-t distribution, since it

is simply a GP re-scaled by a single Gamma random
variable. This means that multiple samples are needed
for estimation and inference.

8 CONCLUSION

We introduced a new non-linear ICA model, tp-NICA,
that usest-process independent components to attain
general identi ability. Unlike previous non-linear ICA
algorithms, our model is designed for spatial, spatio-
temporal, and any other data with high-dimensional
latent structures. We also introduced a novel varia-
tional learning and inference algorithm that is able to
estimate the model despite the non-conjugate structure
of the t-Process prior. We also establish gp-NICA as a
special case of our model but show that its identi abil-
ity is more constrained. Our results show the applica-
bility of our approach on spatial and spatio-temporal
data. We hope that our approach will inspire many
further identi able models for this type of data which
is common in many important real life applications.
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Supplementary Materials for

Identi able Feature Learning for Spatial Data with Nonlinear ICA

A Appendix: Algorithm Details

A.1 Pseudo-points

Modeling the latent components as GPs and TPs comes with the challenge of cubic computational
cost that is if each component is distributed overm index locations, then inverting them m
GP/TP kernel Kgs matrix scalesO(m3). Pseudo-points can be introduced to reduce this
computational complexity (Snelson and Ghahramani, 2005; Quifionero-Candela and Rasmussen,
2005; Hensman et al., 2013, 2015). In essence, the pseudo-points are additional index locations
at which we assume further latent variables to exist so that the distribution of all the latents
including the pseudo latentsu now becomes:

K s;s0 K s;u0

(S;U) N 0 Ku;s0 Ku;uo :

where the dimension ofi isJ << m i.e. we assume pseudo-latents dt index locations (the

locations are optimized during training). The trick is then that in the likelihood, and its lower-
bound, observations will be computed conditional on the and then the dependence to the
true latents will be managed by the o -diagonalK .0 block. The full covarianceK ¢ is never

inverted. This will be detailed in the below derivation.

A.2 ELBO Derivation

Joint pdf with pseudo-pointsu:

& W
pOGsius )= plxjsif)  ps®u® O Oyp( O O); (9)

1=1 i=1

where for notational simplicity we have writtens, instead of s, in the rst product; also
s = (s 8™y and s = (5,M;::::5, ). The marginal likelihood:

Z ZZ
L :=log p(x) = log p(x;s;u; )dudsd ; (10)

S u
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is intractable but can be lower-bounded:
p(x;s;uj )p( )

L > Eqsu; ) log AU )
_ _ p(x;s;uj )
- EQ( ) EQ(S§UJ ) Iog q(s’ u J ) KL [q( ) k p( )]

= Eq() Eqsujllogp(xjsiu)l  KLfa(s;uj ) kp(s;uj )] KL[a( ) kp( )]
choosing to approximateg(sj u; ) = p(sju; ) results in a further lower bound:
> Bo() Fawi ) Epsiur ) [logp(x )] KL[o(uj ) kp(uj )1 KL[a( ) kp( )]

= Eq) A I0gH 3] (L) ot 48 Lo e (11)
(

with
Z

&sj )= p(sju; )guj )du (12)
A.3 Distribution of Latent Components

Note that the pseudo-points are like additional latent variables at some extra locations, and
therefore we have:

W
psiuj )= pstiu®j O 0)
i=1
— md. (i) % 1 (iNT e () 1,.3G) -
= @) "TiKDPj texp  SOTKO MO (13)
i=1
where |
i (i) (i)
CENNERTUEI Y
1 ' r | I ’
u Ku;s0 Ku;uO
and, for brevity, we de ne K := “ % we will re-order elements for later use; that is we de ne
r=(Sg;:::;Sm;Ug;:::;Uy) =(s;u), which results in a covariance matrix:
_ Ks;sO Ks;u0 .
- Kuso Kyyo ' (14)

whereK g ismN  mN, Ky.,0oisJN  IN,andKgoismN JN. These block matrices also
have a speci ¢ form; usingK s.c0 as an example, this block can be considered ms m matrix

of N N blocks as its elements where each of the blocks is a diagonal matrix since the latent
variables factorize ovemN . In particular, the form is (dropping subscripts for convenience):

0 1
K 11 K Im

K=@ : - Al (15)
Km;l Km;m
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