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Abstract

Recently developed survival analysis meth-
ods improve upon existing approaches by pre-
dicting the probability of event occurrence in
each of a number pre-specified (discrete) time
intervals. By avoiding placing strong para-
metric assumptions on the event density, this
approach tends to improve prediction per-
formance, particularly when data are plenti-
ful. However, in clinical settings with limited
available data, it is often preferable to judi-
ciously partition the event time space into a
limited number of intervals well suited to the
prediction task at hand. In this work, we de-
velop Adaptive Discretization for Event Pre-
dicTion (ADEPT) to learn from data a set
of cut points defining such a partition. We
show that in two simulated datasets, we are
able to recover intervals that match the un-
derlying generative model. We then demon-
strate improved prediction performance on
three real-world observational datasets, in-
cluding a large, newly harmonized stroke risk
prediction dataset. Finally, we argue that our
approach facilitates clinical decision-making
by suggesting time intervals that are most ap-
propriate for each task, in the sense that they
facilitate more accurate risk prediction.

1 INTRODUCTION

Time to event modeling, also called survival analysis,
is ubiquitous throughout clinical medicine as well as
in many other fields concerned with predicting risk
of events of interest (e.g., clinical outcomes) based on
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available features (e.g., patient characteristics). Tradi-
tional approaches include the well-known Cox propor-
tional hazards (Cox-PH) model [Cox, 1972], in which
features modulate a baseline hazard rate; and the ac-
celerated failure time (AFT) model [Wei, 1992] model,
in which features accelerate or decelerate a learned,
parametric event time density.

Recently developed methods have focused on a) al-
lowing effects of features on the hazard rate or event
time density to be non-linear and flexible [Katzman
et al., 2018, Ranganath et al., 2016, Kvamme et al.,
2019, Miscouridou et al., 2018]; and b) also allowing
greater flexibility in the form of the event time den-
sity itself via approaches that discretize time, then
predict the probability of event occurrence in each re-
sulting time interval [Yu et al., 2011, Lee et al., 2018,
Ren et al., 2019, Tjandra et al., 2021, Engelhard and
Henao, 2022].

The prognostic information provided by these models
often has direct and significant impact on stakeholder
decision-making. In a clinical setting, for example, in-
formation about risk within a particular time interval
might influence providers’ or patients’ decisions about
whether to pursue treatment, or which specific treat-
ment to pursue. It is therefore critical not only that
predictions are accurate, but also that they are eas-
ily interpretable by stakeholders who wish to integrate
them in decision-making. The predictions of a Cox-PH
model might be presented to stakeholders as relative
hazards, for instance, whereas it is natural to present
the predictions of more recent models as the probabil-
ity of event occurrence in a time interval of interest.

Importantly, however, decisions about these intervals
made during model development – in other words,
choices about the number and placement of cut points
used to discretize the event time space – can have sub-
stantial impact on interpretability as well as perfor-
mance. Equipped with unlimited data, we might use
a large number of cut points to divide the timeline
into tiny intervals; this would then allow us to sum-
marize risk over an arbitrary time period of interest
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by combining predictions across all the intervals that
comprise that period. However, the amount of data
required to accurately estimate risk in each interval
increases as the number of intervals increases, making
this approach impractical even for large observational
datasets. Equipped with unlimited time, on the other
hand, we might present risk in a format most relevant
to a particular patient, or to the decision at hand.
Again, however, practical considerations typically re-
quire us to instead summarize risk over a consistent,
limited number of time-frames (e.g., 10-year risk, 5-
year risk). In some cases a particular discretization
is most actionable given the clinical context, but in
others the choice is arbitrary, and it would be prefer-
able to identify a discretization that facilitates more
accurate prediction.

To illustrate the problem more concretely, consider
the following example from the maternal health set-
ting, which partly motivated this work. Patients with
preeclampsia and gestational hypertension have sub-
stantially increased risk of postpartum cardiovascular
events [Meng et al., 2022], but this risk can be miti-
gated by regular monitoring (e.g., increased visits) of
high-risk patients in the months after delivery. When
developing a monitoring strategy, it is important to de-
termine not only (a) which patients are at highest risk,
but also (b) how long monitoring should take place; yet
we have limited data available for learning because the
outcome rates are low.

Our goal, therefore, is to develop a principled,
data-driven approach to answer both of these ques-
tions. Specifically, we wish to develop a method that
providers can use to identify time intervals that are
optimal when understanding risk, for example to de-
sign an intervention or monitoring strategy, as well as
when reporting risk to patients. At the same time, we
wish to retain the substantial advantages and flexibil-
ity of other recently developed approaches, including
their lack of strong parametric assumptions about the
form of the event density. To solve this problem, we
develop Adaptive Discretization for Event PredicTion
(ADEPT).

We begin by recasting learning from discrete survival
times as learning from continuous survival times un-
der the assumption that the density is piecewise con-
stant; and then formulate a smooth relaxation of this
piecewise constant density that allows cut points (i.e.,
interval boundaries) to be learned by gradient-based
optimization methods. We then present our learning
procedure and results of experiments with two simu-
lated and three real datasets – including a newly har-
monized stroke risk prediction dataset that pools data
across three large cohorts – that illustrate the effec-
tiveness and potential clinical relevance of ADEPT.
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Figure 1: The event time space partitioned by three
cut points into four intervals.

Our performance evaluation focuses on comparing our
method to its state of the art alternative, namely,
discrete-time, neural network-based risk prediction
over fixed-length intervals.

In summary, our contributions are as follows:

• Present ADEPT, a novel model and associated
learning procedure to learn an optimal event time
partition from data rather than fixing it a priori.

• Present simulation results illustrating effective
learning of cut points that are consistent with the
true, underlying generative model.

• Demonstrate improved prediction performance
across three real datasets, including two clinical
datasets.

• Identify clinically meaningful risk cut points illus-
trating the potential of the approach to provide
improved prognostic information.

2 METHODS

2.1 Setup and Notation

Consider a time-to-event outcome where each obser-
vation is represented by the triplet {X, Y, S}, where
X ∈ X ∈ Rp is a p-dimensional feature vector,
Y ∈ (0, Tmax] is an observed event time over a finite
time horizon, and S ∈ {0, 1} indicates whether Y is a
right-censoring time (S = 0) or an event time (S = 1).
The observed time Y is the minimum of the event time
T and the right-censoring time U , i.e., Y = min(T,U),
and S = I(T < U), where the indicator function I(·)
is 1 when the argument is true and 0 otherwise.

We consider possible sequences of M cut points C =
{cj}Mj=1, where 0 = c0 < c1 < · · · < cM < cM+1 =
Tmax, that partition the event time space, (0, Tmax],
into the intervals I1, . . . , IM+1, where Ij = (cj−1, cj ].
Figure 1 provides an example of the event time space
partitioned into four intervals: I1 = (0, c1], I2 =
(c1, c2], I3 = (c2, c3], and I4 = (c3, Tmax]. Given such
a partition, we introduce an auxiliary random variable
Z ∈ {1, . . . ,M + 1} that indicates which interval con-
tains T , i.e., Z = j ⇐⇒ t ∈ Ij .
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2.2 Piecewise Constant Density

We begin by considering learning with fixed cut points,
which is currently the predominant approach. For ex-
ample, Lee et al. [2018] and other recently-developed
methods [Ren et al., 2019, Tjandra et al., 2021, En-
gelhard and Henao, 2022] use fixed cut points to dis-
cretize time in order to avoid placing restrictive, para-
metric assumptions on the form of the event time den-
sity. Instead, the density is restricted to be piecewise
constant according to the intervals defined by the cut
points. The cut points themselves might be evenly
spaced in time, or alternatively they might be evenly
spaced across the observed or estimated event time
distribution, e.g., via empirical quantiles. The goal of
learning is then to estimate P (Z|X), the conditional
probability that T will fall in each of the pre-defined
intervals, rather than p(T |X), the conditional density
of T . Typically T is discretized to Z a priori.

However, it is not possible to learn the cut points C
with this approach, because Z depends on C in addi-
tion to T . To see this, consider the value of Z asso-
ciated with an observed time t ∈ (0, Tmax] under the
binary partition defined by the single cut point c1. If
we choose c1 ≥ t, then t ∈ (0, c1], therefore Z = 1; but
for c1 < t, we have t ∈ (c1, Tmax], therefore Z = 2.

To circumvent this limitation, we note that estimating
P (Z|X) is equivalent to estimating p(T |X) with the
following piecewise constant model, which supposes
p(T |X) has uniform density over each interval Ij :

p̂(t|x) =
M+1∑
j=1

pϕ(zj |x)
IIj (t)
|Ij |

, (1)

where IIj (·) is the indicator function associated with
the interval Ij , and ϕ parameterizes our model of
P (Z|X). Importantly, we must normalize by |Ij |,
the length of Ij , to ensure

∫
(0,Tmax]

p̂(t|x) = 1 and∫
Ij
p̂(t|x) = pϕ(zj |x). As a potential drawback of this

approach, we note that whereas standard discrete-time
approaches are well suited to handle outlying event
times, in principle this normalization term could cause
the loss to become numerically unstable in the case of
extreme event time outliers.

2.3 Smooth Relaxation of Piecewise Density

The parameters ϕ of our model for Z can be learned
directly from equation (1). However, our goal is to
learn not only ϕ but also C, the specific partition that
allows our model to best approximate p(T |X) across a
given dataset. Unfortunately, (1) cannot be optimized
with respect to C via gradient-based methods. This is
because the indicator function IIj (·) implicitly depends

on C, and is discontinuous whenever a cut point is
equal to an observed event time.

To illustrate, consider learning a single cut point c1
while holding the parameters ϕ fixed. For small ε such
that 0 < ε < t, where t is an observed event time
associated with covariates x, suppose the cut point
c1 = t + ε is just after the observed event time. In
this case, we have t ∈ I1, therefore II1(t) = 1 and
II2(t) = 0, and consequently p̂(t|x) = pϕ(z1|x)/|I1|.
On the other hand, suppose the cut point c1 = t− ε is
just before the observed event time. In this case, we
have t ∈ I2, therefore II1(t) = 0 and II2(t) = 1, and
consequently, p̂(t|x) = pϕ(z2|x)/|I2|. Thus, for any
non-trivial model pϕ for which pϕ(z1|x) ̸= pϕ(z2|x),
equation (1) is discontinuous at c1 = t. This argument
readily generalizes to all cut points.

To smooth this discontinuity and allow gradient-based
optimization, we replace the indicator function IIj (t)
in (1) with the smooth approximation σ((t−cj−1)/τ)∗
σ((cj − t)/τ), where σ(z) = (1+ e−z)−1 is the sigmoid
function. The temperature τ is a hyperparameter of
the model that should be tuned based on the scale of
the observed event times.

This results in the following relaxed model:

p̂(t|x) =
M+1∑
j=1

pϕ(zj |x)
σ(

t−cj−1

τ )σ(
cj−t
τ )

|Ij |
, (2)

which is approximately piecewise constant for τ ≪
Tmax, yet differentiable everywhere with respect to C
and thus suitable for gradient-based optimization.

2.4 Learning Procedure

Under the common assumption of non-informative
right-censoring, we may ignore the censoring density
and optimize p̂(y, s|x; θ), where θ = {ϕ,C}, over the
observed data D = {xi, yi, si}Ni=1 as follows:

θ = argmax
θ

N∑
i

[
si log p̂(ti|x; θ) (3)

+ (1− si) log P̂ (ti > yi|xi; θ)
]
,

where P̂ (ti > yi|xi; θ) = 1 −
∫ T

0
p̂(τ |xi; θ) is the sur-

vival function associated with p̂(ti|xi; θ) for observa-
tion i.

However, optimizing equation (2) alone can result in
degenerate solutions in which cut points become arbi-
trarily close together or even coincide. In the extreme
case, it is possible to have Ij = (0, Tmax] for a partic-
ular j ∈ {1,M + 1}, resulting in the trivial model in
which pϕ(z|x) places all mass on zj .
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It is therefore critical to balance optimizing equa-
tion (2) versus ensuring that pϕ(z|x) is non-trivial.
We accomplish this by incorporating a regulariza-
tion term, H(pϕ(z|x)), with associated hyperparame-
ter λ1 in our optimization procedure. We use a scaled
Beta(1.5, 1.5) distribution on each cut point. For ex-
ample, suppose there are three cut points c1 < c⋆2 < c3
where c⋆2 is the newly proposed value for the middle
cut point c2. We scale the value of the cut point
to find its location relative to the cut points near it:
c⋆2,scaled = (c⋆2 − c1)/(c3 − c1). The final regulariza-
tion value is the PDF value of c⋆2,scaled evaluated over
a Beta(1.5, 1.5) distribution. This regularization term
encourages cut points to be near the center of their
two surrounding cut points.

We may then optimize θ over D by choosing θ =
argminθ

∑
D L(θ), where L(θ) is defined as follows:

L(θ) = − log p̂(y, s | x; θ)− λ1H(pϕ). (4)

Here the first term is the negative log likelihood in
(3) and the second is our beta distribution regularizer.
Our learning procedure then becomes:

θ = argmin
θ

∑
D

L(θ) + λ2R(θ), (5)

where we have included an additional regularization
term R(·) (e.g., L2-regularization) along with an asso-
ciated hyperparameter λ2 to control for overfitting.

3 IMPLEMENTATION DETAILS

3.1 Baseline Model: Discrete-Time Neural
Network

We compare ADEPT to a discrete-time neural net-
work baseline that is identical to the proposed model,
except the cut points (and corresponding intervals) are
initialized based on the observed outcomes and remain
fixed when learning the classifier. This approach, here-
after called the DTNN, was popularized by DeepHit
[Lee et al., 2018] and is currently the predominant ap-
proach. However, to isolate the effect of learning the
partition we do not include the ranking loss used in
DeepHit . Our method and the DTNN have similar
computational complexity, which is dominated by the
computation of gradients with respect to model pa-
rameters θ rather than the cut points C. In this work,
we instantiate pθ as neural network, but our approach
is flexible to the model choice; thus it can be changed
based on application if, for example, interpretability is
more important that predictive performance.

We initialize the DTNN model’s cut points to be
evenly spaced on the percentiles of the empirical

Kaplan-Meier curve of the observed outcomes; for ex-
ample, if there are three cut points then they would
be placed at the time points associated with the 25th,
50th, and 75th percentiles on the estimated Kaplan-
Meier curve. With these cut points fixed, we then
build a model predicting the probability that the pa-
tient will experience the outcome in each interval.
Note that this differs from ADEPT in which we also
consider the cut points themselves as parameters. The
DTNN classification model learns the probability of
each observation being in each of the pre-defined in-
tervals. In the notation of Section 2.2, the DTNN
approach learns only the model parameters, ϕbaseline,
whereas ADEPT learns both model parameters ϕ and
the cut points C. Importantly, we search the same
grid of hyperparameters for the DTNN model as for
ADEPT.

Due to its popularity, we also include a comparison
to DeepSurv [Katzman et al., 2018]. However, un-
derstanding differences between DeepSurv and other
approaches is challenging due to their stark differ-
ences, notably the assumption of proportional hazards,
which can either improve or worsen performance de-
pending on the degree to which this assumption holds.
Moreover, because DeepSurv does not incorporate dis-
cretization, it will have fewer comparative performance
metrics.

3.2 Performance Quantification

With simulated data we were able to judge the correct-
ness of the estimated cut points by their proximity to
the true cut points used in the data generation mech-
anism. For the real data we do not know the true
cut point values and thus need other metrics to judge
performance. While we focus on several metrics quan-
tifying predictive performance, clinical collaboration
is necessary to determine which metrics are most rel-
evant in a particular clinical context, including when
implementing treatment decisions.

Time-Dependent Concordance Index (CI) Since
we consider a time-to-event outcome with censored
observations rather than a regression or classification
outcome, standard metrics such as root mean square
error and area under the receiver operating charac-
teristic are insufficient to capture prediction perfor-
mance. Initially developed by Harrell Jr et al. [1984],
the concordance index (CI) measures how well pre-
dicted event times match the order of the true event
times. However, both ADEPT and the DTNN predict
discrete interval membership rather than continuous
event times, and the ordering of predicted risk can
change over time. To properly account for these char-
acteristics, we use a discrete-time implementation of
the time-dependent concordance index developed by
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Antolini et al. [2005]. This metric compares model-
predicted risk at observed failure times to the model-
predicted risks at that time for other individuals known
to have later failure times. Pairs of individuals are only
considered if (a) both failure times are known (neither
are censored), or (b) one failure time is known to have
occurred before the censoring time of the other.

AUC at last cut point The Area Under the Receiver
Operating Characteristic Curve (AUC) is a common
metric to evaluate predictive performance for a binary
outcome. To adapt this to our method, we focus on
the AUC at the last cut point. That is, we are inter-
ested in determining if the methods are able to predict
whether an event happens before or after the final cut
point. This is especially relevant for data sets with
high amounts of censoring at the end of the study. The
cases are all observations that experienced an event
prior to the final cut point and the controls are all ob-
servations with an observed time (either an event or
censored) after the final cut point. Notice that obser-
vations that are censored prior to the last cut point
are omitted from this metric.

Integrated Brier Score (IBS) The Brier Score eval-
uated at time a chosen time t is the mean squared dif-
ference between the model-predicted cumulative event
probability at time t and the true, binary, observation
of whether the even occurred by t. The Integrated
Brier Score improves upon this by integrating over all
times t ∈ {tmin, tmax} [Graf et al., 1999]. An IBS of 0
indicates that the model was able to perfectly predict
outcomes.

Calibration slope and intercept We also consider
the calibration slope and intercept as described by
Crowson et al. [2016], which quantify the degree to
which model-predicted probabilities accurately esti-
mate true event probabilities, as determined based on
observed event rates. A well calibrated model will have
a calibration slope near 1 and a calibration intercept
near 0.

It is important to note that DeepSurv does not dis-
cretize the event time space; because of this, only the
AUC and IBS metrics are included. We cannot com-
pare the discrete-time concordance index to the stan-
dard concordance index because there are inevitably
more ties with the discrete-time approach.

3.3 Hyperparameter Tuning

ADEPT is flexible, allowing for any number of cut
points. In our simulation examples we will know ex-
actly how many cut points were used to generate the
data; however, this is not the case for the real data ex-
periments. Thus, we use 3, 5, and 10 cut points. We
use a two layer neural network as our predictive model.
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Figure 2: A training plot of the training and valida-
tion loss at each epoch for the two interval simulation
example. The vertical lines represent drops in sigmoid
temperature τ and the accompanying new value of τ .

The first layer has input dimension p based on the fea-
ture dimension of the data and output dimension h,
for which we explore values of 32, 128, and 512. This
is then connected by a Rectified Linear Unit activa-
tion function to another layer with input dimension h
and output dimension. These networks are optimized
using Adam [Kingma and Ba, 2014] with a learning
rate of 0.01 and weight decay values between 0.0001
and 0.1. We vary the strength of the regularization on
the cut points λ1 from values in the range of 0.1 to 20
and use a mini-batch size of 64 for the training data.

During training, we initially set the sigmoid temper-
ature used in our smooth approximation (see Equa-
tion (2)) to a value τ = 0.1, then lower it when the
loss stops changing significantly between epochs. Low-
ering the temperature reduces the degree of smoothing
and sharpens the boundaries between intervals defined
by each cut point. Figure 2 shows an example train-
ing plot where the temperature drops after multiple
epochs with no improvement in the validation loss. It
is clear that this drop then leads to an improvement
in both training and validation loss.

We perform a grid search over the hyper parameters,
testing every combination of output dimension, weight
decay, and regularization strength. The evaluation
process to compare hyperparameters is described in
Section 3.2. We train each network for 250 epochs.

To evaluate performance we perform five-fold cross val-
idation. We randomly partition the data into training
(75%), validation (15%), and test (10%) sets. For each
set of hyperparameters we perform this partition five
times, using the training sets for learning the model
parameters. We then calculate average performance
metrics metrics on the out of sample validation sets.
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Figure 3: The event times and observed times of the two interval data. The true cut point is at time 67.

Table 1: Performance metrics for synthetic data. We
report average metrics across 5-fold cross validation
with standard errors in parentheses. In bold are the
highest CI values for each setting.

Intervals ADEPT CI DTNN CI
Two (n = 7, 500) 0.947 (0.001) 0.797 (0.002)
Two (n = 300) 0.813 (0.039) 0.756 (0.016)

Four (n = 7, 500) 0.980 (0.012) 0.937 (0.007)
Four (n = 300) 0.964 (0.013) 0.931 (0.013)

Only the model with the best average validation set
performance is then applied to the corresponding, yet
unseen, test sets. We report the average and stan-
dard deviations of the performance metrics calculated
across the folds on the test sets. Through this gen-
eral cross-validation strategy, we are able to find the
hyperparameter setting that performs the best on out
of sample data from the hyperparameters tested. We
report the mean and standard deviation of each metric
across the folds.

We perform the same parameter search and evalua-
tion to find the best DTNN model as described in Sec-
tion 3.1. We compare the metrics of the best ADEPT
model to that of the best baseline models. We report
the performance metrics all both methods calculated
on the unseen test set.

4 SIMULATION EXAMPLES

4.1 Learning Two Intervals

We start with the simple case of data generated from
two clusters with uniform censoring. Cluster mem-
bership is generated using the make moons function
sklearn Python package to get a noisy, nonlinear re-
lationship between p = 2 features [Pedregosa et al.,

2011]. Figure 3a shows the feature-cluster relation-
ship; each cluster has 5, 000 observations for a total
of n = 7, 500 observations. These clusters are used to
generate the event times.

Event times in Cluster 1 are generated uniformly on
the interval (0, 67] and event times in Cluster 2 are uni-
formly on the interval (67, 100). Censoring times are
then generated uniformly throughout the entirety of
(0, 100). Note that while the censoring and event times
are both uniformly distributed, the observed times are
the minimum of the two and therefore not uniformly
distributed. These observed times are shown in Figure
3b. Because these intervals are determined by the re-
lationship between the covariates, this simulates data
generated with a true cut point at time 67.

Figure 3c shows out of sample test set along with the
DTNN cut point in red at t = 49.3 and the ADEPT
learned cut point in black at t = 65.6. Knowing that
the true cut point is at time 67 demonstrates the ef-
ficacy of our method. Even with a starting point far
from the true cut points, we are able to recover the
true cut point. Table 1 reports the performance met-
rics, showing a large gain in CI.

In this simple example, many combinations of hyper-
parameters were able to recover the true cut point;
reported are the results from using a small neural net-
work with h = 32 with Adam weight decay of 0 and a
regularization strength of λ = 1.

To demonstrate that our method works in limited
data settings, we repeat this experiment randomly se-
lecting only n = 300 training data points. Despite
this data limitation, the blue lines in Figure 3c shows
that ADEPT was still able to recover the true cut
point. Table 1 shows that ADEPT still outperforms
the DTNN model in prediction.
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Figure 4: Event times and observed times of the four interval data. The true cut points are at 10, 30, and 70.

4.2 Learning Four Intervals

With confidence in ADEPT’s ability to learn a single
cut point when it is present in the data generation,
we expand to learning three true cut points. Again
we use the make moons function to generate noisy,
nonlinear relationships between p = 2 features, how-
ever now for four separate clusters as shown in Figure
4a; each cluster has 2, 500 observations for a total of
n = 7, 500 observations. Figure 4b shows the how
these clusters are used to generate event times. Event
times are generated using a Beta(1.5, 1.5) distribution
which are then scaled to be in the appropriate interval
based on the observation’s cluster. The first cluster
has event times on the interval (0, 10], the second on
the interval (10, 30], the third on the interval (30, 70],
and the fourth on the interval (70, 100). This corre-
sponds to the true but points being at t = 10, 30, 70.
We again apply uniform censoring times to all obser-
vations. Note that with uniform censoring, there are
particularly few uncensored observations for events in
the last interval. This makes learning the final cut
point more difficult.

The black lines in Figure 4c shows that ADEPT was
able to successfully recover all three cut points despite
the challenges due to censoring. Table 1 shows that
the ADEPT’s learned intervals provide an increase in
CI over the DTNN. Since we know the data generat-
ing mechanism, it is intuitive for this simulation ex-
ample that including more than 3 cut points leads to
worse performance as introducing more would over-
parametrize the model. The results in the next section
suggest that it is beneficial to consider models with
fewer cut points even when the generating mechanism
is unknown.

We repeat this simulation with only n = 300 data
points. With the uniform censoring, this results in

even fewer observed events in the final cluster. As in
the two interval case, ADEPT is still able to recover
the true cut points, shown in Figure 4c, and outper-
form the DTNN baseline model in predictive perfor-
mance, shown in Table 1.

5 DATA ANALYSIS

5.1 Real-World Data Sources

We apply our method to three real-world data sources
of varying sizes.

German Breast Cancer Study Group (GBSG)
The GBSG data set is a publicly available data set
introduced by Schumacher et al. [1994]. It is a multi-
center clinical trial which includes n = 686 patients
with p = 8 features. The endpoint of recurrence free
survival occurred for 299 (43.6%) patients.

Assay of Serum Free Light Chain (FL Chain)
The FL Chain data set is a publicly available data
set introduced by Dispenzieri et al. [2012] studies the
relationship between nonclonal serum immunoglobulin
free light chains and mortality. We examine the data
for the n = 6, 524 patients that had no missing data
with p = 8 features. The endpoint of death occurred
for 1, 962 (30.1%) of these patients.

Pooled Stroke Risk Cohorts This is a com-
bined dataset consisting of the Framingham Offspring
Study [Feinleib et al., 1975] (n1 = 8, 348), The
Atherosclerosis Risk in Communities Study [Investi-
gators, 1989] (n2 = 23, 158), and the Multi-Ethnic
Study of Atherosclerosis (n3 = 6, 390) [Bild et al.,
2002]. Data harmonization procedures and character-
istics of the dataset have previously been described by
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(a) Cut points on the GBSG data.
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(b) Cut points on the FL Chain data.
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(c) Cut points on the Stroke data.

Figure 5: The DTNN (red, dashed) and ADEPT learned (black, solid) cut points.

Hong et al. [2023]. We consider a total of n = 35, 450
data points of which 1, 221 (3.44%) experience a
stroke. There are p = 69 features that include cardio-
vascular medical history, demographic indicators, and
diet information.

5.2 Results

Figure 5 shows the best ADEPT learned cut points for
each data set compared to the DTNN. Note Figure 5c
is a histogram of the proportion of observations rather
than raw counts because of the high amount of cen-
soring. Table 2 shows the performance metrics for all
real-world data sets. The reported metrics are calcu-
lated on the held-out test sets not used for training or
model validation.

Two interesting trends strongly support the benefits
of ADEPT. First, for all data sets, the CI was the
highest for the models that used only 3 cut points and
tended to decrease as more cut points were added. Ad-
ditionally, for all numbers of cut points, the predictive
performance in both CI and AUC for the learned cut
point model was higher than the DTNN model.

Notice that the greatest improvement in CI was ob-
served for the GBSG data set, which has the fewest
observations among all data sets. This underscores
the importance of ADEPT. For small data sets with
a limited number of outcomes, it is necessary to limit
the number of cut points, but performance can be im-
proved by optimizing their locations. Notice that for
the FL Chain data set, the DTNN model achieved its
highest CI with 10 cut points, but this was still lower
than the performance of ADEPT using only 3 learned
cut points. Interestingly, the Stroke data set, which
had the most data points and the highest outcome im-
balance, also had a higher CI and AUC with 10 cut
points than with 5. Similar to the other data sets, it
achieved its highest CI and AUC using 3 cut points.

A model that is well calibrated has a calibration slope
near 1 and a calibration intercept near 0. While the
DTNN model had slightly better calibration slopes for

the GBSG and FL Chain data sets for 3 cut points,
ADEPT was better calibrated in nearly every setting
with more cut points demonstrating model robustness.

While ADEPT was able to outperform DTNN in IBS
for any given number of cut points, the continuous
prediction of DeepSurv had the lowest overall IBS for
each data set.

6 CONCLUSION

Herein we develop ADEPT, a flexible method to learn
an optimal partitioning of the event time space that
does not place strong assumptions on the form of the
event density. Our approach is designed for clinical
applications in which it is advantageous to learn, from
data, a time discretization that facilitates more ac-
curate prediction. The simulated examples demon-
strated the ability of our method to recover cut points
when they are truly present in the data generation
mechanism. Moreover, results on real data show that
the approach improves prediction performance over
otherwise equivalent, state of the art models that use
a fixed discretization scheme.

Our approach can be extended in several ways. In fu-
ture work, we will consider a similar approach to learn
separating hyperplanes in higher dimensional output
spaces. The method can also be extended to sequen-
tial or time series data by using an appropriate encoder
(e.g., a recurrent neural network). Another interest-
ing extension motivated by the real-world data anal-
ysis would be to learn the number of cut points from
the data instead of fixing it a priori.
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Table 2: Test-set performance metrics for real-world data. Reported are average metrics across 5-fold cross validation
with corresponding standard errors in parentheses. In bold are the highest CI, highest AUC, and lowest IBS models for
each data set.

3 Cut Points 5 Cut Points 10 Cut Points
GBSG

ADEPT CI 0.744 (0.015) 0.68 (0.018) 0.671 (0.024)
DTNN CI 0.681 (0.027) 0.651 (0.059) 0.619 (0.065)

ADEPT AUC 0.804 (0.021) 0.801 (0.02) 0.822 (0.024)
DTNN AUC 0.800 (0.03) 0.750 (0.034) 0.807 (0.016)

DeepSurv AUC 0.795 (0.054) — —

ADEPT IBS 0.180 (0.005) 0.189 (0.012) 0.173 (0.006)
DTNN IBS 0.187 (0.006) 0.198 (0.008) 0.194 (0.005)

DeepSurv IBS 0.165 (0.007) — —

ADEPT Calibration Slope 0.813 (0.089) 0.995 (0.112) 0.793 (0.165)
DTNN Calibration Slope 1.00 (0.091) 1.855 (0.154) 1.397 (0.254)

ADEPT Calibration Intercept 0.178 (0.048) 0.130 (0.042) 0.142 (0.06)
DTNN Calibration Intercept 0.129 (0.057) -0.285 (0.084) -0.215 (0.129)

FL Chain
ADEPT CI 0.798 (0.003) 0.793 (0.003) 0.787 (0.004)
DTNN CI 0.763 (0.007) 0.772 (0.004) 0.774 (0.012)

ADEPT AUC 0.806 (0.004) 0.81 (0.004) 0.834 (0.002)
DTNN AUC 0.788 (0.008) 0.809 (0.004) 0.828 (0.004)

DeepSurv AUC 0.831 (0.002) — —

ADEPT IBS 0.194 (0.005) 0.163 (0.006) 0.146 (0.005)
DTNN IBS 0.191 (0.008) 0.153 (0.004) 0.13 (0.002)

DeepSurv IBS 0.099 (0.001)

ADEPT Calibration Slope 1.199 (0.103) 1.182 (0.075) 1.057 (0.098)
DTNN Calibration Slope 1.005 (0.04) 0.999 (0.039) 0.898 (0.076)

ADEPT Calibration Intercept 0.056 (0.007) 0.050 (0.01) 0.085 (0.018)
DTNN Calibration Intercept 0.102 (0.008) 0.100 (0.009) 0.116 (0.026)

Stroke
ADEPT CI 0.789 (0.014) 0.747 (0.02) 0.765 (0.006)
DTNN CI 0.778 (0.01) 0.739 (0.017) 0.758 (0.022)

ADEPT AUC 0.766 (0.011) 0.701 (0.03) 0.723 (0.013)
DTNN AUC 0.743 (0.01) 0.681 (0.031) 0.713 (0.021)

DeepSurv AUC 0.705 (0.015)

ADEPT IBS 0.027 (0.002) 0.029 (0.002) 0.03 (0.002)
DTNN IBS 0.032 (0.003) 0.033 (0.002) 0.032 (0.002)

DeepSurv IBS 0.019 (0.001)

ADEPT Calibration Slope 0.783 (0.013) 1.117 (0.195) 1.270 (0.321)
DTNN Calibration Slope 1.098 (0.321) 1.370 (0.248) 1.295 (0.376)

ADEPT Calibration Intercept 0.019 (0.002) 0.022 (0.003) 0.025 (0.002)
DTNN Calibration Intercept 0.022 (0.003) 0.019 (0.002) 0.025 (0.002)



Adaptive Discretization for Event PredicTion (ADEPT)

Mental Health (NIMH).

The Framingham Heart Study is conducted and sup-
ported by the National Heart, Lung, and Blood
Institute (NHLBI) in collaboration with Boston
University (Contract No. N01-HC-25195 and
HHSN268201500001I). This manuscript was not pre-
pared in collaboration with investigators of the Fram-
ingham Heart Study and does not necessarily reflect
the opinions or views of the Framingham Heart Study,
Boston University, or NHLBI.

MESA and the MESA SHARe project are conducted
and supported by the National Heart, Lung, and Blood
Institute (NHLBI) in collaboration with MESA in-
vestigators. Support for MESA is provided by con-
tracts N01-HC95159, N01-HC-95160, N01-HC-95161,
N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-
HC-95165, N01-HC95166, N01-HC-95167, N01-HC-
95168, N01-HC-95169 and CTSA UL1-RR-024156.
This manuscript was not prepared in collaboration
with MESA investigators and does not necessarily re-
flect the opinions or views of MESA, or the NHLBI.

The Atherosclerosis Risk in Communities study
has been funded in whole or in part with Federal
funds from the National Heart, Lung, and Blood
Institute, National Institute of Health, Department
of Health and Human Services, under contract num-
bers (HHSN268201700001I, HHSN268201700002I,
HHSN268201700003I, HHSN268201700004I, and
HHSN268201700005I). The authors thank the staff
and participants of the ARIC study for their impor-
tant contributions.

The REGARDS study was supported by the National
Institutes of Health (NIH) National Heart, Lung, and
Blood Institute (NHLBI) grant R01HL136666. The
parent REGARDS study is supported by a cooperative
agreement U01 NS041588 from the National Institute
of Neurological Disorders and Stroke, National Insti-
tutes of Health, U.S. Department of Health and Hu-
man Services. The REGARDS data used in this study
was obtained from Judd, Suzanne E sejudd@uab.edu.

The data from FHS, MESA and ARIC were obtained
from the NHLBI Biologic Specimen and Data Repos-
itory Information Coordinating Center (BioLINCC)
and does not necessarily reflect the opinions or views
of the FHS, MESA, ARIC or NHLBI.

References

Laura Antolini, Patrizia Boracchi, and Elia Biganzoli.
A time-dependent discrimination index for survival
data. Statistics in medicine, 24(24):3927–3944, 2005.

Diane E Bild, David A Bluemke, Gregory L Burke,
Robert Detrano, Ana V Diez Roux, Aaron R Fol-

som, Philip Greenland, David R Jacobs Jr, Richard
Kronmal, Kiang Liu, et al. Multi-ethnic study of
atherosclerosis: objectives and design. American
Journal of Epidemiology, 156(9):871–881, 2002.

David R Cox. Regression models and life-tables.
Journal of the Royal Statistical Society: Series B
(Methodological), 34(2):187–202, 1972.

Cynthia S Crowson, Elizabeth J Atkinson, and
Terry M Therneau. Assessing calibration of prognos-
tic risk scores. Statistical methods in medical research,
25(4):1692–1706, 2016.

Angela Dispenzieri, Jerry A Katzmann, Robert A
Kyle, Dirk R Larson, Terry M Therneau, Colin L
Colby, Raynell J Clark, Graham P Mead, Shaji Ku-
mar, L Joseph Melton III, et al. Use of nonclonal
serum immunoglobulin free light chains to predict
overall survival in the general population. In Mayo
Clinic Proceedings, volume 87, pages 517–523. Else-
vier, 2012.

Matthew Engelhard and Ricardo Henao. Disentan-
gling whether from when in a neural mixture cure
model for failure time data. In International Con-
ference on Artificial Intelligence and Statistics, pages
9571–9581. PMLR, 2022.

Manning Feinleib, William B Kannel, Robert J Gar-
rison, Patricia M McNamara, and William P Castelli.
The framingham offspring study. design and prelimi-
nary data. Preventive medicine, 4(4):518–525, 1975.

Erika Graf, Claudia Schmoor, Willi Sauerbrei, and
Martin Schumacher. Assessment and comparison of
prognostic classification schemes for survival data.
Statistics in medicine, 18(17-18):2529–2545, 1999.

Frank E Harrell Jr, Kerry L Lee, Robert M Califf,
David B Pryor, and Robert A Rosati. Regression
modelling strategies for improved prognostic predic-
tion. Statistics in medicine, 3(2):143–152, 1984.

Chuan Hong, Michael J Pencina, Daniel M Wojdyla,
Jennifer L Hall, Suzanne E Judd, Michael Cary,
Matthew M Engelhard, Samuel Berchuck, Ying Xian,
Ralph D’Agostino, et al. Predictive accuracy of stroke
risk prediction models across black and white race,
sex, and age groups. Jama, 329(4):306–317, 2023.

Aric Investigators. The atherosclerosis risk in com-
munit (aric) study: design and objectives. American
Journal of Epidemiology, 129(4):687–702, 1989.

Jared L Katzman, Uri Shaham, Alexander Cloninger,
Jonathan Bates, Tingting Jiang, and Yuval Kluger.

mailto:sejudd@uab.edu


Running heading author breaks the line

Deepsurv: personalized treatment recommender sys-
tem using a cox proportional hazards deep neural net-
work. BMC medical research methodology, 18(1):24,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

H̊avard Kvamme, Ørnulf Borgan, and Ida Scheel.
Time-to-event prediction with neural networks and
cox regression. Journal of Machine Learning Re-
search, 20(129):1–30, 2019.

Changhee Lee, William R Zame, Jinsung Yoon, and
Mihaela van der Schaar. Deephit: A deep learning
approach to survival analysis with competing risks.
In Thirty-Second AAAI Conference on Artificial In-
telligence, 2018.

Marie-Louise Meng, Zachary Frere, Matthew Fuller,
Yi-Ju Li, Ashraf S Habib, Jerome J Federspiel,
Sarahn M Wheeler, Jennifer B Gilner, Svati H Shah,
Tetsu Ohnuma, et al. Maternal cardiovascular mor-
bidity events following preeclampsia: A retrospective
cohort study. Anesthesia & Analgesia, pages 10–1213,
2022.

Xenia Miscouridou, Adler Perotte, Noemie Elhadad,
and Rajesh Ranganath. Deep survival analysis: Non-
parametrics and missingness. In Machine Learn-
ing for Healthcare Conference, page 244–256. PMLR,
2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830, 2011.

Rajesh Ranganath, Adler Perotte, Noémie Elhadad,
and David Blei. Deep survival analysis. arXiv
preprint arXiv:1608.02158, 2016.

Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang,
Weinan Zhang, Lin Qiu, and Yong Yu. Deep recur-
rent survival analysis. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 4798–4805, 2019.

M Schumacher, G Bastert, H Bojar, K Hübner,
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