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Abstract

The main challenge that sets transfer learn-
ing apart from traditional supervised learn-
ing is the distribution shift, reflected as the
shift between the source and target models
and that between the marginal covariate dis-
tributions. In this work, we tackle model
shifts in the presence of covariate shifts in the
high-dimensional regression setting. Specifi-
cally, we propose a two-step method with a
novel fused-regularizer that effectively lever-
ages samples from source tasks to improve
the learning performance on a target task
with limited samples. Nonasymptotic bound
is provided for the estimation error of the tar-
get model, showing the robustness of the pro-
posed method to covariate shifts. We further
establish conditions under which the estima-
tor is minimax-optimal. Additionally, we ex-
tend the method to a distributed setting, al-
lowing for a pretraining-finetuning strategy,
requiring just one round of communication
while retaining the estimation rate of the cen-
tralized version. Numerical tests validate our
theory, highlighting the method’s robustness
to covariate shifts.

Transfer learning is a technique that leverages knowl-
edge from source tasks to improve learning perfor-
mance in a related but possibly different target task
(Torrey and Shavlik, 2010). In this paper, we consider
the high-dimensional setting where the target sample
size is much smaller than the number of features. In
this context, applying transfer learning techniques to
extract information from a larger pool of source sam-
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ples can be particularly beneficial in identifying the
model parameters. For example, in genetic studies
of rare diseases, transferring information from larger,
related set of studies could uncover highly disease-
relevant genetic patterns (Taroni et al., 2019).

In contrast to learning from i.i.d. samples, a funda-
mental challenge in transfer learning is handling the
distribution shifts between the source sample (XS ,yS)
and the target sample (XT ,yT ) (Pan and Yang, 2009).
The discrepancy between the distributions typically
shows in two ways: 1) model shift: P (yS |X) ̸=
P (yT |X), indicating a shift in the learning models,
and 2) covariate shift: P (XS) ̸= P (XT ), indicating
a shift in the marginal covariate distributions. In ei-
ther case, models achieving small training errors on
the source tasks may experience high risks on the tar-
get task (Lu et al., 2020). Therefore, to improve the
learning performance of the target model P (yT |X) us-
ing knowledge from the source samples, one should not
only capture and correct the model shift but also be
robust to the covariate shifts. In the high-dimensional
setting, handling such differences becomes even more
difficult due to accumulated noise and limited samples
(Fan et al., 2020). This leads to the following question:

How to tackle model shifts in high-dimensional trans-
fer learning while being robust to covariate shifts?

Apart from the challenge brought by the distribution
shift, modern learning problems often involve datasets
distributed across multiple computing nodes. In such
a scenario, performing centralized training by pooling
all the raw data in a single machine can be undesir-
able due to storage, communication, and privacy is-
sues. This situation prompts another question:

How to transfer knowledge from distributed source
datasets in a communication-efficient manner?

This paper proposes a solution for the above two ques-
tions for high-dimensional linear regression with K

1Correspondence to: J Liu <jingyuan@xmu.edu.cn>.
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source tasks, where the target model isp-dimensional
with sparsity level s. Our contributions are:

� Covariate-Shift Robust Regularizer. We pro-
pose a novel fused-regularizer achieving two pur-
poses: it promotes sparse solutions for the high-
dimensional model parameter while simultaneously
capturing model shifts between source and target
datasets. Our theoretical results further show that this
regularizer can separate model shifts from shared pat-
terns in a robust manner under covariate shifts.

� Optimal Estimation Procedure. Leveraging the
proposed regularizer, we introduce a two-step proce-
dure termed TransFusion. When the source tasks are
su�ciently diverse, we show applying the �rst step on
the source and target tasks jointly su�ces to yield

a fast rate of O( s log p
n T + Kn S

+ �h
q

log p
n S

), where nT is
the target sample size,nS is the source sample size,
and �h measures task similarity. The rate signi�cantly
improves over the one achieved on target task with-
out transfer learning, i.e., the rate of O( s log p

n T
), when

nS � �hn2
T . For cases that do not meet the diversity

criteria, TransFusion incorporates a second step re�n-
ing the estimate on the target task, ensuring a rate of

O( s log p
n T + Kn S

+ �h
q

log p
n T

^ �h2), which is minimax-optimal

when p � s and �h is relatively small.

� E�cient Distributed Learning. We develop
a distributed variant of our method, termed D-
TransFusion, requiring only one-shot communication
of the pre-trained local models from source tasks nodes
to target task node, signi�cantly reducing communi-
cation overhead. More importantly, it o�ers the �ex-
ibility to quickly adapt the models to di�erent down-
stream tasks while avoiding training from scratch. We
further show that when the source sample sizenS is
su�ciently large, D-TransFusion achieves the optimal
statistical rate, matching its centralized counterpart.

Related Works: This paper develops transfer learn-
ing methods for high-dimensional regression problems
under both model and covariate shifts. Related works
can be broadly divided into the following categories.

Domain Adaptation methods primarily focus on
handling covariate shifts, usually assuming the un-
derlying models remain the same (Quinonero-Candela
et al. (2008), Redko et al. (2020)). One prevalent ap-
proach in this category focuses on aligning the source
and target covariate distributions by learning domain-
invariant representations (Redko et al. (2020), Man-
sour et al. (2009), Cortes and Mohri (2011), Cortes
and Mohri (2014)). Another line of research involves
correcting estimators to address covariate shifts, often
using the importance weighting (Quinonero-Candela
et al. (2008), Sugiyama and Kawanabe (2012), Chen

et al. (2016)). In contrast, we explicitly address model
shifts and aim for robustness to covariate shifts.

Multitask learning aims to handle model shifts
across multiple tasks and learn shared features to im-
prove the performance of each task (Pan and Yang,
2009). In regression settings, regularization techniques
are often employed to promote information transfer.
Examples include the Frobenius and spectral norm
(Argyriou et al. (2007), Tian et al. (2023)), mixed `2;1

norm (Lounici et al., 2009), hard-thresholding (Huang
et al., 2023), and the total variation norm (Li and Sang
(2019), Zhang et al. (2022), Tang and Song (2016)).
These works typically require all tasks to have a com-
parable sample size and emphasize overall task perfor-
mance. Therefore, they are not directly applicable to
transfer learning problems where the target task, often
with far fewer samples, is the primary focus.

Transfer Learning has been intensively studied
under regression settings (Du et al. (2017), Lei
et al. (2021), Lin and Reimherr (2022;2024)). How-
ever, most works are restricted to low-dimensional
problems. Recently, transfer learning in the high-
dimensional regression settings has been studied in
Takada and Fujisawa (2020), Bastani (2021), Li et al.
(2022) and Tian and Feng (2022). These works, how-
ever, deal with scenarios with only a single source or
are sensitive to covariate shifts across multiple sources,
and their learning accuracy degrades quickly if such
shifts are severe. More recent works such as Li et al.
(2023) and Liu (2023) attempt to mitigate the im-
pact of covariate shifts. However, these methods either
rely on strong assumptions or are computationally de-
manding. Speci�cally, Li et al. (2023) established the
convergence rate of the proposed estimator assuming
the empirical loss function in the high-dimensional set-
ting is smooth, and computing the estimator requires
solving a nonsmooth optimization problem with mul-
tiple constraints, while Liu (2023) assumes the target
sample has a comparable size as the source sample.
In contrast, theoretical guarantees of our method are
established under weaker, more practical conditions,
and numerically it can be computed e�ciently using
algorithms such as iterative soft thresholding.

Notation: We use bold upper- and lowercase let-
ters for matrices and vectors, respectively. For a ma-
trix A 2 Rm � n , we denote its (i; j )-th element by
A ij , maximum eigenvalue by� max (A ), and minimum
eigenvalue by� min (A ). We let a _ b denote maxf a; bg
and a ^ b denote minf a; bg. We usec; c0; c1; : : : to de-
note generic constants independent ofn, p and K . Let
an = O (bn ) and an . bn denote jan =bn j � c for some
constant c when n is large enough;an = o(bn ) and
bn � an if an = O(cn bn ) for some cn ! 0; a � b if
a = O(b) and b = O(a).
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1 Preliminaries

We consider a transfer learning problem involving one
target task and K source tasks. For the target task,
we observe a sample(X (0) ; y (0) ) generated from the
target model

y (0)
i =

�
X (0)

i �

� >
� (0) + � (0)

i ; i = 1 ; : : : ; nT ;

where � (0) 2 Rp is the parameter of primary interest
and � (0)

i is the observation noise. We focus on a high-
dimensional scenario where the dimensionp is much
larger than the target sample sizenT , yet the ground
truth � (0) is a sparse vector withs := k� (0) k0 nonzero
elements, which is much smaller thanp, i.e., p � s.

In addition to the target sample, we also have access
to K source samplesf (X (k ) ; y (k ) )gK

k=1 , generated from
the source model

y (k )
i =

�
X (k )

i �

� >
� (k ) + � (k )

i ; i = 1 ; : : : ; nS ; k = 1 ; : : : ; K:

For the k-th source model, � (k ) 2 Rp is the unknown
source task-speci�c parameter, and� (k )

i accounts for
the observation noise. For simplicity, we assume the
source samples have the same sizenS .

Our goal is to estimate � (0) using both the target
and source samples under the challenging scenario
where distributions of the samples are heterogeneous,
as characterized by both model and covariate shift de-
scribed next.

Model Shift. In our context, the model shift is the
situation where each source model di�ers from the tar-
get model, and is measured by� (k ) := � (k ) � � (0)

for 1 � k � K . Throughout the paper, we refer
� (k ) as the �parameter contrast� or �task-speci�c sig-
nal�. A source task is considered informative for trans-
fer learning if � (k ) is relatively small. Formally, let
� := (( � (0) )> ; (� (1) )> ; : : : ; (� (K ) )> )> 2 R(K +1) p, we
assume� belongs to the following parameter space

�( s;h) :=
n

� : k� (0) k0 � s; k� (k ) � � (0) k1 � hk

o
;

(1)

with h := ( h1; : : : ; hK )> . In (1), the informative level
of the k-th source task is quanti�ed by the `1-sparsity
of � (k ) , and is upper bounded by a factorhk � 0.

Remark 1. We choose aǹ 1-sparse constraint for the
high-dimensional contrast � (k ) � � (0) , as it aligns well
with practical applications where model shifts typically
spread over multiple dimensions but their overall mag-
nitude does not grow too fast. The results in the paper
can be naturally extended to a general̀q-sparse case
for q 2 [0; 1].

Covariate Shift. In addition to the shift in the model
parameters, we also consider the covariate shift, de-
�ned as the di�erence in the distributions of X (k )

i � s
across the tasks. In this work, we only impose the fol-
lowing mild tail condition on the distribution of X (k )

i � s
but allow other distribution characteristics, such as the
covariance structures, to vary across di�erent tasks.
Assumption 1 (Sub-Gaussian designs). For any
0 � k � K , X (k )

i � s are independent sub-Gaussian
random vectors with mean zero and covariance
� (k ) . Furthermore, there exists some universal con-
stant c such that 1=c � min0� k � K � min (� (k ) ) �
max0� k � K � max (� (k ) ) � c.

Finally, we assume that the random noises follow inde-
pendent Gaussian distributions, a typical assumption
for high-dimensional regression analysis.
Assumption 2 (Gaussian random errors). For all 0 �
k � K , the � (k )

i s are independent Gaussian random
variables with zero mean and uniformly upper bounded
variance, and are independent ofX (k ) s.

2 Covariate-Shift Robust Transfer
Learning

We now introduce a method called TransFusion
(Trans fer Learning with a Fu sed-Regularization ), de-
signed to address high-dimensional model shifts in
the presence of covariate shifts, thereby transferring
knowledge from source tasks to the target task. The
method consists of two steps. First, we perform a co-
training step using both source and target samples,
leveraging the `0-sparsity of � (0) and the `1-sparsity
of the contrast � (k ) . We show that when the source
tasks are su�ciently diverse, see De�nition 1, perform-
ing the �rst step of the TransFusion method su�ces to
ensure a fast rate. When such a condition is not met,
we further perform a second step by �ne-tuning the
model on the target dataset. The method is shown to
be rate-optimal and robust to covariate shifts.

2.1 Step 1: Co-Training

We start with the �rst step, a co-training step involv-
ing both target and source samples. The challenge
is tackling the distribution shifts while extracting the
shared pattern between source and target samples to
estimate � (0) . Pooling all data as i.i.d. samples lever-
ages larger sample size and reduces noise, but su�ers
from large bias if the source and target distributions
di�er signi�cantly. In contrast, training exclusively on
the target sample prevents any information transfer
from the source samples. It is therefore critical to to
strike a balance between these two extremes to im-
prove the estimation of � (0) . To this end, we propose
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a co-training step that estimates � (k ) s by solving the
following problem:

�̂ 2 argmin
� 2 R( K +1) p

(
1

2N

KX

k=0

ky (k ) � X (k ) � (k ) k2
2

+ � 0

�
k� (0) k1 +

KX

k=1

ak k� (k ) � � (0) k1

�
)

; (2)

where N = Kn S + nT is the total sample size,� 0 is
the tuning parameter and f ak gK

k=1 are weights that
will be speci�ed later. In (2), the �rst term mea-
sures the average �tness of the models with parameter
f � (k ) gK

k=0 , while the fused-regularization term simul-
taneously promotes the sparsity of� (0) and captures
the `1-sparse contrast between� (0) and � (k ) by penal-
izing their di�erence.

We construct the �rst-step estimator as ŵ =
n S
N

P K
k=1 �̂

(k )
+ n T

N �̂
(0)

. The motivation for this es-
timator is twofold: �rst, averaging across both target
and source estimators utilizes the full sample, yielding
an estimator with low variance. In addition, when the
source datasets are su�ciently diverse, the bias ofŵ
is small. When the reduction in variance dominates
the increase in bias, the one-step estimator̂w serves
as a promising estimator of� (0) than using the target
sample alone.

We now formally characterize the source task diversity.

De�nition 1 (Source task diversity). Given � 2
�( s;h), we quantify the diversity across source tasks
with the metric k n S

N

P K
k=1 � (k ) k1 � "D , where � (k ) :=

� (k ) � � (0) is the task-speci�c signal.

A small "D implies that f � (k ) gK
k=1 are centered around

� (0) and cover all the directions, such that the average
parameter w := n S

N

P K
k=1 � (k ) + n T

N � (0) does not align
with any direction signi�cantly more than � (0) . This
kind of assumption is commonly imposed in transfer
learning settings (Du et al. (2020),Tripuraneni et al.
(2020)).

We proceed to establish the statistical estimation rate
for ŵ under the setting of diverse source tasks.

Theorem 1. Under Assumption 1 and 2, if nS �
s logp, then by choosing� 0 = c0

p
logp=N for some

universal constant c0 and ak = 8
p

nS=N, we have

kŵ � wk2
2 .

s logp
N

+ (1 + vn )�h

r
logp
nS

; (3)

and

kŵ � � (0) k2
2 .

s logp
N

+ (1 + vn )�h

r
logp
nS

+ "2
D ; (4)

with probability at least 1 � c1 exp(� c2nT ) �
c3 exp (� c4 logp), where vn :=

p
K 2 logp=nS

�h and
�h := n S

N

P K
k=1 hk .

Let us break down the upper bound provided by equa-
tion (4). The �rst term, s logp=N, represents the rate
from estimating an s-sparse coe�cient � (0) based on
N = Kn S + nT i.i.d. samples. This term reveals the
bene�t of using both the source and target datasets
for estimating the target parameter � (0) . The second
term, �h

p
logp=nS , accounts for the estimation error

of � (k ) unique to each source task and thus is limited
by the source sample sizenS . The factor vn is sample
dependent and is negligible whennS � �h2K 2 logp.
The �rst two terms together quantify the estimation
error kŵ � wk2

2. The third term, "2
D , measures the

di�erence between w and � (0) and contributes to the
bias introduced by averaging. Notably, to obtain the
bound (4), we do not require a homogeneous distribu-
tion of the covariates X (k ) s but only impose the mild
tail assumption as outlined in Assumption 1, and the
bound does not depend on the target sample sizenT .

As a comparison, if we apply the LASSO regression
on the target data, the estimation error is of or-
der O(s logp=nT ). Therefore, if N � nT , nS �
�h2(n2

T _ K 2 logp) and "D �
p

s logp=nT , that is, the
source tasks are su�ciently diverse with adequately
large sample size, then one-step TransFusion method
achieves a sharper estimation rate. This corroborates
our design intuition and quantitatively shows the bene-
�t of transferring information from diverse source tasks
even under covariate shifts.

Remark 2 (Adaptive version of TransFusion). In
Theorem 1, we choose a weightak that does not de-
pend on hk , as we treat hk as an unknown priori. As
a compromise, the estimation rate depends on�h, the
averaged magnitude of model shifts. In fact, for a gen-
eral choice of � 0 and ak , TransFusion could yield a
bound

kŵ � � (0) k2
2 . s� 2

0 +
KX

k=1

ak � 0hk + "2
D

under certain conditions (cf. Lemma 5). So if we
have some information onhk , we may adjust ak ac-
cordingly, focusing more on informative datasets with
small hk and less or not at all on those with large
hk . In such cases, this adaptive version of TransFu-
sion could potentially yield a fast estimation rate that
is less sensitive to the magnitude of model shifts.

Remark 3 (Scalability with task number K ). Trans-
Fusion incorporates a novel fused regularizer capturing
the task-speci�c signals in the joint learning step. This
technique robusti�es the method against covariate-shift
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and introduces a dependency of the convergence rate
on K as a tradeo�. Speci�cally, the convergence rate
of the �rst-step estimator is given by (3) with vn :=p

K 2 logp=nS
�h due to the non-strong convexity of the

local empirical loss (cf. Lemma 4). If we increaseK
while �xing nS , for large K , the sum will be dominated
by the second term, which grows withK . Otherwise,
if we increase nS with K , TransFusion would have a
consistent error improvement. This is supported by the
simulation results and discussions in Appendix E.

2.2 Step 2: Local Debias

Despite its merits, the one-step TransFusion method
may experience large bias when"D is large. This is
especially the case when the source tasks exhibit a
skewed model shift towards one speci�c direction than
� (0) . In such cases, we employ an additional debias
step that re�nes the initial estimator ŵ and mitigates
the impact of "D . Speci�cally, we correct ŵ using the
target sample as:

�̂ 2 argmin
� 2 Rp

�
1

2nT



 y (0) � X (0) ŵ � X (0) �





2

2
+ ~� k� k1

�
;

�̂
(0)
TransFusion = ŵ + �̂ : (5)

Next, we demonstrate that with an appropriate choice
of estimation strategy and tuning parameters, we can
attain an optimal estimation rate of � (0) without re-
quiring a small "D . De�ne the event

A =
�

s logp=nS � �h
p

logp=nT
	

; (6)

and Ac as its complement. The following theorem es-
tablishes an upper bound on the estimation error for
the two-step TransFusion algorithm.

Theorem 2. Under the assumptions of Theorem 1,
if nT & s logp, nS & K 2s logp and �h

p
logp=nT +

Ks logp=nS = o(1), then by choosing the parameters

� 0 = c0

 r
logp
N

1A +

r
logp
nS

1A c

!

,

ak = 8
� r

nS

N
1A +

nS

N
1A c

�
;

and ~� = c1
p

logp=nT for some universal constants
c0 and c1, the solution of the two-step TransFusion
method satis�es

k�̂
(0)
TransFusion � � (0) k2

2 .
s logp

N
+ �h

r
logp
nT

; (7)

with probability at least 1 � c2 exp (� c3 logp).

By comparing the results of Theorem 1 and 2 [cf. (4)
and (7)], we see when

p
logp=nT . "2

D =�h, perform-
ing the second step improves the estimation precision.

The ratio "D =�h quanti�es the normalized (by the mag-
nitude of � (k ) s) source task diversity, and thus our re-
sult shows applying the second step is bene�cial for
non-diverse source tasks. Note that the condition on
the sample sizenT and nS in Theorem 2 is stronger
than Theorem 1. Such a condition is required to en-
sure the target-speci�c signals � (k ) being accurately
captured to perform the correction in (5).

On the other hand, if
p

logp=nT & "2
D =�h applying the

second step may even harm the model performance.
Therefore, choosing between the one-step and two-step
TransFusion methods carefully is key to getting the op-
timal estimation results. The following corollary pro-
vides guidelines for making this choice.

Corollary 1. Under the assumptions of Theorem 2, if
we apply the one-step TransFusion method whennT .
logp=�h2 and apply the two-step TransFusion method

otherwise, then obtained estimator�̂
(0)
TransFusion � 2 sat-

is�es

k�̂
(0)
TransFusion � 2 � � (0) k2

2 .
s logp

N
+ �h

r
logp
nT

^ �h2;

(8)

with probability at least 1 � c2 exp (� c3 logp).

Next, we establish the minimax optimality of the
above strategy under certain conditions. The following
result follows from minor modi�cations of Theorem 2
in Li et al. (2022).
Proposition 1. Under Assumption 1 and Assumption
2, if N � s logp, hk � �h and �h

p
logp=nT = o(1),

then any estimator �̂
0

that is a measurable function of
the samplef (X (k ) ; y (k ) )g0� k � K satis�es

inf
�̂ 0

sup
� 2 �( s; h )



 �̂

0
� � (0)





2

2
&

s log p
N

+
s log p

nT
^ �h

r
log p
nT

^ �h2 ;

(9)

with probability at least 1=2.

Comparing with the upper bound (8), we can conclude
that, given the conditions outlined in Theorem 2, if
source datasets are su�cient informative such that �h .
s
p

logp=nT , then the proposed procedure is minimax
optimal, even under covariate shifts.

Remark 4 (Implementation of TransFusion). Notice
that although the two-step TransFusion method only
involves one tuning parameter in each step, as dis-
cussed in Theorem 2 and Corollary 1, it relies on
a dichotomous strategy that depends on the value of
�h. However, it can still be practically applied without
knowing �h in advance by implementing both choices
and selecting the one with smaller validation error.
On the computation front, the global minimizer of each
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TransFusion step can be e�ciently found by numeri-
cal algorithms such as iterative soft-thresholding. The
implementation details are provided in Appendix D.

2.3 Understanding the Robustness of the
TransFusion Method to Covariate Shift

In this section, we discuss the underlying mechanisms
that make the TransFusion method robust to covari-
ate shifts via comparing with the two-step method
proposed in Li et al. (2022) and Tian and Feng
(2022). While both methods aim to address the high-
dimensional transfer learning problem, we take a sig-
ni�cantly di�erent approach in the �rst co-training
step.

In their approach, the �rst step pools samples from
both target and source tasks, and performs a sparse
regression to obtain the initial estimator. In the lin-
ear regression setting, this estimator comes with an
asymptotic bias expressed as

� Pooling :=

 
KX

k=1

� (k )

! � 1 KX

k=1

� (k ) � (k ) : (10)

Due to the weights introduced by the covariance ma-
trices, the contrast � (k ) s can be ampli�ed by a factor
of C� , de�ned as

C� := 1+max
j � p

max
k








e>
j

�
� ( k ) � � (0)

�
0

@
X

1� k � K

1
K

� ( k )

1

A

� 1 






1

:

Consequently, in the linear regression setting, their es-
timator yields the following estimation rate (Li et al.,
2022, Theorem 4):

s logp
N

+

 

C�

r
logp
nT

�h

!

^
�
C2

�
�h2�

:

When the � (k ) s are dissimilar, the factor C� can di-
verge with dimension p even if Assumption 1 holds,
considerably deteriorating the estimation accuracy.
See Appendix C for a detailed discussion.

In contrast, as shown in (8), our method is robust
to such covariance heterogeneity and thus doesn't in-
volve the C� factor. This is achieved by incorporating
a fused-regularizer, allowing us to accurately capture
task-speci�c signals under covariate shifts. Solving the
objective leads to an initial estimator with asymptotic
bias

� TransFusion :=
1
K

KX

k=1

� (k ) ;

which is free from the impact of the covariance ma-
trices. This bias is much smaller than � Pooling under
covariate shift settings with a large C� .

3 D-TranFusion: Distributed Transfer
Learning in One-Shot

In this section, we consider the distributed transfer
learning problem where the target andK source sam-
ples are stored by di�erent computing nodes. Such
a setting is of primary interest in learning problems
involving a massive amount of training data, where
brute-forcely pooling the raw data is not admissible
due to practical constraints such as storage limitation,
communication cost, and privacy concerns.

This motivates us to consider developing a
communication-e�cient distributed TransFusion
method, termed D-TransFusion. Our method is based
on TransFusion and leverages the idea of divide-
and-conquer to facilitate communication e�ciency,
aiming to achieve a comparable estimation error as
TransFusion but using only one-shot communication.
Speci�cally, D-TransFusion consists of the following
two steps.

Step 1. Each node k computes an estimator ~�
(k )

(to be speci�ed later) locally based on source sample
(X (k ) ; y (k ) ) and transmits it to the target node. The
target node then aggregates them with its own sample
(X (0) ; y (0) ) via solving the following problem:
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Step 2. The target node corrects ŵC on its local
sample(X (0) ; y (0) ) by solving
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and outputs the estimator �̂
(0)
D-TransFusion = ŵC + �̂ C .

Comparing with (2) and (5), we can see that D-
TransFusion di�ers from the centralized TransFusion
method only in the �rst step. To avoid the involve-
ment of source samples, D-TransFusion replaces the
least square lossky (k ) � X (k ) � (k ) k2

2 by the squared loss

k
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(k )
serves as a �pseudo

sample� summarizing the information of � (k ) that the
k-th source sample contains. By doing so, only one-
shot communication is required to transmit the sum-

mary statistics ~�
(k )

from the source to the target
node, signi�cantly reducing the communication over-

head. Here, ~�
(k )

is carefully selected as a de-biased
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LASSO estimator (Javanmard and Montanari, 2014)
that minimizes estimator variance while also control-
ling the bias under a given threshold. See Appendix G
for a detailed discussion. This choice ensures that D-
TransFusion can signi�cantly reduce communication
overhead while achieving the minimum loss of sample
e�ciency compared to centralized TransFusion.

More importantly, D-TransFusion allows for pre-
training on each source data nodes before transfer
learning. The decoupling of training on the source and
target samples eliminates the need for training from
scratch when the target samples change, and thus en-
hances the model's adaptability to downstream tasks.

We now establish the statistical precision of the one-
step D-TransFusion method. De�ne � k = s log p
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hk and � 0 = Ks log p
N +
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�h. The following
theorem provides an upper bound for the estimation
error of the one-step D-TransFusion estimatorŵC .

Theorem 3. Under Assumption 1 and 2 and the as-
sumptions nS � Ks 2 logp, nS & (�h2 _ K 2)s logp,
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for some universal constantc0 and c1, then with prob-
ability at least 1 � c2 exp (� c3nT ) � c4 exp (� c5 logp),
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if we further assume�h = O(1), then we have
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Let us now compare the result to Theorem 1. Under
the additional assumption nS � Ks 2 logp, nS & (�h2 _
K 2)s logp, hk � �h, which requires the source tasks
roughly equally informative with su�ciently large size,
the estimation error of D-TransFusion is larger than
TransFusion by s� 2

0 +
P K

k=1 � k hk . This re�ects the cost
of sample e�ciency for achieving one-shot communi-
cation. When �h = O(1), such di�erence is negligible
compared to the estimation error of TransFusion, the
statistical accuracy of ŵC matches that of the central-
ized counterpart ŵ in the asymptotic sense.

The second step of D-TransFusion can be designed
in analogue to that of TransFusion. Recall the event
A = f s logp=nS � �h=

p
logp=nT g de�ned in (6). The

following theorem establishes the statistical estimation
rate of the �nal estimator obtained from the two-step
D-TransFusion method.

Theorem 4. Under the assumptions of Theorem 3, if
further assumenT & s logp, �h

p
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and ~� = c1
p
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and c1, we have
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with probability at least 1 � c2 exp (� c3 logp).

Theorem 4 ensures that the two-step D-TransFusion
method achieves a statistical rate of the same order
as the centralized two-step TransFusion method under
the previously discussed additional conditions. By em-
ploying similar reasoning as in Corollary 1 and Propo-
sition 1, we can further establish conditions under
which D-TransFusion is minimax optimal. These re-
sults demonstrate that D-TransFusion is an e�cient
and robust solution when dealing with large-scale dis-
tributed datasets with covariate shifts.

Remark 5 (The e�cacy of D-TransFusion) . D-
TransFusion aims to address the scenario where the
source datasets are not co-located and cannot to be
merged. This di�ers from the traditional distributed
computing paradigm, where one splits the whole data
into parts and parallelizes the cost due to the large data
size. As for the implementation cost, sinceK debiased
lasso estimators are computed in step 1 and transmit-
ted in step 2, it requires per source node storing and
transmitting a p-dimensional vector. The computation
cost readily follows that of the debiased and standard
lasso, provided in Lee et al. (2017). Although concerns
may arise about the computation cost of the debiased
Lasso, it is noteworthy that under mild conditions, the

de-biased lasso estimator~�
(k )

can be replaced by other
asymptotically unbiased estimator such as the SCAD
estimator (Fan and Li (2001)), which enables the D-
TransFusion to enjoy both comparable computational
complexity, but distributed to K parallel processors,
and statistical precision to its non-distributed counter-
part given a moderate task numberK .
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