
MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex
Influence Maximization

Nguyen Do1 Tanmoy Chowdhury2 Chen Ling2 Liang Zhao2 My T. Thai3,†
1Posts and Telecommunications Institute of Technology, Ha Noi, Viet Nam

2Emory University, Atlanta, USA, 3University of Florida, Gainesville, USA

Abstract

Multiplex influence maximization (MIM)
asks us to identify a set of seed users such
as to maximize the expected number of in-
fluenced users in a multiplex network. MIM
has been one of central research topics, es-
pecially in nowadays social networking land-
scape where users participate in multiple on-
line social networks (OSNs) and their influ-
ences can propagate among several OSNs si-
multaneously. Although there exist a couple
combinatorial algorithms to MIM, learning-
based solutions have been desired due to its
generalization ability to heterogeneous net-
works and their diversified propagation char-
acteristics. In this paper, we introduce MIM-
Reasoner, coupling reinforcement learning
with probabilistic graphical model, which ef-
fectively captures the complex propagation
process within and between layers of a given
multiplex network, thereby tackling the most
challenging problem in MIM. We establish a
theoretical guarantee for MIM-Reasoner as
well as conduct extensive analyses on both
synthetic and real-world datasets to validate
our MIM-Reasoner’s performance.

1 INTRODUCTION

Many users on Online Social Networks (OSNs), such
as Facebook and Twitter, are increasingly linking
their accounts across multiple platforms. The mul-
tiple linked OSNs with overlapping users is defined
as a Multiplex Network. The structure of multiplex
networks allows more users to post information across

†Correspondence to: mythai@cise.ufl.edu. Proceedings of
the 27th International Conference on Artificial Intelligence
and Statistics (AISTATS) 2024, Valencia, Spain. PMLR:
Volume 238. Copyright 2024 by the author(s).

various OSNs simultaneously, offering significant value
for marketing campaigns (Lim et al., 2015). Although
this interconnectivity of the multiplex network enables
seamless information flow between platforms via over-
lapping nodes, the underlying information propagation
models on each OSN can differ. This means that the
way information spreads and influences users on one
OSN may not be the same as on another OSN. Given
these distinct characteristics, designing a customized
influence maximization strategy to wield considerable
influence over various platforms becomes imperative.

As a combinatorial optimization problem, Influence
Maximization (IM) aims at selecting a small subset of
users to maximally spread information throughout the
network. In the past decades, tremendous combinato-
rial optimization algorithms have been proposed on a
single network (Kempe et al., 2003; Kimura and Saito,
2006; Jiang et al., 2011; Tang et al., 2015; Nguyen
et al., 2016; Li et al., 2018; Tang et al., 2018; Li et al.,
2019; Guo et al., 2020). They have achieved faster
running time with approximation and exact solutions
under certain propagation models. In parallel to tradi-
tional combinatorial optimization-based methods, ma-
chine learning based approaches (Li et al., 2022, 2023;
Chen et al., 2022; Ling et al., 2023) have also been
proposed in recent years and achieved success in han-
dling massive complicated networks and generalizing
well to similar problems. Both types of methods can-
not be trivially adapted to the multiplex network sce-
nario since they only consider a single model of influ-
ence propagation, whereas each network in a multiplex
network can have a different propagation model.

To date, a few combinatorial optimization algorithms
(Zhan et al., 2015; Zhang et al., 2016; Kuhnle et al.,
2018; Singh et al., 2019; Katukuri et al., 2022) have
been proposed to tackle Multiplex IM (MIM). How-
ever, despite the numerous benefits offered by ma-
chine learning-based approaches, the progress of ap-
plying such methods to MIM is still in its infancy ow-
ing to the following two fundamental challenges. (1)
Scalability. A multiplex network is of very large size

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

with heterogeneous propagation models, of which each
layer has its own characteristics. Current state-of-the-
art (SOTA) IM learning-based methods face compu-
tational limitations, especially in the case of simulat-
ing and estimating the propagation spread within and
between layers. (2) Generalizability For Lightweight
Model. In multiplex networks, capturing diverse prop-
agation characteristics often requires large GNN-based
models. However, using such large GNN models sig-
nificantly increases the time complexity, resulting in
longer training times and slower inference processes.
Balancing the model size and computational efficiency
is crucial when working with multiplex networks.

Our Contributions. To overcome both scalability
and generalization for lightweight model issues alto-
gether, we propose a novel framework MIM-Reasoner
that decomposes multiplex networks into individual
layers and leverages deep reinforcement learning to
find near-optimal seed nodes for the multiplex net-
work as a whole. Specifically, we first employ the
Knapsack approach to assign appropriate budgets to
each layer, while aiming to maximize the overall spread
of the whole multiplex network, thereby obtaining a
(1 − ϵ)-decomposition. With such a decomposition
strategy, MIM-Reasoner learns a lightweight policy to
find feasible solutions for each layer and minimize the
overall computational workload and complexity of the
whole network. Through the learning process, MIM-
Reasoner models the interdependent relationship be-
tween the current layer and other layers, which avoids
reactivating nodes and maximizes the overall spread-
ing process. In addition, we establish guarantees for
the solutions discovered by the optimal policy of MIM-
Reasoner in the worst-case, best-case, and general
scenarios. We empirically demonstrate the strength
of MIM-Reasoner in both synthetic and real-world
datasets from the perspective of influence spread and
running time.

2 PROBLEM STATEMENT AND
BACKGROUND

A multiplex network consisting of k layers is repre-
sented by G = {(G1, σ1) , . . . , (Gk, σk)}, where each
element consists of a directed graph Gi = (Vi, Ei),
and an influence model σi (i.e Independent Cascade
(IC) or Linear Threshold (LT) (Kempe et al., 2003))
that describes the propagation of influence within Gi.
If a node belongs to multiple layers, an interlayer edge
is added between corresponding nodes to signify the
node’s overlapping presence. The entire set of nodes
in the multiplex is denoted by V where V =

⋃k
i=1 Vi.

Without loss of generality, we can assume that Vi = V
for all i. If a vertex v ∈ Gi does not exist in some

Gη, we can simply add it to Gη as an isolated ver-
tex. In this work, as we allow each layer of a multiplex
network to have a different model of influence propaga-
tion, it becomes necessary to establish a mathematical
definition for the propagation model on G .

Definition 1 (Influence Propagation Model) (Kuhnle
et al., 2018). A model of influence propagation, de-
noted as σi, on a graph GI = (V,Ei) is defined by a
function P that assigns probabilities to the final ac-
tivated sets T ⊂ V given a seed set S ⊂ V . The
probability P (T | S) ∈ [0, 1] satisfies the property∑

T :T⊂V P (T | S) = 1, ensuring that we have a proba-
bility distribution. The expected number of activated
nodes, denoted as σi(S), given a seed set S, is calcu-
lated as follows:

σi(S) =
∑

T :T⊂V

P (T | S) · |T | (1)

The above definition covers most of the propagation
models in the literature, such as IC, LT, and SIR
(Kempe et al., 2003).

The influence propagation model σ on G is defined
as follows: if an overlapping node v is activated in
one layer graph Gi, then its adjacent interlayer copies
in other layers also become activated in a determinis-
tic manner, called overlapping activation. The prop-
agation of influence occurs independently within each
graphGi according to its respective propagation model
σi. Note that we count the duplicated nodes as a sin-
gle instance rather than adding up all of them. We are
now ready to define our MIM problem as follows:

Definition 2 (Multiplex Influence Maximization
(MIM)). Given a multiplex graph G = {(G1 =
(V,E1), σ1), . . . , (Gk = (V,Ek), σk)} and a budget
l ∈ N, the MIM problem asks us to find a seed set
S ⊂ V of size at most l so as to maximize the expected
number of activated nodes in the multiplex network
denoted as σ(S). An instance of this problem is de-
noted as (G , k, l, σ) and finding the optimal set of seed
node S̃ that maximizes spreading among those graphs
follows the following function:

S̃ = argmax
|S|≤l

σ (S) (2)

For each layer Gi ∈ G , many greedy based algorithms
(Leskovec et al., 2007; Goyal et al., 2011; Tang et al.,
2014, 2015) have obtained a performance guarantee
bound of (1− 1/e), if σi is submodular and monotone
increasing (Kempe et al., 2003). If all σi of all Gi sat-
isfy the Generalized Deterministic Submodular (GDS)
property, then σ is submodular (Kuhnle et al., 2018).

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

V2V1

V4

V7

V5
V6

V3

G1
V8

V1
V2 V3

V4
V5

V6

V7
V8G2

Seed node Activated node

0.6

0.3

0.4

0.8

0.2

0.7

1
0.5

Figure 1: An example of the propagation process in
a multiplex network consisting of 2 layers. Layers G1

and G2 operate LT and IC model, respectively. Each
node in G1 has a threshold ζ ∈ [0, 1]. The green bold
arrow in G2 indicates high probability of activation.

To visualize the propagation process in multi-
plex networks, let’s consider an instance of the
MIM problem denoted as (G , 2, 1, σ). Here,
G = (G1 = (V,E1), σ1), (G2 = (V,E2), σ2) represents
a two-layer multiplex network as shown in Figure 1
where σ1 of G1 is an LT model and σ2 of G2 follows
an IC model. In this instance, node v5 is selected as
the seed node. Assuming that in layer G2, v5 acti-
vate nodes [v1, v4, v7]. Those nodes in layer G1 are
also activated due to the overlapping activation prop-
erty. Moreover, v8 has a low chance to be activated by
other nodes in layer G2. However, in layer G1, node
v8 has a threshold ζ = 0.6, meaning it requires at least
two activated neighboring nodes to be activated itself.
In this case, [v5, v7] are activated, leading to the acti-
vation of v8 in both layers. Similarly, the activation
process continues to propagate to other nodes, such
as [v2, v6, v3] in layer G1, hence, [v2, v6, v3] in layer G2

are also activated in the deterministic manner. As a
result, by properly selecting seed nodes, we only need
one budget to activate all nodes in G .

3 RELATED WORK

Combinatorial optimization for IM. IM, which
was firstly introduced by Kempe et al. (2003), is a
well-studied problem in network analysis. Traditional
approaches include simulation-based (Leskovec et al.,
2007; Goyal et al., 2011; Zhou et al., 2015), proxy-
based (Kimura and Saito, 2006; Chen et al., 2010a,b),
and approximation-based methods (Li et al., 2018;
Jiang et al., 2011; Tang et al., 2015; Nguyen et al.,
2016; Tang et al., 2018; Guo et al., 2020). Most of
these works obtained a (1 − 1/e)-approximation ratio
due to the submodularity of propagation models. Re-
cently, Tiptop (Li et al., 2019) has been introduced

as an almost exact solution to IM. For more detailed
reviews of traditional methods, we refer readers to a re-
cent survey by Banerjee et al. (2020). In the context of
MIM, the notable approximation algorithms with the-
oretical guarantees using combinatorial methods are
(Zhang et al., 2016; Nguyen et al., 2013; Kuhnle et al.,
2018). In (Zhang et al., 2016; Nguyen et al., 2013),
the authors addressed the Least Cost Influence prob-
lem by mapping layers into a single layer using lossless
and lossy coupling schemes. These works assume that
all layers have the same propagation model. Later,
(Kuhnle et al., 2018) considered the heterogeneous
propagation models and presented Knapsack Seeding
of Networks (KSN), which serves as a starting point
for our learning model.

ML-based for IM. The rise of learning-based ap-
proaches that utilize deep learning techniques to en-
hance generalization capabilities has been applied to
IM. Reinforcement learning (RL) integrated with IM
has shown promise (Lin et al., 2015; Ali et al., 2018),
with recent state-of-the-art solutions focusing on learn-
ing latent embeddings of nodes or networks for seed
node selection (Manchanda et al., 2020; Chen et al.,
2022; Li et al., 2022). Graph neural networks (GNNs)
have also been explored in IM to encode social influ-
ence and guide node selection (Ling et al., 2022b,a).
Recent methods (Ling et al., 2023; Chowdhury et al.,
2024) have proposed DeepIM as a generative approach
to solving IM and achieved state-of-the-art perfor-
mance. However, these methods only focused on the
IM problem, and could not readily be extended to our
MIM problem due to the scalability issues and the abil-
ity to capture the inter- and intra-propagation rela-
tions in a multiplex network.

4 MIM-REASONER

In this section, we introduce our MIM-Reasoner, a
deep reinforcement learning (RL) approach coupled
with a Probabilistic Graphical Model (PGM) designed
to maximize influence in a multiplex network under
a budget constraint (Figure 2). In a nutshell, to
tackle the scalability issue, MIM-Reasoner, decom-
poses G into individual layers, enabling it to find so-
lutions for each individual layer in parallel in the first
phase. It utilizes a knapsack-based approach (Chan-
dra et al., 1976) in order to effectively allocate the
budget for each layer. Furthermore, to capture the
inter-activation via overlapping users, in the second
phase, we train a PGM for each layer. Based on PGMs,
MIM-Reasoner then learns a policy π that operates
sequentially from one layer to another. The PGMs
themselves suggest the rewards that can aid policy π
further tuning the solutions found in each layer to ob-

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

1
612 625

301 385

219 236

G1

G2

G3

2
630

397

243

3
Multiple Choice

Knapsack Problem

Structure
Learning

Run Algorithm A
in parallel

Chosen budget
for each layer

Profit-Cost Table

Budget

1 612

1 301

1 219

G1

G2

G3

Profit

Budget Allocation Table

Budget

1 612

1 301

1 219

G1

G2

G3

Profit

Budget Allocation Table

B
ud

ge
t A

llo
ca

tio
n

R
el

at
io

n
R

L
 O

pt
im

iz
at

io
n

RL-Training

G1

G2

G3

Reward for

Gi+1

Select the next layer

Selected
Layer G i

Node status
dataset

Probabilistic
Graphical Model

Figure 2: MIM-Reasoner consists of two phases: Budget Allocation and Relation RL Optimization. In Phase 1,
algorithm A calculates the profit and cost for each layer in parallel. The ’Multiple Choice Knapsack Problem’ is
then solved to determine the allocated budget for each layer, presented in the ’Budget Allocation Table’. In Phase
2, an RL-Agent is trained to sequentially find solutions for each layer using the allocated budget. Simultaneously,
the status dataset is processed through ’Structure Learning’ to create a ’Probabilistic Graphical Model’ which
reveals layer relationships and helps the RL-Agent to avoid reactivating nodes already activated by other layers.

tain our final solution within a bound of (1−ϵ)(1−1/e)
(o+1)k .

4.1 Phase 1. Budget Allocation

This phase aims to find an initial candidate seed set so-
lution serving as a starting point for our deep RL agent
in Phase 2. In particular, the key point is how to allo-
cate the budget for each layer so that it can maximize
the overall expected number of activated nodes while
solving each layer individually. Firstly, this phase in-
volves running any algorithm A that solves the IM
problem (e.g., a Greedy-based algorithm) with budget
l for each layerGi to measure σ(Sij) where j ∈ [0, ..., l].
Note that Gi can be in billion-scale. Thus, Let’s de-
note Ei = [Ĝi,1, ..., Ĝi,h] as a set of subgraphs sampled
from ith layer of G ; i.e. Gi. Here, h represents the total
number of sampled subgraphs of ith layer. We adopt
a Graph Attention Network (GAT), denoted as I(.)
on a set of subgraphs E = [E1, E2, · · · , Ek] by follow-
ing a probabilistic greedy concept (Manchanda et al.
(2020)) (details in Appendix A.1). This trained GAT
helps identify a good candidate set V g

i ⊂ V before
running A, thereby further reducing the search space
and improving efficiency.

Given a feasible seed node set Sij found by A for each
Gi, MIM-Reasoner constructs a Profit-Cost table H
that records the profit p(Sij) = σ(Sij) associated with
the overall spreading achieved in G , while the cost
c(Sij) = |Sij | indicates the corresponding budget j
spent to achieve that spreading. We next solve the

Multiple Choice Knapsack Problem (MCKP) to allo-
cate budgets effectively for each layer. In the MCKP,
we aim to maximize the total profit

∑k
i=1 p (Sij) while

satisfying the constraint
∑k

i=1 c (Sij) ≤ l. For ϵ > 0,
MCKP solver (Chandra et al., 1976) has a (1− ϵ) ap-
proximation for arbitrary ϵ > 0. The output of MCKP
is the budget allocation table Uk×2, where each row
corresponds to a layer Gi, and the two columns repre-
sent the spent budget and profit, respectively.

4.2 Phase 2. Relation RL Optimization

In this core phase, MIM-Reasoner’s goal is to train
the policy π to optimize our obtained solution, given
the budget allocation table U , achieved in Phase 1.
Phase 2 has a key component which is a PGM (Koller
and Friedman (2009)) denoted as φ which is specifi-
cally a Bayesian Network trained to capture the com-
plex propagation process within and between layers to
provide a novel reward signal to the RL agent. This
reward signal assists the agent in finding a nearly opti-
mal seed node set for the current layer while avoiding
the reactivation of nodes already activated by previ-
ously selected layers.

To begin, let’s define Gprev = [φ1, ..., φk−1] as a set
that contains the trained PGMs for each layer in a
multiplex network. Initially, Gprev = ∅ since no layer
has been selected to learn yet. At each step, a layer
Gi is selected to train the policy π based on the order

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

provided by U as follows:

Gi = argmin
i∈1,...,k

Ui,2 (3)

Given an allocated budget j ≤ l, MIM-Reasoner starts
with the layer having the lowest profit, say Gî. After
selecting the starting layer Gî for the second phase,

it removes row î from U to ensure that Gî will not be
selected in the future. Given layer Gî, it trains the pol-
icy π to improve the seed node set Sîj , where j = Uî,1,
representing the allocated budget. During the pol-
icy training process, a status dataset D = [0, 1]m×|V |,
where m represents the number of Monte Carlo simu-
lation steps, is also collected. This dataset records the
activation status of nodes in the currently selected lay-
ers and also indirectly records the activation of nodes
in other layers due to the overlapping activation.

Next, MIM-Reasoner trains a PGM φî for the selected
layer Gî using a step called Structure Learning, where
the learned structure is a directed graph modeling the
causal relationship between trained nodes. It takes D
as input and returns a learned structure as output for
φî (details in Appendix A.3). Note that, during the
Structure Learning of φî, only a subset of representa-
tive nodes are trained to reduce the complexity, other
nodes that have high correlation with each other are
grouped together but they can be inferred based on
their Pearson Correlation (Cohen et al., 2009) with
trained representative nodes. Details for this Variable
Grouping are presented in Appendix A.2.

After training φî, it is added to Gprev. Since φî is
trained on D, which records the activation of nodes in
other layers, it can predict the relationships between
nodes in other layers. Suppose in the next step, the
layer with the lowest influence Gη (η ̸= î) is chosen
using Equation 3. This time, MIM-Reasoner utilizes
Gprev to generate rewards that assist the policy π in
selecting a seed set which ensures that nodes activated
by the previously selected layers (i.e., Gî) are not re-
activated. These reward functions are discussed next
in the (RL) framework.

4.3 Reinforcement Learning Framework

This section presents our RL framework, which in-
cludes state representation, action space, and reward
function. Moreover, we also explain how PGM φ helps
the RL agent to effectively maximize the overall spread
within the allocated budget for each layer of G .

State Representation: We leverage I(.) trained in
Phase 1, to predict a set of candidate nodes V g ⊂ V for
an unseen graph G and even further reduce the com-
plexity of the state space and action space. Note that
V g
i represents the set of candidates that potentially

contain optimal or near-optimal seed nodes in Gi. The
state space, Ci,t = (V g

i , Xi, Si,t, t), describes the state
of Gi at time step t while Xi is the feature vector of
layer Gi extracted by Structure2vec (Dai et al., 2016),
Si,t is the partially computed solution at time step t,
and V g

i represents the set of candidate nodes predicted
from the pretrained GAT, I(.).

Action Space: In the context of our problem, at each
time step t, the policy π will select an action that
corresponds to a seed node v ∈ V g

i \Si,t.

Reward Function. Recall in the Variable Grouping
step, we used our proposed Node Grouping algorithm
to identify highly correlated node groups denoted as
P = [P1, P2, . . . , Pq] which satisfies V =

⋃q
i=1 Pi (De-

tails in Appendix A.2). Our grouping algorithm au-
tomatically divides the nodes into q clusters based on
correlation without human involvement. Each group
Pi contains nodes that exhibit high correlation with
each other. We define the set of representative nodes
by taking the node closest to the centroid from each
group as Y = [v1, . . . , vq], where each representative
node vi ∈ Y corresponds to a group Pi ∈ P. During
the training process, if the agent identifies a new seed
node vn and adds it to a partially computed solution
Si,t, the updated set Si,(t+1) = Si,t ∪ vn can activate
a subset of nodes T ⊆ V . It is important to note that
each node u ∈ T has its own representative node.

For convenience in determining which group a node
u ∈ T belongs to and which node is the representative
node for u, we define a surjective function f : T −→ Y,
where for all nodes v̂ ∈ Y, there would be at least
an element u ∈ T such that f(u) = v̂. Suppose the
policy π is currently trained on layer Gi, we define an
activation score function that allows every node u ∈ T
to be based on the representative node set Y to infer
its score for being activated by any other selected layer
Gî using PGMs. This function can be defined as:

W(u) = Qu,f(u) · argmax
φî∈Gprκv

φî(f(u),K) (4)

Here, Qu,f(u) ∈ [−1, 1] represents the Pearson correla-
tion between node u and its corresponding represen-
tative node f(u). Meanwhile, K = Y ∩ T refers to the
set of activated representative nodes. On the other
hand, in layer Gi, the output of φî(f(u),K) repre-
sents the conditional probability of representative node
f(u), (i.e. Pî(f(u) | K)) being activated by other layer
Gî, given that the current set of activated representa-
tive nodes is K. Putting K as evidence to PGM indi-
cates how likely the representative node f(u) is to be
activated by other layers when certain other represen-
tative nodes are already active. Based on activation
score W, we now present our customized evaluation

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

functionM(.) which measures the total spread in layer
Gi, given solution Si. It can be defined as:

M(Si) =

|T |∑
i=1

[1−W(u)] (5)

In Equation 5, if a node u has a high activation score,
it means that u is more likely to be activated by pre-
viously selected layers. Thus, instead of counting the
contribution of u to the total spread as 1, we can mod-
ify it to be 1 −W(u). This means that if the reward
function is based onM to calculate marginal gain, the
policy π has less reward when activating node u, hence,
it avoids finding a seed set that re-activates nodes that
have been already activated by other layers. Finally,
we provide our reward function to train policy π com-
puted by considering the marginal gain of adding node
vt to the partially computed solution St, as follows:

rt =M(Si,(t+1))−M(Si,t) (6)

Here,M(Si,(t+1)) is the total spread given a partially
computed solution at time step t + 1, and M(Si,t)
represents the spread achieved by the current solution
Si,t for the ith layer of G . The solution set for the
whole G would be:

Ŝ =

k⋃
i=1

Si (7)

4.4 MIM-Reasoner Analysis

In order to bound the solution of MIM-Reasoner when
policy π is converged, it is necessary to ensure that
the optimal policy π∗ follows a greedy strategy. The
following lemma assists in ensuring this guarantee:

Lemma 1. (Greedy Policy Guarantee). When policy
π is converged, π∗(v | Si,t) always selects nodes greedily
at every time step t. (Proof in Appendix B.2)

Based on Lemma 1, for every layer Gi ∈ G , the solu-
tion provided by policy π∗ is within (1−1/e) of the op-
timal solution, given that σi is submodular and mono-
tone increasing. Our next concern lies in the quality
of MCKP. During phase 1, since A runs in parallel for
each layer Gi, we also achieve an approximation ratio
of (1− 1/e) as stated in the following lemma.

Lemma 2. (Multiple Choice Knapsack Problem
Guarantee). Let OptS be the value of the solution for
MCKP instance S, and OptS̃ be the value of the op-

timal solution for S̃, we have: OptS ≥ (1 − 1/e)OptS̃
(Proof in Appendix B.3)

To ensure the solution is bounded, it is important to
include near-optimal or optimal nodes in the search
space I(.). If I(.) consists of K layers, the prediction
of any node v ∈ V is influenced by its K-hop neighbors
(Zhou et al. (2018)). Although the graph itself can be
changed, the underlying model generating the graph
often remains consistent. These observations lead to
an assumption that poor nodes will be eliminated in
the solution set, while only good nodes are retained
by the GNN-based model (Manchanda et al., 2020).
Thus, it is possible that I(.) trained on a set of sub-
graphs E can also find solutions on similar graphs in G .
We formally restate these observations in the following
assumption:

Assumption 1. (Near Optimal Nodes Are Included
In Search Space). In each layer Gi ∈ G , the near
optimal seed nodes S∗ are included in V g provided by
pretrained I(.). In other word, we have S∗ ⊆ V g.

We now approximate the solution quality in the worst
case. Let us denote o, Ŝπ∗

as the total number of
overlapping nodes in G and final solution found by π∗.
The optimal policy π∗ has an approximation guarantee
for the worst case as follows:

Theorem 1. (Approximation Ratio In The Worst
Case) Suppose the propagation σi on each layer of the
multiplex is submodular, the optimal policy π∗ will find
a solution Ŝ for multiplex network G with an approxi-

mation ratio of (1−ϵ)(1−1/e)
(o+1)k . (Proof in Appendix B.4)

In case the optimal policy π∗ finds the solution Sπ∗

i

for each layer Gi that completely avoids reactivating
nodes already activated by other layers, we can express
the approximation ratio of π∗ for the best case.

Theorem 2. (Approximation Ratio In The Best
Case). Assume the π∗ can avoid reactivating all the
activated nodes, the spread of solution given by opti-

mal policy π∗ is at least: σ
(
Ŝπ∗

)
≥ (1−ϵ)(1−1/e)

k+o σ(S̃)

Let us denote β ∈ [0, 1] as the percentage of nodes that
cannot be successfully avoided reactivation by the pol-
icy π∗, we can establish performance guarantees in a
typical scenario where the optimal policy π∗ can par-
tially avoid reactivating nodes that have already been
activated by other layers.

Theorem 3. (Approximation Ratio In The General
Case). Assume the π∗ can avoid to partially reactivate
the activated nodes by other layers. Thus, with β ∈
[0, 1], the spread of solution given by optimal policy π∗

is at least: σ
(
Ŝπ∗

)
≥ (1−ϵ)(1−1/e)

(k−1)βo+o+kσ(S̃)

Proofs of Theorem 2 and Theorem 3 are shown in Ap-
pendix B.5-B.6. The time complexity of the MIM-
Reasoner depends on the total number of PGMs stored
in Gprev. We have the following lemma:

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

Lemma 3. (PGMs’s Time complexity). The time
complexity of structure learning for Gprev after k se-
lection step is |Y|2 · (k − 1). (Proof in Appendix B.7)

Given Lemma 3, we now bound the time complexity of
MIM-Reasoner. Assuming we have k layers, the time
complexity of algorithm A on l seed nodes with graph
Gh (representing the layer with the highest number of
nodes and edges) is denoted as tc (A,Gh, l). The time
complexity of training MIM-Reasoner is described as:

Theorem 4. (Time complexity of MIM-Reasoner).
The time complexity of the Budget Allocation is:
max
h∈k

tc (A,Gh, l) + (kl)⌈1/ϵ−1⌉ log k and the time com-

plexity of Relation RL Optimization is : O(|Y|2 · (k −
1)+Q) where Q is number of step for policy π converge
to optimal. (Proof in Appendix B.8)

5 EXPERIMENT EVALUATION

This section compares the performance of MIM-
Reasoner across four real multiplex networks and one
synthetic multiplex network in maximizing the influ-
ence under various settings, following a case study to
qualitatively demonstrate its performance. The code
and datasets for MIM-Reasoner are available at the
following GitHub repository: https://github.com/

nguyendohoangkhoiUF/MIM-Reasoner.

5.1 Experiment Setup

Our purpose is to evaluate the expected influence
spread as defined in Equation (2) and time efficiency
under a multiplex network scenario. For more detailed
information about the experiment setup and our find-
ings, we encourage readers to refer to Appendix C.1
and C.2.

Comparison Methods And Metrics. We com-
pare the MIM-Reasoner with two sets of approaches.
1) Traditional multiplex influence maximization meth-
ods: ISF (Influential Seed Finder) (Kuhnle et al.,
2018) is a greedy algorithm designed for multiplex in-
fluence maximization; KSN (Knapsack Seeding of Net-
works) (Kuhnle et al., 2018) utilizes a knapsack ap-
proach to find the best seed users in a multiplex net-
work. 2) Deep Learning based influence maximiza-
tion methods for single network: ToupleGDD (Chen
et al., 2022) is a Deep Reinforcement Learning-based
solution trained on many small networks for better
generalization ability; DeepIM (Ling et al., 2023) is a
state-of-the-art IM solution based on deep generative
models. The comparison is based on three metrics:
total influence spread (activated nodes), running time
(in seconds) and inference time (in seconds).

Synthetic Dataset: We compare MIM-Reasoner

with other baselines on a synthetic multiplex network
with 5,000 nodes and 25,000 edges in various overlap-
ping rates (30%, 50%, and 70%) and the number of
layers (ranging from 3 to 9).

Real Dataset: We evaluate MIM-Reasoner on four
real-world multiplex networks: 1) Celegans (Stark
et al., 2006): 6 layers, 3879 nodes, and 8191 edges;
2) Drosophila (Stark et al., 2006; De Domenico et al.,
2015): 7 layers, 8215 nodes, and 43,366 edges; 3)
Twitter-Foursquare network (Shen et al., 2012): 2
layers, 93269 nodes, and 17,969,114 edges; 4) Pope-
Election (Domenico and Altmann, 2020): 3 layers,
2,064,866 nodes, and 5,969,189 edges.

Hyperparameter Setting. The experiments were
run with budget l = 30, and Monte Carlo simulation
mc = 100. The early stopping was also applied for
all methods. Specifically, DeepIM is stopped when the
increment of reconstruction accuracy is not larger than
ϵ for every 25% of the total number of epochs. For
ToupleGDD and MIM-Reasoners, for every 25% of the
total number of epochs, the early stop was applied if
the current solution was not better than the best one.

5.2 Training Time Analysis

The “running time” of combinatorial algorithms (such
as ISF or KSN) and learning-based approaches (such
as DeepIM, ToupleGDD, and MIM-Reasoner) is inter-
preted as follows. Combinatorial algorithms measure
running time as the duration to find a solution, while
learning-based approaches refer to the running time
as the time needed for training the model to converge
and achieve a solution with a total spread reported.
Therefore, this section focuses on analyzing the run-
ning time (training time) of learning-based methods.

Compared with Deep Learning-based influence maxi-
mization solutions, i.e., DeepIM and ToupleGDD, the
running time for MIM-Reasoner is typically the low-
est in both synthetic and real dataset as depicted in
Figure 3 and Table 1. By parallelizing the IC model
on each individual layer for every optimization step,
MIM-Reasoner reduces the complexity of the propa-
gation model significantly. In contrast, the size of the
network directly affects the number of training samples
needed for DeepIM, resulting in longer training times
to provide decent solutions. Meanwhile, ToupleGDD
running the propagation model on the entire multiplex
network (with a much larger node and edge count)
would naturally require more computational time for
each step.

Interestingly, as illustrated in Figure 3, the training
time of MIM-Reasoner decreases as the number of lay-
ers increases. In fact, it becomes comparable to the
running time of combinatorial algorithms such as ISF

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

Figure 3: Comparison of five methods on a synthetic dataset, with different overlapping percentages and layers.
The comparison is based on two metrics: total spreading and running time (in seconds).

Methods
Celegans Drosophila Twitter-Foursquare Pope-Election

TS RT IT TS RT IT TS RT IT TS RT IT

ISF 1412.21 335.96 NaN 3268.22 3087.58 NaN x x NaN x x NaN
KSN 1267.14 176.02 NaN 2911.46 1331.23 NaN 49282.36 11820.24 NaN x x NaN

ToupleGDD 1309.13 1181.72 1.12 3150.71 10945.98 2.74 49927.11 71428.59 7.46 246873.52 317431.28 13.21
DeepIM 1310.91 715.11 0.23 3250.58 8740.67 0.49 51989.23 43158.84 1.17 248251.49 251195.93 1.98

MIM-Reasoner 1314.25 580.76 0.28 3462.94 4367.41 0.57 53420.94 28372.40 1.81 254238.20 99713.08 2.27

TS: Total Spread; RT: Running Time (Seconds); IT: Inference Time (Seconds).

Table 1: Comparison of five methods on different real datasets in terms of total spreading, running time in
seconds, and inference time in seconds. Best performance is highlighted with bold while x indicates an out-of-
memory error. NaN means that traditional methods do not have an inference time.

in the synthetic dataset. This demonstrates that MIM-
Reasoner has an advantage of reducing training time as
layer complexity increases, while still achieving com-
petitive performance in terms of total spread.

5.3 Inference Time Analysis

As shown in Table 1, MIM-Reasoner stands out as
an efficient method, particularly because it can par-
allelly process separate layers of a multiplex network
and conduct batch inference. Even though DeepIM
is the fastest because it predicts end-to-end solutions
directly; however, the training of DeepIM entails learn-
ing a large model, which is resource-consuming. Tou-
pleGDD has to infer step by step each seed node,
which makes the inference time longer than others.
Moreover, it is crucial to compare the running time
of combinatorial algorithms with the inference time

of learning-based approaches. For instance, even the
fastest running combinatorial algorithm like KSN,
which takes 176.02s and 1331.23s to produce a solution
in two small real network datasets respectively, can-
not be compared to the efficiency of MIM-Reasoner,
which only requires 0.28s and 0.57s. When consider-
ing larger graph sizes such as Twitter-Foursquare and
Pope-Election, MIM-Reasoner still performs impres-
sively, taking only 1.81s and 2.27s respectively, while
producing a comparable total spread. In contrast,
KSN takes 11820.24s for Twitter-Foursquare and can-
not provide a solution for Pope-Election. Furthermore,
ISF fails to provide solutions for both the enormous
network Twitter-Foursquare and Pope-Election. This
comparison highlights the advantages of using machine
learning-based approaches when addressing the MIM
problem.

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

5.4 Quantitative Analysis

Synthetic Dataset. In terms of other compari-
son methods, ISF, KSN, and DeepIM show similar
trends in spreading, while ToupleGDD typically lags
behind, particularly with higher overlap percentages.
Among all the approaches evaluated, MIM-Reasoner
consistently demonstrates competitive spreading val-
ues across all three overlapping percentages. It out-
performs other methods, particularly as the number
of layers in the multiplex network increases. Even
with small graphs created in the synthetic dataset,
MIM-Reasoner provides a total spread that is nearly
as good as that of ISF. It is worth noting that while
MIM-Reasoner may trade off solution quality for faster
training and inference times, it still provides solutions
with a total spread comparable to ISF. This is sig-
nificant because ISF has a good approximation ratio
(1− 1/e) in multiplex networks.

Real-world Dataset. The results of MIM-Reasoner
on real-world datasets are summarized in Table 1.
Among all the approaches evaluated, MIM-Reasoner
consistently achieves either the highest or near-highest
spreading across all datasets while providing fast infer-
ence times to generate solutions. This suggests the ef-
fectiveness of MIM-Reasoner in maximizing influence.
In contrast, the performance of other methods, in-
cluding ISF with its 1 − 1/e ratio in multiplex net-
works, varies across datasets, with none consistently
outperforming MIM-Reasoner in terms of spreading.
Traditional methods, such as ISF and KSN, can pro-
vide solutions with total spreads comparable to that
of MIM-Reasoner. However, their running times are
significantly slower than the inference time of MIM-
Reasoner. Moreover, these traditional methods en-
counter issues such as out-of-memory errors or exces-
sively long running times (e.g., running for over two
weeks) on larger datasets like ”Twitter-Foursquare”
and ”Pope-Election”. This indicates their poor scala-
bility in real-world scenarios.

6 CONCLUSION

We propose a novel framework named MIM-Reasoner
to tackle the multiplex influence maximization prob-
lem. Specifically, we leverage deep reinforcement
learning and decompose the multiplex network into
separate layers. Our framework learns to allocate
node selection budgets for each layer and employs a
lightweight policy to find feasible solutions between
each layer. A probabilistic graphical model is then
designed to capture the propagation pattern between
each layer in order to maximize the overall spread
and improve the overall efficiency. The approxima-
tion ratio of the solution is provided with a theoret-

ical guarantee. Finally, the proposed framework is
compared with several SOTA approaches and demon-
strates overall competitive performance on four real-
world datasets and a synthetic dataset.

Acknowledgements

This material is partially supported by the National
Science Foundation (NSF) under Grant No. FAI-
1939725, SCH-2123809, and IIS-1908594, and the De-
partment of Homeland Security (DHS) under Grant
No. 17STCIN00001.

References

K. Ali, C.-Y. Wang, and Y.-S. Chen. Boost-
ing reinforcement learning in competitive influ-
ence maximization with transfer learning. In 2018
IEEE/WIC/ACM International Conference on Web
Intelligence (WI), pages 395–400. IEEE, 2018.

S. Banerjee, M. Jenamani, and D. K. Pratihar. A sur-
vey on influence maximization in a social network.
KAIS, 62(9):3417–3455, 2020.

A. K. Chandra, D. S. Hirschberg, and C.-K. Wong.
Approximate algorithms for some generalized knap-
sack problems. Theoretical Computer Science, 3(3):
293–304, 1976.

T. Chen, S. Yan, J. Guo, and W. Wu. Touplegdd:
A fine-designed solution of influence maximization
by deep reinforcement learning. arXiv preprint
arXiv:2210.07500, 2022.

W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-
scale social networks. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’10, page
1029–1038, New York, NY, USA, 2010a. Association
for Computing Machinery. ISBN 9781450300551.
doi: 10.1145/1835804.1835934. URL https://doi.

org/10.1145/1835804.1835934.

W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear
threshold model. In 2010 IEEE International Con-
ference on Data Mining, pages 88–97, 2010b. doi:
10.1109/ICDM.2010.118.

T. Chowdhury, C. Ling, J. Jiang, J. Wang, M. T. Thai,
and L. Zhao. Deep graph representation learning
influence maximization with accelerated inference.
Available at SSRN 4663083, 2024.

I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty,
J. Chen, Y. Huang, and I. Cohen. Pearson correla-
tion coefficient. Noise reduction in speech processing,
pages 1–4, 2009.

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

H. Dai, B. Dai, and L. Song. Discriminative em-
beddings of latent variable models for structured
data. International Conference on Machine Learn-
ing, 2016.

M. De Domenico, V. Nicosia, A. Arenas, and V. La-
tora. Structural reducibility of multilayer networks.
Nature communications, 6(1):6864, 2015.

M. D. Domenico and E. G. Altmann. Unravel-
ing the origin of social bursts in collective atten-
tion. Scientific Reports, 2020. doi: 10.1038/
s41598-020-61523-z. URL https://doi.org/10.

1038/s41598-020-61523-z.

A. Goyal, W. Lu, and L. Lakshmanan. Celf++: Opti-
mizing the greedy algorithm for influence maximiza-
tion in social networks. volume 47-48, pages 47–48,
03 2011. doi: 10.1145/1963192.1963217.

Q. Guo, S. Wang, Z. Wei, and M. Chen. Influence
maximization revisited: Efficient reverse reachable
set generation with bound tightened. In Proc. of
the SIGMOD, pages 2167–2181, 2020.

Q. Jiang, G. Song, C. Gao, Y. Wang, W. Si, and
K. Xie. Simulated annealing based influence maxi-
mization in social networks. In Proc. of the AAAi,
2011.

M. Katukuri, M. Jagarapu, et al. Cim: clique-based
heuristic for finding influential nodes in multilayer
networks. Applied Intelligence, 52(5):5173–5184,
2022.

D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network. In
Proc. of the KDD, 2003.

M. Kimura and K. Saito. Tractable models for infor-
mation diffusion in social networks. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Knowl-
edge Discovery in Databases: PKDD 2006, pages
259–271, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN 978-3-540-46048-0.

D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Com-
putation and Machine Learning. The MIT Press,
2009. ISBN 0262013193.

A. Kuhnle, M. A. Alim, X. Li, H. Zhang, and M. T.
Thai. Multiplex influence maximization in online
social networks with heterogeneous diffusion mod-
els. IEEE Transactions on Computational Social
Systems, 5(2):418–429, 2018.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective out-
break detection in networks. In Proceedings of the
13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 420–
429, 2007.

H. Li, M. Xu, S. S. Bhowmick, J. S. Rayhan, C. Sun,
and J. Cui. Piano: Influence maximization meets
deep reinforcement learning. IEEE Transactions on
Computational Social Systems, 2022.

X. Li, J. D. Smith, T. N. Dinh, and M. T. Thai.
Tiptop: (almost) exact solutions for influence max-
imization in billion-scale networks. IEEE/ACM
Transactions on Networking, 27:649–661, 2019. doi:
10.1109/TNET.2019.2898413.

Y. Li, J. Fan, Y. Wang, and K.-L. Tan. Influence
maximization on social graphs: A survey. TKDE,
30(10):1852–1872, 2018.

Y. Li, H. Gao, Y. Gao, J. Guo, and W. Wu. A sur-
vey on influence maximization: From an ml-based
combinatorial optimization. ACM Transactions on
Knowledge Discovery from Data, 17(9):1–50, 2023.

J. S. Lim, S. Y. Ri, B. D. Egan, and F. A. Biocca.
The cross-platform synergies of digital video adver-
tising: Implications for cross-media campaigns in
television, internet and mobile tv. Computers in
Human Behavior, 48:463–472, 2015.

S.-C. Lin, S.-D. Lin, and M.-S. Chen. A learning-based
framework to handle multi-round multi-party influ-
ence maximization on social networks. In Proceed-
ings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 695–704, 2015.

C. Ling, T. Chowdhury, J. Jiang, J. Wang, X. Zhang,
H. Chen, and L. Zhao. Deepgar: Deep graph learn-
ing for analogical reasoning. In 2022 IEEE Inter-
national Conference on Data Mining, pages 1065–
1070, 2022a.

C. Ling, J. Jiang, J. Wang, and L. Zhao. Source lo-
calization of graph diffusion via variational autoen-
coders for graph inverse problems. In Proc. of the
KDD, 2022b.

C. Ling, J. Jiang, J. Wang, M. T. Thai, R. Xue,
J. Song, M. Qiu, and L. Zhao. Deep graph rep-
resentation learning and optimization for influence
maximization. In International Conference on Ma-
chine Learning, pages 21350–21361. PMLR, 2023.

S. Manchanda, A. Mittal, A. Dhawan, S. Medya,
S. Ranu, and A. Singh. Gcomb: Learning budget-
constrained combinatorial algorithms over billion-
sized graphs. Advances in Neural Information Pro-
cessing Systems, 33:20000–20011, 2020.

D. T. Nguyen, H. Zhang, S. Das, M. T. Thai, and
T. N. Dinh. Least cost influence in multiplex social
networks: Model representation and analysis. In
2013 IEEE 13th International Conference on Data
Mining, pages 567–576, 2013. doi: 10.1109/ICDM.
2013.24.

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-
and-stare: Optimal sampling algorithms for viral
marketing in billion-scale networks. In Proc. of the
SIGMOD, 2016.

Y. Shen, T. Dinh, H. Zhang, and M. Thai. Interest-
matching information propagation in multiple on-
line social networks. ACM International Conference
Proceeding Series, 10 2012. doi: 10.1145/2396761.
2398525.

S. S. Singh, K. Singh, A. Kumar, and B. Biswas.
Mim2: Multiple influence maximization across mul-
tiple social networks. Physica A: Statistical Mechan-
ics and its Applications, 526:120902, 2019.

C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher,
A. Breitkreutz, and M. Tyers. Biogrid: A general
repository for interaction datasets. Nucleic acids
research, 34:D535–9, 01 2006. doi: 10.1093/nar/
gkj109.

J. Tang, X. Tang, X. Xiao, and J. Yuan. Online pro-
cessing algorithms for influence maximization. In
Proc. of the SIGMOD, pages 991–1005, 2018.

Y. Tang, X. Xiao, and Y. Shi. Influence maximiza-
tion: Near-optimal time complexity meets practical
efficiency. In Proc. of the SIGMOD, pages 75–86,
2014.

Y. Tang, Y. Shi, and X. Xiao. Influence maximization
in near-linear time: A martingale approach. In Proc.
of the SIGMOD, 2015.

Q. Zhan, J. Zhang, S. Wang, P. S. Yu, and J. Xie.
Influence maximization across partially aligned het-
erogenous social networks. In Pacific-Asia confer-
ence on knowledge discovery and data mining, pages
58–69. Springer, 2015.

H. Zhang, D. T. Nguyen, H. Zhang, and M. T. Thai.
Least cost influence maximization across multiple
social networks. IEEE/ACM Transactions on Net-
working, 24(2):929–939, apr 2016. doi: 10.1109/
tnet.2015.2394793.

C. Zhou, P. Zhang, W. Zang, and L. Guo. On the up-
per bounds of spread for greedy algorithms in social
network influence maximization. IEEE Transactions
on Knowledge and Data Engineering, 27(10):2770–
2783, 2015. doi: 10.1109/TKDE.2015.2419659.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and
M. Sun. Graph neural networks: A review of
methods and applications. AI Open, 2018. doi:
10.1016/J.AIOPEN.2021.01.001.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes, except for error statis-
tics in the tables. The reason is the space
limit.]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex
Influence Maximization

A. Detail Steps of MIM-Reasoner

Algorithm 1: Budget Allocation (Phase 1)

Input: Algorithm A, a multiplex network G = (G1, G2, . . . , Gk), budget l
Output: Budget allocation table U

1 Initialize S := ∅
2 foreach Gi ∈ G do
3 Sij := runAlgorithm(A, Gi, l) // Run any algorithm A on each layer

4 S := S ∪ Sij ,∀j ∈ [1, ..., l] // Collect found solution

5 C := ∅;P := ∅
6 foreach Sij ∈ S do
7 p := σ(Sij); c := |Sij | // Calculate the profit and cost

8 P := P ∪ [p];C := C ∪ [c] // Store the profit and cost

9 H := H[P][C] // Create a Profit-Cost table with profits P as rows and costs C as

columns

10 U := MCKP-Solver(H) // Solve the MCKP to obtain budget allocation U
11 return U ;

Algorithm 2: Relation RL Optimization (Phase 2)

Input: Budget Allocation table U
Output: RL model π

1 Initialize Gprev := ∅, D := ∅
2 for i ∈ 1, . . . , k do
3 Select layer Gi = argminq∈1,...,k U [q] // Select layer with minimum budget

4 Remove row ith in table U // Prevent reselection

5 j := U [i][0] // Select budget for layer Gi

6 if D = ∅ then
7 Collect seed set Sij from phase 1 // Collect seed set from phase 1

8 Train policy π to learn seed set Sij and record D // Train policy with seed set

9 else
10 Train π with budget j based on Gprev and record a new D // Train policy with rewards

generated from Gprev

11 Y := VariableGrouping(D) // Perform variable grouping

12 φi := StructureLearning(Y) // Training PGM

13 Gprev := Gprev ∪ φi // Update previous structure set

14 return π

A.1. Good Candidate Finding

Even when dividing the multiplex network into separate layers, each layer Gi ∈ G can still be at a billion-scale.
The objective of Good Candidate Finding is to identify nodes that are unlikely to be part of the solution set,
thereby reducing the search space. This is possible because although the graph itself can change, the underlying

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

Algorithm 3: The Probabilistic Greedy Approach

Input: Graph Ĝi,z = (Vz, Ez), propagation function σi(.) of layer Gi, convergence threshold ∆
Output: Solution set Sq

z , |Sq
z | = b

1 Sq
z ← ∅ // Initialize solution set

2 while 𭟋 > ∆ do

3 v ← Choose with probability
σi(S

q
z∪v)−σi(S

q
z)∑

∀v′∈V \S σi(S
q
z∪{v′})−σi(S

q
z)

// Choose vertex probabilistically

4 𭟋← f(Sq
z ∪ v)− f(Sq

z) // Calculate gain

5 Sq
z ← Sq

z ∪ v // Add selected vertex to the solution set

6 return Sq
z // Return solution set

model generating the graph often remains consistent. Let Ei = [Ĝi,1, ..., Ĝi,h] be a set of subgraphs induced from
the ith layer of G , where h is a hyperparameter representing the total number of subgraphs the trainer wants
to sample. For each layer Gi ∈ G , we sample a set of subgraphs Ei, hence, our graph training dataset becomes
E = [E1, E2, · · · , Ek]. We utilize a classification-based method to train the Graph Attention Network (GAT)
model, denoted as I. In this method, given any training graph Ĝi,z ∈ Ei, a budget b, and its corresponding
solution set Sz, a node v is labeled as positive if v ∈ Sz, and negative otherwise.

In certain cases, within each graph Ĝi,z = (Vz, Ez), there can be situations where two nodes (v1, v2) ∈ Vz have
the same influence spread (i.e., σi(v1) = σi(v2)). However, when considering the marginal gain of adding node v2
to the solution set Sz = v1, denoted as σi((v1, v2))−σi((v1)), it turns out to be zero and vice versa. Consequently,
in such scenarios, even though both nodes have equal and individual quality, only one of them would be selected
in the final answer set meaning only one of the two nodes is considered as a positive candidate. That is the
reason why we need to use a Probabilistic Greedy strategy to ensure that both v1 and v2 are considered positive
candidates (good candidates).

Probabilistic greedy: For each graph Ĝi,z ∈ Ei, we employ a probabilistic greedy approach that involves
sampling a node from the search space Vz while considering marginal gain of the sampled node. Specifically,
instead of always selecting the node v ∈ Vz with the highest marginal gain, we choose v in a probabilistic manner
where v is chosen with a probability that is proportional to its marginal gain (Algorithm 3). During each iteration,
the probabilistic greedy algorithm performs κ times to create κ different solution sets Sz = {S1

z , · · · , Sκ
z }. To

determine the score of a node v ∈ Vz, the algorithm assigns a value based on the following process:

ω(v) =

∑κ
q=1 𭟋q(v)∑κ
q=1 σi (S

q
z)

(8)

Here, Sq
z is the qth seed set of graph Ĝi,z while 𭟋q(v) is the marginal gain contribution of v to Sq

z . Suppose
we have a seed set Sq

z = {1, 3, 5, 4}, the marginal gain contribution of node v = 3 can be computed as 𭟋q(3) =
σi((1, 3)) − σi((1)). Based on the set Sz, we can have a set of good nodes V g

z =
⋃κ

q=1 S
q
z . For each good node

v ∈ V g
z , we want I with parameters Θ predict ω̂(v) as close as much as possible with the found ω(v). Therefore,

we use Mean Square Error (MSE) as the objective function as shown here:

J (Θ) =
∑

∼⟨Gi,z⟩

1

|V g
z |

∑
∀v∈V g

z

[ω(v)− ω̂(v)]2 (9)

In the above equation, V g
z denotes the set of good nodes in graph Gi. Since I is trained through message passing,

in a I with K hidden layers, the computation of each node v is limited to the induced subgraph formed by its
K-hop neighbors, instead of the entire graph.

A.2. Variables Grouping

Recall the fact that the number of nodes in the Status dataset D can be at billion-scale, it is necessary to reduce
complexity before training a Probabilistic Graphical Model through Structure Learning. One preprocessing step
that achieves this is Variable Grouping. Variable Grouping involves grouping highly correlated nodes in the
Status dataset D = [0, 1]m×|V | together, resulting in a smaller set P = [P1, P2, . . . , Pq] where q is the total

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

Algorithm 4: Variable Grouping

Input: Graph Ĝi,z = (Vz, Ez), Status dataset D, correlation threshold ξ
Output: Set of representative nodes Y

1 P := ∅; // Initialize an empty set of variable groups

2 Y := ∅; // Initialize an empty set of representative nodes

3 Q = PearsonCorrelation(D) // Calculate Pearson Correlation for all node in D
4 Initialize an array isolated having |Vz| elements, and set each element to True

// To check whether a node has any group

5 S = NaN-Grouping(Q) // Group nodes with constant status together to create a new set

of nodes with changing status

6 foreach x ∈ S do
7 if isolated[x]=True then
8 Create a new group Pi ∈ P;
9 Pi := Pi ∪ x; // Add x to Pi

10 P := P ∪ Pi; // Add Pi to P
11 foreach y ∈ S do
12 if isolated[y]=True and Q[x, y] > ξ and Q[x, y] ̸= ”NaN” then
13 Pi := Pi ∪ y; // Add y to Pi

14 Find the representative node vi in Pi by selecting the node closest to the centroid of Pi

15 Y := Y ∪ vi
// Add representative node vi for group Pi to Y

16 return Y;

number of groups. This grouping satisfies the property that V =
⋃q

i=1 Pi. The underlying idea is that when
nodes are highly correlated, they often share similar characteristics or behaviors. For example, let’s consider
two nodes (v1, v2) in dataset D. In a Monte Carlo Simulation step with m iterations, it is observed that when
v1 is activated, there is a 70 % percentage that v2 is also activated. This means that v1 and v2 can have high
correlations and similar patterns of activation. By knowing only a representative node, we can infer the properties
of other nodes in the cluster without explicitly including them in the PGM, hence, reducing the complexity. In
this work, we use Pearson Correlation to measure the correlation between two variables.

Pearson Correlation metric: Pearson correlation is a statistical measure that quantifies the linear relationship
between two variables. It is used to assess the strength and direction of the relationship between two variables
and it is denoted as χ ∈ [−1, 1]. A positive value of χ indicates a positive linear relationship, meaning that as
one variable increases, the other tends to increase as well. Meanwhile, a negative value of χ indicates a negative
linear relationship, where as one variable increases, the other tends to decrease. Lastly, χ = 0 indicates no
linear relationship between the variables. Given two variables x and y and paired data {(x1, y1) , . . . , (xm, ym)}
consisting of m pairs, the Pearson correlation coefficient is computed as follows:

χxy =

∑m
i=1 (xi − x̄) (yi − ȳ)√∑m

i=1 (xi − x̄)
2
√∑m

i=1 (yi − ȳ)
2

(10)

Here, m represents the sample size, xi and yi represent the individual sample points indexed with i, x̄ =
1
m

∑m
i=1 xi represents the sample mean of x, and ȳ represents the sample mean of y.

We base on the Pearson correlation coefficient defined above to calculate a correlation coefficient for all pairs of
variables (nodes) in dataset D to obtain the correlation matrix Q|V |×|V | where Qx,y = χxy|1 ≤ x, y ≤ |V |. We
then define a threshold ξ and traverse the correlation matrix Q. Any two variables with a correlation coefficient
higher than ξ are considered highly correlated and should be grouped (Algorithm 2). An important thing to
note is that there will be nodes that never change status, such as always active nodes or always de-active nodes.
In that case, the correlation of those nodes to any remaining nodes will become “NaN” because their standard
deviation (the denominator in χxy equation) becomes zero. Those nodes will be grouped with other nodes v ∈ V .
After grouping nodes in dataset D, we will have a set of highly correlated node groups P = [P1, P2, . . . , Pq] . The

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

next step is to define a representative node for each group Pi ∈ P. In this work, we take the node closest to the
centroid from each group as a representative node. The set of representative nodes is denoted as Y = [v1, . . . , vq],
where each representative node vi ∈ Y corresponds to a group Pi ∈ P.

A.3. Structure Learning

Structure learning in Probabilistic Graphical Models (PGMs) involves automatically discovering the optimal
graphical structure that represents the relationships between random variables in a dataset. It helps infer
conditional independence relationships, identify direct and causal dependencies, and understand the underlying
causal mechanisms. This is crucial for tasks like prediction, inference, and gaining insights into the data.

After the Variables Grouping step, we have an updated set of representative variables Y = [v1, . . . , vq], status
dataset D which will be used to generate the structure of our Bayesian model. In this work, we employ the
Tree-based algorithm called Chow Liu to learn structure because it offers a balance between complexity and
representation power. Given any random directed tree, an approximation of the true joint probability distribution
of Y is in the form as follows:

Pt(Y) =
q∏

i=1

P
(
vi | vΓ(i)

)
(11)

Here, Γ(i) is the parent of node vi. If a vertex i is the root, its parent Γ(i) = ∅, and the conditional probability
P
(
vi | vΓ(i)

)
simplifies to P (vi). It is important to note that in a directed tree, we must first select a vertex as

the root. The edges are oriented away from the root, resulting in each vertex having at most one parent (but
potentially multiple children).

Problem Definition: Let P (Y) be the true joint probability distribution of Y. Given a set of representative
variables Y = [v1, . . . , vq] and the set of all possible first-order dependence trees denoted as Tq, we want to find
the optimal first-order dependence tree or the optimal structure denoted as Ψ such as KL (P, PΨ) ≤ KL (P, Pt)
for all t ∈ Tq.

Chow Liu algorithm solves this Minimization Problem by searching a maximum weight spanning tree (MWST).

Lets define the mutual information I (vi, vj) =
∑

vi,vj
P (vi, vj) log

(
P (vi,vj)

P (vi)P (vj)

)
between two variables vi and

vj . The key insight of MWST is that a probability distribution of tree dependence Pt(Y) is an optimum
approximation to P (Y) if its tree model has maximum branch weight

∑q
i=1 I

(
vi, vΓ(i)

)
. Mathematically, we

have:

KL (P, Pt) =
∑
Y

P (Y) logP (Y)−
∑
Y

P (Y)
q∑

i=1

logP
(
vi | vΓ(i)

)
=

∑
Y

P (Y) logP (Y)−
∑
Y

P (Y)
q∑

i=1,̸= root

log
P
(
vi, vΓ(i)

)
P
(
vΓ(i)

)
=

∑
Y

P (Y) logP (Y)−
∑
Y

P (Y)
q∑

i=1,̸= root

log
P
(
vi, vΓ(i)

)
P (vi)P

(
vΓ(i)

) −∑
Y

P (Y)
q∑

i=1

logP (vi)

(12)

Moreover, we should note that −
∑

Y P (Y) logP (vi) = −
∑

vi
P (vi) logP (vi). To understand why we have this,

suppose Y = (v1, v2), let all variables are binary, let i = 1

−
∑
Y

P (Y) logP (vi)

=− [P (v1 = 0, v2 = 0) logP (v1 = 0) + P (v1 = 0, v2 = 1) logP (v1 = 0)+

P (v1 = 1, v2 = 0) logP (v1 = 1) + P (v1 = 1, v2 = 1) logP (v1 = 1)]

=− [P (v1 = 0) logP (v1 = 0) + P (v1 = 1) logP (v1 = 1)]

=−
∑
v1

P (v1) logP (v1) = −
∑
vi

P (vi) logP (vi)

(13)

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

We can also see that −
∑

Y P (Y) logP (Y), −
∑

vi
P (vi) logP (vi) are entropy terms H(Y), H (vi), respectively.

Then, we can rewrite equation 12 as:

KL (P, Pt) = −
∑
Y

P (Y)
q∑

i=1,̸= root

log
P
(
vi, vΓ(i)

)
P (vi)P

(
vΓ(i)

) +

q∑
i=1

H (vi)−H(Y)

Moreover, we also have:

∑
Y

P (Y) log
P
(
vi, vΓ(i)

)
P (vi)P

(
vΓ(i)

) =
∑

vi,vΓ(i)

P
(
vi, vΓ(i)

)
log

P
(
vi, vΓ(i)

)
P (vi)P

(
vΓ(i)

)
= I

(
vi, vΓ(i)

) (14)

Replace this result of equation 14 to equation 12, we have:

KL (P, Pt) = −
q∑

i=1

I
(
vi, vΓ(i)

)︸ ︷︷ ︸
Mutual information

+

q∑
i=1

H (vi)−H(Y)︸ ︷︷ ︸
Independent of the
dependence tree

(15)

Minimizing KL (P, Pt) is the same as maximizing the total branch weight
∑n

i=1 I
(
vi, vΓ(i)

)
. With this insight,

Chow Liu uses Kruskal’s algorithm to construct a maximum weight-spanning tree as a structure for PGM.

B. Proofs and Supplementary Lemmas

B.1. Preliminaries

Definition 3 (Submodular). For all A,B ⊆ Vi, we have:

σi(A) + σi(B) ≥ σi(A ∪B) + σi(A ∩B) (16)

Definition 4 (Monotone Increasing). An objective function σ(S) is monotone increasing if

σ(S) ≤ σ(T), S ⊂ T (17)

Definition 5 (Diminishing Returns). An objective function σ(S) is diminishing return if σ(S ∪ u) − σ(S) ≥
σ(T ∪ u)− σ(T), ∀u ∈ T and S ⊂ T .

Definition 6 (Generalized Deterministic Submodular). Let σ be a model of influence propagation on the multi-
plex. σ satisfies the Generalized Deterministic Submodular Property (GDS) if the expected number of activations,
given a seed set S, can be expressed as:

σ(S) =

k∑
i=1

piσi(S), (18)

where each σi with i ∈ {1, . . . , k} is a deterministic submodular model of influence propagation, and pi ∈
[0, 1],

∑k
i=1 pi = 1.

Definition 7 (Multiple-choice knapsack problem (MCKP)). Let (C , k, l, c, p, B) be given. Here a set of k classes,
C = C1, . . . , Ck, where each class Ci consists of l objects denoted as Ci = xi1, . . . , xil, and a budget B ≥ 0 the
goal is to select one item, x′

i, from each class in a way that maximizes the total profit,
∑k

i=1 p(x
′
i) while ensuring

that the total cost,
∑k

i=1 c(x
′
i), does not exceed the budget constraint

∑k
i=1 c(x

′
i) < B. Here, c and p represent

the cost and profit functions associated with the objects xij , respectively.

B.2. Greedy Policy Convergence

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

Lemma 1 (Greedy Policy Convergence). When policy π is converged to optimal, π∗(v | St) always selects nodes
greedily at every time step t.

Proof. Recall the fact that our reward function to train policy π is computed by considering the marginal gain
of adding node vn to the partially computed solution St, as follows:

rt =M (Si,t ∪ vn)−M (Si,t) (19)

HereM is customized evaluation function which measures the total spread in layer Gi, given solution Si. When
policy π parameterized by θ is converged to optimal, the optimal policy π∗ will follow these parameters:

θ∗ = argmax
θ

Q∑
t=1

E(Si,t,vn)∼p(Si,t,vn|θ) [M (Si,t ∪ vn)−M (Si,t)] (20)

Considering these optimal parameters, we can use contradiction to prove this lemma. For any time step t pro-
gresses from 1 toQ, if θ∗ is truly optimal, then it must ensure that at every step t, the agent is making a decision to
maximize expected immediate reward, which is to pick the node providing the highest marginal gain. If there was
a better node v′n that the agent didn’t select at some step t, then E(Si,t,vn)∼p(Si,t,vn|θ) [M (Si,t ∪ vn)−M (Si,t)]
wouldn’t be maximized, contradicting our assumption that θ∗ is optimal. Hence, this proves the lemma and we
conclude that the optimal policy π∗ (v | St) will select nodes greedily for all t.

B.3. Multiple Choice Knapsack Problem Guarantee

Lemma 2.(Multiple Choice Knapsack Problem Guarantee). Let OptSij
be the value of the solution for MCKP

instance Sij , and OptS̃ij
be the value of the optimal solution for S̃ij , we have:

OptSij ≥ (1− 1/e)OptS̃ij
(21)

Proof. Since in Phase 1, we decompose MIM into separate layers, find a solution for each layer, then, combine
back using MCKP. We need to examine how the MCKP problem can be represented for the MIM problem. From
there, we can determine the approximation ratio of the solution combined with MCKP in the context of MIM.

Given a MIM instance (G , k, l, σ), where G represents the graph, k is the number of seed sets, and l is the size
of each seed set. For each pair (i, j), where 1 ≤ i ≤ k and 1 ≤ j ≤ l, let S̃ij be an unknown optimal seed set

for Gi that satisfies two conditions: S̃ij ⊂ V (subset of nodes in Gi) and |S̃ij | = j (size of the seed set). In

addtition, let Sij found by an algorithm A be an approximation to S̃ij and Sij ⊂ V . Then, based on Definition

7, Ci = {Si0, . . . , Sil} , Copt
i =

{
S̃opt
i0 , . . . , S̃opt

il

}
. Finally, let C = {Ci : 1 ≤ i ≤ k} ,C opt =

{
Copt

i : 1 ≤ i ≤ k
}
,

and for each i, j, define c (Sij) = j, p (Tij) = σ (Sij), and likewise define copt, popt for each S̃ij . Thus, we have
two instances of the knapsack problem, namely I1 = (C , k, l, c, p, l) and I2 = (C opt, k, l, copt , popt, l).

For convenience, let’s assume that j represents the budget that should be spent for layer Gi, as determined
by any MCKP solver. In that case, Sij and S̃ij can be used to represent the output, where Sij represents the

approximate solution and S̃ij represents the unknown optimal solution. Since, our algorithm A is greedy-style,
each element of Ci has approximation ratio (1−1/e). Thus, the value of the approximate solution OtpSij

decided
by any MCKP solver for each layer Gi also has (1− 1/e) as follow:

(1− 1/e)OptS̃ij
= (1− 1/e)σ

(
S̃ij

)
≤ σ (Sij)

≤ σ (Sij)

≤ OptSij

(22)

From there, we can also extend the analysis to get an approximation ratio for G . Let, S =
⋃k

i=1 Sij and

S̃ =
⋃k

i=1 S̃ij represent the final solutions for MCKP instances I1 and I2, respectively. We have:

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

(1− 1/e)OptS̃ = (1− 1/e)

k∑
i=1

σ
(
S̃ij

)
≤

∑
i

σ (Sij)

≤
∑
i

σ (Sij)

≤ OptS

(23)

Thus, proving the lemma.

B.4. Approximation Ratio In The Worst Case

Theorem 1 (Approximation Ratio In The Worst Case) Suppose the propagation σi on each layer of the multiplex
is submodular, the optimal policy π∗ will find a solution Ŝ for multiplex network G with an approximation ratio

of (1−ϵ)(1−1/e)
(o+1)k .

Proof. We start by assuming that the model σi on each layer Gi satisfies the Generalized Deterministic Sub-
modular (GDS), as shown in Definition 6. If all σi of all Gi satisfy the Generalized Deterministic Submodular
(GDS) property, then σ is submodular (Kuhnle et al., 2018).

Let Ŝ =
⋃k

i=1 Si be the solution returned by the MIM-Reasoner for the multiplex network G , where Si represents

the seed set found on each layer Gi using policy π∗. Let S̃ be the unknown optimal solution for the multiplex
network G , and σ(Ŝ)i be the expected activation under σ in layer Gi. Note that, σ(Ŝ)i only counts duplicated
nodes as a single instance within layer Gi, rather than adding up all instances. Based on these definitions, we
can state the following inequality:

σ
(
S̃
)
≤

k∑
i=1

σ
(
S̃
)i

(24)

From this, we define O as the set of native overlapping nodes. This set excludes isolated vertices that are added
by other layers. Given the set O of native overlapping nodes, it is established that:

σ
(
S̃
)i

≤ σi

(
S̃ ∪O

)
(25)

Equation 25 arises because σ(S̃)i considers duplicated nodes as a single instance, while σi(S̃ ∪ O) counts all
duplicated nodes. Moreover, any node in Gi can be activated by the model σi receiving seed nodes in S̃ ∩Gi or
native overlapping nodes O. In addition, because of submodularity of σi, we have:

σi

(
S̃ ∪O

)
≤ σi

(
S̃
)
+ σi(O) (26)

Recall that in Lemma 2, OptS , OptS̃ denotes the value of MCKP on instance I1 and I2, respectively. We also

know that π∗ will select node greedily based on Lemma 1. Let σ(Ŝπ∗
) denote the total spreading in multiplex

network G of the solution Ŝ sampled by optimal policy π∗. In phase two, solution S obtained from phase one is
tuned by optimal policy π∗ to become Ŝπ∗

, then:

σ(Ŝπ∗
) ≥ σ(S) ≥ (1− ϵ)OptS (27)

Here, in the context of this work, (1 − ϵ) with ϵ > 0 represents the approximation ratio for the nearly exact
solution found by the MCKP solver (Chandra et al., 1976) that we employ. In addition, for any set S (could be
optimal or just feasible) with size at most l and any fixed layer i, we base on Lemma 2 to have :

1

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) ≥ OptS̃ ≥ σi(S) (28)

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

By Lemma 2, and since σi(S) is the value of a feasible solution to the multiplex network instance in layer Gi,
we have the above inequality. Combining the inequalities, we get:

σ
(
S̃
)
≤

k∑
i=1

σ
(
S̃
)i

≤
k∑

i=1

σi

(
S̃
)
+

k∑
i=1

σi(O)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) +

k∑
i=1

σi(O)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) +
∑
v∈O

k∑
i=1

σi(v)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) +
ok

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

)

≤ (o+ 1)k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

).

(29)

We can rewrite this inequality as:

σ(Ŝπ∗
) ≥ (1− ϵ)(1− 1/e)

(o+ 1)k
σ
(
S̃
)

(30)

Thus, MIM-Reasoner has approximation ratio (1−ϵ)(1−1/e)
(o+1)k .

B.5. Approximation Ratio In The Best Case

Theorem 2 (Accuracy Gap In The Best Case). Assume the π∗ can avoid reactivating all the activated nodes,

the spread of solution given by optimal policy π∗ is at least: σ
(
Ŝπ∗

)
≥ (1−ϵ)(1−1/e)

k+o σ(S̃).

Proof. Recall that the optimal policy π∗ will avoid reactivating nodes that have already been activated, starting
from layer 2 up to layer k. We modify the proof of Theorem 1 (Equation 29) to have:

σ
(
S̃
)
≤

k∑
i=1

σ
(
S̃
)i

≤
k∑

i=1

σi

(
S̃
)
−

k∑
i=2

σi(O) +

k∑
i=1

σi(O)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) + σi(O)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) +
∑
v∈O

σi(v)

≤ k

(1− ϵ)(1− 1/e)
σ
(
Ŝπ∗

)
+

o

(1− ϵ)(1− 1/e)
σ
(
Ŝπ∗

)
≤ k + o

(1− ϵ)(1− 1/e)
σ
(
Ŝπ∗

)

(31)

We can rewrite this inequality as:

σ(Ŝπ∗
) ≥ (1− ϵ)(1− 1/e)

k + o
σ
(
S̃
)

(32)

Therefore, the theorem is proved.

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

B.6. Approximation Ratio In The General Case

Theorem 3 (Accuracy Gap In General Case). Assume the π∗ can avoid reactivating the activated nodes by
other layers partially. Thus, with β ∈ [0, 1], the spread of solution given by optimal policy π∗ is at least:

σ
(
Ŝπ∗

)
≥ (1−ϵ)(1−1/e)

(k−1)βo+o+kσ(S̃).

Proof. Given β ∈ [0, 1] representing the percentage of nodes that cannot be successfully avoided reactivation
by the policy π∗, we have:

σ
(
S̃
)
≤

k∑
i=1

σ
(
S̃
)i

≤
k∑

i=1

σi

(
S̃
)
− (1− β)

k∑
i=2

σi(O) +

k∑
i=1

σi(O)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) + σi(O)− (1− β)

k∑
i=2

σi(O) +

k∑
i=2

σi(O)

≤ k

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

) +
∑
v∈O

σi(v) + β
∑
v∈O

k∑
i=2

σi(v)

≤ k

(1− ϵ)(1− 1/e)
σ
(
Ŝπ∗

)
+

o

(1− ϵ)(1− 1/e)
σ
(
Ŝπ∗

)
+

o(k − 1)β

(1− ϵ)(1− 1/e)
σ(Ŝπ∗

)

≤ k + o+ o(k − 1)β

(1− ϵ)(1− 1/e)
σ
(
Ŝπ∗

)

(33)

Thus, proving the theorem.

B.7. Time complexity of structure learning for PGMs

Lemma 3 (PGMs’s Time complexity). The time complexity of structure learning for Gprev after k selection
step is |Y|2 · (k − 1).

Proof. In the Structure Learning step, given a set of representative nodes Y = [v1, . . . , vq], we calculate pairwise

mutual information for all q(q−1)
2 pairs and employ Kruskal’s algorithm to construct a Minimum Weight Spanning

Tree (MWST). The algorithm constructs the tree one edge at a time, in decreasing order of weights. The running

time of this step is O(|Y|2) for |Y| = q variables, as it needs to consider all q(q−1)
2 edges. In addition, at each

layer selection (except for the final layer selection), we have to train a PGM. Therefore, the total number of
PGMs after training with a multiplex network consisting of k layers will be k − 1. Each PGM has a complexity
is O(|Y|2) and we have k− 1 PGMs after training process. Thus, the time complexity of structure learning after
k selection step is O(|Y|2 · (k − 1)).

B.8. Time complexity of MIM-Reasoner

Theorem 4 (Time complexity of MIM-Reasoner). The time complexity of the Budget Allocation is:
maxh∈k tc (A,Gh, l) + (kl)⌈1/ϵ−1⌉ log k and the time complexity of Relation RL Optimization is : O

(
|Y|2 · (k−

1) +Q) where Q is number of step for policy π converge to optimal.

Proof. Given the V g
i predicted by GAT model I(.) for each layer Gi, MIM-Reasoner runs algorithm A in parallel

k times with the search space V g
i ∈ Gi and then utilizes the (1− ϵ) Multiple Choice Knapsack Problem (MCKP)

solver. Let’s denote the layer that takes the longest time to run as Gh. If O (tc (A,Gh, l)) represents the time
complexity of algorithm A on l seed nodes with graph Gh, then the time complexity of the (1 − ϵ) Multiple
Choice Knapsack Problem is determined by O

(
(kl)⌈1/ϵ−1⌉ log k

)
. Therefore, we have an overall time complexity

for the Budget Allocation phase:

O

(
max
h∈k

tc (A,Gh, l) + (kl)⌈1/ϵ−1⌉ log k

)
(34)

In the second phase, our time complexity comes from the time complexity of PGMs, and the total number of

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

training step for policy π become optimal. Let denotes Q as a total number of training steps for policy π becomes
optimal. Based on Lemma 3, we have time complexity for PGMs for multiplex with k layers is |Y|2 · (k − 1).
Thus, the time complexity for the Relation RL Optimization phase is:

O
(
|Y|2 · (k− 1) +Q) (35)

C EXPERIMENT DETAILS

We conducted our experiments on a machine equipped with an Intel(R) Core i9-13900k processor, 128 GB RAM,
and two Nvidia RTX 4090 GPUs with 24GB VRAM each.

C.1 Experimental Analysis

Synthetic Multiplex Network. We compare MIM-Reasoner with other baselines on a synthetic multiplex
network with 5,000 nodes and 25,000 edges, considering different overlapping rates and the number of layers.
Each layer is a random graph generated using the Erdos-Renyi algorithm, with the overlapping percentage (30
%, 50 %, 70 %) calculated based on the layer with the highest number of nodes. In cases where the number
of overlapping users exceeds the number of nodes in a layer, we create isolated nodes to maintain the correct
number of overlaps. For the propagation models, we consider both the Independent Cascade (IC) model and the
Linear Threshold (LT) model. In the IC model, the propagation probability for each edge in a layer is determined
as 1 divided by the degree of the target node. Additionally, in the LT model, the propagation threshold for each
node in a layer is randomly assigned in the range [0.5, 0.9].

Real World Multiplex Network. We evaluate MIM-Reasoner and other methods on four real-world multiplex
networks: 1) Celegans (Stark et al., 2006): This network consists of 6 layers with 3879 nodes and 8191 edges;
2) Drosophila (Stark et al., 2006; De Domenico et al., 2015): The Drosophila network comprises 7 layers,
8215 nodes, and 43,366 edges; 3) Pope-Election (Domenico and Altmann, 2020): The Pope-Election network
includes 3 layers, with 2,064,866 nodes and 5,969,189 edges. The link of these dataset can be found in this link:
https://manliodedomenico.com/data.php. Meanwhile, the Twitter-Foursquare network (Shen et al., 2012) has
2 layers, with 93269 nodes and 17,969,114 edges. It can be found in this link: ”https://url1.io/s/Vd3YD”.

Table 2: The synthetic network used for evaluation consists of 5000 nodes and 25,000 edges. It is important to
note that while the initial multiplex network has 5,000 nodes and 25,000 edges, the number of nodes and edges
can vary depending on the overlapping user percentage or the number of layers employed. This is because, If a
vertex does not exist in some other layer, we can simply add it as an isolated vertex.

3 Layers 4 Layers 5 Layers 6 Layers 7 Layers 8 Layers 9 Layers
Layer 1 node count 500 500 200 200 100 100 100
Layer 2 node count 2000 1000 600 400 200 200 200
Layer 3 node count 2500 1500 1000 600 400 300 300
Layer 4 node count 0 2000 1400 800 600 500 400
Layer 5 node count 0 0 1800 1200 800 600 500
Layer 6 node count 0 0 0 1800 1200 800 600
Layer 7 node count 0 0 0 0 1700 1000 700
Layer 8 node count 0 0 0 0 0 1500 800
Layer 9 node count 0 0 0 0 0 0 1400
Total Nodes 7500 8000 9000 10800 11900 12000 12600
Total Edges (30 % case) 26500 26800 27160 27700 28060 28150 28360
Total Edges (50 % case) 27500 28000 28600 29500 30100 30250 30600
Total Edges (70 % case) 28500 29200 30040 31300 32140 32350 32840

C.1.1 Training Time.

When running the algorithms on both synthetic and real-world datasets, we observed the same characteristics in
terms of training time for all the methods. First, as the number of layers increases, the overall network becomes
more complex with a higher number of connections (Table 1). Conversely, each layer becomes simpler. This
explains the experimental results observed in methods that operate on the whole network, such as ISF, DeepIM,

Nguyen Do1, Tanmoy Chowdhury2, Chen Ling2, Liang Zhao2, My T. Thai3,†

and ToupleGDD, which exhibit increasing running times (training time for ML-based methods) as the number
of layers increases and take longer compared to parallel algorithm operating on individual layers like KSN or
MIM-Reasoner model.

In contrast to approaches that operate on the whole graph, network decomposition methods that operate on
individual layers tend to exhibit decreased running time (for the CO algorithm) or training time (for ML-based
methods). This reduction in time can be attributed to the fact that as the number of layers increases, each
layer becomes simpler since the number of edges is divided among the layers, independent of the number of
connections (edges) between overlapping users. Therefore, it is understandable that the running time of KSN
or the training time of MIM-Reasoner tends to decrease as the number of layers increases, distinguishing them
from other methods. Another interesting observation is related to the training of ML-based approaches. In the
case of MIM-Reasoner, it requires a lightweight model with only 63,960 parameters in our setting. In contrast,
ToupleGDD and DeepIM have significantly larger models with 925,090 and 9,238,780 parameters, respectively.
Consequently, the training time for each optimization step in DeepIM and ToupleGDD is much slower compared
to MIM-Reasoner due to the increased complexity and parameter count of their models.

C.1.2 Inference Time.

For both synthetic and real datasets, DeepIM shows faster inference time compared to other methods because
it predicts end-to-end solutions directly. On the other hand, ToupleGDD, with the giant model, has to infer the
seed nodes step by step, resulting in longer inference times. MIM-Reasoner has a similar inference mechanism
to ToupleGDD, but it leverages batch inference to parallelize the solution inference process for each layer of
the multiplex network. This approach combines the states of each layer to create a batch, allowing for efficient
computation. As a result, the majority of the time is spent on the layer that requires the highest budget when
making inference using MIM-Reasoner.

C.1.3 Propagation Performance.

ISF is a greedy-based algorithm with an approximation ratio of (1 - 1/e) under the GDS property, making it
the most consistent algorithm among the five methods in terms of algorithm quality when tested on small-scale
synthetic graphs. However, applying ISF to large real-world multiplex networks is computationally challenging
due to the need for multiple propagation simulations. Meanwhile, KSN is a parallel algorithm that finds solutions
for each layer independently, making it the fastest algorithm. However, it does not consider the activation of
nodes in other layers through overlapping nodes, resulting in a smaller approximation ratio as the number
of overlapping nodes increases. This limitation makes its solution worse compared to other methods in both
synthetic and real multiplex networks.

DeepIM utilizes deep graph representation learning and optimization in continuous space to discover important
seed sets in large complex graphs with high accuracy and efficiency. However, DeepIM may suffer from instability
and convergence issues when dealing with more complex networks, leading to longer training times or poorer
performance. In large multiplex networks such as Twitter-Foursquare or Pope Election, training DeepIM can
take a very long time for the feature loss to converge. If the feature loss has not converged and only the
reconstruction loss has converged, stopping the training process would result in a very poor solution. On
the other hand, ToupleGDD is a well-designed solution that utilizes Deep Reinforcement Learning (DRL) for
optimization problems. It has demonstrated effectiveness in experiments with both synthetic and real-world
datasets. However, one limitation of ToupleGDD is its performance in large search spaces, where it can suffer
from sample efficiency problems. This means that it may not consistently provide good results due to the
challenges of exploring and finding optimal solutions in such an expansive large multiplex graph with limited
training time steps.

Our proposed approach, MIM-Reasoner, decomposes the multiplex network into separate layers, effectively re-
ducing the search space and observation space, even in large real-world multiplex networks such as Twitter-
FourSquare or Pope-Election. This layer-wise approach allows the policy to focus on and explore the unique
characteristics of each layer more efficiently, leading to improved learning and optimization within the multiplex
network. Additionally, MIM-Reasoner employs Probabilistic Graphical Models (PGMs) to analyze how nodes
are influenced by different layers within each layer. This utilization of PGMs enables MIM-Reasoner to find
effective solutions for the MIM problem while mitigating the impact of overlapping nodes, addressing a limi-
tation of methods like KSN. Consequently, MIM-Reasoner consistently provides good results in both synthetic
and real multiplex networks. The scalability and generalizability of MIM-Reasoner make it applicable to various

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization

Table 3: Hyperparameters for Reinforcement Learning framework and Graph Attention Network

Hyperparameter Value
Learning rate for Actor Model 0.0003
Learning rate for Critic Model 0.001
Learning rate for GAT Model 0.01
Optimizer Adam (Kingma & Ba, 2015)
Total epoch per update 8
Update time step 600
Minibatch size 256
Discount factor γ 1
Layers for GAT Model GATConv
Layers for Actor-Critic Model Fully Connected Layer
Activation function for GAT Model Elu
Activation function for Actor-Critic Model Tanh
Target network smoothing coefficient 1024
Entropy coefficient 0.01
Lambda 0.95
PPO Epsilon 0.2
Gradient Norm 0.5

multiplex network scenarios. Its ability to handle large real-world multiplex networks while still achieving good
performance demonstrates its strength in solving MIM problems.

C.2 Hyperparameters and MIM-Reasoner Implementations

C.2.1 Hyperparameters For policy training, we utilize Proximal Policy Optimization (PPO) as it offers
stability and ease of implementation. The hyperparameters for the Graph Attention Network (GAT) and Policy
model are depicted in Table 2. Note that the hyperparameters of PPO are based on the original paper.

