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Abstract

Black box variational inference has consis-
tently produced impressive empirical results.
Convergence guarantees require that the vari-
ational objective exhibits specific structural
properties and that the noise of the gradi-
ent estimator can be controlled. In this work
we study the smoothness and the variance
of the gradient estimator for location-scale
variational families with non-linear covari-
ance parameterizations. Specifically, we de-
rive novel theoretical results for the popu-
lar exponential covariance parameterization
and tighter gradient variance bounds for the
softplus parameterization. These results re-
veal the benefits of using non-linear scale
parameterizations on large scale datasets.
With a non-linear scale parameterization, the
smoothness constant of the variational ob-
jective and the upper bound on the gradi-
ent variance decrease as the scale parame-
ter becomes smaller. Learning posterior ap-
proximations with small scales is essential in
Bayesian statistics with sufficient amount of
data, since under appropriate assumptions,
the posterior distribution is known to con-
tract around the parameter of interest as the
sample size increases. We validate our theo-
retical findings through empirical analysis on
several large-scale datasets, underscoring the
importance of non-linear parameterizations.
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1 INTRODUCTION

Variational inference (VI; Blei et al. (2017)) is use-
ful for approximating potentially complex posterior
distributions using simpler variational posteriors. To
find the variational posterior that most closely ap-
proximates the posterior, the evidence lower bound
(ELBO), denoted as L(ϕ), can be optimized using gra-
dient descent. However, in many cases of interest,
∇L(ϕ) cannot be computed in closed form. As a re-
sult, black box VI (BBVI; Ranganath et al. (2014)) has
become a popular alternative where Monte Carlo inte-
gration is used to form unbiased estimates of ∇L(ϕ).

Despite BBVI consistently producing impressive em-
pirical results (Ranganath et al., 2014; Zhang et al.,
2018; Ranganath et al., 2016; Salimans and Knowles,
2014; Tran et al., 2016; Kingma and Welling, 2022;
Kviman et al., 2023, 2024), literature on convergence
guarantees for BBVI remains relatively scarce. Domke
et al. (2023) and Kim et al. (2023b) have as of recent
made notable advancements, by establishing conver-
gence guarantees for the location-scale family —a pre-
dominant choice in practice - for linear parameteriza-
tions of the scale matrix, wherein the scale components
are optimized directly. However, in real-world appli-
cations, a non-linear transformation from R>0 to R
is frequently used during optimization to ensure that
positive-definite covariance matrices are learned.

A recent contribution in this direction comes from Kim
et al. (2023b), who established convergence results for
1-Lipschitz continuous scale parameterizations, which
includes the popular softplus transformation. How-
ever, they also identified certain drawbacks associated
with non-linear parameterizations. Specifically, they
showed that opting for a 1-Lipschitz parameteriza-
tion, instead of a linear transformation, increases the
smoothness constant. Additionally, non-linear scale
parameterizations disrupt strong convexity, meaning
that even if the posterior is strongly log-concave, the
L(ϕ) does not exhibit strong convexity.
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In practice, the exponential transformation is another
widely used parameterization (Kingma and Welling,
2019b; Kucukelbir et al., 2016). Regrettably, it is not
1-Lipschitz, rendering the aforementioned results in-
applicable. In our study, we establish convergence
properties for the exponential parameterization, fo-
cusing on the structural characteristics of the objec-
tive function and the inherent variance of its gradi-
ent estimator. To that end, we derive gradient vari-
ance bounds for the exponential parameterization and
present tighter bounds for the softplus parameteriza-
tion. These bounds reveal that we obtain a reduc-
tion in the variance of the gradient estimator for small
scale parameters. Additionally, we identify conditions
under which the ELBO exhibits Lipschitz smoothness
and strong convexity with the exponential parameter-
ization. For the energy term of the ELBO, we demon-
strate that the magnitude of its smoothness constant
depends on the number of variational parameters as
well as the size of the scale components. Notably, as we
learn smaller scale components, the smoothness con-
stant decreases.

Our objective is to emphasize the advantages of non-
linear parameterizations when learning small scale
components. Learning posterior approximations with
small standard deviations is of particular importance
for sufficiently large datasets. According to the
Bernstein-von Mises theorem, provided that suitable
assumptions are met, the posterior distribution con-
tracts around the parameter of interest as the sam-
ple size increases. Finally, we empirically validate our
theoretical findings and demonstrate that the speed
of convergence for non-linear and linear parameteriza-
tions is contingent on both the number of variational
parameters and the scale of the dataset. Notably,
with sufficiently large datasets, non-linear parameter-
izations outperform their linear counterparts.

To summarize, our contributions are as follows:

• We prove and establish the conditions under
which the energy function is Lipschitz smooth
with an exponential scale parameterization.

• We derive gradient variance bounds for the ex-
ponential parameterization and establish tighter
bounds for the softplus parameterization.

• We specify conditions under which the energy,
using a exponential parameterization, is strongly
convex.

• We demonstrate that the entropy is smooth with
both the exponential and softplus parameteriza-
tions.

• On a synthetic dataset, we confirm that non-
linear scale parameterization’s convergence speed

depends on the number of data points and vari-
ational parameters. However, with a sufficient
amount of data, the impact from the variational
parameters diminishes.

• We further solidify these empirical findings on
seven real datasets which vary in size.

2 RELATED WORK

The structural properties of L(ϕ), namely smoothness
and (strong) convexity, have previously been studied
by Challis and Barber (2013); Domke (2020). In par-
ticular, Domke (2020) proved that, given a target that
is M-Lipschitz smooth, the energy component of the
variational objective is also M-Lipschitz smooth. Ad-
ditionally, when the target is strongly convex, then the
same holds true for the energy.

Furthermore, the variance of VI gradient estimators
has been investigated by Kim et al. (2023c); Fan et al.
(2015), Xu et al. (2019), and Domke (2019). The lat-
ter derived upper bounds on the variance of the BBVI
gradient estimator in the context of linear scale pa-
rameterizations. Meanwhile, Kim et al. (2023c) es-
tablished corresponding bounds for 1-Lipschitz scale
parameterizations.

Recently, the results from these works were leveraged
by Kim et al. (2023b) and Domke et al. (2023) to es-
tablish convergence guarantees for BBVI with linear
scale parameterizations. These guarantees were de-
rived on the assumption that the log-density of the
posterior is Lipschitz-smooth and (strongly) concave.
In the study by Kim et al. (2023b), additional guaran-
tees were provided for 1-Lipschitz parameterizations,
which does not include the exponential scale trans-
formation, under the assumption that the log pos-
terior is Lipschitz smooth and that the likelihood is
µ−quadratically growing. Additionally, a significant
contribution was recently made by Kim et al. (2023a),
who demonstrated that BBVI, when employing the
sticking-the-landing gradient estimator, converges at
a geometric rate.

In this paper, we build on the theoretical insights pro-
vided by Domke (2019, 2020), and Kim et al. (2023c).

3 BACKGROUND

Notation For a matrix D, let the Frobenius norm
be ∥D∥F :=

√
Tr(DTD). For the sake of notational

ease, we use the notation f(ω) for scalar functions
f : R→ R to indicate that f is to be applied element-
wise onto ω.
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Variational Inference In VI, it is common to ap-
proximate a posterior density using a simpler, often
Gaussian, variational posterior qϕ(z|x) with parame-
ters ϕ, where z ∈ Rd is a latent variable and x ∈ Rk is
the observed data. The goal is to infer qϕ(z|x) by min-
imizing the KL divergence between the true posterior
and the variational posterior. However, the true poste-
rior is typically unknown, and thus the KL divergence
cannot be computed directly. VI circumvents this by
instead considering an equivalent problem, which is to
maximize the ELBO

ϕ∗ = argmax
ϕ

Eqϕ(z|x)
[
log

pθ(x, z)

qϕ(z|x)

]
.

where log pθ(x, z) is the (unnormalized log-density)
target with parameters θ.

In VI, when using gradient descent, we iteratively op-
timize L(ϕ) through the following updates:

ϕt+1 ← ϕt + γ∇L(ϕt),

where γ is the step size, the gradient is computed with
respect to the variational parameters ϕt at the current
time step t, and the plus sign indicates that the ELBO
should be maximized.

Location-scale family In this work, we assume
that qϕ(z|x), with parameters ϕ = (µ, L), belongs to
the location-scale family with location µ and covari-
ance matrix Σ = LLT , here represented through a
Cholesky decomposition where L is a triangular ma-
trix. Thus,

z ∼ qϕ(z|x)⇔ z
d
= Lϵ+ µ, ϵ ∼ p(ϵ),

where p(ϵ) is a standardized base distribution. The
random vector ϵ is defined as ϵ ≜ (ϵ1, ϵ2, . . . , ϵd) ∈ Rd.
The components of ϵ are assumed to be i.i.d. with
E[ϵi] = 0, Var[ϵi] = 1, E[ϵ3i ] = 0, and fourth moment
E[ϵ4i ] = κ.

Examples of members from the location-scale fam-
ily include the Gaussian and Student-t distributions
(Casella and Berger, 2021).

Black-Box Variational Inference for the
Location-Scale Family Depending on the choice
of the variational family and the structure of
log pθ(x, z), it might not always be possible to derive
∇L(ϕ) in closed form. BBVI tackles this by producing
stochastic estimates of the gradient or parts of it.
These estimates are then used to optimize the ELBO
with Stochastic Gradient Descent (SGD).

For the location-scale family, a segment of the gradient
can be evaluated analytically. By way of illustration,
L(ϕ) can be decomposed as

L(ϕ) := Eqϕ(z|x) [log pθ(x, z)]︸ ︷︷ ︸
l(ϕ)

−Eqϕ(z|x) [log qϕ(z|x)]︸ ︷︷ ︸
h(ϕ)

,

where h(ϕ) is the entropy and l(ϕ) represents the en-
ergy component. For the location-scale family, ∇h(ϕ)
can be derived in closed form. However, whether this
is possible for the energy term hinges on the specific
form of log pθ(x, z).

When the target necessitates it, the reparameteriza-
tion trick can be employed to obtain unbiased esti-
mates of ∇l(ϕ). Specifically, by performing a change
of variable

∇l(ϕ) = ∇Eqϕ(z|x)[log pθ(x, z)]
= Ep(ϵ)[∇ log pθ(x, tϕ(ϵ))],

where tϕ(ϵ) ≜ Lϵ + µ. Since the expectation is
now taken with respect to the base distribution p(ϵ),
we can use Monte Carlo integration to obtain unbi-
ased estimates g ≜ ∇ log pθ(x, tϕ(ϵ)) of ∇l(ϕ). Thus,
∇l(ϕ) = E[g].

Scale parameterizations There are numerous pos-
sible parameterization approaches for learning a scale
matrix L that results in a positive definite covariance.
We constrain our analysis to when L is constructed as
follows (Kingma and Welling, 2019a):

L ≜ LT +D(ψ(ω)), (1)

where LT ∈ Rd×d is a strictly lower triangular matrix,
ψ : R −→ R+ is applied element-wise to ω ∈ Rd, and
D(ψ(ω)) ∈ Rd×d>0 is a diagonal matrix. A special case
of this parameterization occurs when it is assumed that
each off-diagonal element of LT is equal to zero. This
is equivalent to the well-known mean field parameter-
ization.

For the exponential parameterization let ω ≜ logσ,
where σ ∈ Rd>0, and ψ(ω) ≜ eω. Another choice
for the scale parameterization is the softplus function
where ω ≜ log(eσ−1) and ψ(ω) ≜ log(1+eω). Finally,
for the linear approach ω ≜ σ (equiv. ψ(ω) = ω).

3.1 Convergence Properties

Lipschitz smoothness Many convergence theo-
rems for the SGD algorithm (and augmented versions
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of it) require a Lipschitz smooth objective function
(Reddi et al., 2016; Ghadimi and Lan, 2013; Garrigos
and Gower, 2023). A function h is LipschitzM -smooth
in the ℓ2 norm if it is differentiable and if

∥∇h(z)−∇h(z′)∥2 ≤M∥z− z′∥2 ∀z, z′

where 0 < M <∞.

Strong convexity Another structural property that
can be used in conjunction with Lipschitz smoothness
to prove convergence is strong convexity. Let λ ≥ 0.
Then, a function h is λ-strongly convex, if for every
x, y ∈ Rd, and t ∈ [0, 1]

λ
t(1− t)

2
∥x−y∥2+h(tx+(1−t)y) ≤ th(x)+(1−t)h(y).

Variance of the gradient estimator A downside
of BBVI is that the convergence rate is impacted
by the variance of the stochastic gradient estimator
g. Domke (2019) studied the expected squared norm
(ESN), which upper bounds the trace of the variance
of the gradient estimator

Tr(Var[g]) = E[∥g∥22]− ∥E[g]∥22 ≤ E[∥g∥22].

Domke (2019) demonstrated that a bound directly on
Tr(Var[g]) is not significantly better compared to an
upper bound on the ESN when d≫ 1. Consequently,
in this paper, we also derive bounds on the ESN.

4 THEORETICAL RESULTS

For ease of notation, let π(z) ≜ log pθ(x, z). In
the case of non-linear parameterized approaches, let
ϕψ ≜ (µ, LT ,ω), and for the linear approach, let
ϕ ≜ (µ, LT ,σ).

4.1 Smoothness results

We now show under which assumptions L(ϕψ) is Lip-
schitz smooth. It is well-known that the sum of two
Lipschitz smooth functions remains Lipschitz smooth,
with a smoothness constant equal to the sum of their
individual constants. For a derivation, refer to Lemma
C.1 in the supplementary material. Therefore, we indi-
vidually investigate the smoothness of the energy and
entropy terms.

The entropy The differential entropy of a random
variable with a distribution from the location-scale
family has a closed form expression (Cover, 1999):

h(ϕ) ≜ h(ϵ) +

d∑
i=1

log σi,

where h(ϵ) is the entropy of the standardized base dis-
tribution, which is a constant. A derivation of this
result can be found in the supplementary materials.

Evidently, the partial derivatives of h(ϕ) w.r.t. to µ
and LT will be equal to zero. For the linearly param-
eterized approach, the partial derivatives w.r.t. to a
diagonal element satisfy ∂

∂σi
h(ϕ) = 1

σi
, which tends to

infinity as σi −→ 0. Thus, h(ϕ) is not Lipschitz smooth.

To resolve this, we instead employ a non-linear ap-
proach, such that h(ϕψ) becomes Lipschitz smooth.

Lemma 4.1. Let h(·) be the entropy of a random vari-
able from the location-scale family.

(1) Let ψ(ω) ≜ eω, then h(ϕψ) is Lipschitz smooth
with an arbitrarily small smoothness constant.

(2) Let ψ(ω) ≜ log(1 + eω), then h(ϕψ) is Lipschitz
smooth.

Proof. See the supplementary material.

Energy Term Kim et al. (2023c) proved and estab-
lished conditions for when l(ϕψ) is smooth, with one
assumption being that π(z) is twice differentiable, and
another that ψ(ω) is 1-Lipschitz continuous. They
found that using a 1-Lipschitz parameterization in-
creases the value of the smoothness constant com-
pared to the linear approach, suggesting that it may
be necessary to reduce the step size to ensure conver-
gence. Nonetheless, it still remains to be demonstrated
whether the exponential approach is smooth.

We now proceed to prove and identify conditions for
when l(ϕψ), with the exponential approach, is Lips-
chitz smooth.

Theorem 4.2. Let ψ(ω) = eω. Assume the following:
(1) π(z) is M-Lipschitz smooth, (2) ∥∇π(z)∥ ≤ D <
∞, and (3) σj ≤ K <∞, ∀j. Then

∥∇l(ϕψ)−∇l(ϕψ ′
)∥2

≤ K(M
√
m+ d(K − 1) +D)∥ϕψ − ϕψ ′∥2,

wherem denotes the number of variational parameters.

Proof. See the supplementary material.

From Theorem 4.2, we can infer that the smoothness
constant of the exponential method depends on M ,
which is the smoothness constant of l(ϕ) with the
linear parameterization. Whether l(ϕψ) obtains an
increased smoothness constant compared to l(ϕ) de-
pends on the norm of the gradient of the target, the
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number of variational parameters, and the scale com-
ponents’ size. More specifically, the smoothness con-
stant of l(ϕψ) increases as the dimensionality of the
problem grows with m and d. However, the theorem
also highlights that the smoothness constant of l(ϕψ)
decreases as the diagonal scale components σj become
smaller.

In Section 5, we empirically investigate the interplay
between the dimensionality and the scale on the con-
vergence rate.

4.2 Gradient Variance Bounds

We now derive a gradient variance bound for the expo-
nentially parametrized approach and a tighter bound
compared to the one derived in Kim et al. (2023c)
for the softplus parameterization. This will be accom-
plished by imposing an additional constraint, namely
that each σj ≤ K <∞.

Lemma 4.3. Assume that each σj ≤ K < ∞, and
that L has a mean field parameterization, where each
(LT )i,j = 0 for i ̸= j.

(1) When ψ(ω) = eω, then

∥∇ϕψπ(tϕ(ϵ))∥22 ≤ (1 +K2∥E∥F )∥∇π(tϕ(ϵ))∥22.

(2) When ψ(ω) = softplus(ω), then

∥∇ϕψπ(tϕ(ϵ))∥22 ≤ (1+(1−e−K)2∥E∥F )∥∇π(tϕ(ϵ))∥22.

(3) (Kim et al., 2023c) When ψ(ω) = ω, then

∥∇ϕπ(tϕ(ϵ))∥22 ≤ (1 + ∥E∥F )∥∇π(tϕ(ϵ))∥22.

where E is a diagonal matrix where Eii = ϵ2i .

Proof. See the supplementary material.

With Lemma 4.3 we can then show the following

Lemma 4.4. Let g be the gradient estimator of l(·),
and assume that (1) each σj ≤ K < ∞, (2) that z is
a stationary point of π, (3) that L has a mean field
parameterization, and (4) π is M-Lipschitz smooth.

(1) When ψ(ω) = eω, then

E[∥g∥22] ≤M2
(
(K22

√
dκ+ 1)∥µ− z∥22

+(K2(
√
dκ+

√
dκ) + 1)∥L∥2F

)
. (2)

(2) When ψ(ω) = softplus(ω), then

E[∥g∥22] ≤M2
(
((1− e−K)22

√
dκ+ 1)∥µ− z∥22

+((1− e−K)2(
√
dκ+

√
dκ) + 1)∥L∥2F

)
.

(3)
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Figure 1: Comparison of the scaling factors’ magni-
tudes in the ESN upper bounds for the exponential
and softplus parameterizations for increasing values of
K.

(3) (Kim et al., 2023c) When ψ(ω) = ω, then

E[∥g∥22] ≤M2
(
(2
√
dκ+ 1)∥µ− z∥22

+(
√
dκ+

√
dκ+ 1)∥L∥2F

)
. (4)

Proof. See the supplementary material.

Upon comparing the gradient variance bounds in
Lemma 4.4, it becomes apparent that the bounds for
the non-linear methods are subject to scaling factors
that rely on the value of K. These scaling factors are
illustrated in Figure 1. From the right-hand plot, we
observe that for ψ(ω) = eω, the upper bound on the
ESN is scaled by a factor that tends to infinity as K
approaches infinity. In contrast, the scaling factor for
softplus is bounded from above by 1.

Nevertheless, it is more interesting, as supported by
the size of the scales learned in our empirical evalu-
ations (see Figure 4), to consider the scenario where
K tends to zero. When K < 1, both methods yield
scaling factors that reduce the magnitude of the ESN
bound compared to the linear approach. The softplus
parameterization achieves this reduction at a faster
rate than the exponential method, as demonstrated
on the left side of Figure 1. However, for sufficiently
small scales, the difference in scaling factors between
the two methods diminishes.

To understand how these scaling factors impact the
final gradient variance bounds for the softplus param-
eterization, as presented in Lemma 4.4, consider Fig-
ure 2. Notice that, with our bound, the impact from
increasing d is mitigated as K decreases. Conversely,
as K −→ ∞, we approach the bound derived by Kim
et al. (2023c), where a significant penalty is incurred
from increasing d.
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Figure 2: The scaling factors ((1− e−K)2 · 2
√
dκ+ 1)

(top) and (1−e−K)2(
√
dκ+
√
dκ)+1 (bottom) found in

the softplus bound on E∥g∥22 (Lemma 4.4) for various
numbers of variational parameters (d) and increasing
scales (K).

4.3 Strong Convexity

We now prove the strong convexity of the energy under
the exponential parameterization.

Theorem 4.5. Let π be λ-strongly convex, ψ(ω) =
eω, and assume that each σj ≥ δ, where 1 ≥ δ > 0.
Then l(ϕψ) is λδ2−strongly convex for the mean-field
parameterization.

Proof. See the supplementary material.

5 EXPERIMENTS

Training Infrastructure All experiments were
conducted on a single NVIDIA RTX 4090 with 24
GiB of memory using the PyTorch framework (Paszke
et al., 2019).

Common setup In the synthetic experiments, we
used vanilla SGD, and with a smoothness constant of
L, the step size was set to 1

L . For the real datasets, we
used the Adam optimizer and initialized the step size
to 1

L . We analytically estimated the smoothness con-
stantsM for each target π(z), as described later in the
experiments section. To estimate the constants K and
D for the non-linear scale parameterizations (refer to

Thm. 4.2), we initially generated a single optimization
trace. We used the same learning rate for both the ex-
ponential and the softplus parameterizations to ensure
a fair comparison and empirically found that both pa-
rameterizations exhibited similar performance. In all
experiments, we use a Gaussian variational posterior
with a mean-field parameterization.

Furthermore, to address the non-smoothness of the en-
tropy term when using the linear parameterization, as
described in Section 4.1, Domke (2020) used projected
SGD to ensure that the diagonal scale component re-
mained above a lower bound of 1√

M
, where M is the

Lipschitz smoothness constant. In all subsequent ex-
periments, we utilize projected SGD for the linear pa-
rameterization.

5.1 Synthetic - Increasing data

In this experiment, we examine the influence of the
dataset size on the convergence speed for both linear
and non-linear parameterizations. We also analyze the
ESN and scale trace plots of these approaches.

Setup Consider a dataset X = {x1,x2, . . . ,xN}
wherein each xi ∈ Rd is an i.i.d. sample drawn from
a Gaussian distribution with a known covariance ma-
trix σ2I and unknown mean µ. Given that X|µ ∼
N (µ,σ2I) and assuming a standard normal prior for
µ as µ ∼ N (0, I), the resulting posterior distribu-
tion for µ has a closed form solution. In the uni-
variate case, the variance of the posterior σ∗ is given

by σ2

σ2+N . Notably, the variance decreases with N .
With this setup, we generated 12 synthetic datasets,
where we gradually increased the number of features
as d = 20, 100, 500 and the number of data points
N = 10, 20, 100, 1000.

Results The trace plots over L(ϕ) for the synthetic
datasets are presented in Figure 3. For a fixed N = 10,
we observe that with increasing d (and thus an increas-
ing number of variational parameters), the non-linear
parameterizations converge slower than their linear
counterparts. However, for each value of d, the non-
linear methods exhibit a faster convergence rate for
increasing values of N , while the linear approach con-
verges after roughly the same number of iterations.
Furthermore, for each value of d, the non-linear meth-
ods surpass the linear ones provided that N is suffi-
ciently large.

5.2 Real datasets

In this experiment, we compare the convergence speed
of linear and non-linear approaches on both linear and
logistic regression tasks across six datasets. These
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Figure 3: Comparison of convergence speed on a synthetic dataset with increasing number of features d and
number of data points N .

datasets vary in both their number of examples and
features, as detailed in Table 1. We opt to exclude
non-numerical features and apply a z-score standard-
ization on the remaining numerical features1.

Setup Given a dataset {(xi, yi)}Ni=1 we posit

p(z,y|X) = N (z|0, σ2I)
∏N
n=1 p(yn|z,xn) and define

p(yn|z,xn) = N (yn|zTxn, ρ2I) for linear regression
and p(yn|z,xn) = σ(yn · zTxn) for logistic regres-
sion. We adopt the same values of σ = 1 and ρ = 2
as in Domke (2019). We calculated the smoothness
constant M of each target π(z), by taking the spec-
tral norm of 1

σ2 I + cXTX, where c = 0.25 for logistic
regression and c = 1

ρ2 for linear regression.

For the optimization of the fires and cpusmall datasets,

1Also on the target variable in the case of linear regres-
sion

the variational parameters were initialized with µ = 0
and σ2I = I. For the other datasets, σ2I was set to
0.12I.

Dataset N d

fires (Cortez and Morais, 2008) 517 10
cpusmall (Cheng et al., 2009) 8192 12
msd (Bertin-Mahieux, 2011) 1, 000, 000 90
ionosphere (Sigillito et al., 1989) 351 34
higgs (Whiteson, 2014) 11, 000, 000 28
buzz (Kawala et al., 2013) 140, 000 78
cover type (Blackard, 1998) 581, 012 10

Table 1: Overview of the considered datasets. The
number of features are reported after filtering out non-
numerical features.
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Figure 4: Comparison of convergence speed on datasets of varying sizes between linear and non-linear scale
parameterizations. The values of L(ϕt) are reported as averages over 10 independent training runs. For each
dataset, we present the final averaged scale parameter σ̄∗.

Results Figure 4 showcases the ELBO trace plots.
The results highlight the influence of both the num-
ber of data points and features on the convergence of
the non-linear approaches. The linear approach has an
advantage on the ionosphere dataset due to its small
number of data points and a relatively large number of
features. On the fires dataset, which has fewer features
and slightly more data points compared to ionosphere,
the discrepancy in the convergence speed is reduced.
Although the cpusmall dataset shares a similar fea-
ture count with the fires dataset, it comprises about
16 times more data points, leading to swifter conver-
gence for the non-linear methods. On the other hand,
despite the buzz dataset having 140, 000 data points,
its higher dimensionality slows down the convergence
of the nonlinear method. The msd dataset, which has
marginally more features compared to buzz but seven
times as many data points, exhibits faster convergence
for the non-linear methods. Finally, both cover type
and higgs have a large number of examples and rela-
tively few features, which benefits the non-linear meth-
ods. Results for the cover type dataset can be found in
the supplementary material.

It is important to note that Kim et al. (2023b) also
studied large-scale problems and found that the lin-
ear parametrization often yielded superior results,
which may initially seem contradictory to our find-
ings. However, our bounds provide a coherent ex-
planation for this seeming contradiction. Although

Kim et al. (2023b) focused on problems involving
small scales, their models incorporated a significantly
larger number of variational parameters by employ-
ing the Cholesky parametrization, which includes non-
zero off-diagonal elements. In contrast, we utilize the
mean field parametrization, as this is necessitated by
our gradient variance bounds. Moreover, following
Domke (2020), we set our step sizes to the inverses
of the estimated smoothness constants. Given that
the non-linear smoothness constant decreases with K
and increases with d, our learning rates varied across
datasets. In contrast, Kim et al. (2023b) utilized a uni-
form step size of 10−3 across all models. We further
expand on this topic in the supplementary material.

Finally, we observe that the trace plots for the expo-
nential and softplus parameterizations become increas-
ingly similar at smaller scales. This is anticipated,
given that the distinctions between the parameteriza-
tions diminish as the scale reduces.

6 LIMITATIONS

A limitation of our work is that the smoothness re-
sults in Theorem 4.2 were only demonstrated for the
exponential parameterization. Empirically, the soft-
plus parameterization behaved similarly to the expo-
nential parameterization, suggesting that a similar re-
sult could exist for the softplus parameterization.
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7 CONCLUSION

In this study, we delved into the convergence proper-
ties of location-scale variational families featuring non-
linear covariance parameterizations. In particular, we
derived novel Lipschitz smoothness and strong convex-
ity results, as well as gradient variance bounds for the
widely-recognized exponential covariance parameteri-
zation. Additionally, we derived tighter gradient vari-
ance bounds for the softplus parameterization. Col-
lectively, our theoretical and empirical results under-
score the advantages of non-linear parameterizations
for large-scale datasets.
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A EXPERIMENTS

A.1 Additional Results
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Figure 5: Comparison of convergence speed on the cover type dataset between linear and non-linear scale param-
eterizations. The values of L(ϕt) are reported as averages over 10 independent training runs. The title indicates
the final averaged scale parameter σ̄∗ of the variational posterior.

A.2 Longer comparison Kim et al. (2023b)

Figure 6: With the mean field parametriza-
tion (top), non-linear approaches benefit
from a small d (24) and small scales, lead-
ing to faster convergence. With the full
Cholesky parametrization (bottom), the pa-
rameters substantially increase (90), enhanc-
ing the relative performance of the linear
method.

It is important to note that Kim et al. (2023b) also studied
large-scale problems and found that the linear parametrization
often yielded superior results, which may initially seem con-
tradictory to our findings. However, our bounds provide a co-
herent explanation for this seeming contradiction. Although
Kim et al. (2023b) focused on problems involving small scales,
their models incorporated a significantly larger number of vari-
ational parameters by employing the Cholesky parametrization,
which includes non-zero off-diagonal elements. In contrast, we
utilize the mean field parametrization, as this is necessitated
by our gradient variance bounds. Moreover, following Domke
(2020), we set our step sizes to the inverses of the estimated
smoothness constants. Given that the non-linear smoothness
constant decreases with K and increases with d, our learning
rates varied across datasets. In contrast, Kim et al. (2023b)
utilized a uniform step size of 10−3 across all models. Figure
6 illustrates the substantial advantage of the linear method, as
predicted by our bounds, when increasing d, from 24 to 90, un-
der the Cholesky parametrization. Furthermore, this effect is
even more pronounced in the case of the msd dataset, as used by
both us and Kim et al. (2023b), where our model employs 188
parameters compared to their 4, 559 variational parameters.
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B EXTERNAL RESULTS

Theorem B.1 ((Cover, 1999, pp. 253-254)). Let x ∈ Rd be a
random vector. Then, for any matrix A ∈ Rd×d and any vector c ∈ Rd, the differential entropy of x satisfies the
following properties:

(1) h(x+ c) = h(x),

(2) h(Ax) = h(x) + log |det(A)|.

Lemma B.2 ((Domke, 2020)). Let p(ϵ) be a standardized base distribution. Let a : Rd −→ Rk and b : Rd −→ Rk
be squared-integrable functions. Then ⟨a, b⟩p(ϵ) = Eϵ∼p(ϵ)[a(ϵ)

T b(ϵ)] is a valid inner product.

For a definition of the standardized base distribution p(ϵ), please refer to Section 3.

Lemma B.3 ((Domke, 2020)). Let p(ϵ) be a standardized distribution and ϕ := (µ, LT ,σ), then

Ep(ϵ)∥tϕ(ϵ)− tϕ′(ϵ)∥22 = ∥ϕ− ϕ′∥22. (5)

Lemma B.4 ((Kim et al., 2023c)). Suppose that tϕ : Rd −→ Rd is a location-scale family reparameterization

function with π : Rd −→ R. Then, for gπ
d
= ∇π(tϕ(ϵ)), and L parameterized as in Eq. 1 with the mean-field

parameterization where each LT = 0

∥∇ϕπ(tϕ(ϵ))∥22 = ∥∇π(tϕ(ϵ))∥22 + gTπ EΨgπ,

where E ≜ diag(ϵ21, ϵ
2
2, . . . , ϵ

2
d), and Ψ ≜ diag(ψ′(ω1)

2, ψ′(ω2)
2, . . . , ψ′(ωd)

2).

Lemma B.5 ((Kim et al., 2023c)). Suppose that tϕ : Rd −→ Rd is a location-scale family reparameterization
function with π : Rd −→ R, let ψ be a 1-Lipschitz function, and ϵ ∼ p(ϵ) where p(ϵ) is a standardized base
distribution. The random vector ϵ is defined as ϵ := (ϵ1, ϵ2, . . . , ϵd) ∈ Rd. The components of ϵ are assumed to
be i.i.d. with E[ϵi] = 0, Var[ϵi] = 1, E[ϵ3i ] = 0, and E[ϵ4i ] = κ. Then, for the mean-field parameterization

E∥tϕ(ϵ)− z∥22(1 + ∥E∥F ) ≤ (2
√
κd+ 1)∥µ− z∥22 + (

√
dκ+ κ

√
d+ 1)∥L∥2F . (6)

Note that the inequality in Lemma B.5 is slightly different from Lemma 3 in Kim et al. (2023c), since there is a
minor mistake in the final expression presented in Lemma 3.

Lemma B.6 ((Domke, 2019)). Suppose that tϕ : Rd −→ Rd is a location-scale family reparameterization function,
that ψ is linear, and assume that p(ϵ) is a standardized base distribution. The random vector ϵ is defined as
ϵ := (ϵ1, ϵ2, . . . , ϵd) ∈ Rd. The components of ϵ are assumed to be i.i.d. with E[ϵi] = 0, Var[ϵi] = 1, E[ϵ3i ] = 0,
and E[ϵ4i ] = κ. Then,

E∥tϕ(ϵ)− z∥22 = ∥µ− z∥22 + ∥L∥2F . (7)

Theorem B.7 ((Domke, 2019)). Suppose that π is M-smooth, z is a stationary point of π, and p(ϵ) is stan-
dardized with E[ϵi] = 0, Var[ϵi] = 1, E[ϵ3i ] = 0, and E[ϵ4i ] = κ. Let g = ∇ϕπ(tϕ(ϵ)) for ϵ ∼ p(ϵ) and assume that
ψ is linear. Then,

E∥g∥22 ≤M2((d+ 1)∥µ− z∥22 + (d+ κ)∥L∥2F ) (8)

where L ∈ Rd×d.
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Note that in Theorem B.7 L is not constrained to be lower triangular.

Lemma B.8 ((Kim et al., 2023b)). Let π be convex. For a convex nonlinear ψ, the inequality

⟨∇l(ϕψ), ϕψ − ϕψ ′⟩ ≤ E⟨∇π(tϕ(ϵ)), tϕ(ϵ)− tϕ′(ϵ)⟩

holds iff
diag(Cov(∇π(tϕ(ϵ)), ϵ)) ⪰ 0. (9)

For the scale components parametrized as in Eq. 1, the assumption in Eq. 9 holds for the mean-field parameter-
ization, yet may not hold otherwise.

Theorem B.9 ((Kim et al., 2023b; Domke, 2020)). Let π be λ-strongly convex, and ψ be a scale parameterization.

(1) If ψ is linear, the energy l(ψ) is λ-strongly convex.

(2) If ψ is convex with the mean-field parameterization, the energy l(ϕψ) is convex.

(3) If ψ is convex with the scale parameterized as in Eq. 1, the energy l(ϕψ) may not be convex.

(4) If ψ is such that ψ ∈ C1(R,R+), the energy l(ϕψ) is not strongly convex.

C PROOFS

Lemma C.1. Given that h(ϕ) is Mh-Lipschitz smooth and l(ϕ) is Ml Lipschitz smooth, L(ϕ) is Ml + Mh

Lipschitz smooth.

Proof.

∥∇L(ϕ)−∇L(ϕ′)∥2 = ∥∇l(ϕ) +∇h(ϕ)−∇l(ϕ′)−∇h(ϕ′)∥2 = ∥(∇l(ϕ)−∇l(ϕ′)) + (∇h(ϕ)−∇h(ϕ′))∥2
≤ ∥∇l(ϕ)−∇l(ϕ′)∥2 + ∥∇h(ϕ)−∇h(ϕ′)∥2 ≤Ml∥ϕ− ϕ′∥2 +Mh∥ϕ− ϕ′∥2
= (Ml +Mh)∥ϕ− ϕ′∥2,

where we first apply the triangle inequality and then use the Lipschitz smoothness assumption of h(ϕ) and l(ϕ).

Lemma 4.1. Let h(·) be the entropy of a random variable from the location-scale family.

(1) Let ψ(ω) ≜ eω, then h(ϕψ) is Lipschitz smooth with an arbitrarily small smoothness constant.

(2) Let ψ(ω) ≜ log(1 + eω), then h(ϕψ) is Lipschitz smooth.

Proof. With Theorem B.1, it is straightforward to show

h(ϕψ) = h(ϵL+ µ) = h(ϵ) + log |detL| = h(ϵ) +

d∑
i=1

logψ(ωi), (10)

and thus

∂h(ϕψ)

∂ωi
=

1

ψ(ωi)
· ψ′(ωi). (11)

(1) For the exponential parameterization ψ(ω) = eω. Thus,

∥∇h(ϕψ)−∇h(ϕψ ′
)∥2 =

√√√√ d∑
i=1

eωi

eωi
− eω

′
i

eω
′
i

= 0 ≤M∥ϕψ − ϕψ ′∥2 (12)

where 0 < M <∞.
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(2) For the softplus parameterization we consider an equivalent definition of Lipschitz smoothness. For twice
differentiable functions, h(ϕψ) is Lipschitz smooth if the eigenvalues of Hessian ∇2h(ϕψ) are smaller than
Mh. Any second-order partial derivatives taken w.r.t. a component of either µ or LT will be equal to
zero. Additionally, all off-diagonal elements of ∇2h(ϕψ) will be zero. The non-zero elements of ∇2h(ϕψ)
are the second-order partial derivatives taken twice w.r.t. the diagonal scale components σi. As a result
the Hessian is diagonal and therefore its largest eigenvalue is the maximal value among its diagonal entries.
Consequently, we consider:

∂2h(ϕψ)

∂ω2
i

= − 1

ψ(ωi)
· ψ′′(ωi) +

1

ψ2(ωi)
· ψ′2(ωi). (13)

For softplus ψ(ω) = log(1 + eω), ψ′(ω) = eω

1+eω , and ψ
′′(ω) = eω

1+eω −
(eω)2

(1+eω)2 . Thus

∂2h(ϕψ)

∂ω2
i

= − 1

log(1 + eω)
·
(

eω

1 + eω
− (eω)2

(1 + eω)2

)
+

1

(log(1 + eω))2
· (eω)2

(1 + eω)2
, (14)

and

|∂
2h(ϕψ)

∂ω2
i

| = | − 1

log(1 + eω)
·
(

eω

1 + eω
− (eω)2

(1 + eω)2

)
+

1

(log(1 + eω))2
· (eω)2

(1 + eω)2
| ≤ 0.1671. (15)

Therefore, h(ϕψ) is Lipschitz smooth with a smoothness constant Mh of 0.1671.

Lemma C.2. Assume that 0 < a, b ≤ K. Then ∃ a 0 < C <∞, such that

(1) (b− a)2 ≤ C(log(b)− log(a))2.

Proof. (1) Since log(x) is continuous on the interval [a, b] and differentiable on the interval (a, b), then according
to the mean value theorem, there exists a point c ∈ (a, b), such that

f ′(c) =
f(b)− f(a)

b− a
. (16)

Let f(x) := log(x), then by the mean value theorem

1

c
=

log(b)− log(a)

b− a
. (17)

We rearrange the terms and square both sides

(b− a)2 = c2(log(b)− log(a))2. (18)

Finally, the assumption that 0 < a, b ≤ K implies that c < K, and thus that

(b− a)2 ≤ K2(log(b)− log(a))2 (19)
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Theorem 4.2. Let ψ(ω) = eω. Assume the following: (1) π(z) is M-Lipschitz smooth, (2) ∥∇π(z)∥ ≤ D <∞,
and (3) σj ≤ K <∞, ∀j. Then

∥∇l(ϕψ)−∇l(ϕψ ′
)∥2

≤ K(M
√
m+ d(K − 1) +D)∥ϕψ − ϕψ ′∥2,

where m denotes the number of variational parameters.

Proof. We want to show that l(ϕψ) is Lipschitz smooth. To that effect, we first compute the partial derivatives
of the gradient. We first use the reparameterization trick and Lemma B.2

∇ϕψi l(ϕ
ψ) = ∇ϕψi Eqϕψ (z|x) [π(z)] = Ep(ϵ)

[
∇ϕψi π(tϕ(ϵ))

]
= Ep(ϵ)

[
∇ϕψi tϕ(ϵ)

T∇π(tϕ(ϵ))
]

(20)

=
(
∇ϕψi tϕ,∇π ◦ tϕ

)
p(ϵ)

, (21)

where ◦ is used to signify the composition of two functions, and the final equality follows from Lemma B.2.

It is straightforward to obtain the partial derivatives wrt to the location and off-diagonal scale components. This
is a partial result in Lemma 4 found in Domke (2020)

∂tϕ(ϵ)

∂µi
= ei,

∂tϕ(ϵ)

∂(LT )i,j
= eiϵj , (22)

where e1, e2, . . . , ed form a canonical basis in Rd.

With the linear approach, used by Domke (2020), all derivatives of tϕ takes this form. Thus, the main proof

idea in Domke (2020) is to show that the set {∂tϕ(ϵ)∂ϕi
} constitutes an orthonormal basis, which allows them to

use Bessel’s inequality.

Unfortunately, when ψ is non-linear, the components of the gradient where the partial derivatives are computed

wrt to the diagonal scale components depend on the variational parameters ϕψ;
∂tϕ(ϵ)
∂ωi

= eiϵj
∂ψ(ωi)
∂ωi

. This means

that {∂tϕ(ϵ)
∂ϕψi
} is not an orthonormal basis and we cannot use the proof strategy employed in Domke (2020).

To unify the expression for the derivatives taken wrt to each type of variational parameter, we introduce a vector
b such that

b :=
(
1, 1, . . . , ∂ψ(ω1)

∂ω1
, ∂ψ(ω2)

∂ω2
, . . . , ∂ψ(ωd)∂ωd

)
(23)

where the dimensionality of b corresponds to the number of variational parametersm. Then we express ∇ϕψi tϕ(ϵ)
in terms of ∇ϕitϕ(ϵ)

∇ϕψi tϕ(ϵ) = bi∇ϕitϕ(ϵ) (24)

With this expression for the partial derivatives we now form

∥∇l(ϕψ)−∇l(ϕψ ′
)∥22 =

m∑
j=1

(∇ϕψj l(ϕ
ψ)−∇ϕψ ′

j
l(ϕψ

′
))2 =

m∑
j=1

((bj∇ϕj tϕ,∇π ◦ tϕ)p(ϵ) − (b′j∇ϕ′
j
tϕ′ ,∇π ◦ tϕ′)p(ϵ))

2

=

m∑
j=1

((∇ϕj tϕ, bj∇π ◦ tϕ)p(ϵ) − (∇ϕ′
j
tϕ′ , b′j∇π ◦ tϕ′)p(ϵ))

2 =

m∑
j=1

(∇ϕj tϕ, bj∇π ◦ tϕ − b′j∇π ◦ tϕ′)2p(ϵ) (25)
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where we in the last three equalities exploit the linearity property of real valued inner products and the final
equality follows from Eq. 22.

Now, we apply Cauchy-Schwarz inequality to each term in the sum in Eq. 25

m∑
j=1

(∇ϕj tϕ, bj∇π ◦ tϕ − b′j∇π ◦ tϕ′)2p(ϵ) ≤
m∑
j=1

∥∇ϕj tϕ(ϵ)∥2p(ϵ)∥bj∇π ◦ tϕ − b
′
j∇π ◦ tϕ′∥2p(ϵ)

=

m∑
j=1

∥bj∇π ◦ tϕ − b′j∇π ◦ tϕ′∥2p(ϵ) (26)

where ∥ · ∥p(ϵ) is the norm induced by the inner product ⟨·, ·⟩p(ϵ), defined in Lemma B.2, and ∥∇ϕj tϕ(ϵ)∥2p(ϵ) = 1.

We now rewrite each term in the sum in Eq. 26 and use the triangle inequality in the first inequality

m∑
j=1

∥bj∇π ◦ tϕ − b′j∇π ◦ tϕ′∥2p(ϵ) =
m∑
j=1

∥bj∇π ◦ tϕ − bj∇π ◦ tϕ′ + bj∇π ◦ tϕ′ − b′j∇π ◦ tϕ′∥2p(ϵ)

≤
m∑
j=1

(∥bj(∇π ◦ tϕ −∇π ◦ tϕ′)∥p(ϵ) + ∥(bj − b′j)∇π ◦ tϕ′∥p(ϵ))2

=

m∑
j=1

(|bj | · ∥∇π ◦ tϕ −∇π ◦ tϕ′∥p(ϵ) + |(bj − b′j)|∥∇π ◦ tϕ′∥p(ϵ))2.

We now exploit Assumption (1), i.e. that π is M−Lipschitz smooth and then apply Lemma B.3

m∑
j=1

(|bj | · ∥∇π ◦ tϕ −∇π ◦ tϕ′∥p(ϵ) + |(bj − b′j)|∥∇f ◦ tϕ′∥p(ϵ))2

≤
m∑
j=1

(|bj |MEp(ϵ)∥tϕ(ϵ)− tϕ′(ϵ)∥2 + |(bj − b′j)|∥∇π ◦ tϕ′∥p(ϵ))2

(27)

Now we apply the triangle inequality∑
j

(|bj | ·M · ∥ϕ− ϕ′∥2 + |(bj − b′j)| · ∥∇π ◦ tϕ′∥p(ϵ))2 (28)

≤ (

√∑
j

|bj |2M2∥ϕ− ϕ′∥22 +
√∑

j

|(bj − b′j)|2 · ∥∇π ◦ tϕ′∥2p(ϵ))
2

= (M∥ϕ− ϕ′∥2
√∑

j

|bj |2 + ∥∇π ◦ tϕ′∥p(ϵ)
√∑

j

|(bj − b′j)|2)
2

=
(
M∥ϕ− ϕ′∥2∥b∥2 + ∥∇π ◦ tϕ′∥p(ϵ)∥b− b′∥2

)2
(29)

This gives us that

∥∇l(ϕψ)−∇l(ϕψ ′
)∥2 ≤M∥ϕ− ϕ′∥2∥b∥2 + ∥∇π ◦ tϕ′∥p(ϵ)∥b− b′∥2. (30)

We now individually investigate the terms in Eq. 30 for the log-parameterized approach. Using Assumption (3),
i.e. that σj < K <∞ and Lemma C.2
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∥b− b′∥2 =

√√√√ d∑
j=1

(bj − b′j)2 =

√√√√ d∑
j=1

(eωj − eω′
j )2 =

√√√√ d∑
j=1

(σj − σ′
j)

2 ≤

√√√√ d∑
j=1

K2(log σj − log σ′
j)

2

=

√√√√ d∑
j=1

K2(ω − ω′)2 ≤

√√√√ d∑
j=1

K2(ϕψj − ϕψ
′
j)

2 = K∥ϕψ − ϕψ ′∥2. (31)

We now consider

∥b∥2 =

√√√√m−d∑
j=1

1 + dK =
√
m− d+ dK =

√
m+ d(K − 1). (32)

We combine Eqs. 30-32 with Assumption (2) and get that

∥∇l(ϕψ)−∇l(ϕψ ′
)∥22 ≤ K(M

√
m+ d(K − 1) +D)∥ϕψ − ϕψ ′∥2

Lemma 4.3. Assume that each σj ≤ K < ∞, and that L has a mean field parameterization, where each
(LT )i,j = 0 for i ̸= j.

(1) When ψ(ω) = eω, then
∥∇ϕψπ(tϕ(ϵ))∥22 ≤ (1 +K2∥E∥F )∥∇π(tϕ(ϵ))∥22.

(2) When ψ(ω) = softplus(ω), then

∥∇ϕψπ(tϕ(ϵ))∥22 ≤ (1 + (1− e−K)2∥E∥F )∥∇π(tϕ(ϵ))∥22.

(3) (Kim et al., 2023c) When ψ(ω) = ω, then

∥∇ϕπ(tϕ(ϵ))∥22 ≤ (1 + ∥E∥F )∥∇π(tϕ(ϵ))∥22.

where E is a diagonal matrix where Eii = ϵ2i .

Proof. Starting from Lemma B.4, it is straightforward to see that

∥∇ϕπ(tϕ(ϵ))∥22 = ∥∇π(tϕ(ϵ))∥22 + gTπ EΨgπ ≤ ∥∇π(tϕ(ϵ))∥22 + ∥E∥F ∥Ψ∥2∥∇π(tϕ(ϵ))∥22 (33)

We now investigate Eq.33 for each type of parameterization. Starting with the exponential parameterization

ψ′(ωi)
2 = e2ωi = e2 log σi = σ2

i ≤ K2, (34)

where we use the assumption that σi ≤ K <∞ and that ωi ≜ log σi.

We combine Eq.33-34 and get the following for the exponential parameterization

∥∇ϕπ(tϕ(ϵ))∥22 ≤ (1 +K2∥E∥F )∥∇π(tϕ(ϵ))∥22.
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For the softplus parameterization

ψ′(ωi)
2 = (

eωi

1 + eωi
)2 = (

eσi − 1

1 + eσi − 1
)2 = (1− e−σi)2 ≤ (1− e−K)2, (35)

where we use the assumption that σi ≤ K <∞ and that ωi ≜ log(eσi − 1).

We now combine Eq.33 with Eq.35 and get the following result for softplus

∥∇ϕψπ(tϕ(ϵ))∥22 ≤ (1 + (1− e−K)2∥E∥F )∥∇π(tϕ(ϵ))∥22

Finally, for the linear parameterization

ψ′(ωi)
2 = 12 = 1, (36)

as ψ(ωi) = ωi.

Thus, for the linear approach we get

∥∇ϕψπ(tϕ(ϵ))∥22 ≤ (1 + ∥E∥F )∥∇π(tϕ(ϵ))∥22.

Lemma 4.4. Let g be the gradient estimator of l(·), and assume that (1) each σj ≤ K < ∞, (2) that z is a
stationary point of π, (3) that L has a mean field parameterization, and (4) π is M-Lipschitz smooth.

(1) When ψ(ω) = eω, then

E[∥g∥22] ≤M2
(
(K22

√
dκ+ 1)∥µ− z∥22

+(K2(
√
dκ+

√
dκ) + 1)∥L∥2F

)
. (37)

(2) When ψ(ω) = softplus(ω), then

E[∥g∥22] ≤M2
(
((1− e−K)22

√
dκ+ 1)∥µ− z∥22

+((1− e−K)2(
√
dκ+

√
dκ) + 1)∥L∥2F

)
. (38)

(3) (Kim et al., 2023c) When ψ(ω) = ω, then

E[∥g∥22] ≤M2
(
(2
√
dκ+ 1)∥µ− z∥22

+(
√
dκ+

√
dκ+ 1)∥L∥2F

)
. (39)

Proof. We aim to present a result analogous to Lemma B.5. Unlike the original lemma, our result does not
require ψ to be 1-Lipschitz and instead assumes an upper bound on σj .

We start by taking the expectation of (1) in Lemma 4.3

E∥g∥22 = E∥∇πϕψ (tϕ(ϵ))∥22 ≤ E∥∇π(tϕ(ϵ))∥22(1 +K2∥E∥F ). (40)
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Analogues to the proof of Theorem B.7, we now exploit assumption (2), which implies that ∇πϕ(z) = 0

E∥∇π(tϕ(ϵ))∥22(1 +K2∥E∥F ) = E∥∇π(tϕ(ϵ))−∇π(z)∥22(1 +K2∥E∥F )
≤M2E∥tϕ(ϵ)− z∥22(1 +K2∥E∥F ) =M2(E∥tϕ(ϵ)− z∥22 +K2E∥E∥F ∥tϕ(ϵ)− z∥22)
=M2(∥µ− z∥22 + ∥L∥2F +K2E∥E∥F ∥tϕ(ϵ)− z∥22), (41)

where we use assumption (4) in the inequality, and in the last equality apply Lemma B.6.

From Lemmas B.5 and B.6 it is straightforward to see that

E∥tϕ(ϵ)− z∥22∥E∥F ≤ (2
√
κd)∥µ− z∥22 + (

√
dκ+ κ

√
d)∥L∥2F . (42)

We now combine Eq.40-42

E∥g∥22 ≤M2
(
∥µ− z∥22 + ∥L∥2F +K2

(
(2
√
κd)∥µ− z∥22 + (

√
dκ+ κ

√
d)∥L∥2F

))
=M2

(
(K22

√
dκ+ 1)∥µ− z∥22 + (K2(

√
dκ+

√
dκ) + 1)∥L∥2F

)
, (43)

which corresponds to (1) in Lemma 4.4.

The results for (2) and (3) in Lemma 4.4 can be shown through similar derivations.

Lemma C.3. Let a, b ∈ [δ,∞) for some δ > 0. Then,

(a− b)2 ≥ δ2(log(a)− log(b))2.

Proof. Let f(a) = log(a), then as f is continuous on [a, b] and differentiable on (a, b), by the Mean Value
Theorem, there exists some c ∈ (a, b) such that:

1

c
=

log(a)− log(b)

a− b
.

We square both sides and rearrange

1

c2
(a− b)2 = (log(a)− log(b))2.

Given that a, b ∈ [δ,∞), this implies that 0 < δ ≤ c, and thus

1

δ2
(a− b)2 ≥ (log(a)− log(b))2.

Theorem 4.5. Let π be λ-strongly convex, ψ(ω) = eω, and assume that each σj ≥ δ, where 1 ≥ δ > 0. Then
l(ϕψ) is λδ2−strongly convex for the mean-field parameterization.

Proof. To show that the energy l(ϕψ) is strongly convex in terms of the variational parameters ϕψ, we want to
show the following

l(ϕψ) ≥ l(ϕψ ′
) + ⟨∇l(ϕψ ′

), ϕψ − ϕψ ′⟩+ λ
1

2
∥ϕψ − ϕψ ′∥22, ∀ϕψ, ϕψ ′

. (44)
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To do so, we start by using the assumption that π is λ-strongly convex, to form the following inequality

π(z) ≥ π(z′) + ⟨∇π(z′), z − z′⟩+ λ
1

2
∥z − z′∥22, ∀z, z′. (45)

We then take the expectations of both sides in the inequality in Eq. 45 and use the reparametrization trick

l(ϕψ) ≥ l(ϕψ ′
) + E⟨∇π(tϕ′(ϵ)), tϕ(ϵ)− tϕ′(ϵ)⟩+ λ

1

2
E∥tϕ(ϵ)− tϕ′(ϵ)∥22, ∀ϕψ, ϕψ ′

. (46)

From Lemma B.8, under the assumption that we use the mean field parameterization, we obtain

l(ϕψ) ≥ l(ϕψ ′
) + E⟨∇π(tϕ′(ϵ)), tϕ(ϵ)− tϕ′(ϵ)⟩+ λ

1

2
E∥tϕ(ϵ)− tϕ′(ϵ)∥22

≥ l(ϕψ ′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λ

1

2
E∥tϕ(ϵ)− tϕ′(ϵ)∥22 (47)

From Lemma B.3 and the proof of (4) in Theorem B.9 we obtain

l(ϕψ
′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λ

1

2
E∥tϕ(ϵ)− tϕ′(ϵ)∥22 ≥ l(ϕψ

′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λ

1

2

(
∥L− L′∥2F + ∥µ− µ′∥22

)
= l(ϕψ

′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λ

1

2

(
∥ψ(ω)− ψ(ω′)∥22 + ∥LT − L′

T ∥2F + ∥µ− µ′∥22
)

(48)

Now, let ψ(ω) = eω = σ. Then

∥ψ(ω)− ψ(ω′)∥22 = ∥σ − σ′∥22 =

d∑
j=1

(σj − σ′
j)

2. (49)

Assume that each σj ≥ δ > 0, and apply Lemma C.3

d∑
j=1

(σj − σ′
j)

2 ≥
d∑
j=1

δ2(log σj − log σ′
j)

2 = δ2∥ω − ω′∥22. (50)

We now combine this result with Eq.48 and use the assumption that 1 ≥ δ > 0:

l(ϕψ) ≥ l(ϕψ ′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λ

1

2

(
δ2∥ω − ω′∥22 + ∥LT − L′

T ∥2F + ∥µ− µ′∥22
)

≥ l(ϕψ ′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λ

1

2

(
δ2∥ω − ω′∥22 + δ2∥LT − L′

T ∥2F + δ2∥µ− µ′∥22
)

= l(ϕψ
′
) + ⟨∇l(ϕψ), ϕψ − ϕψ ′⟩+ λδ2

1

2
∥ϕψ − ϕψ ′∥22. (51)

Thus, we have demonstrated that the function l(ϕψ) is λδ2-strongly convex, provided that the diagonal scale
components are lower-bounded by δ. However, even though the exponential scale parameterization preserves
strong convexity, it reduces the strong convexity factor of the energy compared to the linear approach, which
maintains the strong convexity factor as shown in (1) in Theorem B.9.


