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Abstract

Post-hoc explanation methods have become a
critical tool for understanding black-box clas-
sifiers in high-stakes applications. However,
high-performing classifiers are often highly
nonlinear and can exhibit complex behav-
ior around the decision boundary, leading
to brittle or misleading local explanations.
Therefore there is an impending need to
quantify the uncertainty of such explanation
methods in order to understand when expla-
nations are trustworthy. In this work we
propose the Gaussian Process Explanation
UnCertainty (GPEC) framework, which gen-
erates a unified uncertainty estimate com-
bining decision boundary-aware uncertainty
with explanation function approximation un-
certainty. We introduce a novel geodesic-
based kernel, which captures the complex-
ity of the target black-box decision bound-
ary. We show theoretically that the pro-
posed kernel similarity increases with deci-
sion boundary complexity. The proposed
framework is highly flexible; it can be used
with any black-box classifier and feature at-
tribution method. Empirical results on mul-
tiple tabular and image datasets show that
the GPEC uncertainty estimate improves un-
derstanding of explanations as compared to
existing methods.
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Spain. PMLR: Volume 238. Copyright 2024 by the au-
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1 INTRODUCTION

Post-hoc explainability methods have become a cru-
cial tool for understanding and diagnosing their black-
box model predictions. Recently, many such explainers
have been introduced in the category of local feature
attribution methods; that is, methods that return a
real-valued score representing each feature’s relative
importance for the model prediction. These explain-
ers are local in that they are not limited to using the
same decision rules throughout the data distribution,
therefore they are better able to represent nonlinear
and complex black-box models.

However, recent works have shown that local explain-
ers can be inconsistent or unstable. For example, ex-
plainers may yield highly dissimilar explanations for
similar samples (Alvarez-Melis and Jaakkola, 2018;
Khan et al., 2023), exhibit sensitivity to impercepti-
ble perturbations (Dombrowski et al., 2019; Ghorbani
et al., 2019; Slack et al., 2020), or lack stability un-
der repeated application (Visani et al., 2022). When
working in high-stakes applications, it is imperative
to provide the user with an understanding of whether
an explanation is reliable, potentially problematic, or
even misleading. A way to guide users regarding an
explainer’s reliability is to provide corresponding un-
certainty quantification estimates.

One can consider explainers as function approxima-
tors; as such, standard techniques for quantifying the
uncertainty of estimators can be utilized to quantify
the uncertainty of explainers. This is the strategy uti-
lized by existing methods that estimate explainer un-
certainty (e.g. (Slack et al., 2021; Schwab and Karlen,
2019)). However, we observe that for explainers, this
is not sufficient; in addition to uncertainty due to the
function approximation of explainers, explainers also
have to deal with the uncertainty due to the com-
plexity of the decision boundary (DB) of the black-box
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Figure 1: Illustrative example of potential pitfalls
when relying on local explainers for samples near com-
plex regions of the decision boundary (left) as com-
pared with a smoothed decision boundary (right).

model in the local region being explained.

Previous works investigating DB geometry have re-
lated higher DB complexity to increased model gen-
eralization error (Valle-Perez et al., 2019) and in-
creased adversarial vulnerability (Moosavi-Dezfooli
et al., 2019; Fawzi et al., 2018). Smoother DBs have
been shown to improve feature attributions (Wang
et al., 2020) and produce more consistent counterfac-
tual explanations (Black et al., 2022). Dombrowski
et al. (2019) show that, in ReLU networks, samples
with similar predictions can yield widely disparate
explanations, which can be regulated through model
smoothing. Consider the following example (Fig. 1):
a prediction model is used for a medical diagnosis us-
ing two features: cholesterol level and sodium intake.
We use the gradient with respect to each feature as
an estimate of feature importance. Patients A and
B have similar cholesterol and sodium levels and re-
ceive the same prediction, however, the complex deci-
sion boundary (left) results in a different top feature
for each patient. In contrast, the smoothed decision
boundary (right) yields more consistent explanations.

We approach this problem from the perspective of sim-
ilarity: given two samples and their respective expla-
nations, how closely related should the explanations
be? From the previous intuition, we define this simi-
larity based on a geometric perspective of the DB com-
plexity between these two points. Specifically, we pro-
pose the novel Weighted Exponential Geodesic (WEG)
kernel, which encodes our expectation that two sam-
ples close in Euclidean space may not actually be sim-
ilar if the DB within a local neighborhood of the sam-
ples is highly complex.

Using this similarity formulation, we propose the
Gaussian Process Explanation UnCertainty (GPEC)
framework (Fig. 2), which is an instance-wise, model-
agnostic, and explainer-agnostic method to quantify
the explanation uncertainty. The proposed notion of
uncertainty is complementary to existing quantifica-
tion methods. Existing methods primarily estimate
the uncertainty related to the choice in model param-

eters and fitting the explainer, which we call function
approximation uncertainty, and does not capture un-
certainty related to DB complexity. GPEC can com-
bine the DB-based uncertainty with function approxi-
mation uncertainty derived from any local feature at-
tribution method.

In summary, we make the following contributions:

• We introduce a novel geometric perspective on
capturing explanation uncertainty and define a
geodesic-based similarity between explanations. We
prove theoretically that the proposed similarity cap-
tures the complexity of the decision boundary from
a given black-box classifier.

• We propose a novel Gaussian Process-based frame-
work that combines 1) uncertainty from decision
boundary complexity and 2) explainer-specific func-
tion approximation uncertainty to generate uncer-
tainty estimates for any given feature attribution
method and black box model.

• Empirical results show GPEC uncertainty improves
understanding of feature attribution methods.

2 RELATED WORKS

Explanation Methods. A variety of methods have
been proposed for improving the transparency of pre-
trained black-box prediction models (Guidotti et al.,
2018; Barredo Arrieta et al., 2020). Within this cat-
egory of post-hoc methods, many methods focus on
local explanations, that is, explaining individual pre-
dictions rather than the entire model. Some of these
methods implement local feature selection (Chen et al.,
2018; Masoomi et al., 2020); others return a real-
valued score for each feature, termed feature attri-
bution methods, which are the primary focus of this
work. For example, LIME (Ribeiro et al., 2016) trains
a local linear regression model to approximate the
black-box model. Lundberg and Lee (2017) general-
izes LIME and five other feature attribution meth-
ods using the SHAP framework, which fulfill a num-
ber of desirable axioms. While LIME and SHAP are
model-agnostic, others are model-specific, such as neu-
ral networks (Bach et al., 2015; Shrikumar et al., 2017;
Sundararajan et al., 2017; Erion et al., 2021), tree
ensembles (Lundberg et al., 2020), or Bayesian neu-
ral networks (Bykov et al., 2020). Another class of
methods involves training surrogate models to explain
the black-box model (Dabkowski and Gal, 2017; Chen
et al., 2018; Schwab and Karlen, 2019; Guo et al., 2018;
Jethani et al., 2022).

Explanation Uncertainty. One option for improv-
ing explainer trustworthiness is to quantify their asso-
ciated uncertainty. Bootstrap resampling techniques
have been proposed to estimate uncertainty from



Davin Hill, Aria Masoomi, Max Torop, Sandesh Ghimire, Jennifer Dy

Figure 2: Overview of the GPEC framework. GPEC takes samples from the classi�er's decision boundary plus
(possibly noisy) explanations and �ts a GP model with the novel WEG Kernel. The GPEC estimate incorporates
both the uncertainty derived from the decision boundary complexity and also the explanation approximation
uncertainty from the explainer.

surrogate-based explainers (Schwab and Karlen, 2019;
Schulz et al., 2022). Guo et al. (2018) also proposes
a surrogate explainer parameterized with a Bayesian
mixture model. Alternatively, Bykov et al. (2020) and
Patro et al. (2019) introduce methods for explaining
Bayesian neural networks, which can be transferred
to their non-Bayesian counterparts. Covert and Lee
(2021) derive an unbiased version of KernelSHAP and
investigates an e�cient way of estimating its uncer-
tainty. Zhang et al. (2019) categorizes di�erent sources
of variance in LIME estimates. Several methods also
investigate LIME and KernelSHAP in a Bayesian con-
text; for example, calculating a posterior over attribu-
tions (Slack et al., 2021), investigating priors for ex-
planations (Zhao et al., 2021), or using active learning
during sampling (Saini and Prasad, 2022).

However, existing methods for quantifying explanation
uncertainty only consider the uncertainty of the ex-
plainer as a function approximator. This work intro-
duces an additional notion of uncertainty for explain-
ers that considers the complexity of the classi�er DB.

3 UNCERTAINTY FRAMEWORK
FOR EXPLAINERS

We now outline the GPEC framework (Fig. 2), which
is parametrized with a Gaussian Process (GP) regres-
sion model1. Consider a samplex � 2 X that we
want to explain in the context of a black-box classi-
�er F : X ! [0; 1], where X � RD is the data space
and D is the number of features. For convenience we
consider the binary classi�cation case; this is extended
to multiclass in App. C. We apply a local feature at-
tribution explainer H : X ! RD .

Recent works (e.g. Alvarez-Melis and Jaakkola (2018);
Dombrowski et al. (2019)) have shown that local ex-

1A brief review of GP regression is provided in App. B.

planations can lack robustness and stability related to
model complexity. Therefore, when explaining sam-
ples in high-stakes applications, it is critical to un-
derstand the behavior of the explainer, especially in
relation to other samples nearx � . More concretely, let
X 2 RN � D represent a dataset ofN samples. Here,
each row vectorX n 2 RD , n 2 N represents a data
point. We apply H to the rows of X generating N
observed explanations,En 2 RD , n 2 N , which are
grouped into E 2 RN � D . We can use these observed
sample-explanation pairs to infer the behavior ofH
around x � , however there are two main challenges.
First, we expect the similarity between the explana-
tions of X and x � to be dependent onF . In particular,
we expect that as the DB in a neighborhood aroundx �

and a given sampleX n becomes increasingly complex,
H (x � ) and H (X n ) may become more dissimilar; i.e.
H (X n ) may not contain useful information towards
inferring H (x � ). In this situation, the user should be
prompted to either draw additional samples nearx � ,
or otherwise be warned of higher uncertainty. Sec-
ond, the observed explanationsE can be noisy; many
explainers are stochastic and approximated with sam-
pling methods or a learned function.

To solve these challenges, we can model the explainer
with a vector-valued GP regression by treating the ex-
plainer as a latent function inferred using samplesX
and explanations E. We model each explanationEn

as being generated from a latent functionH plus inde-
pendent Gaussian noise� n . For convenience, we con-
sider each featured independently; see App. C for
extensions.

En;d = H d (X n ) + � n;d s:t: H d (X n ) � GP (0; k(�; �))
| {z }

Decision Boundary-Aware Uncertainty

(1)

s:t: � n;d � N (0; � 2
n;d )

| {z }
Function Approximation Uncertainty

wherek(�; �) is the speci�ed kernel function for the GP
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prior. We disentangle each explanation into two com-
ponents, H (X n ) and � n , which represent two separate
sources of uncertainty: 1) adecision boundary-aware
uncertainty which we capture using the kernel similar-
ity, and 2) a function approximation uncertainty from
the explainer. After specifying H(X n ) and � n , we can
combine the two sources by calculating the predictive
distribution for x � . We take the variance of this dis-
tribution as the GPEC uncertainty estimate:

Vd[x � ] = k(x � ; x � ) � k(X; x � ) | [K + � 2
d I N ]� 1k(X; x � )

(2)
where K 2 RN � N is the kernel matrix s.t. K ij =
k(X i ; X j ) 8i; j 2 f 1:::N g, k(X; x � ) 2 RN � 1 has ele-
ments k(X; x � ) i = k(X i ; x � ) i 2 f 1:::N g , � 2

d 2 RN
+ is

the variance parameter for explanation noise, andI N is
the identity matrix. From Eq. (2) we see that predic-
tive variance captures DB-aware uncertainty through
the kernel function k(�; �), and also the function ap-
proximation uncertainty through the � 2

d I N term.

Function Approximation Uncertainty. The � n

component of Eq. (1) represents the uncertainty
stemming from explainer estimation. For example,
� n can represent the variance due to sampling (e.g.
perturbation-based explainers) or explainer training
(e.g. surrogate-based explainers). Explainers that in-
clude some estimate of uncertainty (e.g. BayesLIME,
BayesSHAP, CXPlain) can be directly used to esti-
mate � 2

n . For other stochastic explanation methods,
we can estimate� 2

n empirically by resampling J ex-
planations for the same sampleX n :

�̂ 2
n =

1
jJ j

JX

i =1

�
H i (X n ) �

1
jJ j

JX

j =1

H j (X n )
� 2

(3)

where eachH i (X n ) is a sampled explanation. Alter-
natively, for deterministic explanation methods we can
omit the � n term and assume noiseless explanations.

Decision Boundary-Aware Uncertainty. In con-
trast, the H(X n ) component of Eq. (1) represents the
distribution of functions that could have generated the
observed explanations. The choice of kernelk(�; �) en-
codes oura priori assumption regarding the similarity
between explanations based on the similarity of their
corresponding inputs. In other words, given two sam-
ples x; x 0 2 X , how much information do we expect
a given explanation H (x) to provide for a nearby ex-
planation H (x0)? As the DB betweenH (x) and H (x0)
becomes more complex, we would expect for this infor-
mation to decrease. In Section 4, we consider a novel
kernel formulation that reects the complexity of the
DB in a local neighborhood of the samples.

4 WEG KERNEL

Intuitively, the GP kernel encodes the assumption that
each explanation provides some information about
other nearby explanations, which is de�ned through
kernel similarity. To capture boundary-aware uncer-
tainty, we want to de�ne a similarity k(x; x 0) that is
inversely related to the complexity or smoothness of
the DB between x; x 0 2 X .

4.1 Geometry of the Decision Boundary

We represent the DB as a hypersurface embedded in
RD with co-dimension one. Given the classi�erF , we
de�ne the DB 2 as M F = f m 2 RD : F (m) = 1

2 g. For
any two points m; m0 2 M F , let  : [0; 1] ! M F be
a di�erentiable map such that  (0) = m and  (1) =
m0, representing a 1-dimensional curve onM F . We
can then de�ne distances along the DB as geodesic
distances inM F (Fig 3A):

dgeo(m; m0) = min


Z 1

0
jj _ (t)jjdt 8m; m0 2 M F (4)

The relative complexity of the DB can be character-
ized by the geodesic distances between points on the
DB. For example, the simplest form that the DB can
take is a linear boundary. Consider a black-box model
with linear DB M 1. For two points z; z0 2 M 1,
dgeo(z; z0) = jjz � z0jj2 which corresponds with the
minimum geodesic distance in the ambient space. For
any nonlinear DB M 2 that also contains z; z0, it fol-
lows that dgeo(z; z0) > jjz � z0jj2. As the complexity
of the DB increases, there is a general corresponding
increase in geodesic distances between �xed points on
the DB. We can adapt geodesic distance in our kernel
selection through the exponential geodesic (EG) kernel
(Feragen et al., 2015).

kEG (m; m0) = exp [ � �d geo(m; m0)] (5)

The EG kernel has been previously investigated in the
context of Riemannian manifolds (Feragen et al., 2015;
Feragen and Hauberg, 2016). In particular, while prior
work shows that the EG kernel fails to be positive
de�nite for all values of � in non-Euclidean space, there
exists large intervals of� > 0 for which the EG kernel
is positive de�nite. Appropriate values can be selected
through grid search and cross validation; we assume
that a valid value of � has been selected.

Therefore, by samplingM F , we can use the EG kernel
matrix to capture DB complexity. However, a chal-
lenge remains in relating pointsx; x 0 2 X n M F to the
nearby DB. In Section 4.2 we consider a continuous
weighting over M F based on distance tox; x 0.

2Without loss of generality, we assume that the classi�er
decision rule is 1

2
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Figure 3: Consider a classi�er with DB de�ned as M 0 = f (x1; f (x1)) : x1 2 R> 0g where f (x1) = 2 cos( 10
x 1

).
(A) Illustration of geodesic distancedgeo(m; m0) between two points m0; m 2 M 0. (B) Evaluation of the WEG
kernel for M 0 (top) and a linear DB (below). The gray region highlights the set f x0 : k(x; x 0) � 0:9g for a given x
(red). This region increases as the local DB become more linear.(C) During WEG approximation, we calculate
Euclidean distances betweenx; x 0 (red, green) and DB samplesm1; :::; mJ 2 M 0 (blue). When appropriately
normalized (Eq. (6)), this acts as a weighting for each element of the EG kernel.

4.2 Weighting Decision Boundary Samples

Let p(m) denote a distribution with support de-
�ned over M F such that we can draw DB samples
m1:::mJ � p(m) using a DB sampling algorithm (see
Sec. 4.4). We weightp(m) according to the `2 norm
between m and a �xed data sample x to create a
weighted distribution q(mjx; � ):

q(mjx; � ) / exp
�
� � jj x � mjj2

2

�
p(m) (6)

where � represents a hyperpameter that controls the
sensitivity of the weighting. We can then de�ne the
kernel function kWEG (x; x 0) by taking the expected
value over the weighted distributions.

kWEG (x; x 0) =
Z Z

kEG (m; m0)

� q(mjx; � ) q(m0jx0; � ) dmdm0 (7)

=
1

Zm Zm 0

Z Z
exp [� �d geo(m; m0)]

� exp
�
� � (jj x � mjj2

2 + jjx0 � m0jj2
2)

�
p(m)p(m0)dmdm0

(8)

whereZm ; Zm 0 are normalizing constants forq(mjx; � )
and q(m0jx0; � ), respectively. Eq. (8) is an example
of a marginalized kernel (Tsuda et al., 2002): a kernel
de�ned by the expected value of observed samplesx; x 0

over latent variables m; m0. Given that the underlying
EG kernel is positive de�nite, it follows that the WEG
kernel forms a valid kernel.

With the WEG kernel, we can calculate a similarity
betweenx; x 0 2 X that decreases as the complexity of
the DB segments between the two points increases. In
Fig. 3B we evaluate the WEG kernel similarity on non-
linear and a linear DB. We observe that WEG similar-
ity reects the complexity of the DB; as the decision
boundary becomes more linear in a local region, the

similarity between neighboring points increases. To
evaluate the WEG kernel theoretically, we consider
two properties. Theorem 1 establishes that the EG
kernel is a special case of the WEG kernel for when
x; x 0 2 X \ M F .

Theorem 1. Given two points x; x 0 2 X \ M F , then
lim � !1 kWEG (x; x 0) = kEG (x; x 0)

Proof details are shown in App. C.1. Intuitively, as
� increases the manifold distribution closest to the
points x; x 0 becomes weighted increasingly heavily. At
the limit, the weighting concentrates entirely on x; x 0

themselves, which recovers the EG kernel. Therefore
we see that the WEG kernel is a generalization of the
EG kernel with a weighting controlled by � .

Theorem 2 establishes the inverse relationship between
DB complexity and WEG similarity. Given a classi�er
with a piecewise linear DB, we show that this DB rep-
resents a local maximum with respect to WEG kernel
similarity; i.e. as we perturb the DB to be nonlinear,
kernel similarity decreases. We �rst de�ne perturba-
tions on the DB. Note that int( S) indicates the interior
of a set S and id indicates the identity mapping.

De�nition 1 (Manifold Perturbation) . Let f U� g� 2 I

be charts of an atlas for a manifoldP � RD , where
I is a set of indices. LetP and eP be di�erentiable
manifolds embedded inRD , where P is a Piecewise
Linear manifold. Let R : P ! eP be a di�eomorphism.
We say eP is a perturbation of P on the i th chart if R
satis�es the following two conditions: 1O There exists a
compact subsetK i � Ui s.t. RjPn int( K i ) = id jPn int( K i )

and Rj int( K i ) 6= id j int( K i ) . 2O There exists a linear

homeomorphism between an open subsetfUi � Ui with
Rd� 1 which contains K i .

Theorem 2. Let P be a (d{ 1)-dimension Piecewise
Linear manifold embedded in RD . Let eP be a per-
turbation of P and de�ne ~k(x; x 0) and k(x; x 0) as the
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WEG kernels de�ned on eP and P respectively. Then
~k(x; x 0) < k (x; x 0) 8x; x 0 2 RD .

Proof details are shown in App. C.2. Theorem 2 im-
plies that, for any two �xed points x; x 0, their ker-
nel similarity kWEG (x; x 0) decreases as the black-box
DB complexity increases. Within GPEC, the explana-
tions for x; x 0 become less informative for other nearby
explanations and induce a higher explanation uncer-
tainty estimate.

To improve the WEG kernel interpretation, we can
normalize kWEG to scale similarity values to be be-
tween [0; 1]. We de�ne the normalized kernel k�

WEG :

k�
WEG (x; x 0) =

kWEG (x; x 0)
p

kWEG (x; x )kWEG (x0; x0)
(9)

4.3 WEG Kernel Approximation

In practice, the integrals in Eq. (8) are intractable; we
can instead use Monte Carlo integration to approxi-
mate kWEG (x; x 0) with J samplesm1; :::; mJ � p(m).

kWEG (x; x 0) �
1

Zm Zm 0J 2

JX

i =1

JX

j =1

exp[� �d geo(mi ; mj )]

� exp[� � (jj x � mi jj2
2 + jjx0 � mj jj2

2)]
(10)

We can similarly estimate constantsZm , Zm 0:

Zm �
1
J

JX

i =1

exp
�
� � jj x � mi jj2

2

�
(11)

4.4 GPEC Algorithm

GPEC has separate training (Alg. 1) and inference
(Alg. 2) stages. During training, GPEC constructs
the EG kernel matrix by sampling the DB. Note that
in Eq. (10) we calculate kEG (mi ; mj ) independently
of x and x0 8i; j 2 f 1:::J g. Therefore, the EG ker-
nel only needs to be calculated once for a set of DB
samples. During training and inference, the WEG ker-
nel weights the precalculated EG kernel based onx; x 0

(Fig 3C). Once the GPEC model is trained, either the
variance or con�dence interval width of the predictive
distribution can be used as the uncertainty estimate.
The training cost of GPEC is amortized during infer-
ence; GP inference generally has time complexity of
O(N 3), which can be reduced toO(N 2) using BBMM
(Gardner et al., 2018), and further with variational
methods (e.g., Hensman et al. (2015)).

DB sampling and geodesic distance estimation are on-
going areas of research. In our implementation, we
adapt DeepDIG (Karimi et al., 2019) for sampling the
DB of neural networks and DBPS (Yan and Xu, 2008)

Algorithm 1 GPEC Training
Input : Training Samples X 2 RN � D , Explainer.
Output : WEG Kernel K 2 [0; 1]N � N , Explainer Vari-
ance U 2 RN � D

+ , Weighting W 2 [0; 1]N � J , EG Kernel
G 2 [0; 1]J � J , DB Samples M 2 RJ � D .

Get Explainer Variance U from Explainer
Draw J DB samples M from DB Sampling Function
for each pair of DB samples m i , m j 2 M do

Gi;j  exp(� �d geo (m i ; m j )) nn Eq. (5)
end
for each data samplex i and DB sample m j do

Wi;j  exp(� � jj x i � m j jj 2
2) nn Eq. (6)

end

Wi; :  W i; :P P
j =1 W i;j

nn Normalize weighting

K  W GW | nn WEG Kernel
Return K , U, W , G, M

Algorithm 2 GPEC Inference
Input : Sample x 2 RD ; K , U, W , G, M from Alg. 1.
Output : GPEC Uncertainty V 2 RD

+

nn Calculate weighting Eq. (6)
for each DB samplem i 2 M do

W �
i  exp(� � jj x � m i jj 2

2)
end
W �  W �

P P
i =1 W i

for each explanation dimension d 2 D do
Vd = W � GW � |

� W � GW | [K + I N U:;d ]� 1W | GW �

end
Return V

for all other models. We utilize ISOMAP (Tenenbaum
et al., 2000) for estimating geodesic distances. Addi-
tional implementation detail is provided in App. D.

5 EXPERIMENTS

We evaluate GPEC on a variety of datasets and clas-
si�ers. In section 5.2 we visually compare GPEC un-
certainty with competing models. Section 5.3 evalu-
ates how GPEC captures DB complexity. Section 5.4
is an ablation test that disentangles the two sources
of uncertainty. All experiments were run on an in-
ternal cluster using AMD EPYC 7302 16-Core proces-
sors. CIFAR10 results were run on Nvidia A100 GPUs.
All source code is available athttps://github.com/
davinhill/GPEC .

5.1 Experiment Setup

Unless otherwise stated, we set� = 1 :0 and � = 0 :1
(see App. F.4 for experiments on parameter sensitiv-
ity), and use GPEC with the KernelSHAP explainer.

Datasets. Experiments are performed on three tabu-
lar datasets (Census, Online Shoppers (Sakar et al.,
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Figure 4: Visualization of estimated explanation uncertainty for di�erent datasets and competing methods. The
heatmap represents uncertainty level for a grid of explanations for the x-axis feature;darker heatmap regions
represent higher uncertainty. The black line represents the black-box DB, and red points represent training
samples. The heatmap shows that GPEC uncertainty is elevated for samples near complex decision boundaries.
In contrast, heatmaps for BayesSHAP, BayesLIME, and CXPlain are relatively uniform.

2019), German Credit) from the UCI data reposi-
tory (Dua and Gra�, 2017), and three image datasets
(MNIST (LeCun and Cortes, 2010), f-MNIST (Xiao
et al., 2017)), and CIFAR10 (Krizhevsky et al., 2009)).
We additionally create a toy example (Synthetic)
where training and test samples are drawn from the
uniform distribution over [ � 10; 10]2 and the model DB
is de�ned as follows:

M synth = f (x1; f (x1)) : x1 2 Rg

f (x1) =

(
2 cos(10

x 1
) jx1j � 20

(5e6+1) �

0 jx1j < 20
(5e6+1) �

GPEC can be used with any black-box model; we
use XGBoost (Chen and Guestrin, 2016) for tabular
datasets, 4-layer neural network for MNIST and f-
MNIST, and Resnet18 (He et al., 2015) for CIFAR10.
Additional dataset details are outlined in App. E.1.

Comparisons. We compare GPEC to a baseline GP
implementation plus three other competing explana-
tion uncertainty estimation methods. Naive-GP sim-
ilarly uses a GP parametrization (Eq. (1)) but in-
stead uses the Radial Basis Function kernel, which
does not incorporate DB information. BayesSHAP

and BayesLIME (Slack et al., 2021) are extensions
of KernelSHAP and LIME, respectively, that �t local
Bayesian linear regression models. CXPlain (Schwab
and Karlen, 2019) trains a surrogate model and uses
bootstrapping to estimate explanation uncertainty.
Additional details on competing methods are outlined
in App. E.2.

5.2 Uncertainty Visualization

To visualize explanation uncertainty, we plot uncer-
tainty estimates as a heatmap for the explanations
derived from an XGBoost binary classi�er trained on
two selected features. Figure 4 plots the uncertainty
heatmap for the x-axis feature (y-axis feature results
shown in App. F.7), wheredarker heatmap regions in-
dicate higher uncertainty. Red points represent train-
ing samples for GPEC, Naive-GP, and CXPlain, and
represent background samples for BayesSHAP and
BayesLIME. The DB is plotted as a black line.

We expect to see higher GPEC uncertainty (dark
heatmap regions) for test samples farther away from
training samples (red) and close to nonlinearities in
the DB. We observe that this holds true, especially for
high uncertainty regions in the center of Synthetic (top
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