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Abstract

Post-hoc explanation methods have become a
critical tool for understanding black-box clas-
sifiers in high-stakes applications. However,
high-performing classifiers are often highly
nonlinear and can exhibit complex behav-
ior around the decision boundary, leading
to brittle or misleading local explanations.
Therefore there is an impending need to
quantify the uncertainty of such explanation
methods in order to understand when expla-
nations are trustworthy. In this work we
propose the Gaussian Process Explanation
UnCertainty (GPEC) framework, which gen-
erates a unified uncertainty estimate com-
bining decision boundary-aware uncertainty
with explanation function approximation un-
certainty. We introduce a novel geodesic-
based kernel, which captures the complex-
ity of the target black-box decision bound-
ary. We show theoretically that the pro-
posed kernel similarity increases with deci-
sion boundary complexity. The proposed
framework is highly flexible; it can be used
with any black-box classifier and feature at-
tribution method. Empirical results on mul-
tiple tabular and image datasets show that
the GPEC uncertainty estimate improves un-
derstanding of explanations as compared to
existing methods.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

Post-hoc explainability methods have become a cru-
cial tool for understanding and diagnosing their black-
box model predictions. Recently, many such explainers
have been introduced in the category of local feature
attribution methods; that is, methods that return a
real-valued score representing each feature’s relative
importance for the model prediction. These explain-
ers are local in that they are not limited to using the
same decision rules throughout the data distribution,
therefore they are better able to represent nonlinear
and complex black-box models.

However, recent works have shown that local explain-
ers can be inconsistent or unstable. For example, ex-
plainers may yield highly dissimilar explanations for
similar samples (Alvarez-Melis and Jaakkola, 2018;
Khan et al., 2023), exhibit sensitivity to impercepti-
ble perturbations (Dombrowski et al., 2019; Ghorbani
et al., 2019; Slack et al., 2020), or lack stability un-
der repeated application (Visani et al., 2022). When
working in high-stakes applications, it is imperative
to provide the user with an understanding of whether
an explanation is reliable, potentially problematic, or
even misleading. A way to guide users regarding an
explainer’s reliability is to provide corresponding un-
certainty quantification estimates.

One can consider explainers as function approxima-
tors; as such, standard techniques for quantifying the
uncertainty of estimators can be utilized to quantify
the uncertainty of explainers. This is the strategy uti-
lized by existing methods that estimate explainer un-
certainty (e.g. (Slack et al., 2021; Schwab and Karlen,
2019)). However, we observe that for explainers, this
is not sufficient; in addition to uncertainty due to the
function approximation of explainers, explainers also
have to deal with the uncertainty due to the com-
plexity of the decision boundary (DB) of the black-box
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Figure 1: Illustrative example of potential pitfalls
when relying on local explainers for samples near com-
plex regions of the decision boundary (left) as com-
pared with a smoothed decision boundary (right).

model in the local region being explained.

Previous works investigating DB geometry have re-
lated higher DB complexity to increased model gen-
eralization error (Valle-Perez et al., 2019) and in-
creased adversarial vulnerability (Moosavi-Dezfooli
et al., 2019; Fawzi et al., 2018). Smoother DBs have
been shown to improve feature attributions (Wang
et al., 2020) and produce more consistent counterfac-
tual explanations (Black et al., 2022). Dombrowski
et al. (2019) show that, in ReLU networks, samples
with similar predictions can yield widely disparate
explanations, which can be regulated through model
smoothing. Consider the following example (Fig. 1):
a prediction model is used for a medical diagnosis us-
ing two features: cholesterol level and sodium intake.
We use the gradient with respect to each feature as
an estimate of feature importance. Patients A and
B have similar cholesterol and sodium levels and re-
ceive the same prediction, however, the complex deci-
sion boundary (left) results in a different top feature
for each patient. In contrast, the smoothed decision
boundary (right) yields more consistent explanations.

We approach this problem from the perspective of sim-
ilarity: given two samples and their respective expla-
nations, how closely related should the explanations
be? From the previous intuition, we define this simi-
larity based on a geometric perspective of the DB com-
plexity between these two points. Specifically, we pro-
pose the novel Weighted Exponential Geodesic (WEG)
kernel, which encodes our expectation that two sam-
ples close in Euclidean space may not actually be sim-
ilar if the DB within a local neighborhood of the sam-
ples is highly complex.

Using this similarity formulation, we propose the
Gaussian Process Explanation UnCertainty (GPEC)
framework (Fig. 2), which is an instance-wise, model-
agnostic, and explainer-agnostic method to quantify
the explanation uncertainty. The proposed notion of
uncertainty is complementary to existing quantifica-
tion methods. Existing methods primarily estimate
the uncertainty related to the choice in model param-

eters and fitting the explainer, which we call function
approximation uncertainty, and does not capture un-
certainty related to DB complexity. GPEC can com-
bine the DB-based uncertainty with function approxi-
mation uncertainty derived from any local feature at-
tribution method.

In summary, we make the following contributions:

• We introduce a novel geometric perspective on
capturing explanation uncertainty and define a
geodesic-based similarity between explanations. We
prove theoretically that the proposed similarity cap-
tures the complexity of the decision boundary from
a given black-box classifier.

• We propose a novel Gaussian Process-based frame-
work that combines 1) uncertainty from decision
boundary complexity and 2) explainer-specific func-
tion approximation uncertainty to generate uncer-
tainty estimates for any given feature attribution
method and black box model.

• Empirical results show GPEC uncertainty improves
understanding of feature attribution methods.

2 RELATED WORKS

Explanation Methods. A variety of methods have
been proposed for improving the transparency of pre-
trained black-box prediction models (Guidotti et al.,
2018; Barredo Arrieta et al., 2020). Within this cat-
egory of post-hoc methods, many methods focus on
local explanations, that is, explaining individual pre-
dictions rather than the entire model. Some of these
methods implement local feature selection (Chen et al.,
2018; Masoomi et al., 2020); others return a real-
valued score for each feature, termed feature attri-
bution methods, which are the primary focus of this
work. For example, LIME (Ribeiro et al., 2016) trains
a local linear regression model to approximate the
black-box model. Lundberg and Lee (2017) general-
izes LIME and five other feature attribution meth-
ods using the SHAP framework, which fulfill a num-
ber of desirable axioms. While LIME and SHAP are
model-agnostic, others are model-specific, such as neu-
ral networks (Bach et al., 2015; Shrikumar et al., 2017;
Sundararajan et al., 2017; Erion et al., 2021), tree
ensembles (Lundberg et al., 2020), or Bayesian neu-
ral networks (Bykov et al., 2020). Another class of
methods involves training surrogate models to explain
the black-box model (Dabkowski and Gal, 2017; Chen
et al., 2018; Schwab and Karlen, 2019; Guo et al., 2018;
Jethani et al., 2022).

Explanation Uncertainty. One option for improv-
ing explainer trustworthiness is to quantify their asso-
ciated uncertainty. Bootstrap resampling techniques
have been proposed to estimate uncertainty from



Davin Hill, Aria Masoomi, Max Torop, Sandesh Ghimire, Jennifer Dy

𝑥∗

Features

Black-Box Classifier 𝐹 Black-Box Explainer 𝐻

Boundary Samples 𝑀	 = 	 {𝑚 ∶ 𝐹(𝑚) 	= 0.5}

GPEC

Prediction

Explanations
GPEC

Uncertainty

!𝜎!" = 𝑉𝑎𝑟({𝐻# 𝑥 ,…𝐻$ 𝑥 })

Explanation Noise

𝑘𝑊𝐸𝐺(𝑥, 𝑥’)

WEG Kernel

Data 
Sample 𝑥∗

Features

Im
po

rt
an
ce

Feature 1

Fe
at

ur
e 

2

Decision Boundary

Figure 2: Overview of the GPEC framework. GPEC takes samples from the classifier’s decision boundary plus
(possibly noisy) explanations and fits a GP model with the novel WEG Kernel. The GPEC estimate incorporates
both the uncertainty derived from the decision boundary complexity and also the explanation approximation
uncertainty from the explainer.

surrogate-based explainers (Schwab and Karlen, 2019;
Schulz et al., 2022). Guo et al. (2018) also proposes
a surrogate explainer parameterized with a Bayesian
mixture model. Alternatively, Bykov et al. (2020) and
Patro et al. (2019) introduce methods for explaining
Bayesian neural networks, which can be transferred
to their non-Bayesian counterparts. Covert and Lee
(2021) derive an unbiased version of KernelSHAP and
investigates an efficient way of estimating its uncer-
tainty. Zhang et al. (2019) categorizes different sources
of variance in LIME estimates. Several methods also
investigate LIME and KernelSHAP in a Bayesian con-
text; for example, calculating a posterior over attribu-
tions (Slack et al., 2021), investigating priors for ex-
planations (Zhao et al., 2021), or using active learning
during sampling (Saini and Prasad, 2022).

However, existing methods for quantifying explanation
uncertainty only consider the uncertainty of the ex-
plainer as a function approximator. This work intro-
duces an additional notion of uncertainty for explain-
ers that considers the complexity of the classifier DB.

3 UNCERTAINTY FRAMEWORK
FOR EXPLAINERS

We now outline the GPEC framework (Fig. 2), which
is parametrized with a Gaussian Process (GP) regres-
sion model1. Consider a sample x∗ ∈ X that we
want to explain in the context of a black-box classi-
fier F : X → [0, 1], where X ⊆ RD is the data space
and D is the number of features. For convenience we
consider the binary classification case; this is extended
to multiclass in App. C. We apply a local feature at-
tribution explainer H : X → RD.

Recent works (e.g. Alvarez-Melis and Jaakkola (2018);
Dombrowski et al. (2019)) have shown that local ex-

1A brief review of GP regression is provided in App. B.

planations can lack robustness and stability related to
model complexity. Therefore, when explaining sam-
ples in high-stakes applications, it is critical to un-
derstand the behavior of the explainer, especially in
relation to other samples near x∗. More concretely, let
X ∈ RN×D represent a dataset of N samples. Here,
each row vector Xn ∈ RD , n ∈ N represents a data
point. We apply H to the rows of X generating N
observed explanations, En ∈ RD , n ∈ N , which are
grouped into E ∈ RN×D. We can use these observed
sample-explanation pairs to infer the behavior of H
around x∗, however there are two main challenges.
First, we expect the similarity between the explana-
tions of X and x∗ to be dependent on F . In particular,
we expect that as the DB in a neighborhood around x∗

and a given sample Xn becomes increasingly complex,
H(x∗) and H(Xn) may become more dissimilar; i.e.
H(Xn) may not contain useful information towards
inferring H(x∗). In this situation, the user should be
prompted to either draw additional samples near x∗,
or otherwise be warned of higher uncertainty. Sec-
ond, the observed explanations E can be noisy; many
explainers are stochastic and approximated with sam-
pling methods or a learned function.

To solve these challenges, we can model the explainer
with a vector-valued GP regression by treating the ex-
plainer as a latent function inferred using samples X
and explanations E. We model each explanation En

as being generated from a latent function H plus inde-
pendent Gaussian noise ηn. For convenience, we con-
sider each feature d independently; see App. C for
extensions.

En,d = Hd(Xn) + ηn,d s.t. Hd(Xn) ∼ GP(0, k(·, ·))︸ ︷︷ ︸
Decision Boundary-Aware Uncertainty

(1)

s.t. ηn,d ∼ N (0, σ2
n,d)︸ ︷︷ ︸

Function Approximation Uncertainty

where k(·, ·) is the specified kernel function for the GP
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prior. We disentangle each explanation into two com-
ponents, H(Xn) and ηn, which represent two separate
sources of uncertainty: 1) a decision boundary-aware
uncertainty which we capture using the kernel similar-
ity, and 2) a function approximation uncertainty from
the explainer. After specifying H(Xn) and ηn, we can
combine the two sources by calculating the predictive
distribution for x∗. We take the variance of this dis-
tribution as the GPEC uncertainty estimate:

Vd[x
∗] = k(x∗, x∗)− k(X,x∗)⊺[K + σ2

dIN ]−1k(X,x∗)
(2)

where K ∈ RN×N is the kernel matrix s.t. Kij =
k(Xi, Xj) ∀i, j ∈ {1...N}, k(X,x∗) ∈ RN×1 has ele-
ments k(X,x∗)i = k(Xi, x

∗) i ∈ {1...N} , σ2
d ∈ RN

+ is
the variance parameter for explanation noise, and IN is
the identity matrix. From Eq. (2) we see that predic-
tive variance captures DB-aware uncertainty through
the kernel function k(·, ·), and also the function ap-
proximation uncertainty through the σ2

dIN term.

Function Approximation Uncertainty. The ηn
component of Eq. (1) represents the uncertainty
stemming from explainer estimation. For example,
ηn can represent the variance due to sampling (e.g.
perturbation-based explainers) or explainer training
(e.g. surrogate-based explainers). Explainers that in-
clude some estimate of uncertainty (e.g. BayesLIME,
BayesSHAP, CXPlain) can be directly used to esti-
mate σ2

n. For other stochastic explanation methods,
we can estimate σ2

n empirically by resampling J ex-
planations for the same sample Xn:

σ̂2
n =

1

|J |

J∑
i=1

(
Hi(Xn)−

1

|J |

J∑
j=1

Hj(Xn)
)2

(3)

where each Hi(Xn) is a sampled explanation. Alter-
natively, for deterministic explanation methods we can
omit the ηn term and assume noiseless explanations.

Decision Boundary-Aware Uncertainty. In con-
trast, the H(Xn) component of Eq. (1) represents the
distribution of functions that could have generated the
observed explanations. The choice of kernel k(·, ·) en-
codes our a priori assumption regarding the similarity
between explanations based on the similarity of their
corresponding inputs. In other words, given two sam-
ples x, x′ ∈ X , how much information do we expect
a given explanation H(x) to provide for a nearby ex-
planation H(x′)? As the DB between H(x) and H(x′)
becomes more complex, we would expect for this infor-
mation to decrease. In Section 4, we consider a novel
kernel formulation that reflects the complexity of the
DB in a local neighborhood of the samples.

4 WEG KERNEL

Intuitively, the GP kernel encodes the assumption that
each explanation provides some information about
other nearby explanations, which is defined through
kernel similarity. To capture boundary-aware uncer-
tainty, we want to define a similarity k(x, x′) that is
inversely related to the complexity or smoothness of
the DB between x, x′ ∈ X .

4.1 Geometry of the Decision Boundary

We represent the DB as a hypersurface embedded in
RD with co-dimension one. Given the classifier F , we
define the DB2 as MF = {m ∈ RD : F (m) = 1

2}. For
any two points m,m′ ∈ MF , let γ : [0, 1] → MF be
a differentiable map such that γ(0) = m and γ(1) =
m′, representing a 1-dimensional curve on MF . We
can then define distances along the DB as geodesic
distances in MF (Fig 3A):

dgeo(m,m′) = min
γ

∫ 1

0

||γ̇(t)||dt ∀m,m′ ∈ MF (4)

The relative complexity of the DB can be character-
ized by the geodesic distances between points on the
DB. For example, the simplest form that the DB can
take is a linear boundary. Consider a black-box model
with linear DB M1. For two points z, z′ ∈ M1,
dgeo(z, z

′) = ||z − z′||2 which corresponds with the
minimum geodesic distance in the ambient space. For
any nonlinear DB M2 that also contains z, z′, it fol-
lows that dgeo(z, z

′) > ||z − z′||2. As the complexity
of the DB increases, there is a general corresponding
increase in geodesic distances between fixed points on
the DB. We can adapt geodesic distance in our kernel
selection through the exponential geodesic (EG) kernel
(Feragen et al., 2015).

kEG(m,m′) = exp [−λdgeo(m,m′)] (5)

The EG kernel has been previously investigated in the
context of Riemannian manifolds (Feragen et al., 2015;
Feragen and Hauberg, 2016). In particular, while prior
work shows that the EG kernel fails to be positive
definite for all values of λ in non-Euclidean space, there
exists large intervals of λ > 0 for which the EG kernel
is positive definite. Appropriate values can be selected
through grid search and cross validation; we assume
that a valid value of λ has been selected.

Therefore, by sampling MF , we can use the EG kernel
matrix to capture DB complexity. However, a chal-
lenge remains in relating points x, x′ ∈ X \MF to the
nearby DB. In Section 4.2 we consider a continuous
weighting over MF based on distance to x, x′.

2Without loss of generality, we assume that the classifier
decision rule is 1

2
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Figure 3: Consider a classifier with DB defined as M0 = {(x1, f(x1)) : x1 ∈ R>0} where f(x1) = 2 cos( 10x1
).

(A) Illustration of geodesic distance dgeo(m,m′) between two points m′,m ∈ M0. (B) Evaluation of the WEG
kernel for M0 (top) and a linear DB (below). The gray region highlights the set {x′ : k(x, x′) ≥ 0.9} for a given x
(red). This region increases as the local DB become more linear. (C) During WEG approximation, we calculate
Euclidean distances between x, x′ (red, green) and DB samples m1, ...,mJ ∈ M0 (blue). When appropriately
normalized (Eq. (6)), this acts as a weighting for each element of the EG kernel.

4.2 Weighting Decision Boundary Samples

Let p(m) denote a distribution with support de-
fined over MF such that we can draw DB samples
m1...mJ ∼ p(m) using a DB sampling algorithm (see
Sec. 4.4). We weight p(m) according to the ℓ2 norm
between m and a fixed data sample x to create a
weighted distribution q(m|x, ρ):

q(m|x, ρ) ∝ exp
[
−ρ||x−m||22

]
p(m) (6)

where ρ represents a hyperpameter that controls the
sensitivity of the weighting. We can then define the
kernel function kWEG(x, x

′) by taking the expected
value over the weighted distributions.

kWEG(x, x
′) =

∫ ∫
kEG(m,m′)

× q(m|x, ρ) q(m′|x′, ρ) dmdm′ (7)

=
1

ZmZm′

∫ ∫
exp [−λdgeo(m,m′)]

× exp
[
−ρ(||x−m||22 + ||x′ −m′||22)

]
p(m)p(m′)dmdm′

(8)

where Zm, Zm′ are normalizing constants for q(m|x, ρ)
and q(m′|x′, ρ), respectively. Eq. (8) is an example
of a marginalized kernel (Tsuda et al., 2002): a kernel
defined by the expected value of observed samples x, x′

over latent variables m,m′. Given that the underlying
EG kernel is positive definite, it follows that the WEG
kernel forms a valid kernel.

With the WEG kernel, we can calculate a similarity
between x, x′ ∈ X that decreases as the complexity of
the DB segments between the two points increases. In
Fig. 3B we evaluate the WEG kernel similarity on non-
linear and a linear DB. We observe that WEG similar-
ity reflects the complexity of the DB; as the decision
boundary becomes more linear in a local region, the

similarity between neighboring points increases. To
evaluate the WEG kernel theoretically, we consider
two properties. Theorem 1 establishes that the EG
kernel is a special case of the WEG kernel for when
x, x′ ∈ X ∩MF .

Theorem 1. Given two points x, x′ ∈ X ∩MF , then
limρ→∞ kWEG(x, x

′) = kEG(x, x
′)

Proof details are shown in App. C.1. Intuitively, as
ρ increases the manifold distribution closest to the
points x, x′ becomes weighted increasingly heavily. At
the limit, the weighting concentrates entirely on x, x′

themselves, which recovers the EG kernel. Therefore
we see that the WEG kernel is a generalization of the
EG kernel with a weighting controlled by ρ.

Theorem 2 establishes the inverse relationship between
DB complexity and WEG similarity. Given a classifier
with a piecewise linear DB, we show that this DB rep-
resents a local maximum with respect to WEG kernel
similarity; i.e. as we perturb the DB to be nonlinear,
kernel similarity decreases. We first define perturba-
tions on the DB. Note that int(S) indicates the interior
of a set S and id indicates the identity mapping.

Definition 1 (Manifold Perturbation). Let {Uα}α∈I

be charts of an atlas for a manifold P ⊂ RD, where
I is a set of indices. Let P and P̃ be differentiable
manifolds embedded in RD, where P is a Piecewise
Linear manifold. Let R : P → P̃ be a diffeomorphism.
We say P̃ is a perturbation of P on the ith chart if R
satisfies the following two conditions: 1○ There exists a
compact subset Ki ⊂ Ui s.t. R|P\int(Ki)

= id|P\int(Ki)

and R|int(Ki)
̸= id|int(Ki)

. 2○ There exists a linear

homeomorphism between an open subset Ũi ⊆ Ui with
Rd−1 which contains Ki.

Theorem 2. Let P be a (d–1)-dimension Piecewise

Linear manifold embedded in RD. Let P̃ be a per-
turbation of P and define k̃(x, x′) and k(x, x′) as the
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WEG kernels defined on P̃ and P respectively. Then
k̃(x, x′) < k(x, x′) ∀x, x′ ∈ RD.

Proof details are shown in App. C.2. Theorem 2 im-
plies that, for any two fixed points x, x′, their ker-
nel similarity kWEG(x, x

′) decreases as the black-box
DB complexity increases. Within GPEC, the explana-
tions for x, x′ become less informative for other nearby
explanations and induce a higher explanation uncer-
tainty estimate.

To improve the WEG kernel interpretation, we can
normalize kWEG to scale similarity values to be be-
tween [0, 1]. We define the normalized kernel k∗WEG:

k∗WEG(x, x
′) =

kWEG(x, x
′)√

kWEG(x, x)kWEG(x′, x′)
(9)

4.3 WEG Kernel Approximation

In practice, the integrals in Eq. (8) are intractable; we
can instead use Monte Carlo integration to approxi-
mate kWEG(x, x

′) with J samples m1, ...,mJ ∼ p(m).

kWEG(x, x
′) ≈ 1

ZmZm′J2

J∑
i=1

J∑
j=1

exp[−λdgeo(mi,mj)]

× exp[−ρ(||x−mi||22 + ||x′ −mj ||22)]
(10)

We can similarly estimate constants Zm, Zm′ :

Zm ≈ 1

J

J∑
i=1

exp
[
−ρ||x−mi||22

]
(11)

4.4 GPEC Algorithm

GPEC has separate training (Alg. 1) and inference
(Alg. 2) stages. During training, GPEC constructs
the EG kernel matrix by sampling the DB. Note that
in Eq. (10) we calculate kEG(mi,mj) independently
of x and x′ ∀i, j ∈ {1...J}. Therefore, the EG ker-
nel only needs to be calculated once for a set of DB
samples. During training and inference, the WEG ker-
nel weights the precalculated EG kernel based on x, x′

(Fig 3C). Once the GPEC model is trained, either the
variance or confidence interval width of the predictive
distribution can be used as the uncertainty estimate.
The training cost of GPEC is amortized during infer-
ence; GP inference generally has time complexity of
O(N3), which can be reduced to O(N2) using BBMM
(Gardner et al., 2018), and further with variational
methods (e.g., Hensman et al. (2015)).

DB sampling and geodesic distance estimation are on-
going areas of research. In our implementation, we
adapt DeepDIG (Karimi et al., 2019) for sampling the
DB of neural networks and DBPS (Yan and Xu, 2008)

Algorithm 1 GPEC Training

Input : Training Samples X ∈ RN×D, Explainer.
Output : WEG Kernel K ∈ [0, 1]N×N , Explainer Vari-

ance U ∈ RN×D
+ , Weighting W ∈ [0, 1]N×J , EG Kernel

G ∈ [0, 1]J×J , DB Samples M ∈ RJ×D.

Get Explainer Variance U from Explainer
Draw J DB samples M from DB Sampling Function
for each pair of DB samples mi, mj ∈M do

Gi,j ← exp(−λdgeo(mi,mj)) \\ Eq. (5)
end
for each data sample xi and DB sample mj do

Wi,j ← exp(−ρ||xi −mj ||22) \\ Eq. (6)
end

Wi,: ← Wi,:∑P
j=1 Wi,j

\\ Normalize weighting

K ←WGW ⊺ \\ WEG Kernel
Return K, U , W , G, M

Algorithm 2 GPEC Inference

Input : Sample x ∈ RD; K, U , W , G, M from Alg. 1.
Output : GPEC Uncertainty V ∈ RD

+

\\ Calculate weighting Eq. (6)
for each DB sample mi ∈M do

W ∗
i ← exp(−ρ||x−mi||22)

end

W ∗ ← W∗∑P
i=1 Wi

for each explanation dimension d ∈ D do
Vd = W ∗GW ∗⊺

−W ∗GW ⊺[K + INU:,d]
−1W ⊺GW ∗

end
Return V

for all other models. We utilize ISOMAP (Tenenbaum
et al., 2000) for estimating geodesic distances. Addi-
tional implementation detail is provided in App. D.

5 EXPERIMENTS

We evaluate GPEC on a variety of datasets and clas-
sifiers. In section 5.2 we visually compare GPEC un-
certainty with competing models. Section 5.3 evalu-
ates how GPEC captures DB complexity. Section 5.4
is an ablation test that disentangles the two sources
of uncertainty. All experiments were run on an in-
ternal cluster using AMD EPYC 7302 16-Core proces-
sors. CIFAR10 results were run on Nvidia A100 GPUs.
All source code is available at https://github.com/
davinhill/GPEC.

5.1 Experiment Setup

Unless otherwise stated, we set λ = 1.0 and ρ = 0.1
(see App. F.4 for experiments on parameter sensitiv-
ity), and use GPEC with the KernelSHAP explainer.

Datasets. Experiments are performed on three tabu-
lar datasets (Census, Online Shoppers (Sakar et al.,

https://github.com/davinhill/GPEC
https://github.com/davinhill/GPEC
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Figure 4: Visualization of estimated explanation uncertainty for different datasets and competing methods. The
heatmap represents uncertainty level for a grid of explanations for the x-axis feature; darker heatmap regions
represent higher uncertainty. The black line represents the black-box DB, and red points represent training
samples. The heatmap shows that GPEC uncertainty is elevated for samples near complex decision boundaries.
In contrast, heatmaps for BayesSHAP, BayesLIME, and CXPlain are relatively uniform.

2019), German Credit) from the UCI data reposi-
tory (Dua and Graff, 2017), and three image datasets
(MNIST (LeCun and Cortes, 2010), f-MNIST (Xiao
et al., 2017)), and CIFAR10 (Krizhevsky et al., 2009)).
We additionally create a toy example (Synthetic)
where training and test samples are drawn from the
uniform distribution over [−10, 10]2 and the model DB
is defined as follows:

Msynth = {(x1, f(x1)) : x1 ∈ R}

f(x1) =

{
2 cos( 10x1

) |x1| ≥ 20
(5e6+1)π

0 |x1| < 20
(5e6+1)π

GPEC can be used with any black-box model; we
use XGBoost (Chen and Guestrin, 2016) for tabular
datasets, 4-layer neural network for MNIST and f-
MNIST, and Resnet18 (He et al., 2015) for CIFAR10.
Additional dataset details are outlined in App. E.1.

Comparisons. We compare GPEC to a baseline GP
implementation plus three other competing explana-
tion uncertainty estimation methods. Naive-GP sim-
ilarly uses a GP parametrization (Eq. (1)) but in-
stead uses the Radial Basis Function kernel, which
does not incorporate DB information. BayesSHAP

and BayesLIME (Slack et al., 2021) are extensions
of KernelSHAP and LIME, respectively, that fit local
Bayesian linear regression models. CXPlain (Schwab
and Karlen, 2019) trains a surrogate model and uses
bootstrapping to estimate explanation uncertainty.
Additional details on competing methods are outlined
in App. E.2.

5.2 Uncertainty Visualization

To visualize explanation uncertainty, we plot uncer-
tainty estimates as a heatmap for the explanations
derived from an XGBoost binary classifier trained on
two selected features. Figure 4 plots the uncertainty
heatmap for the x-axis feature (y-axis feature results
shown in App. F.7), where darker heatmap regions in-
dicate higher uncertainty. Red points represent train-
ing samples for GPEC, Naive-GP, and CXPlain, and
represent background samples for BayesSHAP and
BayesLIME. The DB is plotted as a black line.

We expect to see higher GPEC uncertainty (dark
heatmap regions) for test samples farther away from
training samples (red) and close to nonlinearities in
the DB. We observe that this holds true, especially for
high uncertainty regions in the center of Synthetic (top
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Dataset Census Online Shoppers German Credit CIFAR10

Regularization γ γ γ ℓ2 Softplus β

Magnitude 0 5 10 0 5 10 0 5 10 0 1e-5 10e-5 1.0 0.5 0.25

GPEC 1.573 1.177 1.158 0.209 0.123 0.092 2.665 1.747 0.250 0.029 0.029 0.028 0.033 0.032 0.032

Naive-GP 0.498 0.472 0.467 3.699 3.724 3.730 0.330 0.412 2.533 0.902 0.902 0.902 0.903 0.903 0.903

BayesSHAP 0.037 0.037 0.037 0.031 0.031 0.031 0.019 0.019 0.018 – – – – – –

BayesLIME 0.097 0.096 0.095 0.098 0.097 0.093 0.085 0.066 0.045 – – – – – –

CXPlain 0.064 0.064 0.069 0.004 0.003 0.006 1.7e-4 1.1e-4 4.3e-4 9.5e-5 0.2e-5 2.6e-5 1.6e-5 0.2e-5 9.1e-5

Dataset MNIST Fashion MNIST

Regularization ℓ2 Softplus β ℓ2 Softplus β

Magnitude 0 1e-5 10e-5 1.0 0.5 0.25 0 1e-5 10e-5 1.0 0.5 0.25

GPEC 0.236 0.157 0.078 0.087 0.073 0.056 0.378 0.187 0.063 0.112 0.075 0.061

Naive-GP 4.00 4.00 3.99 0.226 0.232 0.236 3.98 3.99 3.99 0.301 0.261 0.262

BayesSHAP 0.025 0.016 0.008 0.013 0.011 0.010 0.030 0.014 0.007 0.018 0.010 0.009

BayesLIME 2.452 1.573 0.737 0.868 0.866 0.721 2.605 1.364 0.666 1.178 0.861 0.779

CXPlain 0.1e-5 5.0e-5 8.6 e-5 5.3e-5 8.0e-5 5.4e-5 7.2e-5 4.8e-5 6.2 e-5 9.0e-5 6.6e-5 9.6e-5

Table 1: Average explanation uncertainty for classifiers with increasing (left to right) levels of regularization,
which controls relative model complexity. We evaluate how well GPEC reflects model complexity; increased
regularization should result in lower uncertainty. Methods that have decreasing estimates are bolded; the method
with the greatest percentage decrease is highlighted in blue. CIFAR10 results for BayesSHAP and BayesLIME
are omitted due to computational expense.

Figure 5: Average uncertainty values for different re-
gions in Synthetic, binned by x1. Synthetic is designed
to have higher DB complexity for x1 ∈ [−4, 4], which
is reflected by high GPEC uncertainty in bins (−4, 2],
(−2, 0], (0, 2], (2, 4]. Other methods do not capture
the high DB complexity for x1 ∈ [−4, 4].

row), the top-right of of Census (2nd and 3rd rows),
and the bottom-right of German Credit (bottom). In
particular, Synthetic is constructed such that the DB
for x1 ∈ [−4, 4] is more complex than x1 /∈ [−4, 4].
To highlight this, in Figure 5 we bin the values of x1

and calculate the average uncertainty over each bin.
Indeed we observe that the bins within [−4, 4] exhibit
the highest average uncertainty values under GPEC.

In contrast to GPEC, Naive-GP provides uncertainty
estimates that relate only to the training samples;
test sample uncertainty is proportional to distance
from the training samples. The competing methods
BayesSHAP, BayesLIME, and CXPlain result in rela-
tively uniform uncertainty estimates over the test sam-
ples. CXPlain shows areas of higher uncertainty for
Census, however the magnitude of these estimates are
small. The uncertainty estimates produced by these
competing methods are unable to capture the proper-
ties of the black-box model.

5.3 Regularization Test

In this section we evaluate how well GPEC captures
uncertainty due to DB complexity. DB and model
complexity is generally difficult to quantify; we in-
stead use regularization methods to control relative
model complexity. By examining the average uncer-
tainty across different models, we can better under-
stand how well GPEC uncertainty reflects the under-
lying DB complexity. For XGBoost models, we vary
γ, which penalizes the number of leaves in each tree
(Chen and Guestrin, 2016). For neural networks, we
regularize: 1) ℓ2 penalty on the weights, and 2) we
change the ReLU activation to Softplus: a smooth ap-
proximation of ReLU with smoothness inversely pro-
portional to parameter β (Dombrowski et al., 2019).

Results are presented in Table 1 (standard error and
parameters reported in App. F.6). GPEC shows a de-
creasing average uncertainty with increased regulariza-
tion, indicating its ability to reflect the complexity of
the underlying black-box model. For tabular datasets,
the estimates for BayesSHAP, BayesLIME, and CX-
Plain stay relatively flat. Interestingly, the estimates
from these methods decrease for the image datasets;
we hypothesize that the neural network regularization
also increases overall stability of the explanations.

5.4 GPEC Ablation Test

GPEC can capture both the uncertainty from WEG
kernel and also the estimated uncertainty from the
noisy explanation labels. These noisy explanation la-
bels can either originate directly from the explainer, or
can be estimated empirically (Eq. (3)). Here, we cal-
culate GPEC uncertainty with two different explain-
ers, BayesSHAP and Shapley Sampling Values (SSV)
(Strumbelj and Kononenko, 2013), and ablate the DB-



Davin Hill, Aria Masoomi, Max Torop, Sandesh Ghimire, Jennifer Dy

B)

A)

C)

GPEC + BayesSHAP GPEC + SSV GPEC + SSVGPEC + BayesSHAP

German Credit Census

Figure 6: Ablation test. Row (A) vi-
sualizes the GPEC uncertainty estimate
using BayesSHAP and SSV. Row (B)
shows the DB-aware uncertainty compo-
nent in GPEC for the estimate in row (A).
Row (C) subtracts row (B) from row
(A), which isolates the function approx-
imation uncertainty in GPEC. GPEC is
able to combine and also disentangle the
two sources of uncertainty.

Census Shop Credit MNIST fMNIST CIFAR

GPEC 0.11 0.37 0.07 12.90 18.15 1.77

Naive-GP 0.00 0.00 0.02 8.95 7.41 1.29

CXPlain 0.05 0.06 0.04 9.76 18.18 8.27

BayesSHAP 140.40 54.56 4.86 42,467 42,361 –

BayesLIME 91.29 54.60 4.83 41,832 41,992 –

Table 2: Execution time comparison (inference) for
uncertainty estimation of 100 samples, in seconds. CI-
FAR10 results for BayesLIME and BayesSHAP are
ommitted due to computational cost. CIFAR10 re-
sults use a single Nvidia A100 GPU; all other results
use CPU only.

aware uncertainty in order to evaluate function ap-
proximation uncertainty. The two selected explainers
are different SHAP approximations; the former has an
in-built uncertainty estimate whereas we use empirical
sampling (Eq. (3)) for SSV. In Figure 6 row (A) we
plot the heatmap for the combined GPEC estimate.
In row (B) we exclusively show the DB-aware uncer-
tainty by training GPEC with noiseless explanations.
The difference (i.e. the effects of function approxima-
tion uncertainty) is shown in the row (C). We observe
that the combined GPEC estimate is able to effec-
tively integrate and disentangle both sources of un-
certainty. Interestingly, the BayesSHAP explanations
have higher function approximation uncertainty, which
results in higher GPEC estimates. This suggests that
users wanting to reduce explanation uncertainty might
prefer SSV over BayesSHAP in this scenario.

5.5 Time Complexity

In Table 2 we show an execution time comparison for
generating uncertainty estimates for 100 explanations
(inference time). During inference, GPEC is compara-
ble to methods that amortize training time (Naive-GP
and CXPlain) and is significantly faster than pertur-
bation methods (BayesSHAP and BayesLIME). Exe-
cution time results for training are shown in App. F.1.

5.6 Additional Results

Due to space constraints, we include additional exper-
iments in the appendix, including a case study on dia-
betes prediction (App. F.2), illustrative examples for
image datasets (App. F.3), and parameter sensitivity
analysis (App. F.4).

6 CONCLUSION

Generating uncertainty estimates for feature attribu-
tion explainers is essential for establishing reliable ex-
planations. We introduce a novel GP-based approach
that can be used with any black-box classifier and fea-
ture attribution method. GPEC generates explanation
uncertainty that combines 1) boundary-aware uncer-
tainty, which captures the complexity of the DB, and
2) functional approximation uncertainty. Experiments
show that capturing this uncertainty improves under-
standing of the explanations and the black-box model
itself.

Regarding limitations, GPEC relies on DB estimation
methods which is an ongoing area of research. Due to
the time complexity of DB estimation, this can result
in a tradeoff between computation time and approxi-
mation accuracy or sample bias. However, the effects
of DB sampling time are minimized during inference
as the DB only needs to be sampled during training.
Additionally, in its current implementation GPEC is
limited to classification; we leave the extension to re-
gression as future work.
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A BROADER IMPACT STATEMENT

Machine learning models are increasingly relied upon in a diverse set of high-impact domains, ranging from
healthcare to financial lending (Esteva et al., 2019; Kose et al., 2021; Doshi-Velez and Kim, 2017; Sheikh et al.,
2020; Singh et al., 2021; Hill et al., 2023; Bazzaz and Cooper, 2023). Therefore, it is crucial that users of these
models can accurately interpret why predictions are made. For instance, a doctor may wish to know if a skin-
cancer classifier’s high performance is due to the use of truly diagnostic features, or rather due to spurious imaging
device artifacts. However, further spurred by the advent of deep learning’s increasing popularity, many of the
models being deployed in these high-stakes fields are opaque and complex black boxes, producing predictions
which are non-trivial to understand. Many methods for explaining black-box predictions have been developed
to address this issue (Ribeiro et al., 2016; Lundberg and Lee, 2017; Covert et al., 2020; Masoomi et al., 2021;
Torop et al., 2023), but explanations may have varying quality and consistency. Before utilizing explanations in
practice, it is essential that users know when, and when not, to trust them. Explanation uncertainty is one proxy
for this notion of trust, in which more uncertain explanations may be deemed less trustworthy. In this work, we
explore a new way to model explanation uncertainty, in terms of local decision-boundary complexity. In tandem
with the careful consideration of domain experts, our methodology may be used to assist in determining when
explanations are reliable.

B BACKGROUND

B.1 Related Works: Reliability of Explanations

While feature attribution methods have gained wide popularity, a number of issues relating to the reliability
of such methods have been uncovered. Alvarez-Melis and Jaakkola (2018) investigate the notion of robustness
and show that many feature attribution methods are sensitive to small changes in input. This has been further
investigated in the adversarial setting for perturbation-based methods (Slack et al., 2020) and neural network-
based methods (Ghorbani et al., 2019). Kindermans et al. (2019) show that many feature attribution methods are
affected by distribution transformations such as those common in preprocessing. The generated explanations can
also be very sensitive to hyperparameter choice (Bansal et al., 2020). A number of metrics have been proposed
for evaluating explainer reliability, such as with respect to adversarial attack (Dombrowski et al., 2019; Ghorbani
et al., 2019; Hsieh et al., 2021), local perturbations (Alvarez-Melis and Jaakkola, 2018; Visani et al., 2022),
black-box smoothness (Khan et al., 2023), fidelity to the black-box model (Yeh et al., 2019), or combinations of
these metrics (Bhatt et al., 2020).

B.2 Gaussian Process Review

A single-output Gaussian Process represents a distribution over functions f : X → R

f(x) ∼ GP(m(x), k(x, x′)). (12)

where m : X → R and k : (X ,X ) → R are the mean and kernel (or covariance) functions respectively, which are
chosen a priori to encode the users assumptions about the data. The kernel function k(x, x′) reflects a notion
of similarity between data points for which predictive distributions over f(x), f(x′) respect.

The prior m(x) – frequently considered to be less important – is commonly chosen to be the constant m(x) = 0.

Specifically, a GP is an infinite collection of random variables f(x), each indexed by an element x ∈ X . Impor-
tantly, any finite sub-collection of these random variables

f(Xtr) = (f(x1) . . . , f(xn)) ∈ RD, (13)

corresponding to some index set Xtr = {xi}ni=1 ⊂ X , follows the multivariate normal distribution, i.e.

f(Xtr) ∼ N (m(Xtr),K(Xtr, Xtr)). (14)

The mean vector m(Xtr) = (m(x1), . . . ,m(xn)) ∈ Rn represents the mean function applied on each x ∈ Xtr and
the covariance matrix K ∈ Rn×n, also known as the gram matrix, contains each pairwise kernel-based similarity
value Kij = k(xi, xj). Kernel function outputs correspond to dot products in potentially infinite dimensional
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expanded feature space, which allows for the encoding of nuanced notions of similarity; e.g. the exponential
geodesic kernel referenced in this work (Feragen et al., 2015).

Making predictions with a GP is analogous to simply conditioning this normal distribution on our data. Con-
sidering a set of input,noise-free label pairs

D = {(xi, f(xi)}ni=1 (15)

we may update our posterior over any subset of the random variables f(x) by considering the joint normal over
the subset and D and conditioning on D. For instance, when choosing a singleton index set {x0}, the posterior
over f(x0)|D is another normal distribution which may be written as3

f(x0) ∼ N (f̄(x0),V[f(x0)]) (16)

where

f̄(x0) = K(x0, Xtr)
TK(Xtr, Xtr)

−1f(Xtr) (17)

V[f(x0)] = k(x0, x0)−K(x0, Xtr)
TK(Xtr, Xtr)

−1K(x0, Xtr) (18)

and K(x0, Xtr) ∈ RD is defined element-wise by K(x0, Xtr)i = k(x0, xi).

Now we may consider the situation where our labels are noisy:

D = {(xi, yi)}ni=1, yi = f(xi) + ϵ, ϵ ∼ N (0, σ2), σ2 ∈ R+. (19)

Here yi is equal to the function output f(xi), with the addition of noise variable ϵ. The conditional still follows
a multivariate normal distribution, but the mean and variance equations are updated:

f̄(x0) = K(x0, Xtr)
T (K(Xtr, Xtr) + σ2I)−1Y (20)

V[f(x0)] = k(x0, x0)−K(x0, Xtr)
T (K(Xtr, Xtr) + σ2I)−1K(x0, Xtr) (21)

where Y ∈ Rn has elements Yi = yi.

Note that the variance σ2I is added to K(Xtr, Xtr) in the quadratic form in Eq. (21), resulting in smaller
eigenvalues after matrix inversion. Since this quadratic form is subtracted, the decision to model labels as
noisy increases the uncertainty (variance) of the estimates that the GP posterior provides. This agrees with the
intuition that noisy labels should result in more uncertain predictions.

While GPs may also be defined over vector-valued functions, in this work the independence of each output
component is assumed, allowing for modeling with c ≥ 1 independent GPs. For more details see Ch.2 of
Rasmussen and Williams (2005).

C PROOF OF THEOREMS AND EXTENSIONS

C.1 Theorem 1: Relation to Exponential Geodesic Kernel

k(x, y) =

∫ ∫
exp[−λdgeo(m,m′)]q(m|x, ρ)q(m′|y, ρ) dm′dm

s.t. q(m|x, ρ) ∝ exp[−ρ||x−m||22]p(m)

Note that ρ controls how to weight manifold samples close to x, y. We take limρ→∞:

lim
ρ→∞

q(m|x, ρ)q(m′|y, ρ) =

{
1 x = m and y = m′

0 Otherwise

Therefore the function within the integral of k(x, y) evaluates to zero at all points except x = m and y = m′.
Since x, y ∈ MF we can evaluate the integral:

k(x, y) = exp[−λdgeo(x, y)]
3assuming prior m(x) = 0
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C.2 Theorem 2: Kernel Similarity and Decision Boundary Complexity

From definition 1, given any perturbation P̃ on P, there must exist a compact subset Ki ⊂ Ui s.t. R|P\int(Ki)
=

id|P\int(Ki)
and R|int(Ki)

̸= id|int(Ki)
. Furthermore there exists a linear homeomorphism between an open subset

Ũi ⊆ Ui with Rd−1 which contains Ki.

We parametrize Ki using a smooth function g : T → Ki s.t. g(t) ∈ ∂Ki ∀t ∈ ∂T .

We further define gϵ(t) = g(t)+ ϵη(t), for some perturbation ϵ ∈ R and a smooth function η : T → Rd−1 We also
restrict η such that η(t) = 0 ∀t ∈ ∂T and ∃ t0 ∈ T s.t. η(t0) ̸= g(t0). In other words, η is a smooth function
where gϵ(t) = g(t) ∀ϵ > 0,∀t ∈ ∂T , but is not identical to g for all t ∈ T . Using gϵ(t), we define the manifold
Pϵ = {gϵ(t) : t ∈ T }.

To complete the proof, we want to show that the kernel similarity between any two given points x, y ∈ RD is
lower when using the manifold Pϵ for ϵ > 0 as opposed to the manifold P0. We therefore want to compare the two
respective kernels kϵ(x, y) and k0(x, y). Note that in this proof we consider the local effects of P on the kernel
similarity through P0 and Pϵ exclusively, ignoring the manifold P \ U0 Using Euler-Lagrange, we can calculate
a lower bound for dgeo(gϵ(t)), gϵ(t

′))). In particular, for any t, t′ ∈ T , dgeo(gϵ(t)), gϵ(t
′))) ≥ dgeo(g0(t), g0(t

′)).

dgeo(gϵ(t), gϵ(t
′)) ≥ dgeo(g0(t), g0(t

′)) (22)

exp[−λdgeo(gϵ(t), gϵ(t
′))] ≤ exp[−λdgeo(g0(t), g0(t

′))] (23)

∫
T

∫
T
exp[−λdgeo(gϵ(t), gϵ(t

′))] dtdt′ ≤
∫
T

∫
T
exp[−λdgeo(g0(t), g0(t

′))] dtdt′ (24)

Note that in Eq. (24) we are integrating over all possible values of t, t′, therefore the inequality is tight iff
gϵ(t) = g0(t) ∀t ∈ T ; i.e. ϵ = 0 (see proof in C.2.1). The case of ϵ = 0 is trivial; we instead assume ϵ > 0, in
which case we can establish the following strict inequality:

∫
T

∫
T
exp[−λdgeo(gϵ(t), gϵ(t

′))] dtdt′ <

∫
T

∫
T
exp[−λdgeo(g0(t), g0(t

′))] dtdt′ (25)

Define uniform random variables T , T ′ over the domain of g, i.e. T, T ′ ∼ UT . Then we have:

ET,T ′∼U[0,1]
[exp[−λdgeo(gϵ(T ), gϵ(T

′))]] < ET,T ′∼U[0,1]
[exp[−λdgeo(g0(T ), g0(T

′))]] (26)

EM,M ′∼pϵ(M)[exp[−λdgeo(M,M ′)]] < EM,M ′∼p0(M)[exp[−λdgeo(M,M ′)]] (27)

We define the random variable M = gϵ(T ) with distribution pϵ(M). The distribution pϵ(M) represents the
uniform distribution UT mapped to the manifold Pϵ using gϵ(T ). The step from Eq. (26) to Eq. (27) uses a
property of distribution transformations (Eq. 2.2.5 in Casella and Berger (2001)).

Next, compare either side of Eq. (27) to our kernel formulation shown below in Eq. (28). The kernel kϵ(x, y|ρ, λ)
takes an expected value over qϵ(M |x, ρ) and qϵ(M

′|y, ρ), which are equivalent to pϵ(M) and pϵ(M
′) weighted

with respect to x, y, and a hyperparameter ρ ≥ 0.

kϵ(x, y|ρ, λ) = EM∼qϵ(M |x,ρ),M ′∼qϵ(M ′|y,ρ)[exp[−λdgeo(M,M ′)]] (28)

s.t. qϵ(M |x, ρ) ∝ exp[−ρ||x−M ||22]pϵ(M)

s.t. qϵ(M
′|y, ρ) ∝ exp[−ρ||y −M ′||22]pϵ(M ′)
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Note that when ρ is set to zero, q(M |x, 0) = p(M) and q(M ′|y, 0) = p(M ′). Therefore Eq. (27) is equivalent to
the inequality kϵ(x, y|0, λ) < k0(x, y|0, λ).

We next want to prove that the inequality kϵ(x, y|ρ, λ) < k0(x, y|ρ, λ) also holds for non-zero values of ρ. For
convenience, define

f(ρ) = k0(x, y|ρ, λ)− kϵ(x, y|ρ, λ) (29)

Under this definition, we want to prove there exists ρ0 > 0 such that f(ρ) > 0 ∀ρ < ρ0. From Eq. (27), we
established that f(0) > 0. Assume that

lim
ρ→0

f(ρ) = c (30)

It therefore follows that c > 0. In addition, note that f(ρ) is continuous with respect to ρ (see proof in section
C.2.3). Therefore for any ϵ > 0 there exists δ > 0 s.t. ρ < δ implies |f(ρ)− c| < ϵ.

We choose ϵ = c and the define the corresponding δ to be ρ0. Therefore:

ρ < ρ0 ⇒ |f(ρ)− c| < c (31)

ρ < ρ0 ⇒ 0 < f(ρ) < 2c (32)

Since this result holds for any i, it follows that the piecewise linear manifold P is a local minimum under any
perturbation along a specific chart or combination of charts with respect to the kernel similarity k(x, y) ∀x, y ∈
RD.

C.2.1 Proof: Inequality Tightness

From Eq. (24) to Eq. (25), we want to prove:

∫
T

∫
T
exp[−λdgeo(gϵ(t), gϵ(t

′))] dtdt′ =

∫
T

∫
T
exp[−λdgeo(g0(t), g0(t

′))] dtdt′ (33)

⇒ gϵ(t) = g0(t) ∀t ∈ T

Consider the LHS of Eq. (33):

∫
T

∫
T
exp[−λdgeo(gϵ(t), gϵ(t

′))] dtdt′ =

∫
T

∫
T
exp[−λdgeo(g0(t), g0(t

′))] dtdt′ (34)

∫
T

∫
T
exp[−λdgeo(g0(t), g0(t

′))]− exp[−λdgeo(gϵ(t), gϵ(t
′))]︸ ︷︷ ︸

h(t,t′)

dtdt′ = 0 (35)

Define h(t, t′) as the function inside the integrals in Eq. (35). From Eq. (23), h(t, t′) ≥ 0 ∀t, t′ ∈ T . Since h
is continuous (see proof in C.2.2) and

∫
T
∫
T h(t, t′)dtdt′ = 0, it follows that h(t, t′) = 0 ∀t, t′ ∈ T (Ch.6 Rudin

(1976)).

It therefore follows that:

exp[−λdgeo(g0(t), g0(t
′))] = exp[−λdgeo(gϵ(t), gϵ(t

′))] ∀t, t′ ∈ T (36)

From the definition of η(t) in gϵ(t) = g(t) + ϵη(t), there must exist t ∈ T s.t. η(t) ̸= 0. Therefore ϵ must be zero
for Eq. (36) to hold. It follows that gϵ(t) = g0(t) ∀t ∈ T .
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C.2.2 Proof: Continuity of h(t, t′)

We prove that h(t, t′) is continuous with respect to t, t′. First note that by definition, gϵ(t) is a continuous
parametrization of the manifold Pϵ. From Burago et al. (2001), it follows that for any two points gϵ(t), gϵ(t

′) ∈ Pϵ,
dgeo(gϵ(t), gϵ(t

′)) is continuous. Since the exponential functional preserves continuity and the sum of continuous
functions are also continuous, it follows that h(t, t′) is continuous.

C.2.3 Proof: Continuity of k(x, y) With Respect To ρ

We prove that k(x, y) is continuous with respect to ρ.

k(x, y) =

∫ ∫
exp[−λdgeo(m,m′)] q(m|x, ρ) q(m′|y, ρ) dmdm′ (37)

=
1

Zm(ρ)Zm′(ρ)

∫ ∫
A exp[−ρ(||x−m||22 + ||y −m′||22)]︸ ︷︷ ︸

Z(ρ)

dmdm′ (38)

s.t. Zm(ρ) =

∫
exp[−ρ||x−m||22]p(m) dm

Zm′(ρ) =

∫
exp[−ρ||y −m′||22]p(m′) dm′

A = exp[−λdgeo(m,m′)]p(m)p(m′)

Define h(ρ) = ρB, where B is a constant. Consider h(ρ)− h(ρ0), where ρ0 is a fixed positive constant:

|h(ρ)− h(ρ0)| = |ρB − ρ0B| (39)

= |(ρ− ρ0)B| < δ|B| (40)

It follows that ∀ ϵ > 0, ∃ δ = ϵ
|B| > 0 such that |ρ− ρ0| < δ ⇒ |h(ρ)− h(ρ0)| < ϵ. Therefore h is continuous for

all ρ ∈ R+.

We set B to be ||x −m||22, ||y −m′||22, and ||x −m||22 + ||y −m′||22, which shows that Zm(ρ), Zm′(ρ), and Z(ρ)
are also continuous, respectively. It then follows that the entirety of Eq. (38) is continuous.

C.3 Extending to Multiclass Classifiers

In the multiclass case we define a black-box prediction model F : X → Rc. We consider the one-vs-all DB for
every class y ∈ Y = {1, . . . , c}, defined as MFy

= {x ∈ RD : Fy(x) = maxi∈Y Fi(x) = maxj ̸=y∈Y Fj(x)}, where
Fy indicates the model output for class y. We then apply the GPEC framework separately to each class using
the respective DB. The uncertainty estimate of the GP model would be of dimension d× c.

C.4 Feature Dependency in GPEC Output

A vector-valued GP is an extension of the traditional GP which has vector-valued output. Let X ⊆ RD be the
data space and E : X → RD be an explainer with explanations e = E(x) ∀x ∈ X . We sample X and generate N
pairs S = {(x1, e1), ..., (xN , eN )} In the main text, we train a vector-valued GP on each explanation dimension
independently; i.e. we train D independent scalar-valued GPs. This approach has the advantage of simplicity
and implementation efficiency. However, alternative approaches can be used to enforce a priori dependency
between the dimensions of the vector-valued GP output. Many matrix-valued kernels for vector-valued GPs
have been investigated (see Álvarez et al. (2012) for a review). In particular, we review separable kernels below,
which allow an intuitive decomposition for the matrix-valued kernel.

Let ND = {z ∈ N : z ≤ D}. Let k : X ×X → R≥0 and kT : ND ×ND → R≥0 be a scalar-valued kernel functions.
The function k represents the standard kernel function for a GP (e.g. the WEG kernel for GPEC). The function
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kT represents an encoded similarity between tasks4 {1, ..., D}. In the context of multi-task learning, k and kT
are sometimes referred to as the base kernel and task kernel, respectively. We next define the respective kernel
matrices K and B.

K =

 k(x1, x1) . . . k(x1, xN )
...

. . .
...

k(xN , x1) . . . k(xN , xN )

 B =

 kT (1, 1) . . . kT (1, D)
...

. . .
...

kT (D, 1) . . . kT (D,D)

 (41)

We can then define the block matrix R = B ⊗ K, where ⊗ represents the Kronecker product. We define the
class of kernels which can be written in such a form as separable kernels.

R =



 k(x1, x1)kT (1, 1) . . . k(x1, xN )kT (1, 1)
...

. . .
...

k(xN , x1)kT (1, 1) . . . k(xN , xN )kT (1, 1)

 . . . . . .

...
. . .

...

. . . . . .

 k(x1, x1)kT (D,D) . . . k(x1, xN )kT (D,D)
...

. . .
...

k(xN , x1)kT (D,D) . . . k(xN , xN )kT (D,D)




(42)

The kernel matrix R of dimension ND×ND can therefore be used in the vector-valued GP. In the simple case,
where we assume independent output, we can set B to be the identity matrix (i.e. kT (i, j) = δij ∀i, j ∈ ND,
where δ is the Kronecker delta). This is the case we assume in the GPEC formulation in the main text. However,
we can alternatively encode relatedness between outputs by selecting an appropriate kT .

For example, Sheldon (2008) define a user-defined adjacency matrix of a graph where the nodes of the graph
represent tasks, and the edges represent task similarity. This allows the user to encode a priori relationships
between outputs. Alternatively, Evgeniou et al. (2005) define kT based on clustering, and enforce within-cluster
similarity for tasks.

Any such methods can be used with GPEC by setting the base kernel k to be the WEG kernel defined in Section
4 and then selecting the desired task kernel kT .

D IMPLEMENTATION DETAILS

D.1 Adversarial Sample Filtering for Multi-class Models

Following Karimi et al. (2019), we elect to sample from multi-class neural network decision boundaries by using
a binary search algorithm on pairs of adversarial samples. Specifically, given a test-point x0 ∈ RD and model
prediction y = argmaxk∈YF (x0), decision boundary points may be generated by the following procedure:

First, for each class v ∈ Y a set of Mv points is randomly sampled from the set of train points on which the
model predicts class v:

Xv ⊆ {x : argmaxk∈Y F (x) = v, x ∈ Xtr}, |Xv| = Mv (43)

∀v ∈ Y. An untargeted adversarial attack using a given lp norm and radius ϵ is generated for each point in Xy,
the set of points with the same class prediction as x0. Each attack output AttackU (x, ϵ) ∈ RD is paired with its
corresponding input, resulting in the set

Xy′ = {(x,AttackU (x, ϵ)) : x ∈ Xy}, (44)

where for an element (a, b) ∈ Xy′ we have argmaxk∈Y F (a) = y, argmaxk∈Y F (b) = v ̸= y, where v is an
unspecified class.

4To avoid confusion, we adopt the terminology of multi-task learning and refer to each explanation dimension {1, ..., D}
as tasks.
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Likewise, a targeted adversarial attack, with target class y, is run on each point in each of the sets of points that
are not predicted as class y. Each attack output Attacky(x, ϵ) ∈ RD may be paired with its input x resulting in
sets

Xv′ = {(x,Attacky(x, ϵ)) : x ∈ Xv} (45)

∀v ̸= y ∈ Y. Here, for an element (a, b) ∈ Xv′ we have argmaxk∈Y F (a) = v, argmaxk∈Y F (b) = y.

Thus, we have generated a diverse set of
∑

v∈Y Mv pairs of points that lie on opposite sides of the decision
boundary for class y. The segment between any pair from a given set Xv′ v ̸= y will necessarily contain a point
on the class v v.s. class y decision boundary. Likewise, in the interest of further diversity, segments between
any pair from the set Xy′ will contain a point on the class v v.s. class y decision boundary, where v ̸= y ∈ Y is
unspecified. A binary search may be applied to each pair of samples to find the boundary point.

In practice, the entire procedure may be applied for all classes as a single post-processing step immediately after
training. The results may be saved as a dictionary of boundary points which may be efficiently queried via the
model predicted class of any given test point.

In our implementation, each adversarial attack is attempted multiple times, once using each radius value ϵ in
the list: [0.0, 2e−4, 5e−4, 8e−4, 1e−3, 1e−3, 1.5e−3, 2e−3, 3e−3, 1e−2, 1e−1, 3e−1, 5e−1, 1.0]. For a given input, the
output of the successful attack with smallest ϵ is used. If no attack is successful at any radius, the input is
discarded from further consideration. We apply Projected Gradient Descent (PGD) (Madry et al., 2018) attacks
with the l∞ norm for both targeted and untargeted attacks, using the implementation provided in Rauber et al.
(2017, 2020). The Mc values used for the relevant datasets are indicated below in Appendix E.1.

D.2 Geodesic Distance Approximation

We utilize the ISOMAP algorithm Tenenbaum et al. (2000) to approximate geodesic distances. We adapt the
code5 from Chen et al. (2019) in our implementation. Given a set of samples from a manifold, ISOMAP constructs
a graph where each sample is node. Graph edges are populated by Euclidean distances between samples. After
defining the graph, we use a shortest path length algorithm from NetworkX Hagberg et al. (2008) to approximate
geodesic distance.

E EXPERIMENT SETUP

E.1 Datasets and Models

Census. The UCI Census dataset consists of 32,561 samples from the 1994 census dataset. Each sample is
a single person’s response to the census questionaire. An XGBoost model is trained using the 12 features to
predict whether the individual has income ≥ $50k.

Online Shopper. The UCI Online Shoppers dataset consists of clickstream data from 12,330 web sessions.
Each session is generated from a different individual and specifies whether a revenue-generating transaction
takes place. There are 17 other features including device information, types of pages accessed during the session,
and date information. An XGBoost model is trained to predict whether a purchase occurs.

German Credit. The German Credit dataset consists of 1,000 samples; each sample represents an individual
who takes credit from a bank. The classification task is to predict whether an individual is considered a good
or bad risk. Features include demographic information, credit history, and information about existing loans.
Categorical features are converted using a one-hot encoding, resulting in 24 total features.

MNIST. The MNIST dataset (LeCun and Cortes, 2010) consists of 70k grayscale images of dimension 28x28.
Each image has a single handwritten numeral, from 0-9. A fully connected network with layer sizes 784-700-400-
200-100-10 and ReLU activation functions was trained and validated on on 50,000 and 10,000 image label pairs,
respectively. Training lasted for 30 epochs with initial learning rate of 2 and a learning rate decay of γ = 0.5
when training loss is plateaued. During adversarial example generation we used My = 500 and Mc = 50 ∀c ̸= y.

Fashion MNIST. The Fashion MNIST dataset (Xiao et al., 2017) contains 70,000 grayscale images of dimension
28x28. There are 10 classes, each indicating a different article of clothing. We train a MLP model with the same

5https://github.com/redst4r/riemannian_latent_space

https://github.com/redst4r/riemannian_latent_space
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architecture used for the MNIST dataset, however we increase training to 100 epochs and increase the initial
learning rate to 3. During adversarial example generation we used My = 500 and Mc = 50 ∀c ̸= y.

CIFAR10 The CIFAR10 dataset (Krizhevsky et al., 2009) contains 60,000 color images of dimension 32x32.
Each image contains an object from one of 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck. We train a Resnet-18 model (He et al., 2015) for use in the experiments. During adversarial example
generation we used My = 500 and Mc = 50 ∀c ̸= y.

E.2 Competitor Implementation Details

BayesLIME and BayesSHAP. Slack et al. (2021) extend the methods LIME and KernelSHAP to use a
Bayesian Framework. BayesLIME and BayesSHAP are fit using Bayesian linear regression models on perturbed
outputs of the black-box model. The posterior distribution of the model weights are taken as the feature
attributions instead of the frequentist estimate that characterizes LIME and KernelSHAP. We take the expected
value of the posterior distribution as the point estimate for feature attributions, and the 95% credible interval as
the estimate of uncertainty. To implement BayesLIME and BayesSHAP we use the public implementation6. We
set the number of samples to 200, disable discretization for continuous variables, and calculate the explanations
over all features. Otherwise, we use the default parameters for the implementation.

CXPlain. Schwab and Karlen (2019) introduces the explanation method CXPlain, which trains a surrogate
explanation model based on a causal loss function. After training the surrogate model, the authors propose
using a bootstrap resampling technique to estimate the variance of the predictions. In our experiments we
implement the publicly available code7. We use the default parameters, which include using a 2-layer UNet
model Ronneberger et al. (2015) for the image datasets and a 2-layer MLP model for the tabular datasets. We
take a 95% confidence interval from the bootstrapped results as the estimate of uncertainty.

E.3 Regularization Parameter Overview

L2 regularization. Let f be a neural network with parameters θ̂ = argminθ ℓ(y, fθ)+λ||θ||22, where ℓ is a given
loss function. The component λ||θ||22 adds a penalty for the magnitude of the parameters θ, which is controlled
by parameter λ. In our experiments we increase λ to increase the regularization of the model f . Increasing λ
encourages the model to have smaller values of θ, which results in a lower complexity model. We can see that
limλ→∞ argminθ ℓ(y, fθ) + λ||θ||22 becomes the zero vector, which implies that the model becomes linear.

Softplus β. For a given neural network f with ReLU activation functions, we replace the ReLU functions with
the Softplus function: Softplus(x;β) = 1

β log(1 + exp(βx)). The Softplus function is a smooth approximation of

ReLU, which has been previously investigated (Dombrowski et al., 2019; Wang et al., 2020) in the context of
improving neural network smoothness. Smoothness regularizers have been shown to reduce the complexity of
neural networks and improve generalization (Rosca et al., 2020). Decreasing β increases the smoothing effect of
the Softplus, which reduces the complexity of the model.

γ parameter for XGBoost. We increase the γ parameter in the XGBoost loss function (Eq. (2) in Chen and
Guestrin (2016)):

L(ϕ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk)

where Ω(f) = γT +
1

2
λ∥w∥2

The Ω(fk) component regularizes the complexity of the XGBoost model, which is an ensemble of functions fk.
The γ parameter penalizes the magnitude of T , which represents the number of leaves in each tree. Reducing the
number of leaves in each tree function corresponds to smaller trees with less complexity. Therefore, increasing γ
results in XGBoost models reduces the overall complexity of the model.

6https://github.com/dylan-slack/Modeling-Uncertainty-Local-Explainability
7https://github.com/d909b/cxplain

https://github.com/dylan-slack/Modeling-Uncertainty-Local-Explainability
https://github.com/d909b/cxplain
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Census Online Shoppers German Credit MNIST f-MNIST CIFAR10

GPEC-WEG 0.11 0.37 0.07 12.90 18.15 1.77

GPEC-RBF 0.00 0.00 0.02 8.95 7.41 1.29

CXPlain 0.05 0.06 0.04 9.76 18.18 8.27

BayesSHAP 140.40 54.56 4.86 42,467 42,361 –

BayesLIME 91.29 54.60 4.83 41,832 41,992 –

Table 3: Inference time comparison (in seconds) for estimating the uncertainty for all features for 100 samples.
For MNIST and f-MNIST datasets, results represent execution time for calculating uncertainty estimates with
respect to all ten classes. CIFAR10 results were calculated using a single A100 GPU; all other results were
calculated using CPU only. CIFAR10 results for BayesSHAP and BayesLIME are omitted due to computational
expense

Census Online Shoppers German Credit MNIST f-MNIST CIFAR10

GPEC (total) 35.7 22.5 22.4 94.4 78.0 254

Sample DB 35.7 22.4 22.4 34.5 27.8 220

Naive-GP 0.02 0.02 0.02 7.03 7.11 1.29

CXPlain 1.07 0.34 1.71 3.54 3.73 3.85

BayesSHAP – – – – – –

BayesLIME – – – – – –

Table 4: Training time comparison (in minutes) for various explanation methods. The “Sample DB” step for
GPEC is included for clarity and indicates the execution time for drawing samples from the black-box DB (for
all classes). CIFAR10 results were calculated using a single A100 GPU; all other datasets were calculated on
CPU only. Note that BayesLIME and BayesSHAP methods do not have a training step.

F ADDITIONAL RESULTS

In Section F.1 we show an execution time comparison for explanation uncertainty methods. In Section F.2 we
perform a case study using GPEC on a diabetes prediction task. In Section F.3 we show illustrative examples
from MNIST, f-MNIST, and CIFAR10. In Section F.4 we evaluate the sensitivity of GPEC to changes in
parameters ρ and λ. In Section F.5 we perform an experiment evaluating function approximation uncertainty
component of GPEC. In Section F.6 we report standard error and parameters for the regularization experiment
in Section 5.3. In Section F.7 we show additional results from the Uncertainty Visualization Experiment.

F.1 Execution Time Results

In Table 3 we include inference time comparison for the methods implemented in this paper. Results are averaged
over 100 test samples. For MNIST and f-MNIST datasets, results evaluate the time to calculate uncertainty
estimates with respect to all classes. All experiments were run on an internal cluster using AMD EPYC 7302
16-Core processors. The CIFAR10 dataset was run using a single Nvidia A100 GPU; the other datasets were
run on CPU only. We observe from the results that the methods that amortization methods (GPEC-WEG,
GPEC-RBF, CXPlain) are significantly faster than perturbation methods BayesLIME and BayesSHAP.

In Table 4 we include training time results for the implemented methods. The “Sample DB” step for GPEC is
highlighted for clarity and indicates the execution time for drawing samples from the black-box DB. The GP
regression model in GPEC can be retrained with different hyperparameter choices (ρ, λ) and/or training samples
(X) using the same DB samples, therefore this step only needs to be performed once for each given dataset and
black-box model combination. This step is dependent on DB sampling algorithms (see App. D.1); improvements
in these algorithms will decrease training time for GPEC. Note that BayesLIME and BayesSHAP methods do
not have a training step.

F.2 Case Study: Diabetes Prediction with GPEC uncertainty

In this section we evaluate how GPEC can be used to improve understanding of model predictions and feature
attributions. We used the NHANES (Miller, 1973) 2013-2014 dataset, which is an annual survey conducted by
the Center for Disease Control and Prevention (CDC) and the National Center for Health Statistics (NHCS). It
contains demographic, dietary, health exam, and survey data for 3,329 patients. We follow Dinh et al. (2019) in
training an XGBoost model to predict the incidence of type-2 diabetes using a pre-selected set of 27 features.
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High GPEC UncertaintyMedium GPEC Uncertainty Normal Measurement RangeLow GPEC Uncertainty

Blood Osmolality Overnight Hospitalizations

(A) (B)

(C) Sodium(D) (E)

Top 6 FeaturesDistribution of Test Samples

Figure 7: Case study of using GPEC to improve understanding for diabetes prediction. (A) We categorize sam-
ples into tertiles for low, medium, and high GPEC uncertainty. (B) We plot the top features using BayesLIME
attributions while also overlaying the GPEC uncertainty (green, yellow, red). (C) - (E) We visualize three top
features by value, importance, and uncertainty. Patients with high GPEC uncertainty for a given feature may
require further investigation due to function approximation uncertainty and DB-aware uncertainty.

The model achieves an AUROC of 0.92, which replicates the results in Dinh et al. (2019). After training the
model, we apply a feature attribution method, BayesLIME, to estimate the importance of each feature for a
given patient’s prediction of diabetes status. Since BayesLIME is a local feature attribution method, different
patients may have different features (e.g. lab tests, physical attributes) that may be indicative of diabetes.

To establish a confidence estimate that includes both function approximation and DB-aware uncertainty, we
apply GPEC over the test samples and categorize the samples in tertiles for low, medium, and high uncertainty
(Fig. 7(A)). In Figure 7(B) we plot the distribution of test samples for three features of high overall importance
for the incidence of diabetes, as calculated using BayesLIME attributions. We observe that the majority of
patients have low uncertainty.

In Figures 7(C) - (E), we investigate three top features to with respect to feature value, feature importance, and
GPEC uncertainty. In Figure 7(D), sodium, we see that there are 5 patients below the normal measurement
range with medium uncertainty. For these patients, the BayesLIME attribution indicates that sodium level has
minimal importance towards diabetes prediction, however the uncertainty score indicates that this explanation
may not be reliable – more investigation is suggested.

In Figure 7(E), overnight hospitalizations, we see that having two hospitalizations is generally significant (higher
magnitude of BayesLIME attribution), however these explanations have elevated uncertainty. The plot also
indicates that having 3-4 hospitalizations generally has minimal impact on the prediction. This result is somewhat
unexpected, and the high uncertainty suggests that these results should be investigated further. We hypothesize
that there are relatively few patients with 2-4 overnight hospitalizations, leading to model overfitting and a
higher GPEC uncertainty estimate.
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Figure 8: Illustrative samples from MNIST (left), f-MNIST (middle), and CIFAR10 (right). Row (A) shows the
original sample. Row (B) visualizes the upper bound of the confidence interval (CI) for feature attributions using
GPEC uncertainty. Row (C) visualizes the corresponding lower bound of the CI. We use BayesLIME attributions
with GPEC uncertainty to cacluate the intervals. SLIC superpixels are used to improve the interpretability of
results.

F.3 Illustrative Examples for MNIST, f-MNIST, and CIFAR10

We present illustrative examples from MNIST, f-MNIST, and CIFAR10 in Fig. 8. For each image, we apply
BayesLIME to generate feature attributions, then apply GPEC to estimate a confidence interval. To improve
interpretability of the results, we use the simple linear iterative clustering (SLIC) (Achanta et al., 2012) method,
which clusters similar pixels into superpixels, and explain each superpixel rather than the individual pixels.
The MNIST and f-MNIST datasetse us 196 superpixels, and the CIFAR10 dataset uses 96 superpixels. The
upper and lower limit of the confidence interval is plotted in Fig. 8 row (B) and row (C). We observe that the
GPEC confidence interval gives an estimate of uncertainty for the features for each image, which improves the
interpretation of the feature attribution heatmap. The difference between upper and lower bounds is especially
large for the background pixels in MNIST and f-MNIST datasets.

F.4 Sensitivity Analysis of WEG Kernel Parameters

The WEG kernel formulation uses two parameters, ρ and λ. The parameter ρ controls the weighting between each
datapoint and the manifold samples. As ρ increases, the WEG kernel places more weight on manifold samples
close in ℓ2 distance to the given datapoint. The parameter λ acts as a bandwidth parameter for the exponential
geodesic kernel. Increasing λ increases the effect of the geodesic distance along the manifold. Therefore decision
boundaries with higher complexity will have an increased effect on the WEG kernel similarity. Bayesian model
selection methods such as log marginal likelihood maximization (see Rasmussen and Williams (2005)) can be
used for selecting hyperparameters ρ and λ. In practice, it is also important to select λ such that the EG kernel
(Eq. (5)) is positive-definite (Feragen et al., 2015), which can be identified through cross-validation.

In Figure 9 we extend the kernel similarity analysis in Figure 3B to evaluate the WEG kernel for different DBs
and ρ values. We observe that the similarity-ball {x′ : k(x, x′) ≥ 0.9} (blue) for points near complex DB are
generally smaller in size. Increasing ρ increases sensitivity to nearby complex DB segments; i.e. values near
complex DB segments will have correspondingly smaller similarity-balls for larger ρ.

In Figures 10, 11, and 12 we plot heatmaps for various combinations of ρ and λ parameters to evaluate the
change in the uncertainty estimate. The black line is the decision boundary and the red points are the samples
used for training GPEC. Please note that the heatmap scales are not necessarily the same for each plot.

F.5 Visualizing effects of Explainer Uncertainty in GPEC Estimate

In section 5.4 we evaluate GPEC’s ability to combine uncertainty from the black-box decision boundary and the
uncertainty estimate from BayesSHAP and SSV explainers. In Figure 13 we extend this experiment to evaluate
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Figure 9: Evaluation of the WEG kernel for various DBs and values of ρ. The black line indicates the DB for
the associated black-box model. The blue region highlights the set {x′ : k(x, x′) ≥ 0.9} for a given x (red).
This region decreases in size when the local DB near x becomes more complex. Increasing the hyperparameter
ρ increases the sensitivity of the WEG kernel similarity to DB complexity.

how well GPEC can capture the explainer uncertainty. We calculate the combined GPEC and explainer estimate
using different numbers of approximation samples.

Both BayesSHAP and SSV depend on sampling to generate their explanations; having fewer samples increases
the variance of their estimates. As we decrease the number of samples from 200 (Row A) to 5 (Row B) we would
expect that the explainer uncertainty, and consequently the combined GPEC uncertainty, would increase. We
see in Row ∆ that the results follow our intuition; uncertainty increases for most of the plotted test points and
uncertainty does not decrease for any points.

F.6 Regularization Experiment: Standard Error

In Table 5 and 6, we present the standard error measurements and parameters, respectively, for the regularization
experiment.

F.7 Additional Results for Uncertainty Visualization Experiment

In Figure 14 we visualize the estimated explanation uncertainty as a heatmap for a grid of explanations. The
generated plots only visualize the uncertainty for the feature on the x-axis. Due to space constraints, we list the
results for the y-axis feature in the appendix, in Figure 14. We can see that the results are in line with those
from the x-axis figure.
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Figure 10: Hyperparameter sensitivity analysis for the German Credit Dataset. Heatmap of estimated uncer-
tainty for the x-axis variable under different ρ and λ parameter choices.

Dataset Census Online Shoppers German Credit CIFAR10

Regularization γ γ γ ℓ2 Softplus β

Magnitude 0 5 10 0 5 10 0 5 10 0 1e-5 10e-5 1.0 0.5 0.25

GPEC 0.037 0.037 0.036 0.017 0.013 0.010 0.026 0.030 0.012 2.8e-5 2.8e-5 2.8e-5 2.5e-5 2.5e-5 2.5e-5

Naive-GP 0.032 0.032 0.032 0.036 0.036 0.036 0.004 0.001 0.001 1.6e-3 1.6e-3 1.6e-3 1.6e-3 1.6e-3 1.6e-3

BayesSHAP 1.9e-4 1.9e-4 1.9e-4 1.9e-4 1.9e-4 1.9e-4 1.2e-4 1.0e-4 0.7e-4 – – – – – –

BayesLIME 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 – – – – – –

CXPlain 0.006 0.006 0.006 7.8e-5 9.9e-5 2.2e-4 2.2e-6 1.4e-6 6.9e-6 1.9e-7 5.7e-7 5.2e-7 2.8e-8 5.8e-8 1.7e-8

Dataset MNIST Fashion MNIST

Regularization ℓ2 Softplus β ℓ2 Softplus β

Magnitude 0 1e-5 10e-5 1.0 0.5 0.25 0 1e-5 10e-5 1.0 0.5 0.25

GPEC 3.2e-5 3.1e-5 3.1e-5 2.2e-6 2.2e-6 2.2e-6 8.3e-5 8.3e-5 8.1e-5 2.1e-6 1.9e-6 1.9e-6

Naive-GP 1.6e-7 1.6e-7 1.6e-7 2.3e-7 2.3e-7 2.2e-7 3.6e-7 3.6e-7 3.6e-7 3.6e-7 3.5e-7 3.6e-7

BayesSHAP 4.9e-4 3.1e-4 2.1e-4 4.5e-4 4.2e-4 4.2e-4 1.3e-3 0.5e-3 0.2e-3 0.002 0.002 0.002

BayesLIME 0.009 0.009 0.003 0.005 0.005 0.005 0.067 0.038 0.009 0.010 0.011 0.011

CXPlain 0.1e-5 5.0e-5 8.6 e-5 5.3e-5 8.0e-5 5.4e-5 7.2e-5 4.8e-5 6.2 e-5 9.0e-5 6.6e-5 9.6e-5

Table 5: Standard Error for results in Table 1

Figure 11: Hyperparameter sensitivity analysis for the Census Dataset. Heatmap of estimated uncertainty for
the x-axis variable under different ρ and λ parameter choices.
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Figure 12: Hyperparameter sensitivity analysis for the Census Dataset. Heatmap of estimated uncertainty for
the x-axis variable under different ρ and λ parameter choices.

Figure 13: Comparison of the change in quantified uncertainty of explanations as we change the number of
samples for BayesSHAP and SSV. Row (A) visualizes the combined uncertainty estimate using GPEC and either
BayesSHAP or SSV, using 200 samples for approximating the BayesSHAP / SSV explanation. In Row (B) we
decrease the number of samples to 5 and recalculate the estimated uncertainty. Row (∆) represents the change
in uncertainty estimate between (A) and (B). We see that the average uncertainty changes as we decrease the
number of samples, which indicates that GPEC is able to capture the uncertainty arising from BayesSHAP /
SSV approximation.

Dataset λ ρ

Census 1.0 0.1

Online Shoppers 1.0 0.1

German Credit 1.0 0.1

MNIST 1.0 0.01

f-MNIST 1.0 0.01

CIFAR10 1.0 0.05

Table 6: GPEC Parameters for results in Table 1
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Figure 14: Complement to Figure 4. Visualization of estimated explanation uncertainty where the heatmap
represents level of uncertainty for the feature on the y-axis.
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