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Abstract

Cross-domain few-shot classification induces
a much more challenging problem than its
in-domain counterpart due to the existence
of domain shifts between the training and
test tasks. In this paper, we develop a
novel Adaptive Parametric Prototype Learn-
ing (APPL) method under the meta-learning
convention for cross-domain few-shot classi-
fication. Different from existing prototypical
few-shot methods that use the averages of
support instances to calculate the class pro-
totypes, we propose to learn class prototypes
from the concatenated features of the support
set in a parametric fashion and meta-learn
the model by enforcing prototype-based reg-
ularization on the query set. In addition,
we fine-tune the model in the target domain
in a transductive manner using a weighted-
moving-average self-training approach on the
query instances. We conduct experiments on
multiple cross-domain few-shot benchmark
datasets. The empirical results demonstrate
that APPL yields superior performance to
many state-of-the-art cross-domain few-shot
learning methods.

1 INTRODUCTION

Benefiting from the development of deep neural net-
works, significant advancement has been achieved on
image classification with large amounts of annotated
data. However, obtaining extensive annotated data is
time-consuming and labour-intensive, while it is diffi-
cult to generalize trained models to new categories of
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data. As a solution, few-shot learning (FSL) has been
proposed to classify instances from unseen classes using
only a few labeled instances. FSL methods usually use
a base dataset with labeled instances to train a predic-
tion model in the training phase. The model is then
fine-tuned on the prediction task of novel categories
with a few labeled instances (i.e. support set), and
finally evaluated on the test data (i.e. query set) from
the same novel categories in the testing phase. FSL has
been widely studied in the in-domain settings where
the training and test tasks are from the same domain
(Finn et al., 2017; Snell et al., 2017; Lee et al., 2019).
However, when the training and test tasks are in differ-
ent domains, it poses a cross-domain few-shot learning
(CDFSL) problem, which is much more challenging
than its in-domain FSL counterpart due to the domain
shift problem.

Recently, several methods have made progress to ad-
dress cross-domain few-shot learning, including the
ones based on data augmentation, data generation
(Wang and Deng, 2021; Yeh et al., 2020; Islam et al.,
2021) and self-supervised learning (Phoo and Hariha-
ran, 2020) techniques. However, such data generation
and augmentation methods increase the computational
cost and cannot scale well to scenarios with higher-
shots (Wang and Deng, 2021). Some other works either
require large amounts of labeled data from multiple
source domains (Hu et al., 2022) or the availability
of substantial unlabeled data from the target domain
during the source training phase (Phoo and Hariharan,
2020; Islam et al., 2021; Yao, 2021). Such require-
ments are hard to meet and hence hamper their ap-
plicability in many domains. Although some existing
prototypical-based few-shot methods have also been
applied to address cross-domain few-shot learning due
to their simplicity and computational efficiency (Snell
et al., 2017; Satorras and Estrach, 2018), these stan-
dard methods lack sufficient capacity in handing large
domain shifts and adapting to target domains. More-
over, existing methods primarily generate prototypes
using metric distances, but often overlook the correla-
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tion between prototypes across categories and struggle
with significant cross-domain shifts.

In this paper, we propose a novel Adaptive Parametric
Prototype Learning (APPL) method under the meta-
learning convention for cross-domain few-shot image
classification. APPL introduces a parametric proto-
type calculator network (PCN) to learn class proto-
types from concatenated feature vectors of the sup-
port instances. PCN is meta-learned in the source
domain. It implements a parametric approach to learn
more representative and adaptive prototypes, guided
by two tailored loss functions that enhance inter-class
discriminability and intra-class cohesion of the proto-
types. In the target domain, we deploy a weighted-
moving-average (WMA) self-training approach to lever-
age the unlabeled query instances and fine-tune the
prototype-based prediction model in a transductive
manner. With PCN and prototype regularizations,
the proposed method is expected to have better gener-
alization capacity in learning class prototypes in the
feature embedding space, and hence effectively miti-
gate the domain shift and adapt to the target domain
with WMA self-training. Comprehensive experiments
are conducted on eight cross-domain few-shot learning
benchmark datasets. The empirical results demonstrate
the efficacy of the proposed APPL for cross-domain few-
shot classification, by comparing with existing state-of-
the-art methods.

The contributions of this work are as follows:

1. We propose a novel adaptive prototype learn-
ing network called Prototype Calculator Network
(PCN). PCN, meta-learned in the source domain,
provides a parametric mechanism to generate more
informative prototypes with carefully designed pro-
totype regularization loss functions, supporting
future adaptation to new target domains.

2. We propose a Weighted-Moving-Average (WMA)
self-training strategy for fine-tuning the model
in the target domain, tailored specifically for the
CDFSL problem. Compared to existing methods,
it overcomes the barrier of requiring large amounts
of additional data in the target domain and re-
duces domain shift by generating better pseudo-
labels. It enhances the stability and convergence
of self-training by jointly employing three mech-
anisms: Weighted-Moving-Average updating of
prediction vectors, a rectified annealing schedule
for the WMA, and selectively sampling only the
confident pseudo-labels to adapt the model.

3. We conduct extensive experiments. Our proposed
method outperforms existing methods on both low-
shot (5-shot) and high-shot (20-shot and 50-shot)
classification tasks.

2 RELATED WORKS

2.1 Few-Shot Learning

Most FSL studies have focused on the in-domain set-
tings. The FSL approaches can be grouped into three
main categories: metric-based and meta-learning ap-
proaches (Finn et al., 2017; Snell et al., 2017; Lee
et al., 2019), transfer learning approaches (Guo et al.,
2019; Jeong and Kim, 2020; Ge and Yu, 2017; Yosinski
et al., 2014; Dhillon et al., 2019), and augmentation
and generative approaches (Zhang et al., 2018; Lim
et al., 2019; Hariharan and Girshick, 2017; Schwartz
et al., 2018; Reed et al., 2018). In particular, the repre-
sentative meta-learning approach, MAML (Finn et al.,
2017), learns good initialization parameters from vari-
ous source tasks that make the model easy to adapt to
new tasks. The non-parametric metric-based approach,
MatchingNet (Vinyals et al., 2016), employs attention
and memory in order to train a network that learns
from few labeled samples. ProtoNet (Snell et al., 2017)
learns a metric space where each class is represented
by the average of the available support instances and
classifies query instances based on their distances to
the class prototypes. A few meta-learning works, such
as RelationNet (Sung et al., 2018), GNN (Satorras and
Estrach, 2018) and Transductive Propagation Network
(TPN) (Liu et al., 2019), exploit the similarities be-
tween support and query instances to classify the query
instances. MetaOpt uses meta-learning to train a fea-
ture encoder that obtains discriminative features for
a linear classifier (Lee et al., 2019). Transfer learning
methods initially train a model on base tasks and then
use various fine-tuning methods to adapt the model to
novel tasks (Guo et al., 2019; Jeong and Kim, 2020;
Ge and Yu, 2017; Yosinski et al., 2014; Dhillon et al.,
2019). Generative and augmentation approaches gener-
ate additional samples to increase the size of available
data during training (Zhang et al., 2018; Lim et al.,
2019; Hariharan and Girshick, 2017; Schwartz et al.,
2018; Reed et al., 2018).

2.2 Cross-Domain Few-shot Learning

Recently cross-domain few-shot learning (CDFSL) has
started receiving more attention (Guo et al., 2020;
Phoo and Hariharan, 2020). Tseng et al. (2020) pro-
pose a feature-wise transformation (FWT) layer that is
used jointly with standard few-shot learning methods
for cross-domain few-shot learning. The FWT layer
uses affine transformations to augment the learned fea-
tures in order to help the trained network generalize
across domains. Du et al. (2022) address the domain
shift problem by proposing a prototype-based Hierar-
chical Variational neural Memory framework (HVM),
where the hierarchical prototypes and the memory are
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both learned using variational inference. Adler et al.
(2023) propose a Cross-domain Hebbian Ensemble Fu-
sion (CHEF) method, which applies an ensemble of
Hebbian learners on different layers of the neural net-
work to obtain a representation fusion. Data augmen-
tation and data generation methods have also been
used to bridge the gap between the source and target
domains (Wang and Deng, 2021; Yeh et al., 2020; Islam
et al., 2021). Wang and Deng (2021) propose an Adver-
sarial Task Augmentation approach (ATA) to generate
difficult training tasks in an adversarial fashion and
improve the generalizability of few-shot methods across
largely different domains. Islam et al. (2021) employ
dynamic distillation and consistency regularization to
train student and teacher networks jointly on the source
domain data and unlabeled data from the target do-
main. Hu et al. (2022) propose domain-switch learning
framework with multiple source domains, and use re-
weighted cross-entropy loss and binary KL divergence
loss to prevent overfitting and catastrophic forgetting.
Sun et al. (2021) adapt the explanation method of
Layer-wise Relevance Propagation (LRP) to the FSL
setup, which guides the FSL training by dynamically
highlighting the discriminative features of the input
samples.

Some other works (Triantafillou et al., 2020; Liu et al.,
2021; Bateni et al., 2022; Doersch et al., 2020) have
tested alternative cross-domain few-shot learning set-
tings such as Meta-Dataset (Triantafillou et al., 2020)
CDFSL setting where models are trained on several
source-domain datasets and tested on multiple target-
domain datasets. In this work, we focus on the CDFSL
setting employed by Guo et al. (2020) as it is the most
widely studied cross-domain few-shot learning setting.

3 APPROACH

3.1 Preliminary

The cross-domain few-shot learning problem aims to
train a model on the source domain with its large
set of labelled instances and then adapt the model to
address the prediction task in the target domain with
few labeled instances. We assume the two domains
have different distributions in the input space (Ps ̸=
Pt) and have disjoint classes (Ys ∩ Yt = ∅). In the
target domain, the model is provided with a support
set S = {(xi, yi)}Ns

i=1 and tested on a query set Q =

{(xi, yi)}
Nq

i=1 where Ns and Nq are the sizes of the
support and query sets, respectively. The support set
is made up of N classes with K instances in each class,
which is commonly described as N-way K-shot.

In the classic prototypical few-shot learning (Snell
et al., 2017), each instance x first goes through a

feature encoder fθ to obtain its embedding vector in
the feature space. Then, for each class in the sup-
port set, a prototype pn ∈ RD is computed as the
average embedding vector of the support instances:
pn = 1

K

∑
(x,y)∈Sn

fθ(x), where Sn denotes the set of
K support instances from class n. To classify the query
instances, the distances between each query sample
and the prototypes of all classes in the support set
are computed. Then the softmax function is used to
normalize the calculated distances to obtain the class
prediction probabilities as follows:

P (y = j|x) = exp(−d(fθ(x), pj))∑N
n=1 exp(−d(fθ(x), pn))

, (1)

where d(., .) is a distance function and P (y = j|x) is
the predicted probability of query sample x belonging
to class j. During the meta-training phase, the model
is trained to minimize the cross-entropy loss function
as follows:

LCE(Q) =
∑

x∈Q
ℓCE(Px, Yx), (2)

where ℓCE is the cross-entropy function, Px and Yx are
the predicted class probability vector and ground-truth
label indicator vector, respectively, for a sample x.

3.2 Adaptive Parametric Prototype Learning

In this section, we present our proposed Adaptive
Parametric Prototype Learning (APPL) method for
cross-domain few-shot image classification. The overall
framework of APPL is illustrated in Figure 1. APPL
first performs meta-training in the label-rich source
domain by meta learning an adaptive prototype calcu-
lator network (PCN) after the feature encoder. PCN
generates the prototype of each class by segregating
information from the concatenated feature vectors of
the K-shot support instances. Then the trained model
can be fine-tuned for the few-shot classification task
in the target domain using a weighted-moving-average
(WMA) self-training approach, which aims to adapt
the model to the target domain and further improve
the quality of the learned class prototypes. We describe
the details below.

3.2.1 Adaptive Prototype Calculator Network

Simply averaging the support instances to calculate
the class prototypes has the evident drawback of ig-
noring the inter-class and intra-class instance relations.
To overcome this drawback, we propose to learn class
prototypes from the support instances through a para-
metric prototype calculator network by enforcing both
inter-class discriminability and intra-class cohesion in
the extracted feature space. Such a parametric pro-
totype generation mechanism is expected to produce
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Figure 1: The proposed APPL method. (a) Training on the source domain. The concatenated feature
vectors of each class are fed into the PCN (ψϕ) to produce class prototypes, which are used to compute the
meta-training loss terms on query instances. (b) Fine-tuning on the target domain. Both the labelled
support set and the unlabeled query set with soft pseudo-labels computed using WMA are used to fine-tune the
feature encoder in the target domain with prototype based losses.

more representative class prototypes from various sup-
port instance layouts, and guide the feature encoder to
better adapt to the target domain through fine-tuning
in the testing phase.

We define the adaptive prototype calculator network
(PCN) as ψϕ : RK·D → RD, where D is the size of
the learned embeddings by the feature encoder, fθ, K
is the number of support instances per class, and ϕ
denotes the parameters of the PCN. Specifically, PCN
takes the concatenated feature vectors of the support
instances of a given class as input, and outputs the
prototype of the corresponding class:

pn = ψϕ(concat(fθ(x
n
1 ), .., fθ(x

n
K))), (3)

where xnj denotes the j-th support instance from class
n and pn is the learned prototype of class n. By feeding
the support instances of each class to ψϕ, we can obtain
the prototypes for all the N classes: P = {p1, p2, .., pN}.

We train the PCN during the meta-training phase us-
ing the few-shot training tasks in the source domain.
Specifically, given the feature encoder trained on the
support instances, we update the parameters of the
PCN by minimizing the cross-entropy loss on the query
instances, LCE(Q). Moreover, we introduce two auxil-
iary regularization loss terms, a prototype discrimina-
tive loss and a prototype cohesive loss, to ensure the
learned prototypes are both discriminative and repre-
sentative of the underlying classes. To elaborate, the
prototype discriminative loss Ldis aims to push the
prototypes of different classes away from each other

and is defined as follows:

Ldis =
1∑

{pi,pj}∈P d(pi, pj)
, (4)

We in particular use a squared Euclidean distance as
d(·, ·). By contrast, the prototype cohesive loss Lcoh is
designed to pull the prototypes and the query instances
of their corresponding classes to be closer to each other:

Lcoh =
∑N

n=1

∑
x∈Qn

d(pn, fθ(x)), (5)

where Qn denotes the set of query instances from class
n. Overall, PCN is meta-trained in the source domain
by minimizing the following joint loss:

min
ϕ
Ltrain = LCE(Q) + λdisLdis + λcohLcoh, (6)

where λdis and λcoh are the trade-off hyper-parameters
that control the contribution of the two regularization
loss terms, Ldis and Lcoh, respectively. The meta-
training procedure of our proposed method APPL is
summarized in Algorithm 1.

3.2.2 Weighted Moving Average Self-Training

For cross-domain few-shot image classification, signifi-
cant distribution discrepancies in the input image space
typically exist between the source and target domains.
Hence after meta-training the feature encoder fθ and
the PCN ψϕ in the source domain, it is critical to fine-
tune the feature encoder fθ on the few-shot test task
in the target domain to overcome the cross-domain
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Algorithm 1 Training Procedure on Source Domain

Input: Source domain dataset Ds, K, N ;
pre-trained feature extractor fθ;
learning-rate γ1 and γ2;
initialize: ϕ← ϕ0, θ ← θ0;

Output: Learned model parameters θ, ϕ
for iter = 1 to maxiters do

(V,DV
s )← randomly sample N class indices from

all classes in Ds, and gather their data
for n in {1, .., N} do

Sn, Qn ← randomly sample support & query
sets for class n from DV

s

end for
S = S1 ∪ .. ∪ SN , Q = Q1 ∪ .. ∪QN

for initer=1 to maxiniters do
θ ← θ − γ1∇θLCE(S)

end for
Compute Ldis and Lcoh with Eq. (4) and Eq.(5)
Ltrain = λdisLdis + λcohLcoh

for (x, y) ∈ Q do
Ltrain ← Ltrain + ℓCE(x, y)

end for
ϕ← ϕ− γ2∇ϕLtrain

end for

gap as well as adapt fθ to the target test task. Due
to the scarcity of the labeled support instances in the
target task, we propose to employ the unlabeled query
instances with predicted soft pseudo-labels to increase
the size and diversity of the target data for fine-tuning
and mitigate the domain shift between the source and
target domains. To this end, we develop a weighted-
moving-average (WMA) self-training approach to com-
pute soft pseudo-labels and deploy the query instances
for fine-tuning.

Specifically, at each iteration i of the fine-tuning pro-
cess, we first calculate the distances between each query
instance x and the class prototypes [pi1, p

i
2, · · · , piN ] pro-

duced by the PCN ψϕ from the support set S for all
the N classes, and form the following distance vector
for the query instance x:

hi(x) = [d(fθi(x), pi1), d(fθi(x), pi2), · · · , d(fθi(x), piN )]
(7)

Then we use this distance vector hi(x) to perform
weighted moving average update and maintain a
weighted-moving-average distance vector h̃i(x) for the
current iteration i as follows:

h̃i(x) = αi h
i(x) + (1− αi) h̃

i−1(x), (8)

where αi is a trade-off parameter that controls the com-
bination weights between distances computed from the
current iteration and previous iterations. The weighted-
moving-average distance vectors can then be used to

Algorithm 2 Target Domain Fine-tuning Procedure

Input: Target N-way-K-shot test task (S,Q);
source trained model (fθ, ψϕ);
hyper-parameters λdis, λcoh, αmin, α0, γ, ϵ;
initialize: θ1=θ, {h̃0(x) = 0, ∀x ∈ Q}

Output: Fine-tuned feature encoder parameter θ
for i = 1 to maxiters do

pn = ψϕ(concat(fθ(x
n
1 ), .., fθ(x

n
K))),

for Sn = {xn1 , · · · , xnK},∀n∈{1, · · · , N}
∇θLft ← 0
Compute αi using Eq.(10)
for x ∈ Q do

Compute P̃ i(Y |x) using Eq.(7)(8)(9).

∇θLft ← ∇θLft +∇θLtr
CE((x, P̃

i(Y |x)); θ, ϕ)
end for
∇θLft ← ∇θLft +∇θLCE(S) + λdis∇θLdis

+λcoh∇θLft
coh

θi+1 ← θi − η∇θ=θiLft

end for

compute the class prediction probabilities over each
query instance x by using the softmax function:

P̃ i(y = j|x) =
exp(−h̃ij(x))∑N

n=1 exp(−h̃in(x))
, (9)

where P̃ i(y = j|x) is the probability of the query in-
stance x being assigned to class j at iteration i. By
using the predicted class probabilities as soft pseudo-
labels, the query instances can subsequently be used
to support the fine-tuning of fθ in a self-training man-
ner. The WMA update mechanism can stabilize the
self-training process and dampen possible oscillating
predictions for challenging query instances. Moreover,
to increase the stability and convergence property of
the WMA self-training, we adopt the following rectified
annealing schedule for the WMA hyper-parameter αi:

αi = γ αi−1, (10)

where γ ∈ (0, 1) is a reduction ratio hyper-parameter for
updating the α value in each iteration. This annealing
schedule can enable larger updates to the h̃i vectors in
the beginning iterations of fine-tuning by starting with
a large value α0, while gradually reducing the degree
of update with the decrease of αi in later iterations.

With the soft pseudo-labels predicted by the current
prototype-based model (θi, ϕ), the query instances can
be deployed through a cross-entropy loss to guide the
further update, i.e., fine-tuning, of the feature encoder
fθ. However, using all pseudo-labeled query instances
may lead to noisy updates and negatively impact the
model due to the low-confidence predictions of the
pseudo-labels. Therefore, we choose to only employ
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Table 1: Mean classification accuracy (95% confidence interval in brackets) for 5-way 5-shot classification. ∗ and
† denote the results reported in Guo et al. (2020) and Wang and Deng (2021) respectively. Transductive methods
are indicated using (T). Methods using Batch Normalization to share query data are denoted with (BN).

ChestX CropDisea. ISIC EuroSAT Places Planate Cars CUB
MatchingNet∗(Vinyals et al., 2016) 22.40(0.70) 66.39(0.78) 36.74(0.53) 64.45(0.63) − − − −
MAML (BN)∗(Finn et al., 2017) 23.48(0.96) 78.05(0.68) 40.13(0.58) 71.70(0.72) − − − −
ProtoNet∗(Snell et al., 2017) 24.05(1.01) 79.72(0.67) 39.57(0.57) 73.29(0.71) 58.54(0.68) 46.80(0.65) 41.74(0.72) 55.51(0.68)
MetaOpt∗(Lee et al., 2019) 22.53(0.91) 68.41(0.73) 36.28(0.50) 64.44(0.73) − − − −
RelNet (BN)†(Sung et al., 2018) 24.07(0.20) 72.86(0.40) 38.60(0.30) 65.56(0.40) 64.25(0.40) 42.71(0.30) 40.46(0.40) 56.77(0.40)
GNN†(Satorras and Estrach, 2018) 23.87(0.20) 83.12(0.40) 42.54(0.40) 78.69(0.40) 70.91(0.50) 48.51(0.40) 43.70(0.40) 62.87(0.50)
TPN (T)†(Liu et al., 2019) 22.17(0.20) 81.91(0.50) 45.66(0.30) 77.22(0.40) 71.39(0.40) 50.96(0.40) 44.54(0.40) 63.52(0.40)
MatchingNet+FWT∗(Tseng et al., 2020) 21.26(0.31) 62.74(0.90) 30.40(0.48) 56.04(0.65) − − − −
ProtoNet+FWT∗(Tseng et al., 2020) 23.77(0.42) 72.72(0.70) 38.87(0.52) 67.34(0.76) − − − −
RelNet+FWT (BN)†(Tseng et al., 2020) 23.95(0.20) 75.78(0.40) 38.68(0.30) 69.13(0.40) 65.55(0.40) 44.29(0.30) 40.18(0.40) 59.77(0.40)
GNN+FWT†(Tseng et al., 2020) 24.28(0.20) 87.07(0.40) 40.87(0.40) 78.02(0.40) 70.70(0.50) 49.66(0.40) 46.19(0.40) 64.97(0.50)
TPN+FWT (T) †(Tseng et al., 2020) 21.22(0.10) 70.06(0.70) 36.96(0.40) 65.69(0.50) 66.75(0.50) 43.20(0.50) 34.03(0.40) 58.18(0.50)
ATA †(Wang and Deng, 2021) 24.43(0.20) 90.59(0.30) 45.83(0.30) 83.75(0.40) 75.48(0.40) 55.08(0.40) 49.14(0.40) 66.22(0.50)
LRP-CAN (T) (Sun et al., 2021) − − − − 76.90(0.39) 51.63(0.41) 42.57(0.42) 66.57(0.43)
LRP-GNN (Sun et al., 2021) − − − − 74.45(0.47) 54.46(0.46) 46.20(0.46) 64.44(0.48)
CHEF(Adler et al., 2023) 24.72(0.14) 86.87(0.20) 41.26(0.34) 74.15(0.27) − − − −
HVM(Du et al., 2022) 27.15(0.45) 87.65(0.35) 42.05(0.34) 74.88(0.45) − − − −
APPL (T) 24.87(0.41) 92.51(0.84) 46.28(0.64) 79.78(0.78) 68.84(0.80) 55.20(0.58) 52.67(0.42) 67.46(0.78)

query instances with high prediction confidence scores
that are larger than a predefined threshold ϵ and com-
pute the query-based cross-entropy loss as follows:

Ltr
CE(Q) =

∑
x∈Q

{
LCE(x, P̃

i(Y |x); θ, ϕ) if max(P̃ i(Y |x)) > ϵ

0 otherwise

(11)

where P̃ i(Y |x) denotes the soft pseudo-label vector
computed via Eq.(9) for query instance x, while
the maximum predicted probability, max(P̃ i(Y |x)), is
used as the prediction confidence score for x. Here
LCE(x, P̃

i(Y |x); θ, ϕ) denotes the cross-entropy loss
computed over the soft pseudo-labeled pair (x, P̃ i(Y |x))
with fθ and ψϕ.

In addition to the cross-entropy loss on both the sup-
port and query instances, we also use the prototype
regularization losses, Ldis and Lcoh, introduced in the
meta-training phase to guide the fine-tuning process.
Since the true labels of the query instances are unknown
in the meta-testing phase, we modify the prototype
cohesive loss Lcoh and compute it on the support in-
stances instead:

Lft
coh =

∑N

n=1

∑
x∈Sn

d(pn, fθ(x)), (12)

where Sn is the set of support instances from class n.
Overall, the feature encoder is fine-tuned by minimizing
the following joint loss function with gradient descent:

min
θ
Lft = LCE(S) + Ltr

CE(Q) + λdisLdis + λcohLft
coh

(13)

The fine-tuning procedure in the target domain is sum-
marized in Algorithm 2.

3.2.3 Learning with Higher Shots

In order to demonstrate the scalability of the proposed
APPL in experimental setups with higher shots, we
propose a clustering-based solution to guarantee that
the adaptive Prototype Calculator Network scales ef-
ficiently with the increase of the number of support
samples. By adopting this clustering approach, we
ensure that the number of learnable parameters in our
proposed PCN is independent of the number of shots,
highlighting the scalability of our approach.

Specifically, we first cluster the embeddings of support
instances from each class n into K ′ clusters as follows:

µ = g(fθ(x
n
1 ), · · · , fθ(xnK)), (14)

where g is the clustering function that takes the
learned embeddings of the support instances of a
given class as input, and produces the class centroids
µ = (µ1, µ2, · · · , µK′) of the K ′ clusters. In this pro-
cess, the clustering function g learns the cluster cen-
troids by minimizing the following loss function:

min
µ,c
Lclust =

K∑
j=1

K′∑
ℓ=1

1(cj=ℓ)||fθ(xnj )− µℓ||2, (15)

where c is the clustering assignment vector for the K
instances. Then, we use the concatenation of the ob-
tained cluster centroid vectors as input to the adaptive
PCN as follows:

pn = ψϕ(concat(µ1, µ2, .., µK′)). (16)

Consequently, the number of learnable parameters of
our adaptive PCN is unaffected by the number of sup-
port instances in each class, which ensures that the
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Table 2: Mean classification accuracy (95% confidence interval within brackets) for 5-way 20-shot and 50-shot
classification. ∗ denotes results reported in Guo et al. (2020). Transductive methods are indicated using (T).
Methods sharing query data via Batch Normalization are indicated using (BN).

ChestX CropDiseases ISIC EuroSAT
20-shot 50-shot 20-shot 50-shot 20-shot 50-shot 20-shot 50-shot

MatchingNet∗(Vinyals et al., 2016) 23.61(0.86) 22.12(0.88) 76.38(0.67) 58.53(0.73) 45.72(0.53) 54.58(0.65) 77.10(0.57) 54.44(0.67)
MAML (BN)∗(Finn et al., 2017) 27.53(0.43) − 89.75(0.42) − 52.36(0.57) − 81.95(0.55) −
ProtoNet∗(Snell et al., 2017) 28.21(1.15) 29.32(1.12) 88.15(0.51) 90.81(0.43) 49.50(0.55) 51.99(0.52) 82.27(0.57) 80.48(0.57)
MetaOpt∗(Lee et al., 2019) 25.53(1.02) 29.35(0.99) 82.89(0.54) 91.76(0.38) 49.42(0.60) 54.80(0.54) 79.19(0.62) 83.62(0.58)
RelNet (BN)∗(Sung et al., 2018) 26.63(0.92) 28.45(1.20) 80.45(0.64) 85.08(0.53) 41.77(0.49) 49.32(0.51) 74.43(0.66) 74.91(0.58)
MatchingNet+FWT∗(Tseng et al., 2020) 23.23(0.37) 23.01(0.34) 74.90(0.71) 75.68(0.78) 32.01(0.48) 33.17(0.43) 63.38(0.69) 62.75(0.76)
ProtoNet+FWT∗(Tseng et al., 2020) 26.87(0.43) 30.12(0.46) 85.82(0.51) 87.17(0.50) 43.78(0.47) 49.84(0.51) 75.74(0.70) 78.64(0.57)
RelNet+FWT(BN)∗(Tseng et al., 2020) 26.75(0.41) 27.56(0.40) 78.43(0.59) 81.14(0.56) 43.31(0.51) 46.38(0.53) 69.40(0.64) 73.84(0.60)
CHEF(Adler et al., 2023) 29.71(0.27) 31.25(0.20) 94.78(0.12) 96.77(0.08) 54.30(0.34) 60.86(0.18) 83.31(0.14) 86.55(0.15)
HVM(Du et al., 2022) 30.54(0.47) 32.76(0.46) 95.13(0.35) 97.83(0.33) 54.97(0.35) 61.71(0.32) 84.81(0.34) 87.16(0.35)
APPL (T) 30.75(0.41) 33.14(0.88) 95.77(0.53) 98.14(0.56) 57.97(0.73) 62.17(0.43) 88.60(0.85) 89.75(0.76)

proposed APPL is scalable and easy to apply in sce-
narios with a higher number of shots.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets We conducted comprehensive experiments
on eight cross-domain few-shot learning (CDFSL)
benchmark datasets. We use MiniImageNet (Vinyals
et al., 2016) as the single source domain dataset, and
use the following eight datasets as the target domain
datasets: CropDiseases (Mohanty et al., 2016), Eu-
roSAT (Helber et al., 2019), ISIC (Tschandl et al.,
2018), ChestX (Wang et al., 2017), CUB (Wah et al.,
2011), Cars (Krause et al., 2013), Places (Zhou et al.,
2017) and Planate (Van Horn et al., 2018). We use
the same train/val/test split as that used by Guo et al.
(2020). We select the hyperparameters based on the
model accuracy on the MiniImageNet validation set.

Implementation Details We use ResNet10 (He
et al., 2016) as our backbone network and use a sim-
ple network made up of a single linear layer followed
by ReLU activation to represent PCN. We train our
prototype-based prediction model (feature encoder and
PCN) on the source domain for 400 epochs with 100
meta-training tasks and 15 query instances per class.
Adam optimizer with a weight decay of 1e-2 and a
learning rate of 1e-6 is used to train the APPL. The
trade-off parameters λdis and λcoh are set to 0.1 and
1e-3 respectively. The proposed APPL is evaluated on
600 randomly selected few-shot learning tasks in each
target domain. We fine-tune the feature encoder for
100 iterations for each task with a learning rate of 1e-2.
The fine-tuning hyperparameters, α0, γ, and ϵ, take
the values of 0.5, 0.99, and 0.4, respectively.

4.2 Comparison Results

4.2.1 Learning with Few Shots

We first evaluate the performance of the proposed
APPL method on the common cross-domain 5-way
5-shot classification tasks. We compare APPL with
both a set of representative FSL methods (MatchingNet
(Vinyals et al., 2016), MAML (Finn et al., 2017), Pro-
toNet (Snell et al., 2017), RelationNet (Sung et al.,
2018), MetaOpt (Lee et al., 2019), GNN (Satorras
and Estrach, 2018) and TPN (Liu et al., 2019)) and
five state-of-the-art CDFSL methods (FWT (Tseng
et al., 2020), ATA (Wang and Deng, 2021), LRP (Sun
et al., 2021), CHEF (Adler et al., 2023) and HVM
(Du et al., 2022)). FWT has been applied jointly with
five standard FSL methods: MatchingNet, ProtoNet,
RelationNet, GNN and TPN. LRP has been applied
jointly with two standard FSL methods: GNN and
Cross-attention network (CAN). The comparison re-
sults are presented in Table 1, where the top part of the
table reports the results of the standard FSL methods
and the bottom part reports the CDFSL results.

We can see that the CDFSL methods (ATA, CHEF,
HVM, LRP and APPL) designed specifically to handle
vast differences between source and target domains
perform largely better than the standard FSL works
developed for in-domain settings. FWT however only
produces improvements in most cases over its base Re-
lationNet. Notably, the proposed APPL outperforms
all standard FSL methods including ProtoNet and Pro-
toNet+FWT on all the eight datasets. In particular,
its performance gain over ProtoNet is remarkable, ex-
ceeding 10% on four out of the eight datasets, which
highlights the importance of the PCN. In addition,
APPL outperforms all the CDFSL methods on five
datasets, and produces the second best results on two
datasets. These results demonstrate the effectiveness
of the proposed APPL method for CDFSL.
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Table 3: Ablation study results in terms of mean classification accuracy (95% confidence interval within brackets)
for cross-domain 5-way 5-shot classification tasks.

ChestX CropDisea. ISIC EuroSAT Places Planate Cars CUB
ProtoNet 24.05(1.01) 79.72(0.67) 39.57(0.57) 73.29(0.71) 58.54(0.68) 46.80(0.65) 41.74(0.72) 55.51(0.68)
APPL 24.87(0.41) 92.51(0.84) 46.28(0.64) 79.78(0.78) 68.84(0.80) 55.20(0.58) 51.67(0.42) 67.46(0.78)

−w/o ψϕ 22.33(0.56) 89.11(0.66) 43.99(0.68) 77.99(0.68) 67.57(0.33) 53.69(0.60) 50.30(0.81) 64.03(0.97)
−w/o Ldis 24.84(0.69) 91.31(0.72) 43.23(0.82) 78.25(0.76) 66.18(0.49) 54.56(0.84) 51.56(0.85) 60.45(0.85)
−w/o Lcoh 23.77(0.68) 90.19(0.76) 43.69(0.49) 79.53(0.71) 65.89(0.47) 51.62(0.77) 50.32(0.81) 60.96(0.85)
−w/o LCE(S) 21.08(0.42) 59.15(0.59) 26.90(0.78) 49.95(0.80) 34.79(0.85) 25.72(0.77) 27.19(0.87) 30.12(0.74)
−w/o Ltr

CE(Q) 22.36(0.42) 88.24(0.86) 42.14(0.59) 77.63(0.65) 67.14(0.82) 55.69(0.60) 51.59(0.82) 60.22(0.85)
−w/o WMA 21.15(0.45) 90.12(0.87) 44.95(0.62) 77.12(0.67) 67.68(0.83) 54.76(0.62) 49.94(0.85) 65.87(0.87)

4.2.2 Learning with Higher Shots

We further investigated CDFSL with higher-shot tasks
in the target domain. In particular, we evaluate APPL
with cross-domain 5-way 20-shot and 5-way 50-shot
learning tasks on 4 target-domain datasets (ChestX,
CropDiseases, ISIC and EuroSAT). To handle higher-
shot problems and increase the scalability of APPL,
we extend APPL by adding a clustering function g
prior to the PCN component. As discussed previously,
this clustering approach ensures that the number of
learnable parameters of our proposed PCN is indepen-
dent of the number of shots, preserving the scalability
of our proposed approach. Specifically, we use the g
function to cluster the support instances in each class
into K ′ = 5 clusters based on their learned embed-
dings. The obtained cluster centroid vectors are then
concatenated as input for PCN. We compared APPL
with both standard FSL methods and several CDFSL
methods, and the results are presented in Table 2.

As observed from the results, the methods designed for
CDFSL (CHEF, HVM, and APPL) continue to demon-
strate superior performance compared to the standard
FSL methods. The performance gains of APPL over
ProtoNet and ProtoNet+FWT are remarkable, exceed-
ing 6% and 9% on three datasets (CropDiseases, ISIC
and EuroSAT) in the cases of 20-shot and 50-shot, re-
spectively. Moreover, the APPL method consistently
achieved the best results across all four datasets, out-
performing both the traditional FSL methods and the
other CDFSL methods for the 20-shot and 50-shot
cases. These results again validate the effectiveness of
APPL for CDFSL and demonstrate its capacity to han-
dle cross-domain higher-shot learning problems. Two
factors account for our proposed method’s good perfor-
mance in the case of higher shots: First, benefiting from
the proposed WMA self-training strategy in the target
domain, we are able to generate more accurate pseudo-
labels with higher shots, which enables our model to
obtain better results. Second, we conduct clustering
over the embeddings of support instances to generate
class centroids with higher shots, which can eliminate
some noisy information and allow the PCN to learn

more representative features.

4.3 Ablation Study

To investigate the importance of each component of our
APPL approach, we conducted an ablation study to
compare APPL with its six variants: (1) “−w/o ψϕ”,
which drops PCN and replaces it with a simple average
of the support instances of each class. (2) “−w/o Ldis”,
which drops the Ldis loss. (3) “−w/o Lcoh”, which
drop the Lcoh loss. (4) “−w/o LCE(S)”, which drops
the cross-entropy loss over the support instances in
fine-tuning. (5) “−w/o Ltr

CE(Q)”, which drops the
cross-entropy loss over the query instances and hence
discards the WMA self-training component in fine-
tuning. (6) “−w/o WMA”, which drops the weighted
moving average when determining the pseudo-labels,
and instead leverages the predictions generated by the
model from the previous iteration as the pseudo-labels.
In addition, we also compared with “ProtoNet”, which
can be considered as a baseline variant of APPL that
drops PCN, WMA self-training, Ldis and Lcoh.

We compared APPL with these variants in the cross-
domain 5-way 5-shot setting on all the eight datasets,
and the results are reported in Table 3. We can
see that APPL outperforms all the variants on al-
most all datasets. The “−w/o LCE(S)” variant pro-
duced the largest performance drop among all vari-
ants, which highlights the importance of the few la-
beled support instances for fine-tuning in the target do-
main. The performance degradation for ProtoNet and
“−w/o ψϕ” highlights the importance of the proposed
PCN component. In addition, “−w/o ψϕ” outperforms
ProtoNet, which underlines the performance gain ob-
tained by using pseudo-labeled query instances with
WMA self-training and the prototype regularization
losses in the absence of PCN. The other four vari-
ants, “−w/o Ldis”, “−w/o Lcoh”, “−w/o Ltr

CE(Q)”,
and “−w/o WMA” also perform worse than APPL,
which verifies the contributions of the two prototype
regularization loss terms and the WMA self-training
component respectively.
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Figure 2: Sensitivity analysis over hyperparameters α0, λcoh, λdis, and ϵ on the CropDisease dataset with
cross-domain 5-way 5-shot tasks.

Table 4: Impact of the input order for the Adaptive
Prototype Calculator Network (PCN). The results are
mean classification accuracies (95% confidence interval
within brackets) on 5-way 5-shot classification tasks.

ChestX CropDisea. ISIC EuroSAT
Perm # 1 24.79(0.36) 92.37(0.77) 46.12(0.55) 79.69(0.72)
Perm # 2 24.68(0.35) 92.73(0.78) 46.29(0.54) 79.57(0.72)
Perm # 3 24.82(0.36) 92.52(0.77) 46.28(0.56) 79.68(0.74)
Perm # 4 24.90(0.36) 92.54(0.76) 46.18(0.55) 79.79(0.74)
Perm # 5 24.87(0.41) 92.51(0.84) 46.28(0.64) 79.78(0.78)

4.4 Impact of the Input Order

Since the concatenated embeddings of the support set
instances are fed as input to the adaptive PCN to
generate the prototype of each class, it is important
to validate the impact of this concatenation order on
the performance of APPL. Therefore, after fine-tuning,
we evaluate the performance of APPL with different
concatenation orders of the support instances using the
cross-domain 5-way 5-shot learning tasks on 4 different
datasets. We generate 5 different random permutations
of the input support samples and report the correspond-
ing results for each permutation in Table 4. We can see
the results are very similar across different permutation
orders, which validates the resilience of PCN to the
concatenation order of the input instances.

4.5 Hyperparameter Analysis

We investigated the impact of four hyperparameters
(α0, λcoh, λdis, ϵ) on the performance of APPL, and
summarize the results in Figure 2. Each plot in Figure
2 presents the results of APPL with different values
for the corresponding hyperparameter on the CropDis-
ease dataset under the cross-domain 5-way 5-shot task.
From the results we can see that APPL is not very sen-
sitive to the choice of value for α0, as the performance
change of APPL across all values of α0 is relatively
very small. As for λcoh, a large value or an excessively
small value will influence the query/support instances

to be pulled more strongly or weakly towards the class
prototypes, consequently negatively impacting the re-
sults. A reasonable λcoh value between 1e-1 and 5e-3 is
required to obtain reasonable performance. In the case
of λdis, the experimental results improve as the value
of λdis increases, and the results become stable when
the parameter reaches 1e-1. We believe this is due to
that λdis controls the contribution of the Ldis loss that
pushes the prototypes of different classes away from
each other; when the distances between the prototypes
are larger than a certain threshold, general instance
embeddings are no longer susceptible to mutual influ-
ence for making predictions. Finally, it is worth noting
that ϵ is an important hyperparameter, which controls
the confident level of the pseudo-labels selected for fine-
tuning in the target domain. When ϵ is too small, more
unlabeled query samples are used in fine-tuning with
their noisy pseudo-labels, and when ϵ is too large, very
few unlabeled query samples can be used in fine-tuning.
Both situations can negatively impact the performance
of the approach. Experimental results show that when
a moderate value of 0.4 is selected for ϵ, the number
and accuracy of the selected pseudo-labels can be well
balanced, achieving the best result.

5 CONCLUSION

In this paper, we proposed a novel Adaptive Paramet-
ric Prototype Learning (APPL) method to address the
cross-domain few-shot learning problem. APPL meta-
trains an adaptive prototype calculator network in the
source domain to learn more discriminative and rep-
resentative class prototypes which can then guide the
feature encoder to adapt to the target domain through
fine-tuning. Moreover, a WMA self-training strategy
is adopted to enhance fine-tuning by exploiting the
unlabeled query instances in the target domain to mit-
igate domain shift and avoid overfitting to support
instances. Experiment results show that APPL sur-
passes state-of-the-art methods on eight cross-domain
few-shot classification benchmarks.
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providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]


