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Abstract

Among numerous linear approximation
methods proposed for optimal transport
(OT), tree-based methods appear to be
fairly reliable, notably for language pro-
cessing applications. Inspired by these
tree methods, we introduce several greedy
heuristics aiming to compute even faster
approximations of OT. We first explicitly
establish the equivalence between greedy
matching and optimal transport for tree
metrics, and then we show that tree greedy
matching can be reduced to greedy match-
ing on a one-dimensional line. Next, we
propose two new greedy-based algorithms in
one dimension: the k-Greedy and 1D-ICT
algorithms. This novel approach provides
Wasserstein approximations with accuracy
similar to the original tree methods on
text datasets while being faster in practice.
Finally, these algorithms are applicable
beyond tree approximations: using sliced
projections of the original data still provides
fairly good accuracy while eliminating the
need for embedding the data in a fixed and
rigid tree structure. This property makes
these approaches even more versatile than
the original tree OT methods.

1 INTRODUCTION

Optimal transport (OT) is an optimization problem
that searches for the best matching between two distri-
butions given a ground cost defined on their supports.
It has recently gained a lot of interest from the data
science community due to its ability to provide concep-
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tual tools and efficient algorithms to handle complex
data such as point clouds and probability measures.
Indeed, OT is substantially related to the Wasserstein
distance between probability measures (Villani, 2009).
It has found many applications in various fields, in-
cluding computer vision (Rabin et al., 2012, 2014), ge-
nomics (Kimmel et al., 2019; Schiebinger et al., 2019;
Yang et al., 2020), language processing (Brokos et al.,
2016; Kusner et al., 2015; Zhao et al., 2019), robust
learning (Courty et al., 2017; Tachet des Combes et al.,
2020), and fairness (Xian et al., 2023; Zhao, 2022).
One key application of OT in language processing is
document similarity search: document retrieval is per-
formed by searching for the smallest Wasserstein dis-
tance between a query text and a document database.
It often requires solving many instances of OT in a row,
hence requiring fast algorithms for computing Wasser-
stein distances.

However, computing exact Wasserstein distances gen-
erally takes cubic time in the input size (Pele and Wer-
man, 2009), which is highly demanding in practice.
A popular relaxation of OT known as the Sinkhorn
distance (Cuturi, 2013) and its extension (Lin et al.,
2019) remain to require quadratic time. Several re-
cent studies have tackled this computational bottle-
neck and reached quasi-linear complexity with ad-
ditional heuristics by adding low-rank conditions to
the Sinkhorn algorithm (Scetbon and Cuturi, 2022;
Scetbon et al., 2021), using vector embeddings of the
input distributions (Shirdhonkar and Jacobs, 2008;
Tong et al., 2021; Wang et al., 2013), and formulat-
ing OT as the solution of a dynamical system that
can be solved using fast numerical schemes (Li et al.,
2018a,b; Liu et al., 2018).

Although very efficient for some categories of appli-
cations, these methods are not suited for the docu-
ment similarity search. Indeed, the document retrieval
task has two characteristics that distinguish it from
most other OT applications: the ground space is high
dimensional, and the support of each distribution is
typically small compared to the vocabulary size. One
one hand, the methods based on a dynamical formu-
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lation of OT are designed for low dimensional inputs
and rely on a grid discretization of the space, thus be-
coming too costly to be applied efficiently on higher
dimensional settings. On the other hand, low-rank
and embedding-based methods work well in high di-
mensions, but the computations involve the full cost
matrix, meaning that they are mainly efficient when
the input histograms are dense. Hence, these cannot
be efficiently applied to document retrieval tasks.

Therefore, several methods were specifically designed
for text applications, providing simple and efficient
document retrieval implementations. Some popular
algorithms are based on the relaxation of several con-
straints of the original OT problem, like the Re-
laxed Word Mover Distance (Atasu et al., 2017; Kus-
ner et al., 2015) and the Approximate Iterative Con-
strained Transfers (Atasu and Mittelholzer, 2019)).
More recently, another line of work used tree ap-
proximations of the ground space to take advantage
of linear-time computability of tree Wasserstein dis-
tances (TWD; Le et al. (2019); Yamada et al. (2022)),
providing significantly faster OT methods for docu-
ment search at the cost of a lower accuracy. While
the approximation performance of tree-based meth-
ods degrades, it can be drastically improved by the
Flowtree algorithm (Backurs et al., 2020). However,
the Flowtree improvement comes at a large amount of
computational overhead. In this work, we seek a tech-
nical device to achieve a comparable approximation
performance to Flowtree yet with a better computa-
tional overhead.

To better reconcile the tradeoff between accuracy and
computational complexity, we propose two algorithms
to approximately compute the Wasserstein distance
based on greedy matching on a one-dimensional line.
Historically, greedy algorithms have been used to solve
optimal matching, which is closely related to optimal
transport (Avis, 1983). After reviewing the connection
between greedy matching and Flowtree (Section 3), we
show two strategies to accelerate Flowtree by project-
ing tree nodes into a one-dimensional line (Section 4).
Because greedy matching can be performed in nearly
linear time, the proposed methods can run faster than
Flowtree while enjoying the same approximation per-
formances. Finally, in Section 5, we assess the per-
formances of our method on text document datasets,
demonstrating the relevance of our approach for lan-
guage processing tasks. Overall, our contributions can
be summarized as follows:

• We prove that tree OT can be reduced to a one-
dimensional greedy matching problem.

• We introduce two new algorithms that approxi-
mate 1D greedy matching: k-Greedy and 1D-ICT

algorithms. Our end-to-end approach provides
strong approximations of 1-Wasserstein distances
on text datasets while being up to twice faster
than the Flowtree baseline. Moreover, k-Greedy
admits Flowtree as a limit case, making it a nat-
ural alternative to the latter method.

• Additionally, we propose to use k-Greedy and 1D-
ICT algorithms with sliced projections of the in-
put data. While remaining fairly accurate, this
approach is more versatile than the tree OT meth-
ods: unlike tree embeddings, sliced projections
do not require fixed-support distribution, making
this approach compatible with adaptive vocabu-
lary or with more elaborate models (e.g. using
attention (Sonkar et al., 2020) or dynamic (Bam-
ler and Mandt, 2017) word embeddings).

2 BACKGROUND

OT is an optimization problem that computes the
smallest transport cost required to transform one prob-
ability distribution into another. Definition 1 gives its
formulation in the discrete case.

Definition 1 (Optimal transport (Villani, 2009)). Let
C ∈ Rn×m

+ be a cost matrix, µ ∈ Rn
+ and ν ∈ Rm

+

two probability vectors, satisfying
∑n

i=1 µi = 1 and∑m
j=1 νj = 1, respectively. The optimal transport be-

tween µ and ν is the following optimization problem:

LC(µ, ν) = min
Π∈U(µ,ν)

⟨C,Π⟩,

where U(µ, ν) = {Π ∈ Rn×m
+ | Π1n = µ, ΠT1m = ν}.

The case where n = m and both µ, ν are uniform cor-
responds to the original optimal transportation prob-
lem as formulated by Gaspard Monge (Monge, 1781).
It is a special case of minimum weight matching, a
classical discrete optimization problem; see, e.g., Avis
(1983) for a survey on related problems.

When the cost C is a power of a distance matrix,
OT satisfies several geometric properties that make
it appealing to many theoretical and computational
applications. Indeed, the OT solution then defines
a distance on the set of probability measures, called
Wasserstein distance (Definition 2). This work mainly
focuses on the 1-Wasserstein case, which we will de-
note by W (·, ·) for conciseness.
Definition 2 (Wasserstein distances (Villani, 2009)).
Let p > 0. Let (X , d) be a finite metric space. Let
µ, ν be two probability measures on X , whose supports
are denoted by Supp(µ) = {x1, . . . , xn} and Supp(ν) =
{y1, . . . , ym}, respectively. We define the cost matrix
Cd,p = [d(xi, yj)

p]i,j.
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The p-Wasserstein distance between µ and ν is de-
fined as Wp(µ, ν) = LCd,p

(µ, ν)1/p when p ≥ 1, and
Wp(µ, ν) = LCd,p

(µ, ν) when p ≤ 1. It metrizes the set
of probability measures on X , denotedM1

+ (X ).

The worst-case complexity of exact OT solvers is cu-
bic in the input size, although simplex methods be-
have quadratically in practice (Bonneel et al., 2011).
The entropic (or Sinkhorn) regularizations of OT take
quadratic time, with the advantages of being imple-
mentable on GPU and differentiable with respect to
the input points (Cuturi, 2013), and hence are more
suited to large-scale and deep-learning-oriented OT
applications. Quadratic complexity yet remains too
slow in the most challenging settings.

2.1 Tree Wasserstein Distances

Several linear-time heuristics have been proposed to
further scale up Wasserstein computations. Among
them, tree methods approximate Wasserstein dis-
tances by replacing the true distance d with a tree met-
ric dT ,w for some well-chosen tree, in the form given
in Definition 3.

Definition 3 (Tree metric). Let T = (X ,V, E) be a
tree, where V denotes the nodes of the tree, X ⊂ V the
set of leaves, and E ⊂ V×V its edges. Let w : E → R+

be a weight function on the edges of T . The tree metric
dT ,w is the shortest path distance on T :

∀x, y ∈ X , dT ,w(x, y) = min
u1...uk∈C(x,y)

k−1∑
i=1

w(ui,ui+1)

with C(x, y) the sets of paths (u1, . . . , uk) from x to y.

The quality of the tree Wasserstein distance (TWD)
approximation mainly relies on the choice of the ap-
proximation tree T and edge weights w. Popular
tree embeddings used in the literature are Quadtrees
(Samet, 1984) and Clustertrees (Gonzalez, 1985). The
latter choice allows us to specify the height of the em-
bedding tree, leading to better control over the tree
construction. By contrast, Clustertrees do not pro-
vide straightforward weightings on the tree edges and
require additional constructions to apply TWD.

A closed-form formula of 1-Wasserstein distances on
tree metric spaces enables us to compute TWD par-
ticularly fast. The resulting tree Wasserstein approx-
imations provide fairly accurate estimates of the true
Wasserstein distances and can be further improved by
taking the average Wasserstein estimate over several
different trees, as investigated in Le et al. (2019) and
Takezawa et al. (2021).

2.2 Flowtree

The Flowtree algorithm, proposed in Backurs et al.
(2020), provides a strong improvement over the ini-
tial TWD by introducing a small variation in the tree
methods. Instead of computing the Wasserstein dis-
tances directly in the tree embedding space, Flowtree
computes the OT matching Π̃T ,w in the tree space
but computes the Wasserstein distance with the true
ground distance. By following the notations of Defini-
tion 1, the Flowtree approximation can be written as
follows:

W̃ (µ, ν) = ⟨Cd, Π̃⟩
where Π̃ ∈ argmin

Π∈U(µ,ν)

⟨CdT ,w
,Π⟩,

with Cd denoting the cost matrix for the true distance
d and CdT ,w

the tree approximation cost matrix.

Although drastically more accurate than TWD, this
approach is significantly slower. Moreover, the run-
ning time of Flowtree is depends on the tree height,
which makes it less suited to deep tree embeddings.
Hence, there is still potential for enhancing the com-
putational aspect of Flowtree.

3 RELEVANCE OF GREEDY
MATCHING AS A PROXY FOR
OPTIMAL TRANSPORT

OT is closely related to matching problems, for which
greedy strategies are very classical. The principle, de-
scribed in Algorithm 1, is to match unassigned points
iteratively in ascending order of pairwise distance.

Algorithm 1: Greedy Optimal Transport.

input : Cost matrix C of size n×m, normalized
weight vectors µ ∈ Rn

+, ν ∈ Rm
+ .

output: Π̃ matching matrix of size n×m.

Π̃i,j = 0 for (i, j) ∈ {1, . . . , n} × {1, . . . ,m}
for (i, j) ∈ {1, . . . , n} × {1, . . . ,m} sorted by
increasing value of Ci,j do

u = min(µi, νj)

Π̃i,j = u
µi = µi − u
νj = νj − u

return Π̃

For maximum matching problems, the greedy match-
ing provides a constant multiplicative bound on the
optimal cost (Avis, 1983). Minimum matching does
not enjoy such guarantees, with a Ω(nlog2(3/2)) worst-
case approximation ratio, where n denotes the num-
ber of points (Reingold and Tarjan, 1981). Since that
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Table 1: Relative Error and Correlation with true 1-
Wasserstein distance of the greedy OT on some text
datasets (introduced in Section 5.1).

DATASET REL. ERR. CORR.

Twitter 0.4 · 10−2 0.999
BBC 3.7 · 10−2 0.997
Amazon 2.2 · 10−2 0.995
20News 3.1 · 10−2 0.994

OT is closely related to minimum matching, we can-
not expect strong theoretical guarantees about greedy
matching for OT. However, the practical performances
of the greedy algorithm are highly promising on both
real and synthetic data. The strong empirical results of
greedy matchings have been observed in Ottolini and
Steinerberger (2023), and our pilot study showed the
same conclusions in Table 1 and supplementary mate-
rial. Note that the worst greedy matching case given in
Reingold and Tarjan (1981, Figure 1) corresponds to a
very specific arrangement of points separated by expo-
nentially increasing distances, which is too pessimistic
in practice. These impressive empirical performances
drive us to focus on greedy heuristics for 1-Wasserstein
distances.

Greedy matchings arise naturally when working with
trees because an OT solution on a tree is always a
greedy assignment. Indeed, each tree metric admits an
ultrametric sharing the same tree structure (Proposi-
tion 1). Moreover, we find that tree metrics with the
same tree structure share the same set of OT solu-
tions (Proposition 2) and that the greedy algorithm
solves the ultrametric OT exactly (Proposition 3).
These results are due to the cyclical monotony of opti-
mal matching, which makes tree OT completely deter-
mined by the order of lowest common ancestors in the
tree. The proofs are provided in the supplementary
material.

Definition 4 (Ultrametric (Leclerc, 1981)). An ultra-
metric is a distance function d such that:

∀x, y, z ∈ X , d(x, z) ≤ max (d(x, y), d(y, z)) .

Proposition 1 (Leclerc (1981)). Let (X , d) be an ul-
trametric space. Then, there exists a tree T and a
weight function w : E → R+ such that d = dT ,w. Re-
ciprocally, if T is a tree, then there is a weight function
w : E → R+ such that dT ,w is an ultrametric on X .

Proposition 2. For each tree T , the set of optimal
matchings associated to the metric dT ,w is identical
for any weight function w on its edges: for any w,w′ :
E → R+ and µ, ν ∈M1

+ (X ), we have:

argmin
Π∈U(µ,ν)

⟨dT ,w,Π⟩ = argmin
Π∈U(µ,ν)

⟨dT ,w′ ,Π⟩.

Proposition 3. If (X , d) is an ultrametric space, then
the matching output by Algorithm 1 is optimal.

Although not explicit in Backurs et al. (2020), the rela-
tion between greedy matching and tree OT is central
in the Flowtree implementation. The strong results
of greedy OT imply that the Flowtree performance is
mainly due to the greedy nature of the tree matching
rather than the tree metric approximation itself. To
improve Flowtree computations, two strategies hence
emerge: (i) speeding up the greedy matching itself; (ii)
performing greedy matching on other types of embed-
dings enjoying better properties than trees.

4 GREEDY-BASED HEURISTICS
FOR OPTIMAL TRANSPORT

We exploit the link between greedy matching and tree
OT to design faster variants of the Flowtree algorithm.
Flowtree relies on a tree greedy matching that runs in
O((n + m)h) time, where h denotes the tree height.
Although satisfactory when the tree is shallow (as is
usually the case with Quadtrees), the dependence in
h can significantly impact the running time when the
vocabulary size is large or when using deeper tree em-
beddings. For the first time, we propose efficient data
structures that eliminate the dependency in h, fasten-
ing the greedy matching in deep tree settings.

4.1 Method 1: 1D k-Greedy Matching

Our initial observation is that the nodes of a tree can
be encoded in the real line while preserving the pair-
wise similarity order (Proposition 4). The construc-
tion, illustrated in Figure 1, is detailed in the supple-
mentary material (Section B.1). We can therefore re-
duce the tree greedy matching problem to a 1D greedy
assignment.

Proposition 4. Let T be a rooted tree and X its set of
leaves. Then, there exists a mapping f : X → R that
defines a distance df (x, y) = |f(x) − f(y)| such that
for each ultrametric d on T and for each x, y, z ∈ X ,

d(x, y) < d(x, z) =⇒ df (x, y) < df (x, z).

In particular, the greedy matching on df provides an
optimal matching for any tree distance on T .

Computing Nearest Neighbors (NN) in one dimension
is particularly efficient: as stated in Proposition 5, the
NN mapping between two sets of 1D points is always
non-decreasing. Exploiting this fact, we can compute
the list of all NNs in one single iteration over the data.

Proposition 5. Let x1 ≤ · · · ≤ xn ∈ R and y1 ≤
· · · ≤ ym ∈ R. Let τ : {1, . . . , n} 7→ {1, . . . ,m} be the
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R
∆0 ∆1 ∆0 ∆2 ∆0 ∆1 ∆0

Figure 1: The 1D-embedding of the nodes of a tree. By adjusting the gaps ∆0,∆1,∆2, we can ensure that the
1D distance between two points increases with the height of their lowest common ancestor.

nearest neighbor map between the two sets of points,
defined as:

∀i ∈ {1, . . . , n}, τ(i) = argmin
j∈{1,...,m}

|xi − yj |.

Then, τ is non-decreasing.

Then, we can compute 1D greedy matchings by the
following procedure: while some points remain un-
matched, we identify the unmatched point whose dis-
tance to its NN is minimal and match this point with
its NN. Although computing the NN list is very fast,
the global procedure would still have a quadratic run-
ning time because the number of loop iterations is too
large to offer a better complexity. This can be solved
by restricting the number of iterations: after k updates
of the NN list, we assign the unmatched points in ar-
bitrary order without updating the NN list anymore.
The pseudo-code of this k-Greedy method is given in
Algorithm 2, and the detailed implementation is de-
scribed in the supplementary material (Section B.3).

While k̃ < k, k-Greedy matches points by increasing
distance. Therefore, when k ≥ n+m, k-Greedy is ac-
tually equivalent to the Flowtree method. For smaller
values of k, the furthest pairs of points are matched ar-
bitrarily. Using adequate data structures, the full algo-
rithm can be implemented in O((k+1)(n+m) log(n))
time, offering acceleration compared to the original
Flowtree whenever (k + 1) log(n)≪ h.

4.2 Method 2: Iterative Constrained
Transfer Algorithm

We propose a faster but less precise algorithm for 1D
matching, the 1D-ICT algorithm. The Iterative Con-
strained Transfer (ICT) algorithm, proposed in Atasu
and Mittelholzer (2019), solves a relaxed variant of OT
where the feasible set U(µ, ν) is replaced with

UICT (µ, ν) = {Π ∈ Rn×m
+ | Π1n = µ, Πi,j ≤ νj ∀i, j}.

ICT is generally expensive to solve; however, the com-
putations can be made fast in one dimension. Our
1D-ICT algorithm (Algorithm 3) runs in O(n + m)
time on uniform input distributions. It is also very
data-efficient; besides the input data, it only requires
O(1) additional space.

Algorithm 2: 1D k-Greedy algorithm.

input : Points x1, . . . , xn ∈ X and
y1, . . . , ym ∈ X sorted by values of f ,
weight vectors µ ∈ Rn, ν ∈ Rm, mapping
function f : X → R, the true distance d,
k ≥ 0.

output: The 1-Wasserstein estimate W̃ .

W̃ = 0
Ex = {1, . . . , n}
Ey = {1, . . . ,m}
τ = nearest neighbor mapping between x1, . . . , xn

and y1, . . . , ym for the function f .
for k̃ = 0 to k do

Sort Ex by increasing value of |f(xi)− f(yτ(i))|
for i ∈ Ex do

label 0
u = min(µi, ντ(i))

W̃ = W̃ + u · d(xi, yτ(i))
µi = µi − u
ντ(i) = ντ(i) − u
if ντ(i) = 0 then Ey = Ey\{τ(i)}
if µi = 0 then
Ex = Ex\{i}

else
τ(i) = argminj∈Ey

{|f(xi)− f(yj)|}
if k̃ = k then goto 0

if Ex = ∅ then break

return W̃

4.3 Sliced Extensions

Algorithms 2 and 3 are not specific to trees and can
be used with any 1D embedding. Taking inspiration
from Sliced Wasserstein distances (Rabin et al., 2012),
we can use orthogonal projections of the data to apply
our algorithms without relying on a tree embedding
of the vocabulary. Since random projections contain
less structure than tree embeddings, the Sliced greedy
approach should be less accurate than the tree ver-
sion. However, Sliced projections are more polyvalent
and flexible than tree embeddings because they do not
rely on a static embedding structure; therefore, this
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Algorithm 3: One-dimensional ICT.

input : Points x1, . . . , xn ∈ X and
y1, . . . , ym ∈ X sorted by values of f ,
weight vectors µ ∈ Rn, ν ∈ Rm, mapping
function f : X → R, the true distance d.

output: The 1-Wasserstein estimate W̃ .

W̃ = 0
j = 1
for i = 1 to n do

while j < m and
|f(yj+1)− f(xi)| < |f(yj)− f(xi)| do

j = j + 1
jl = j
jr = j
c = µi

while c > 0 do
jnext =
argminjnext∈{jl,jr} {|f(yjnext

)− f(xi)|}
u = min(c, νjnext)

W̃ = W̃ + u · d(xi, xjnext
)

c = c− u
if jnext = jl then jl = jl − 1
if jnext = jr then jr = jr + 1

return W̃

approach provide an interesting generalization of the
tree methods when the vocabulary is not fixed. More-
over, Sliced projections can be computed on-the-fly
without any data preprocessing. Finally, k-Greedy al-
ways provides an upper bound of the true Wasserstein
distance because it always outputs a feasible matching
for OT. Using the idea of Mahey et al. (2023), we can
take the minimum greedy Wasserstein estimate over
several random 1D projections to further improve the
approximation quality of the k-Greedy algorithm and
obtain more stable estimates of Wasserstein distances.

Note that sliced greedy matching is really close to
Projected distances (Rowland et al., 2019), a vari-
ant of Sliced Wasserstein that aims to better estimate
Wasserstein distances by computing the OT matching
matrix on 1D projections of the inputs and evaluate
it back in the original space. The difference with our
method is that we compute a (truncated) greedy 1D
matching rather than the 1D optimal transport match-
ing. Experiments will show that this slight change
actually yields strong improvements over the original
Projected Wasserstein on tested datasets.

5 EXPERIMENTS

We now evaluate the approximation quality of our
methods on Nearest Neighbour (NN) search tasks, on

Table 2: Number of elements, vocabulary size, and
average support size (word count) of the datasets.

DATASET ELEMS. VOC. SUPP.

Twitter 1754 4489 10.4
BBC 1225 11382 121.8
Amazon 9198 27479 41.0
20News 11314 400000 115.9

various real and synthetic datasets. In all the follow-
ing experiments, the Euclidean distance was used as
the ground cost for computing the 1-Wasserstein dis-
tances.

5.1 Setup

We test our algorithms on various text datasets: Twit-
ter (Huang et al., 2016),1 BBC (Greene and Cun-
ningham, 2006),2 Amazon Movies and TV (Ni et al.,
2019),3 and 20News (Backurs et al., 2020).4 The text
documents were preprocessed following the methodol-
ogy of Kusner et al. (2015): after stopwords removal,
each document was embedded as a Bag-of-Vectors us-
ing deep neural embeddings. The Twitter dataset was
embedded using word2vec (Church, 2017) with an em-
bedding dimension of 300; BBC, Amazon, and 20News
using Glove (Pennington et al., 2014) with dim. 50.
The statistics of each dataset are given in Table 2.

We also conduct experiments on random datasets: the
random vocabularies X contain 105 points sampled
from the standard Gaussian distribution in Rd with
varying values of d, and each data element contains
n = 100 points uniformly sampled from X .

Each dataset is evaluated on a query set containing
1000 additional documents; for each query element,
the goal of the NN search is to find the element of
the database that minimizes the 1-Wasserstein dis-
tance with the query. The quality of the search is
assessed using the NN recall metric: given K ∈ N,
the recall@K is the proportion of queries for which
the true NN is among the K NNs retrieved by the
approximation method. The correlation between the
true and approximated 1-Wasserstein distances is ad-
ditionally monitored: given a dataset with N elements
and M = 1000 the number of query elements, we com-
pute the N ·M true and approximate 1-Wasserstein
distances between each pair of query and dataset el-
ement, and measure the Pearson correlation between

1https://github.com/gaohuang/S-WMD
2http://mlg.ucd.ie/datasets/bbc.html
3https://cseweb.ucsd.edu/~jmcauley/datasets/

amazon_v2/
4https://github.com/ilyaraz/ot_estimators

https://github.com/gaohuang/S-WMD
http://mlg.ucd.ie/datasets/bbc.html
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://github.com/ilyaraz/ot_estimators


Guillaume Houry, Han Bao, Han Zhao, Makoto Yamada

Figure 2: Accuracy and running time of the tree approximation algorithms for Quadtrees and Clustertrees
embeddings (average over 20 random initializations). The running time is the average time required to compute
the Wasserstein distances between one query and the full dataset.

the list of the N ·M true Wasserstein distances and
the N ·M approximate values.

We evaluate 1D-ICT and k-Greedy algorithms both
on tree embeddings (using Quadtree and Clustertrees)
and sliced embeddings. Since our main focus is tree
approximation methods, we mainly compare our meth-
ods to Flowtree and tree Wasserstein distance (TWD).
We also provide a comparison with Projected Wasser-
stein distances. We finally refer to Backurs et al.
(2020) for a broader comparison of linear OT meth-
ods. All the algorithms used in the experiments were
implemented in C++.

5.2 Experiments on text datasets

Figure 2 shows the performances of tree methods for
different kinds of tree embeddings. It clearly shows
that, unlike Flowtree, the running time of our algo-
rithms is independent of the tree height. We also
observe that deeper Clustertree embeddings provide
more accurate Wasserstein approximations in terms
of correlation and recall@5; therefore, using deeper
embeddings is useful, and k-Greedy makes it possible
without additional running time. When the vocabu-
lary is large (e.g., in Amazon and 20News datasets),
1-Greedy is even slightly faster than Flowtree on

Figure 3: Recall@5 of k-Greedy when using the mini-
mumWasserstein estimate overN random projections.

Quadtree while providing similar—and even slightly
better—approximation quality. Finally, the 1D-ICT
algorithm is less accurate than the other methods
and benefits less of an increased tree height. Yet, its
computations are significantly faster even on shallow
trees, evidencing the relevance of this method for fast
Wasserstein approximations.

The results obtained with particular tree embeddings
are shown in Table 3 together with the results of sliced
algorithms. It shows that (i) Clustertree enjoys higher
accuracy than Quadtree, and (ii) Flowtree suffers from
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Table 3: Correlation, Recall@5 and average running time of the different methods, and standard deviation over
the 20 random initializations. Our proposed methods are marked in bold. h denotes the Clustertree height.

DATASET METHOD EMBEDDING CORR. R@5 TIME

Twitter

TWD Quadtree 0.886± 0.000 90.7± 0.2% 2.3 ms
Flowtree Quadtree 0.927± 0.000 95.5± 0.0% 3.6 ms
1D-ICT Clustertree(h=5) 0.939± 0.003 94.8± 0.6% 2.9 ms
1-Greedy Clustertree(h=5) 0.954± 0.004 96.9± 0.4% 4.5 ms
Flowtree Clustertree(h=5) 0.953± 0.004 96.7± 0.5% 4.7 ms
Proj. Wass. Sliced projection 0.687± 0.023 45.9± 1.6% 2.8 ms
1D-ICT Sliced projection 0.922± 0.003 94.1± 0.6% 2.9 ms
1-Greedy Sliced projection 0.934± 0.003 95.8± 0.5% 4.5 ms

BBC

TWD Quadtree 0.747± 0.024 83.4± 3.8% 2.0 ms
Flowtree Quadtree 0.948± 0.004 96.0± 0.5% 16.8 ms
1D-ICT Clustertree(h=25) 0.863± 0.011 94.4± 0.6% 5.6 ms
1-Greedy Clustertree(h=25) 0.961± 0.003 97.2± 0.4% 22.9 ms
Flowtree Clustertree(h=25) 0.962± 0.003 97.2± 0.5% 40.5 ms
Proj. Wass. Sliced projection 0.798± 0.009 44.8± 1.8% 3.7 ms
1D-ICT Sliced projection 0.886± 0.009 92.5± 0.6% 4.7 ms
1-Greedy Sliced projection 0.939± 0.002 95.6± 0.5% 21.4 ms

Amazon

TWD Quadtree 0.667± 0.058 55.2± 5.5% 13.6 ms
Flowtree Quadtree 0.775± 0.017 82.2± 1.2% 54.2 ms
1D-ICT Clustertree(h=25) 0.792± 0.029 76.9± 1.5% 20.3 ms
1-Greedy Clustertree(h=25) 0.819± 0.019 85.3± 1.2% 50.5 ms
Flowtree Clustertree(h=25) 0.815± 0.022 84.7± 1.9% 105.4 ms
Proj. Wass. Sliced projection 0.626± 0.023 24.0± 1.3% 18.1 ms
1D-ICT Sliced projection 0.701± 0.013 70.7± 1.4% 21.3 ms
1-Greedy Sliced projection 0.755± 0.011 80.9± 1.1% 52.4 ms

20news

TWD Quadtree 0.633± 0.040 64.0± 7.4% 13.6 ms
Flowtree Quadtree 0.873± 0.010 88.6± 0.8% 136.8 ms
1D-ICT Clustertree(h=25) 0.824± 0.007 84.1± 0.7% 40.0 ms
1-Greedy Clustertree(h=25) 0.907± 0.007 89.8± 0.8% 130.3 ms
Flowtree Clustertree(h=25) 0.910± 0.012 90.7± 0.8% 283.8 ms
Proj. Wass. Sliced projection 0.722± 0.010 26.6± 1.2% 25.0 ms
1D-ICT Sliced projection 0.775± 0.010 81.2± 0.9% 30.0 ms
1-Greedy Sliced projection 0.850± 0.004 87.7± 0.7% 121.3 ms

longer running time than the other methods on Clus-
tertrees. Using 1-Greedy instead of Flowtree, we im-
proved the running time while preventing the correla-
tion and recall from degrading much. Moreover, the
1D-ICT algorithm is three to four times faster than
both Flowtree and Quadtree. Although the correlation
and recall are smaller, the performances are still signif-
icantly better than the original TWD method and the
Projected Wasserstein. Therefore, this algorithm pro-
vides an intermediate time-accuracy tradeoff between
TWD and Flowtree.

Finally, when using the sliced projections, the per-
formances of 1D-ICT and k-Greedy algorithms are
slightly smaller than those with tree embeddings, al-
though the decrease is rather moderate. Moreover, 1D-

ICT is significantly better than the Projected Wasser-
stein distance while taking a similar amount of time
to compute. Figure 3 shows that k-Greedy results can
further be improved by aggregating the results over
several projections; even with as few as N = 5 es-
timates, the NN recall is significantly improved and
reaches the values previously obtained with tree em-
beddings. It makes these algorithms particularly rele-
vant when no tree embedding is available, i.e., in sit-
uations where the vocabulary is not fixed or when the
number of Wasserstein estimates is too small to amor-
tize the tree construction.
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Figure 4: Evaluation of the algorithms on random
point sets in Rd, for different dimensions d (average
over 15 random initializations).

5.3 Experiments on synthetic datasets

We next evaluate these algorithms on random Gaus-
sian datasets, in order to assess their performances on
less structured inputs. The results in Figure 4 show the
relationship between the dimension and performance.
We clearly observe that all the methods tested here
perform better in higher dimensions. When the di-
mension exceeds d = 20, Clustertree 1-Greedy, Sliced
1-Greedy, and Flowtree are equivalent. Similarly, 1D-
ICT is equivalent with both Sliced and Clustertrees
embeddings when the dimension is large. A signifi-
cant performance gap subsists between 1-Greedy and
1D-ICT methods across all input dimensions. Overall,
these experiments show that our methods are mainly
relevant in high-dimension, e.g., for language process-
ing applications.

6 CONCLUSION

In this work, we demonstrated the interest of greedy-
based strategies to compute fast and accurate 1-
Wasserstein distance estimates. Our first proposed
method, the k-Greedy algorithm, exhibits performance
levels comparable to Flowtree when applied to text
datasets. Our second method, the 1D-ICT method, is
less accurate but still reliable on text data while being
particularly fast. Both algorithms demonstrate im-
proved scalability with respect to the tree height. Us-
ing sliced projections instead of tree embeddings, these
methods still furnish reliable approximations without
needing any data preprocessing or freezing the vocab-
ulary. Finally, experiments on synthetic datasets seem
to show the relevance of our methods in more general
high-dimensional settings, and we hope that the ideas
introduced here may prove their usefulness in other

applications of optimal transport as well.
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(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
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URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]
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multiple times). [Yes]
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(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

A DETAILED ANALYSIS OF
GREEDY OPTIMAL
TRANSPORT

In this section, we provide further theoretical and em-
pirical results concerning the performances of greedy
OT, whose procedure is recalled in Algorithm 1.

A.1 Approximation bounds

We first provide several theoretical results about
greedy OT adapted from the discrete optimization lit-
erature. For maximum matching problems, i.e. when
we aim to maximize ⟨C,Π⟩ rather than minimizing
it, the greedy algorithm is known to provide a 1/2-
approximation of the maximal value; see e.g. (Avis,
1983, Theorem 4) for a concise proof. Proposition A
translates this result in the optimal transport context.

Proposition A. Let C ∈ Rn×m
+ be a cost matrix

and µ ∈ Rn
+, ν ∈ Rm

+ two probability vectors. Let
LC(µ, ν) be the Optimal Transport cost between µ and
ν. Let Π̃ be the greedy matching given by Algorithm 1,
L̃C(µ, ν) = ⟨C, Π̃⟩ the greedy cost approximation, and
∥C∥∞ = maxi,j Ci,j. The following bound holds :

LC(µ, ν) ≤ L̃C(µ, ν) ≤
1

2
(LC(µ, ν) + ∥C∥∞) .

In the metric case, denoting dM = maxi,j d(xi, yj), we
have for p ≤ 1:

Wp(µ, ν) ≤ W̃p(µ, ν) ≤
1

2
(Wp(µ, ν) + TV (µ, ν) · dM ) .

Greedy matching has also been studied for Minimum
Matching problems. The worst case bound has been
determined in Reingold and Tarjan (1981) and is re-
called in Proposition B for the Monge transportation
problem.

Proposition B (Reingold and Tarjan (1981)). Let
(X , d) be a metric space and ν, µ ∈ M1

+ (X ). In the
case where |Supp(µ)| = |Supp(ν)| = n and where
µ, ν are uniform on their support, then the greedy 1-
Wasserstein distance approximate W̃ satisfies the fol-
lowing inequality:

W̃ ≤
(
4

3
nlog2(3/2) − 1

)
·W.

Moreover, the bound is tight: if n is a power of 2, there
exists a metric space (X , d) and two distributions µ, ν
such that |Supp(µ)| = |Supp(ν)| = n such that the
bound is reached.

Both results show that the worst-case performances
of greedy OT are very poor. Indeed, the bound of
Proposition A involves the diameter ∥C∥∞ of the cost
matrix that can be significantly larger than the Opti-
mal Transport cost; therefore, this bound provides a
limited control on the greedy performances for Wasser-
stein approximations. The approximation ratio of
Proposition B increases polynomially in the number
of points, meaning that the worst-case performances
of the greedy algorithm degrade quickly with the size
of the input.

When the two inputs are sufficiently close, however,
greedy OT computes the true OT solution, as stated
in Proposition C.

Proposition C. Let p ≤ 1. Let (X , d) be a finite
metric space and µ, ν ∈ M1

+ (X ). If there exists a
mapping T : X → X such that ν = T♯µ and that
satisfies:

max
x∈X

d(x, T (x)) ≤ 1

2
· min
x,x′∈Supp(µ)

x ̸=x′

d(x, x′),

then Wp(µ, ν) = W̃p(µ, ν).

A.2 Experiments on random datasets

Our experiments on text datasets showed the strong
empirical accuracy of greedy matching in real cases.

The approximation quality of greedy matching for 1-
Wasserstein distance is lower for random inputs than
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Figure A: Evaluation of the Greedy Wasserstein distance on random inputs. The datasets contain n = 100 points
sampled from a standard Gaussian distribution in Rd, with varying values of d.

with real datasets (Figure A). However, the correla-
tion remains larger than 0.9 across the vast majority
of the tested dimensions. Moreover, the relative error
decreases and the correlation increases with the input
dimension. Therefore, greedy OT seems mainly rele-
vant in high dimensions.

Interestingly, greedy OT is less correlated with true
Wasserstein distances for small dimensions (dim. 3 to
10). The reason for this correlation drop is unclear and
may indicate that 1-Wasserstein distances have a more
complex geometry across this range of dimensions.

B DETAILED ALGORITHMIC
IMPLEMENTATION

This section is dedicated to the implementation details
of the algorithms and procedures introduced in our
paper.

B.1 1D embedding of tree leaves

Algorithm A provides the procedure that implements
the one-dimensional embedding for trees. It is based
on a recursive procedure that ensures that the gap be-
tween the embedding of two successive nodes is larger
than the maximum gap between two nodes with a
smaller lowest common ancestor.

Remark. In practice, the maximum value of the func-
tion f output by Algorithm A grows exponentially with
the height of the embedded tree. More precisely, for

Algorithm A: 1-dimensional tree embedding.

input : A rooted tree T of leaves X .
output: A mapping f : X → R.
f = 0
treeEmbed(T , k = 0)
return f

treeEmbed T , k :
r = root of T
if r is leaf then

f(r) = k
return k

else
i = 0
imax = (degree of r)− 1
∆kold = 0
foreach children T̃ of r do

k′ = treeEmbed(T̃ , k)
∆k = k′ − k
k = k′

if i > 0 then

foreach leaves x of T̃ do
f(x) = f(x) + max(∆kold,∆k);
k = k +max(∆kold,∆k)

if i ̸= imax then k = k + 1;
∆kold = ∆k
i = i+ 1

return k
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Algorithm B: One-dimensional nearest neighbor
computation.

input : Points x1, . . . , xn ∈ X and
y1, . . . , ym ∈ X sorted by values of f ,
mapping function f : X → R.

output: τ : {1, . . . , n} → {1, . . . ,m} giving the
index of nearest neighbors of the xi

among the set of yj .

j = 1
for i = 1 to n do

while j < m and
|f(yj+1)− f(xi)| < |f(yj)− f(xi)| do

j = j + 1

τ(i) = j

return τ

a tree of height h with maximum degree l, the func-
tion f is bounded by fmax = (2k − 1)h. Arithmetic
operations involving integers between [0,M ] have an
asymptotic running time of O(log(M)): therefore, the-
oretically, the algorithms presented in this part also
scale linearly with h. However, in practice, the cost
of arithmetic operations is significantly lower than the
other elementary operations involved in the algorithms
studied here, and the exponential growth of fmax has a
negligible effect on the complexity in practice. This is
yet an important observation for the implementation
of these algorithms since integer overflows are likely
to happen when using an inadequate data type.

B.2 1D Nearest Neighbor Search

Using the fact that nearest neighbor mappings are
non-decreasing in one dimension, we can implement
the NN list search in linear time by scanning both
lists simultaneously in increasing order, as presented
in Algorithm B. This algorithm computes the nearest
neighbors of x1, . . . , xn among the points y1, . . . , ym in
O(n+m) time (i.e. an amortized complexity of O(1)
for one single point NN search).

B.3 k-Greedy algorithm

The exact implementation of the k-greedy method,
given in Algorithm C, relies on pointer lists that al-
low to quickly scan over the unmatched points of the

distributions µ and ν. The vectors
−→
P x,

−→
P y and

←−
P y

contain the indices of the next unmatched element of
each point of x1, . . . , xn and y1, . . . , ym in both in-
creasing and decreasing order of f . This makes it
possible to update the nearest neighbour mapping τ
very efficiently, ensuring the linear complexity of the
k-Greedy algorithm. This implementations runs in
O((k + 1)(n+m) log(n)) time.

Algorithm C: One-dimensional k-Greedy algo-
rithm (detailed implementation).

input : Points x1, . . . , xn ∈ X and
y1, . . . , ym ∈ X sorted by values of f ,
weight vectors µ ∈ Rn, ν ∈ Rm, mapping
function f : X → R, k ≥ 0.

output: The 1-Wasserstein estimate W̃ .

W̃ = 0−→
P x = (1, . . . , n)
−→
P y = (1, . . . ,m)
←−
P y = (1, . . . ,m)
τ = nearest neighbor mapping between x1, . . . , xn

and y1, . . . , ym for the function f .
for k̃ = 0 to k do
Ex = ∅
i = 1
while i < n do

ir = i
while µir = 0 do

ir =
−→
P x[ir + 1]

−→
P x[i] = ir
i = ir
Add i to Ex

Sort Ex by increasing value of |f(xi)− f(yτ(i))|
for i ∈ Ex do

label 0
u = min(µi, ντ(i))

W̃ = W̃ + u · d(xi, yτ(i))
µi = µi − u
ντ(i) = ντ(i) − u
jl = τ(i)
jr = τ(i)
if ντ(i) = 0 then

while νjl = 0 do
←−
P y[jl] = τ(i)

jl =
←−
P y[jl − 1]

while νjr = 0 do
−→
P y[jr] = τ(i)

jl =
−→
P y[jr + 1]

←−
P y[τ(i)] = jl−→
P y[τ(i)] = jr

if µi = 0 then
−→
P x[i] =

−→
P x[i+ 1]

else
if |f(xi)− f(yjl)| < |f(xi)− f(yjr )|
then τ(i) = jl else τ(i) = jr

if k̃ = k then goto 0

return W̃
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C PROOFS

In this section, we provide proofs of the propositions
stated in the main article and in this supplementary
material.

C.1 Approximation bounds of Greedy
Optimal Transport

Proposition A. Let C ∈ Rn×m
+ be a cost matrix

and µ ∈ Rn
+, ν ∈ Rm

+ two probability vectors. Let
LC(µ, ν) be the Optimal Transport cost between µ and
ν. Let Π̃ be the greedy matching given by Algorithm 1,
L̃C(µ, ν) = ⟨C, Π̃⟩ the greedy cost approximation, and
∥C∥∞ = maxi,j Ci,j. The following bound holds :

LC(µ, ν) ≤ L̃C(µ, ν) ≤
1

2
(LC(µ, ν) + ∥C∥∞) .

In the metric case, denoting dM = maxi,j d(xi, yj), we
have for p ≤ 1:

Wp(µ, ν) ≤ W̃p(µ, ν) ≤
1

2
(Wp(µ, ν) + TV (µ, ν) · dM ) .

Proof of Proposition A. The lower bound LC ≤ L̃C is
a consequence of the feasibility of the greedy matching,
i.e. Π̃ satisfies the constraints of the Optimal Trans-
port.

In order to prove the upper bound, let us first remark
that

L̃C(µ, ν) =

∫ ∥C∥∞

0

∑
i,j

Π̃i,j · 1Ci,j>λdλ (1)

and

LC(µ, ν) =

∫ ∥C∥∞

0

∑
i,j

Πi,j · 1Ci,j>λdλ. (2)

We will now fix a value λ ∈ [0, ∥C∥∞] and try to bound
the value of

∑
i,j Π̃i,j · 1Ci,j≤λ.

Let us assume that Π̃ ̸= Π. Then, there exists a set of
indices i1, j1, . . . , iN , jN such that each ik is distinct,
each jk is distinct, and for each k ∈ {1, . . . , N},with
the convention jN+1 = j1:

Π̃ik,jk > Πik,jk and Πik,jk+1
> Π̃ik,jk+1

. (3)

The existence of a cyclical permutation satisfying
Equation 3 is a direct consequence of the constraints
of optimal transport: if there exists a couple (i, j) such
that Πi,j > Π̃i,j , then there must be an other index k

such that Πi,l < Π̃i,l since that for each value of i,

m∑
l=1

Πi,l =

m∑
l=1

Π̃i,l.

Therefore, we can build such a cycle recursively by
alternating between edges where Πi,j > Π̃i,j and where

Π̃i,j > Πi,j .

Let Γ̃ = {(ik, jk)}, Γ = {(ik, jk+1)}, I = {ik} and
J = {jk}. For each (ik, jk+1), we have either:

Cik,jk+1
≥ Cik,jk or Cik,jk+1

≥ Cik+1,jk+1
.

Indeed, the first inequality of Equation 3 states that
Π̃ik,jk > Πik,jk ; since that Πik,jk ≥ 0, we must have

Π̃ik,jk > 0. Similarly, Π̃ik+1,jk+1
> 0. But Π̃ is a

greedy matching: when the couple (ik, jk+1) is pro-
cessed by the algorithm, all the possible remaining
mass is attributed to Π̃ik,jk+1

, and either µik = 0 or
νjk+1

= 0 after that iteration of the algorithm. Hence,
if both (ik, jk) and (ik+1, jk+1) were processed after
(ik, jk+1), then we would have either Π̃ik,jk = 0 or

Π̃ik+1,jk+1
= 0, leading to a contradiction.

Therefore, if Cik,jk+1
≥ λ, then either Cik,jk ≤ λ

or Cik+1,jk+1
≤ λ. Hence, the number of couples

(ik, jk+1) such that Cik,jk+1
≥ λ is at most twice the

number of couples (ik, jk) satisfying Cik,jk ≤ λ, i.e.

N∑
k=1

1Cik,jk
≤λ ≥

1

2

N∑
k=1

1Cik,jk+1
≤λ.

Denoting by ω > 0 the minimal value of |Π − Π̃| on
both Γ̃ and Γ, the previous inequality can be rewritten
as:∑

i,j

ω1(i,j)∈Γ̃ · 1Ci,j≤λ ≥
1

2

∑
i,j

ω1(i,j)∈Γ · 1Ci,j≤λ.

Moreover, the matrices Π′ and Π̃′ defined as

∀i, j, Π′
i,j = Πi,j − ω1(i,j)∈Γ̃

and Π̃′
i,j = Π̃i,j − ω1(i,j)∈Γ

are valid matching matrices between the (unnormal-
ized) weight vectors µ′ and ν′ whose coefficients are
defined as

µ′
i = µi − ω1i∈I and ν′j = νj − ω1j∈J ,

in the sense that

Π′1n = µ′, Π′T1m = ν′

and
Π̃′1n = µ′, Π̃′T1m = ν′.

The matrix Π̃′ is still a greedy matching between these
unnormalized weight vectors, so we can iteratively ap-
ply the same argument until Π′ = Π̃′, and eventually
prove:

∑
i,j

Π̃i,j · 1Ci,j≤λ ≥
1

2

N∑
k=1

Πi,j · 1Ci,j≤λ. (4)
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Going back to Equations 1 and 2, we obtain:

L̃C(µ, ν) =

∫ ∥C∥∞

0

1−
∑
i,j

Π̃i,j1Ci,j≤λ

 dλ

≤
∫ ∥C∥∞

0

1− 1

2

∑
i,j

Πi,j1Ci,j≤λ

 dλ

≤
∫ ∥C∥∞

0

1

2
+

1

2

∑
i,j

Πi,j1Ci,j>λ

 dλ

≤ 1

2
(∥C∥∞ + LC(µ, ν)) .

In the metric case when p ≤ 1, the triangular in-
equality makes it optimal to match x ∈ Supp(µ) and
y ∈ Supp(ν) together as soon as x = y. The greedy
matching also assigns identical points together, so we
can always find an optimal matching Π such that
Πi,j = Π̃i,j for each (i, j) with xi = yj . Since that

Equation 3 only involves edges satisfying Πi,j ̸= Π̃i,j ,
Equation 4 becomes:

∑
i,j

Π̃i,j · 10<d(xi,yj)≤λ ≥
1

2

N∑
k=1

Πi,j · 10<d(xi,yj)≤λ.

Moreover, Π̃ is minimal for the cost Ci,j = 1xi ̸=yj ;
therefore:∑

i,j

Πi,j · 1xi ̸=yj =
∑
i,j

Π̃i,j · 1xi ̸=yj = TV (µ, ν),

the first equality being a consequence of the fact that
Πi,j = Π̃i,j when xi = yj . Then, for λ > 0,∑

i,j

Π̃i,j ·1d(xi,yj)>λ

=
∑
i,j

Π̃i,j · (1− 10<d(xi,yj)≤λ − 1xi=yj )

=
∑
i,j

Π̃i,j · (1xi ̸=yj − 10<d(xi,yj)≤λ)

= TV (µ, ν)−
∑
i,j

Π̃i,j · 10<d(xi,yj)≤λ.

Similarly,∑
i,j

Πi,j ·1d(xi,yj)>λ = TV (µ, ν)−
∑
i,j

Πi,j ·10<d(xi,yj)≤λ

Plugging this equation in Equations 1 and 2, we even-
tually obtain the following inequality:

W̃p(µ, ν) ≤
1

2
(Wp(µ, ν) + dM · TV (µ, ν)).

Proposition C. Let p ≤ 1. Let (X , d) be a finite
metric space and µ, ν ∈ M1

+ (X ). If there exists a
mapping T : X → X such that ν = T♯µ and that
satisfies:

max
x∈X

d(x, T (x)) ≤ 1

2
· min
x,x′∈Supp(µ)

x ̸=x′

d(x, x′),

then Wp(µ, ν) = W̃p(µ, ν).

Proof of Proposition C. Let x ∈ Supp(µ) and y =
T (x). Then, for each x′ ∈ Supp(µ):

d(x′, y) ≥ d(x, x′)− d(x, y)

≥ 2 · d(x, T (x))− d(x, y)

≥ d(x, y).

Therefore, for each x ∈ Supp(µ), y = T (x) is the near-
est neighbor of x in Supp(ν). Since that ν = T♯µ, the
greedy algorithm exactly matches the points x with
their image T (x), resulting in a feasible matching. The
inequality proven above also implies that the map T is
optimal for the Monge transportation. It shows that
the optimal matching is exactly the greedy matching,
hence the result.

C.2 Connection between Tree Optimal
Transport and Greedy Matching

The equivalence between tree OT and greedy match-
ing is rather classical, and is related to the proper-
ties of minimum flows over trees (minimum flow being
an optimization problem equivalent to optimal trans-
port). However, proofs are difficult to find in the liter-
ature. Therefore, we provide here a formal and com-
plete proof here. These proofs mainly rely on the cycli-
cal monotony of optimal matching.

We first recall the Proposition 1, a standard property
of ultrametric that will be useful in the next proofs.

Proposition 1 (Leclerc (1981)). Let (X , d) be an ul-
trametric space. Then, there exists a tree T and a
weight function w : E → R+ such that d = dT ,w. Re-
ciprocally, if T is a tree, then there is a weight function
w : E → R+ such that dT ,w is an ultrametric on X .
Proposition 2. For each tree T , the set of optimal
matchings associated to the metric dT ,w is identical
for any weight function w on its edges: for any w,w′ :
E → R+ and µ, ν ∈M1

+ (X ), we have:

argmin
Π∈U(µ,ν)

⟨dT ,w,Π⟩ = argmin
Π∈U(µ,ν)

⟨dT ,w′ ,Π⟩.

The core idea in the proof of Proposition 2 is that
a non-optimal matching always matches together two
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pairs of nodes whose shortest paths overlap in the tree.
Therefore, for any weight function on the edges ex-
changing the pairings will always improve the cost of
the matching.

Proof of Proposition 2. Let T = (X ,V, E) be a tree,
let x1, . . . , xn and y1, . . . , ym two set of points of X ,
and µ ∈ Rn, ν ∈ Rm two probability vectors. Let
Π be a feasible matching between µ and ν that is not
optimal for the distance dT ,w (for some weight function
w). We will now show that it cannot be optimal for
any other distance dT ,w′ on the same tree as well.

If Π is not optimal with respect to dT ,w, then it is
not cyclically monotone; see e.g. (Villani, 2009, Chap-
ter 5). It means that there exists a set of indices
(i1, ji), . . . , (iN , jN ) ∈ Supp(Π) such that:

N∑
k=1

dT ,w (xik , yjk) >

N∑
k=1

dT ,w

(
xik , yjk+1

)
, (5)

with the convention jN+1 = j1. Moreover, the defini-
tion of tree metrics implies that for any (x, y) ∈ X :

dT ,w(x, y) =
∑
e∈E

we1e∈P(x,y) (6)

where P(x, y) ⊂ E denotes the shortest path between
x and y in T . Since that T is a tree, the shortest
path is unique and is independent of the edges weights.
Equation 5 can now be rewritten as follow:

∑
e∈E

we

N∑
k=1

1e∈P(xik
,yjk

) >
∑
e∈E

we

N∑
k=1

1e∈P(xik
,yjk+1

).

Therefore, there is an e ∈ E such that:

N∑
k=1

1e∈P(xik
,yjk

) >

N∑
k=1

1e∈P(xik
,yjk+1

). (7)

Let e be such an edge, and let T1, T2 the two connected
components of T \{e}. For any x, y ∈ X , e ∈ P(x, y)
if and only if x and y belong to distinct connected
components of T \{e}, i.e.:

1e∈P(x,y) = 1x∈T1∩y∈T2
+ 1x∈T2∩y∈T1

.

Equation 7 then becomes:

N∑
k=1

(
1xik

∈T1∩yjk
∈T2

+ 1xik
∈T2∩yjk

∈T1

)
>

N∑
k=1

(
1xik

∈T1∩yjk+1
∈T2 + 1xik

∈T2∩yjk+1
∈T1

)
. (8)

However, for any x, y ∈ X , we also have:

1x∈T1∩y∈T2
= 1x∈T1

+ 1y∈T2
− 1x∈T1∪y∈T2

.

Moreover, the events

{x ∈ T1 ∪ y ∈ T2}

and
{x ∈ T2 ∩ y ∈ T1}

are complementary, so:

1x∈T1∪y∈T2 + 1x∈T2∩y∈T1 = 1.

This leads to the following equation:

1x∈T1∩y∈T2 − 1x∈T2∩y∈T1 = 1x∈T1 + 1y∈T2 − 1

= 1x∈T1 − 1y∈T1 .
(9)

In Equation 9, the terms in x and y are linearly sepa-
rated, so we can write:

N∑
k=1

(
1xik

∈T1∩yjk
∈T2
− 1xik

∈T2∩yjk
∈T1

)
=

N∑
k=1

(
1xik

∈T1∩yjk+1
∈T2 − 1xik

∈T2∩yjk+1
∈T1

)
. (10)

Equations 8 and 10 imply that

N∑
k=1

1xik
∈T1∩yjk

∈T2 >

N∑
k=1

1xik
∈T1∩yjk+1

∈T2

and

N∑
k=1

1xik
∈T2∩yjk

∈T1 >

N∑
k=1

1xik
∈T2∩yjk+1

∈T1 .

In particular, the left terms of both inequalities are
non-zero, because they are strictly greater than a pos-
itive sum. Therefore, there must exist two indices k, l
such that xik ∈ T1, yjk ∈ T2, xil ∈ T2 and yjl ∈ T1.
The shortest paths between two elements of T1 (resp.
T2) is always contained in T1 (resp. T2); these indices
hence satisfy:

P(xik , yjl) ∩ P(xil , yjk) = ∅.

Moreover, both P(xik , yjk) and P(xil , yjl) contain the
edge e, since that e is the only edge connecting T1 to T2.
In particular, P(xil , yjl) and P(xik , yjk) both contain
the least common ancestors xik ∧ yjl and xil ∧ yjk ,
which implies the following inclusions:

P(xil , xil ∧ yjk) ⊂ P(xil , yjl);

P(xik ∧ yjl , yjl) ⊂ P(xil , yjl);

P(xik , xik ∧ yjl) ⊂ P(xik , yjk);

P(xil ∧ yjk , yjk) ⊂ P(xil , yjl).

Since that

P(xik , yjl) = P(xik , xik ∧ yjl) ∪ P(xik ∧ yjl , yjl)
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and

P(xil , yjk) = P(xil , xil ∧ yjk) ∪ P(xil ∧ yjk , yjk),

we have that:

P(xik , yjl) ∪ P(xil , yjk) ⊊ P(xik , yjk) ∪ P(xil , yjl).
(11)

Therefore, it is possible to strictly improve the match-
ing Π by swapping (xik , yjk) with (xik , yjl) and
(xil , yjl) with (xil , yjk). Since that the shortest path
P(x, y) between any x, y ∈ X is independent of the tree
weights, Equation 6 ensures that the swapped match-
ing is strictly better for any tree distance dT ,w′ , and
that Π is not optimal for any dT ,w′ . By contraposi-
tion, this proves that the set of optimal matchings is
identical for any weight of the tree edges.

Proposition 3. If (X , d) is an ultrametric space, then
the matching output by Algorithm 1 is optimal.

Proof of Proposition 3. Let (X , d) an ultrametric
space. Then, from Proposition 1 there exists a tree
T = (X ,V, E) and a weight function w such that
d = dT ,w. Let x1, . . . , xn ∈ X , y1, . . . , ym ∈ X , µ ∈ Rn

and ν ∈ Rm be two weight vectors, and Π̃ be the
greedy matching output by Algorithm 1. Let assume
that Π̃ is not optimal. Then, the proof of Proposition 2
shows that there exists (i1, j1), (i2, j2) ∈ Supp(Π̃) that
can be swapped to strictly improve the matching Π̃;
that is, indices that satisfy:

d(xi1 , yj2)+d(xi2 , yj1) < d(xi1 , yj1)+d(xi2 , yj2). (12)

By symmetry, let us assume that:

d(xi1 , yj2) ≤ d(xi2 , yj1). (13)

We will now prove that:

d(xi1 , yj2) < min(d(xi1 , yj1), d(xi2 , yj2)). (14)

First, by ultrametric property, we have:

d(xi2 , yj1) ≤ max(d(xi2 , yj2), d(yj2 , xi1), d(xi1 , yj1)).
(15)

Because of Equation 13, Equation 12 implies:

d(yj2 , xi1) ≤ max(d(xi2 , yj2), d(xi1 , yj1)).

Therefore, Equation 15 becomes:

d(xi2 , yj1) ≤ max(d(xi2 , yj2), d(xi1 , yj1)). (16)

Similarly, by ultrametric property and using Equa-
tion 13, we have:

d(xi1 , yj1) ≤ max(d(xi1 , yj2), d(yj2 , xi2), d(xi2 , yj1))

≤ max(d(yj2 , xi2), d(xi2 , yj1))

(17)

and

d(xi2 , yj2) ≤ max(d(xi2 , yj1), d(yj1 , xi1), d(xi1 , yj2))

≤ max(d(xi2 , yj1), d(yj1 , xi1)).

(18)

Let us further assume that:

d(xi2 , yj2) < d(xi1 , yj1).

Then, in order for Equation 17 to be satisfied, we
must have:

d(xi1 , yj1) ≤ d(xi2 , yj1).

Conversely, if we have:

d(xi1 , yj1) < d(xi2 , yj2),

Equation 18 implies:

d(xi2 , yj2) ≤ d(xi2 , yj1).

Therefore, if d(xi1 , yj1) ̸= d(xi2 , yj2), then:

d(xi2 , yj1) ≥ max(d(xi1 , yj1), d(xi2 , yj2));

Combined with Equation 16, we obtain:

d(xi2 , yj1) = max(d(xi1 , yj1), d(xi2 , yj2)),

and Equation 12 then implies Equation 14. The same
inequality also holds when d(xi1 , yj1) = d(xi2 , yj2) as
a direct consequence of Equation 12.

But Equation 14 contradicts the greedy property of
Π̃. Indeed, because of Equation 14, the edge (xi1 , yj2)
should be then processed before edges (xi1 , yj1) and
(xi2 , yj2). After processing, the remaining mass of ei-
ther xi1 or yj2 would be zero, and either (i1, j1) /∈
Supp(Π̃) or (i2, j2) /∈ Supp(Π̃). This proves that the
greedy matching for ultrametrics must be an optimal
matching.

Proposition 4. Let T be a rooted tree and X its set of
leaves. Then, there exists a mapping f : X → R that
defines a distance df (x, y) = |f(x) − f(y)| such that
for each ultrametric d on T and for each x, y, z ∈ X ,

d(x, y) < d(x, z) =⇒ df (x, y) < df (x, z).

In particular, the greedy matching on df provides an
optimal matching for any tree distance on T .

Proof of Proposition 4. We will show that Algo-
rithm A provides a mapping f satisfying the property
of the proposition.

Indeed, by construction, the function f output by Al-
gorithm A satisfies the following separation property:
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if T̃ , T̃ ′ are two distinct subtrees of the root r of T ,
and if x, y ∈ T̃ , z ∈ T̃ ′, then we have that :

|f(x)− f(y)| < |f(x)− f(z)|. (19)

Indeed, depending on the processing order of T̃ and
T̃ ′ in the first foreach-loop of the algorithm, two cases
may happen:

• T̃ is processed before T̃ ′: then, |f(x) − f(z)| is
strictly larger than the value of ∆kold computed
right after the T̃ iteration of the for-loop, wich in
turn is larger than |f(x)−f(y)|, and Equation 19;

• T̃ ′ is processed before T̃ : then, |f(x) − f(z)|
is strictly larger than the value of ∆k comput-
ing during the T̃ iteration, which is larger than
|f(x)− f(y)|.

Hence, in both cases, Equation 19 is satisfied. By
recursion, this property holds for any subtree of T .
Therefore, for each x, y, z ∈ X , we have that:

(x ∧ y) ≺ (x ∧ z) =⇒ |f(x)− f(y)| < |f(x)− f(z)|,

where x ∧ y (resp. x ∧ z) denotes the lowest common
ancestor of x and y (resp. x and z), and (x∧y) ≺ (x∧z)
means that x∧ z is an ancestor of x∧ y in T . Let now
d be an ultrametric on rooted tree T . Ultrametrics
are always increasing by least common ancester order
(Leclerc (1981)): for each x, y, z ∈ X ,

d(x, y) < d(x, z) =⇒ (x ∧ y) ≺ (x ∧ z),

which in turns implies df (x, y) < df (x, z). This proves
the inequality of Proposition 4. Let now prove that if
Π̃ is a greedy matching for df , then Π̃ is a greedy

matching for d as well. Since Π̃ is greedy, there exists
an ordered set of indices (i1, ji), . . . , (iN , jN ) such that
Supp(Π̃) = {(i1, ji), . . . , (iN , jN )} and for each u ∈
{1, . . . , n}, v, w ≥ u, the following inequality holds:

d (xiu , yju) ≤ d (xiv , yjw) .

In particular, for each u ≥ 2,

df (xi1 , yj1) ≤ df (xi1 , yju)

and
df (xi1 , yj1) ≤ df (xiu , yj1) .

Then, the inequality of Proposition 4 implies:

d (xi1 , yj1) ≤ d (xi1 , yju)

and
d (xi1 , yj1) ≤ d (xiu , yj1) .

It means that d(xi1 , yj1) is the smallest distance among
the ones involving either xi1 or yj1 : there exists an or-

dering of Supp(P̃ i) in increasing order of d such that

(i1, j1) is the first pair containing i1 or j1. There-
fore, there exists a greedy matching Π̃′ for d such that
Π̃′

i1,j1
= Π̃i1,j1 . By recursion, we eventually show that

the matching Π̃ is a greedy matching for d.
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