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Abstract

Spatial evolutionary games are used to model
large systems of interacting agents. In ear-
lier work, a method was developed using
Bayesian Networks to approximate the pop-
ulation dynamics in these games. One ad-
vantage of that approach is that one can
smoothly adjust the size of the network to
get more accurate approximations. However,
scaling the method up can be intractable if
the number of strategies in the evolutionary
game increases. In this paper, we propose
a new method for computing more accurate
approximations by using surrogate Bayesian
Networks. Instead of doing inference on
larger networks directly, we do it on a much
smaller surrogate network extended with pa-
rameters that exploit the symmetry inherent
to the domain. We learn the parameters on
the surrogate network using KL-divergence
as the loss function. We illustrate the value
of this method empirically through a compar-
ison on several evolutionary games.

1 Introduction

Spatial evolutionary game models have been widely
used to model both biological and cultural evolution,
e.g., (Durrett and Levin, 1994; Fu et al., 2010; Young,
2001; Sandholm, 2009; De et al., 2017) and a vari-
ety of multi-agent systems topics (Axtell, 2002; Tuyls
and Parsons, 2007; Ponsen et al., 2009; Phelps et al.,
2010; Morales et al., 2018). Most work on evaluating
these games involves computationally expensive simu-
lations, an approach that often does not scale well for
spatial structures (Shakarian et al., 2012). Other lim-
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itations on validation (Herd et al., 2013) and variabil-
ity (Manzo and Matthews, 2014) make it difficult to
apply simulations towards the analysis of many evolu-
tionary games. To address these limitations, moment
closure methods such as pair approximation (Hauert
and Szabó, 2005; Fu et al., 2010; Kuehn, 2016; Overton
et al., 2019; Kuga et al., 2021) have been developed to
approximate the dynamics of these games.

Symmetric Dynamic Bayesian Network Ap-
proximation In (Hsiao et al., 2021), a novel general-
ization of pair approximation using Bayesian networks
was introduced to approximate the dynamics of spa-
tial evolutionary games. That method, which we will
call Symmetric Dynamic Bayesian Network Approx-
imation (SD-BNA), takes advantage of the inherent
symmetry in spatial Markov processes. Like pair ap-
proximation, the population dynamics of a spatial evo-
lutionary game are analyzed by computing the tran-
sition probabilities of a local neighborhood of agents
around an arbitrary focal agent. This computation
is represented as a probabilistic inference problem on
individual Bayesian networks that represent a single
time-step of the local neighborhood. This allows for
much more tractable approximation than a direct com-
putation on the full population.

One of the advantages of the SD-BNA approach is that
it is possible to adjust the size of the Bayesian net-
work representing the local neighborhood to get more
accurate approximations of the population dynamics.
However, scaling up the method for more accurate re-
sults can still be intractable, as the induced width of
the network depends directly on the size of the local
neighborhood represented and the number of strate-
gies in the evolutionary game. To address this issue,
we propose a new method for computing approximate
inference on larger Bayesian networks in SD-BNAs us-
ing what we will call surrogate Bayesian networks.

Contributions We propose a novel method for per-
forming approximate inference on evolutionary game
Bayesian networks.
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• We introduce the concept of a surrogate Bayesian
network, a subset of an evolutionary game
Bayesian network with added parameters that ex-
ploit the symmetry inherent in these models.

• We formulate the process of learning the pa-
rameters for surrogate Bayesian networks as a
KL-divergence minimization problem between the
surrogate network and the original larger network.

• We introduce a novel sample-search algorithm
for generating high value samples for the KL-
divergence minimization problem.

• We provide an empirical comparison of our
method with other approximate inference algo-
rithms such as Abstraction Sampling on a variety
of evolutionary games.

2 Related Work

Our work is similar to variational inference ap-
proaches. One can make the analogy that the smaller
surrogate Bayesian network serves as the parameter-
ized distribution in a variational inference approach
and our goal is to minimize the KL-divergence between
this parameterized distribution and the one we are ap-
proximating (the larger network). However, compared
to previous work on variational Bayesian network ap-
proximation such as the edge-deletion approach in
(Choi and Darwiche, 2006; Liu and Ihler, 2011; Ihler
et al., 2012), a major difference is that our surrogate
networks are always a strict subset of the network we
want to approximate. This lets us formulate our opti-
mization problem in a different way, since data points
sampled from a larger network are full configurations
of the smaller surrogate network. Our surrogate net-
works also contain parameter sharing by exploiting the
symmetry present in SD-BNAs.

3 Background

3.1 Evolutionary Game Theory

Evolutionary Game Theory (EGT) provides a frame-
work for modeling the time evolution of a popula-
tion of agents that interact through strategic games
whose outcome determines each individual’s evolu-
tionary fitness. These models disregard any game-
theoretic assumptions of rationality and instead as-
sume individuals reproduce or change strategies based
on a predetermined population update rule. More con-
cretely, consider a population of agents {X1, ..., XN}
that play an iterated stage game over a finite time hori-
zon t ∈ [0, ..., T ]. An evolutionary game is (S,U, F ):

• S = {s1, ..., sM}: a set of M strategies where si is
the i-th strategy in the set of possible strategies
S and s(t = 0) = (s01, ..., s

0
n) denotes the initial

strategy profile which is a strategy assignment to
each agent in the population.

• U : SN → RN : the payoff (or utility) function
that maps the strategy profile to corresponding
payoff values for each agent.

• Pr(st+1 = s′ | st = s) = F (s′, s, U(s)): an update
rule giving the transition probabilities given the
current strategy assignment and payoff values.

Spatial Evolutionary Game Spatial evolutionary
games are an extension of evolutionary games to model
interactions among agents in a structured population.
For example, agents may interact more frequently with
agents in a neighborhood around them or the utility
received from their interactions may be weighted ac-
cordingly to some network structure. These models are
useful in examining how network structure influences
the evolution of agent behavior. More concretely, a
spatial evolutionary game is (S,U, F,G) where

• S, U , and F are analogous components to those
in well-mixed evolutionary games, but they can
now also depend on a spatial structure G.

• G ∈ {0, 1}N×N is a spatial or network structure
that specifies the strength of interactions between
agents. An example payoff function is:

Ui(s) =

N∑
j=1

GijPay[si, sj ] (1)

Population Dynamics In non-spatial evolutionary
games, it is common to refer to agents as indistinguish-
able, i.e., we don’t care exactly which agent is play-
ing which strategy. Instead we are typically interested
in population-level aggregated quantities such as the
population profile p = {ps1 , ..., psM }, where psi is the
proportion of the population that is currently playing
strategy si. One of the ways to visualize a population’s
time evolution is to plot these quantities as a function
of time as in Fig. 4. In spatial games, the specific dis-
tributions of strategies (whether it is uniform or clus-
tered) through the population can make a significant
difference. To address this, we define higher-order ag-
gregate quantities such as psisj which denotes the pro-
portion of pairs of adjacent agents playing strategy si
and sj respectively. These second order quantities give
an insight to the clustering behavior of different strate-
gies in the population. For analysis on spatial games,
it is then common to assume that pairs of agents are
indistinguishable. While not completely accurate, it is
necessary to make such assumptions to make sure the
analysis of the population remains tractable.
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3.2 Bayesian Networks

A Bayesian Network (Pearl, 1988) is a graphical model
(X,D,F ), consisting of a discrete variable set X =
{X1, X2, . . . , XN}, a set of corresponding domains:
D = {DX1

, DX2
, . . . , DXN

}, and a set of parent func-
tions F = {F1, F2, . . . , FN}. Each Xi is associated
with a parent function Fi = P (Xi | pai) where pai is
the set of parent variables of Xi.

Given a graphical model with variables {X1, ..., XN},
a common task is to compute the marginals, P (Xi =
s),∀s in its domain for some variables Xi. A special
case is computing a normalization constant known as
the partition function:

Z =
∑
x

∏
i

Fi(x) (2)

where the
∑

x refers to a summation over all possi-
ble configurations of the variables in the model. We
can also define the partition function conditioned on
certain variable assignments:

Z(X1 = s) =
∑

x|Xi=s

∏
i

Fi(x) (3)

where the summation is over all configurations where
Xi = s. In inference benchmarks, conditioned vari-
ables are termed evidence. To compute the marginal
probability of a variable we can simply compute
Z(Xi = s)/Z. One of the benefits of working with
Bayesian networks is that we know that the parti-
tion function Z = 1 and so we can just compute
P (Xi = s) = Z(Xi = s).

Exact inference (e.g. computing the partition func-
tion) on a Bayesian Network is typically done using
bucket elimination (aka variable elimination) or join-
tree algorithm (Darwiche, 2009; Dechter, 1999a, 2013)
where messages of the form λBi

:

λBi
=

∑
Xi

∏
Fj∈Bi

Fj (4)

are computed from functions Fj placed in individual
buckets Bi which are processed to eliminate Xi along
a given variable ordering.

However, those algorithms can run into complexity is-
sues where computing a message can take too much
time/space. In these cases, many approximate infer-
ence techniques exist. One scheme is (Weighted) Mini-
Bucket Elimination (WMBE) (Dechter and Rish, 2003;
Liu and Ihler, 2011), an extension of bucket elimina-
tion, where the message in bucket elimination is re-
placed with a weighted geometric mean across smaller

internal mini-bucket MBi partitions in each bucket:

λBi
=

∑
Xi

∏
Fj∈MBi

F
1
pj

j

pj

(5)

The partition function can also be computed in a
stochastic manner using sampling algorithms (Dar-
wiche, 2009; Koller and Friedman, 2009). In this work,
we will compare with more recent sampling algorithms
such as Abstraction Sampling (Broka et al., 2018; Kask
et al., 2020) which have been shown to be competitive
on inference benchmarks. Other algorithms for eval-
uating Bayesian Networks optimization tasks can also
be relevant (Marinescu and Dechter, 2009; Gogate and
Dechter, 2011; Mateescu and Dechter, 2008).

3.3 Symmetric Dynamic Bayesian Network
Approximations

A Symmetric Dynamic Bayesian Network Approxima-
tion (SD-BNA) (Hsiao et al., 2021) is an iterative
method for approximating the forward dynamics of
a spatially structured multi-agent population. Given
a population profile p(t) at time t, each iteration of
a SD-BNA takes the population profile to the next
timestep p(t+ 1). It can be shown that a special case
of this approximation is computationally equivalent to
a pair approximation model, a common approximation
technique in the evolutionary game literature (Hsiao
et al., 2021). A primary advantage of a SD-BNA is
that it allows for the exploration of higher order ap-
proximations beyond pair approximation which can
yield better accuracy with respect to the underlying
stochastic model (Hsiao et al., 2021).

SD-BNA for spatial Markov processes Con-
sider a multivariate Markov process defined over N
indistinguishable agents situated on a network G that
take a strategy in the set S. We assume that the tran-
sition probability of an agent Xi depends locally on its
neighborhood Nb(Xi) for each iteration:

P (Xi(t+ 1)= s | X(1), ...X(t− 1))

= P (Xi(t+ 1)= s | Xi(t), Xj(t),∀j ∈Nb(Xi)). (6)

Following the conventions in (Hsiao et al., 2021), we
can construct a Dynamic Bayesian Network (DBN)
(Murphy, 2002) that completely captures the above
Markov process. Each node in the DBN corresponds
to an agent in the spatial evolutionary game. Be-
cause the DBN is highly symmetric, we get an addi-
tional benefit from the indistinguishability property:
the marginal distributions P (X = s) = P (Y = s) are
identical for any two arbitrary agents X and Y . This
property also applies to any pairs of adjacent agents:
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P (Nb(X)|X) = P (Nb(Y )|Y ) where Nb(X) is a neigh-
boring adjacent agent ofX andNb(Y ) is a neighboring
adjacent agent of Y . To simplify notation, we will re-
fer to a single unindexed agent X (we can denote this
as the focal agent, and the location of this agent is
marked as a dark circle in Figures 3 and 5). We define
the following population level aggregate terms:

psi = P (X = si)

psisj = P (X = si, Nb(X) = sj) (7)

At t = 0, we are given psi(0) and psisj (0) which is an
initial distribution of the population. By Symmetric
Dynamic Bayesian network approximation we refer to
the following iterative method for approximating the
time evolution of psi and psisj :

• Choose a representative subset of agents to be the
input neighborhood I ⊂ [1, ...,M ] and a subset
O ⊂ I to be the output neighborhood. It is nec-
essary for every node in O to have a fully defined
transition probability conditioned on the nodes in
I as in Eq. 6. For example, in the simplified di-
agram of Fig. 1, I(T − 1) consists of the three
nodes at T − 1 within the highlighted area and
O(T ) consists of the the single node at time T
within the highlighted area.

• Define the distribution of I(t) using some function
of P (Xt) and P (Xt, Nb(X)t).

• Using the Markov process defined in Eq. 6, con-
struct a Bayesian network B that transform the
strategies of each agent in I(t) to the agents at
O(t+ 1).

• Use a probabilistic inference algorithm (Darwiche,
2009; Dechter, 2013) such as Bucket Elimination
(Dechter, 1999b) to query psi(t + 1), psisj (t + 1)
for time t+1. These distributions are defined over
the agents in the output O(t+ 1).

To summarize, a separate 2 timestep Bayesian net-
work is constructed for each iteration that takes the
strategies of each agent from t to t+1. Using a proba-
bilistic inference algorithm, we query the probabilities
P (Xt+1) and P (Xt+1, Nb(X)t+1) and we repeat the
process at the next timestep by defining the distribu-
tion of the next input set I(t+1) using the quantities
we queried. More information is described in an earlier
paper (Hsiao et al., 2021).

Symmetric Dynamic Bayesian Network Ap-
proximation as a truncation The SD-BNA can
be considered to be a truncation approximation of the
exact Dynamic Bayesian Network (DBN) for Eq. 6.
We truncate the DBN temporally and spatially (blue

Figure 1: SD-BNA as a DBN truncation

Figure 2: Tree approximation for input neighborhood
definition

and red respectively in Fig. 1). We approximate the
distribution of I(t + 1) using quantities queried from
O(t+1) in the previous network. This can be thought
of as a type of moment closure approximation (Kuehn,
2016). In previous work (Hsiao et al., 2021), the dis-
tributions are closed at the pair level and a tree ap-
proximation is used to model the distribution of input
nodes at t + 1. For example, if the input consists of
8 nodes I = (A1, ..., A8) with A1 being the focal node
in the left network of Fig. 3, we can specify a tree
approximation as in Fig. 2 where:

P (A1 = si) = psi

P (A2 = si, A1 = sj) = psisj (8)

and so forth for each node in the tree.

4 Problem Statement

In Hsiao et al. (2021), it was shown that increasing the
number of nodes in the input and output sets produce
SD-BNAs that give more accurate approximations of
the underlying dynamics. However, it is computation-
ally expensive to evaluate large SD-BNAs. The in-
duced width of the resulting Bayesian Network is pro-
portional to the number of nodes in the input and
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Figure 3: The input and output sets for a 25 node SD-
BNA (left) and 8 node SD-BNA (right). Focal node is
blackened.

output sets and the number of strategies in the evolu-
tionary game is the base of the exponent (analagous
to the domain size of each variable in the network).

One might consider a straightforward approach of ap-
plying approximate inference techniques to the larger
SD-BNA models. An example of a state-of-the-art ap-
proximate inference technique is Abstraction Sampling
(AS) (Broka et al., 2018; Kask et al., 2020). We can
apply AS instead of Bucket Elimination as our infer-
ence routine to compute psisj (t+ 1).

However, as can be seen in the right most graph in
Fig. 4 on the Deadlock evolutionary game, simply
replacing exact inference with Abstraction Sampling
runs into several limitations. Specifically:

• Accuracy: It can take many samples for AS on a
25 node network to produce better results com-
pared to exact inference on an 8 node network.

• Time: Running exact inference on 8 node network
is much faster than AS on a 25 node network.

• Noise: Without sufficient sample convergence in
AS, it is difficult to determine certain quantities
such as the location of inflection points, which can
impact qualitative results.

To address these issues, we propose a method that
combines the estimate from the smaller network with
estimates from the larger network.

5 Surrogate Maximum Likelihood
Models

Consider an 8 node SD-BNA and a 25 node SD-BNA
for approximating a spatial evolutionary game located
on a grid structure (each agent has four neighbors).
For the purpose of this paper, we will only focus on 8
and 25 node SD-BNAs (the number of nodes referring
to the size of the input set including the focal node
as in Fig. 3), but in principle this work can also be
extended to other pairs of SD-BNAs with the smaller
network serving as the surrogate of the larger network.

A key observation we can make is that the smaller 8
node network is a subset of the larger 25 node net-
work. Our idea is to extend the 8 node SD-BNA with
additional parameterized nodes/connections so it can
approximate the 25 node network. We first give an
initial explanation of the basic idea of our approach
(termed the basic MLE algorithm) in Section 5.1. In
Section 6, we develop an improved algorithm termed
KL-search for inference by devising a sample/search
method for generating informative samples for the ba-
sic MLE algorithm.

5.1 Parameterizing the new edges

In the current setting of the 8 node network we approx-
imate the query psisj as ≈ P (Xt+1, Nb(X)t), when we
really want P (Xt+1, Nb(X)t+1). In order to increase
accuracy we propose to add a new set of 4 dummy
nodes Nb(X)t+1 that capture the output neighbor-
hood. We add new connections (edges) from the input
neighborhood to the output neighborhood as seen in
Fig. 5. For these new connections, we define these
new connections as a simple conditional probability
table (CPT) conditioned on two nodes in the input
neighborhood. In essence, we add new CPTs of the
form θx,y,z = px|yz. Since we inherit the assumption
that all neighboring nodes are indistinguishable from
25 node network, all CPTs are identical and we can
share parameters across them.

Given a 25 node SD-BNA model and an 8 node ex-
tended model, the basic MLE algorithm for learn-
ing the extended 8-node network is as follows:

1. Forward sample the 25 node SD-BNA model for a
full configuration of every variable in the 25 node
network. Denote each full configuration as an in-
dividual data point xj .

2. The 8-node network is fully observed for each data
since its variables are subsumed in the large net-
work we can derive the likelihood expression:

L(θ) =
L∏

j=1

Pθ(x
j)

=

L∏
j=1

Pθ(Nb(X(j))t+1|X(j)
t , Nb(X(j))t) · C

=

L∏
j=1

θ(Nb(X(j))t+1, X
(j)
t , Nb(X(j))t) · C

(9)

where X
(j)
t denotes the assignment to X for the

j-th data point and at time t. C is some constant
that doesn’t depend on θ and can be ignored when
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Figure 4: Simulation ground truth (left), compared with exact 8 node SD-BNA result (center), and approximate
Abstraction Sampling result on 25 node SD-BNA (right) on the Deadlock evolutionary game.

Figure 5: New parameters (edges) to add to 8 node
network for MLE estimation.

maximizing the corresponding sum of log likeli-
hoods.

3. Maximize the log likelihood logL(θ) subject to
symmetry constraints:

psi(t+ 1) =
∑

sj ,sk∈S

θsi,sj ,sk · psjsk(t), ∀si ∈ S

(10)

We can pre-compute psi(t+1) on a non-parameter
extended 8 node network and use this to constrain
our log likelihood maximization derived from Eq.
9:

θ∗ =

argmax
θ

L∑
j=1

log θ(Nb(X(j))t+1, X
(j)
t , Nb(X(j))t)

subject to

psi(t+ 1) =
∑

sj ,sk∈S

θsi,sj ,sk · psjsk(t), ∀si ∈ S

(11)

This can be solved with existing constrained max-
imization solvers such as sequential least squares
Kraft (1988) or trust-region algorithms which can
be found in the SciPy python package (Virtanen
et al., 2020).

Once θ∗ is learned, we can evaluate the forward dy-
namics (compute psisj (t+1)) on the optimal extended
network Bθ∗ .

6 KL-based Search Tree Exploration

In the previous section we used Monte Carlo for-
ward sampling to generate the samples. Key idea:
instead of drawing random samples, we will
combine sampling with search aiming for di-
verse samples that are likely to reduce the KL-
divergence between our surrogate model (the
8 node model) and the model we are approxi-
mating (the 25 node model).

From this point onward, we’ll refer to the the 25 node
model as model A and the 8 node model as model B
for simplicity. Furthermore, we will assume bi-valued
variables and use PA, and PB to denote distributions
on model A and model B, respectively, and use PBθ

for the distribution of the extended model B parame-
terized by θ.

Informative sample generation In order to guar-
antee that all the samples are different and aim to-
wards meaningful samples we generate a fixed num-
ber L of partial configurations from the large network
A using best-first search along some variable ordering
guided by a heuristic function. For example, the first
two nodes that are generated are associated with the
root variable X1 and represent the partial configura-
tions (X1 = 0) and (X1 = 1). In the best-first search,
we want a heuristic that will explore branches of high
difference between the models. To do this, we define a
KL heuristic for the partial configuration (X1 = 0) as:

hkl(X1=0) =

[log(PA(X1=0))− log(PB(X1=0))] · PB(X1=0) (12)

Once we have L leaf nodes (representing a partial con-
figuration) we extend each to a full configuration by
forward sampling the rest of the variables using the 25
node network yielding a data point xk conditioned on
the node’s partial configuration.

Since it is difficult to directly compute PA(X1 = 0)
and PB(X1 = 0) in the KL heuristic, we approximate
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these terms using a weighted mini-bucket elimination
(WMBE) heuristic (Liu and Ihler, 2011) with an i-
bound of 10 (this is just an estimate of our Bayesian
network’s partition function conditioned on a node’s
partial configuration).

Once we have L full samples, we solve for θ∗ that min-
imizes the following loss function:

θ∗ = argmax
θ

L∑
j=1

logPBθ
(xj) · PA(x

j)

subject to

psi(t+ 1) =
∑

sj ,sk∈S

θsi,sj ,sk · psjsk(t), ∀si ∈ S (13)

with an additional term PA(x
k) where each θ expres-

sion is also multiplied with the probability of the sam-
ple P (xk). We can justify this as the loss function
because at the limit of large L, this loss function is
equivalent to minimizing KL divergence. This is for-
mally stated in the following Theorem. The full KL-
Search algorithm is shown in Algorithm 1.

Theorem 6.0.1 (Asymptotic Convergence of
KL-Search Minimization). Let θL be the result of
KL-Search Minimization [Algorithm 1] given L sam-
ples. Then given a family of extended networks Bθ

parameterized by θ:

lim
L→∞

θL = argmin
θ

DKL(PA||PBθ
) (14)

Proof [See Supplemental]

6.1 Scaling up to more strategies

To scale up the method to handle evolutionary games
with more strategies, the major computational bot-
tleneck is in computing PA(X1 = 0) in Eq. 12 us-
ing our WMBE approximation. While we can feasibly
evalute this quantity in 25 node networks having 3
or less strategies, WMBE heuristics for approximating
PA(X1 = 0) become difficult to evaluate directly in 25
node networks with 4 or more strategies. Therefore,
instead of computing PA(X1 = 0) ≈ WMB(X1 = 0),
we propose an easier to compute heuristic such as:

PA(X1 = 0) ≈ ẐA(X1 = 0) (15)

where ẐA is a stochastic estimate of the partition func-
tion conditioned on (X1 = 0):

ẐA(X1 = 0) =
1

N

N∑
i=1

ẐA(x
(i)), x(i) ∼ PA(x|X1 = 0)

(16)

We propose a quick estimate for the partition function
to be evaluated from a single sampled configuration
(N = 1). We’ll call this new method Fast KL-search.

Algorithm 1: KL-Search Minimization
Input: Two Bayesian networks: a large network
A, a smaller network B, and a parameterized ex-
tended network Bθ such that all nodes in B are in
A (B ⊂ A), a variable ordering o over A, initial
distribution pyz(t), and pre-computed output dis-
tribution px(t+ 1)
Parameters: Number of samples L
Output: θ, estimated parameters that minimize
difference between A and Bθ

T ← the OR-search tree on A using ordering o;
OPEN← {⟨root(T ), 0⟩};
// frontier nodes are ordered by the 2nd value

for i = 1→ L do
v ← OPEN.dequeue() ; // remove the node

of highest priority

for u ∈ children(v) do
hkl(u)← [log(PA(u))− log(PB(u))] ·PB(u);
Append < u, hkl(u) > to OPEN;

end

end
Let X be an empty list;
for v ∈ OPEN do // leaf nodes

Forward sample x, a full configuration of A
conditioned on the partial configuration
represented by v;

Append x to X;

end

Solve θ∗ = argmaxθ
∑L

j=1 logPBθ
(xj) · PA(x

j),
subject to
psi(t+ 1) =

∑
sj ,sk∈S θsi,sj ,sk · psjsk(t), ∀si ∈ S;

Return θ∗;

6.2 Learning and Inference

KL-Search (Algorithm 1) and Fast KL-search (Algo-
rithm 1 with a simplified heuristic) both work over
one timestep of the evolutionary game. The θ∗ ob-
tained as the return value from these algorithms min-
imizes the kl divergence between models for a single
timestep. The optimal θ value can change each time it-
eration and is dependent on the current values of psi(t)
and psisj (t). Thus the full algorithm for our approach
has two parts: learning (KL-Search) followed by in-
ference (SD-BNA). Our goal in the empirical results
section is to determine what methods reduce the sin-
gle iteration error the most, so we will use the measure
DKL(Psim(X1|Nb(X)1)||Pmethod(X1|Nb(X)1)) evalu-
ated at t = 1 where Psim is the probability estimated
using the average of many simulations and Pmethod is
the probability estimated using a given method. Find-
ing the most effective intervals to interleave learning
with inference will be future work.
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Figure 6: Sample efficiency comparison (measured using average KL divergence) on the Deadlock evolutionary
game. Results are averaged across 10 separate runs for each method

7 Empirical Results

The central task of our empirical evaluation is
estimating P (Xt+1|Nb(X)t+1) to compute psisj
at each time step in a SD-BNA. Therefore,
we focus on evaluating the accuracy of differ-
ent approaches for estimating these quantities.
For this, we will use the divergence measure
DKL(Psim(X1|Nb(X)1)||Pmethod(X1|Nb(X)1)) (as
mentioned in Section 6.2) to evaluate the effectiveness
of different approximate inference algorithms.

For our comparisons in Fig. 6, 7, and 8, we test our
algorithms on a variety of SD-BNAs constructed from
different evolutionary games with KL-divergence re-
sults. In each of these experiments, the goal is to min-
imize the KL-divergence with respect to the ground
truth estimate from the simulation.

For an initial comparison in Fig. 6, we use the Dead-
lock game (see Table 2) from Fig. 4. The methods
used in the initial comparison include:

• 8 node (exact): the estimate obtained from exact
inference on the 8 node network.

• AS: Abstraction Sampling on a 25 node SD-BNA
with (200, 400) samples.

• MC: Forward sampling on a 25 node SD-BNA
with (100, 400) samples.

• MLE: The surrogate network approach from Sec-
tion 5 with (20, 100, 400 data points) without
doing KL-search to generate the data points.

• KL: The estimate obtained using θ∗ from Algo-
rithm 1.

In the initial tests on the DLK game, the KL-search
approach outperforms all of the other methods in
terms of KL-divergence.

Figure 7: Average KL divergence between simula-
tion and [abstraction sampling (as), KL-search using
WMBE (kl), and KL-search using a single configura-
tion sample (fkl)].

7.1 Comparison of Methods

We compare KL-search (Algorithm 1), Fast KL-search
(Algorithm 1 with Eq. 15), and Abstraction Sampling
using the same average KL divergence metric as in Fig.
6. For these set of tests, we average the results of 30
separate runs for each game and allow each method to
generate 100 samples for each run.

The main results are displayed in Fig. 7, which com-
pares the three methods across 5 different evolutionary
games (Table 2). Both the Fast KL-search (denoted fkl
in the figure) and the regular KL-search with WMBE
heuristic perform much better than Abstraction Sam-
pling in all games.

Larger Games The only method that can run on
games with more than 3 strategies is Fast KL-Search.
As mentioned earlier, with 4 or more strategies, the
WMBE heuristic is hard to compute because of its in-
herent table representation of the CPTs which become
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Figure 8: Average KL divergence between simulation
and [pair approximation (pair), and KL-search using
a single configuration sample (Fast KL-search) at 100
and 200 samples (fkl(L=100 ), fkl(L=200))] on games
with a high number of strategies.

too large. in Fig. 8, we show a comparison with the
method known as pair approximation (Fu et al., 2010).
We observed that in these larger games, more than 100
samples are needed for Fast KL-Search to outperform
pair approximation.

Time Comparison A comparison of time per
probe/sample for the experiments from Fig. 7 and
8 is shown in Table 1. For example, for |S| = 2 on
KL-Search, we average the time taken for the experi-
ment on the 2 strategy (bos, dlk, pd, and sd) games
and divide by 4 (games)·30 (runs)·100 (samples).

Fast KL-Search actually takes more time than normal
KL-Search, as the time for the latter is frontloaded
in computing the initial WMBE tree. For individ-
ual samples, the WMBE heuristic takes less time than
evaluating an entire sample as in Fast KL-Search. As
expected, both methods take much less time than Ab-
straction Sampling.

One sample in AS is a full probe that expands O(d ·h)
nodes in a search tree where d is the number of abstract
states and h is the tree’s depth. This takes O(d ·h ·L)
time where L is the number of samples. For KL-Search
and Fast KL-Search, only L nodes in the search tree
need to expanded to get L samples, so the final time
is just O(L). The following table summarizes this:

AS KL-Search Fast KL-Search

O(d · h · L) ·O(1) O(L) ·O(1) O(h) ·O(L)

8 Conclusion

We have introduced a novel approach for performing
approximate inference on evolutionary game Bayesian
networks. Our method, based on optimizing param-

Table 1: Time per sample (s) with amortized initial
(WMBE for AS/KL) and post-processing (KL mini-
mization for KL/FKL) time (each time is computed
by averaging over at least 3000 samples from the ex-
periments for Fig. 7 and 8).

|S| AS KL-Search Fast KL-Search

2 0.1175 0.01419 0.01624
3 0.2203 0.03063 0.03725
4 - - 0.1630
6 - - 0.7299

Table 2: Evolutionary Game Payoff Matrices

Game Name Payoff Matrix

Prisoner’s Dilemma (pd)

(
2 −1
3 0

)
Snowdrift (sd)

(
2 1
3 0

)
Battle of the Sexes (bos),
symmetric version,
(Cooper et al., 1989)

(
0 1
2 0

)
Deadlock (dlk)

(
5 −4
3 −5

)

Rock Paper Scissors (rps)

 0 −1 1
1 0 −1
−1 1 0



eterized surrogate Bayesian Networks, leverages the
symmetry present in SD-BNAs to combine the effi-
cient computation of smaller SD-BNAs with the more
accurate results of larger SD-BNAs. We introduce a
novel sample-search approach to generate high value
samples for this optimization problem, and empirically
demonstrate its effectiveness when compared to exist-
ing approximate inference techniques such as Abstrac-
tion Sampling.

For future work, it may be interesting to extend
this technique to domains beyond spatial evolutionary
games. It should be possible to apply SD-BNAs to
any general spatial Markov process with a high degree
of symmetry. Other spatial Markov processes such as
voter models and SIS models could be a valid area
of application. It may also be interesting to see if
this technique could be applied to general Bayesian
network inference on networks with a high degree of
structure.
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Surrogate Bayesian Networks for Approximating Evolutionary
Games:

Supplementary Materials

S1 Markov Process to Game dynamics

Given an evolutionary game, we use the indistinguishable property of agents to define a Markov process over
the population profile. For example, for a system of N agents and 2 strategies {A,B}, each state in the Markov
process is defined as the number of agents playing strategy A (with the number of agents playing strategy
B = N −A). Using the master equation on this population profile Markov process (Traulsen and Hauert, 2009),
we can derive a set of differential equations that represent the time evolution of the population profile.

In spatial evolutionary games, we can follow a similar process to define a Markov process over higher order
population profile terms. However, in a spatial model the time evolution of a single node will depend on its
neighbor or the pair distribution and the time evolution of the pair distribution depends on the triplet distribution
and higher. Therefore, when you apply the master equation, what we get is a set of differential equations defined
with terms defined up to the size of the total population:

pi(t+ 1) = pi(t) + F (pi(t), pij(t))

pij(t+ 1) = pij(t) +G(pi(t), pij(t), pijk(t))

pijk(t+ 1) = pijk(t) +H(pi(t), pij(t), pijk(t), pijkl(t))

... (S1)

Clearly this is not tractable for large enough population sizes, and thus many approximation methods such as pair
approximation have been developed where all equations above a certain order are ignored. For example in pair
approximation, the equations are limited to 2nd order equations (pij or below) and pijk would be approximated
with some combination of lower order terms (for example pijk ≈ pijpjk

pj
).
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Table S1: Algorithm Complexities

Algorithm Time Complexity Space Complexity

Abstraction Sampling O(d · h · L) ·O(1) +O(WMBE) O(|D|ibound)
KL-Search O(L) ·O(1) +O(WMBE) O(|D|ibound)

Fast KL-Search O(h) ·O(L) O(h)
Weighted Mini-Bucket Elimination (WMBE) O(|D|ibound) O(|D|ibound)

S2 Additional Algorithm and Model Details

The time/space complexities of each algorithm are listed in Table S1. For constants in the table:

• d: number of abstract states in the Abstraction Sampling algorithm.

• h: maximum height of the search tree, corresponds to number of variables in the Bayesian network

• L: number of samples

• |D|: size of variable domains in the Bayesian network

• ibound: parameter used in Weighted Mini-Bucket Elimination

The settings used for the 8 and 25 node Symmetric Dynamic Bayesian Network Approximations are listed in
Table S2. We make the following assumptions for the evolutionary games we are modeling:

• We assume that the spatial evolutionary game takes place on a square lattice, but in practice you can define
a SD-BNA for any spatial network. In the case of more complex networks such as heterogeneous networks, it
is necessary to use a different base approximation (the tree approximation is based on pair approximation for
example) for the input neighborhood such as a neighborhood configuration approximation (Hadjichrysanthou
et al., 2012), but this lies outside the scope of this work.

• We assume that the update rule is the Fermi rule (Hart and Mas-Colell, 2001). Each agent obtains a payoff
by summing the payoff received from playing a normal form game with each of its neighbors. The probability
that an agent will switch to a neighbors strategy would be:

P (Xt+1 = s′|Xt, Nt = s′, Pay(N)t = π′, Pay(X)t = π) =
1

(1 + e−s(π′−π))
(S2)

where Pay(X) is the payoff of the agent and Pay(N) is the payoff of a randomly chosen neighbor N ∈
{Nb1(X), ..., Nb4(X)}. In an 8 node SD-BNA, the input neighborhood is only large enough to compute the
payoff of one neighbor. To solve this we assume, without loss of generality, that the focal agent X would
always learn from the first neighbor Nb1(X). This is an assumption made in many pair approximations
models ((Fu et al., 2010)).

To define the input neighborhood for each model, we first start with a focal node and four neighboring nodes
Nb1(X)...Nb4(X). The +3 and +20 quantifiers refer to 3 or 20 surrounding nodes that can be seen in Fig. 3 of
the main paper. The Bayesian network for a 8 node SD-BNA can be seen in Fig. S2 which corresponds to an
input neighborhood labeled in S1.

To query for the next iteration in the 8 node SD-BNA, we compute pij = P (X ′|Nb(X)) where Nb(X) is a
randomly selected neighbor at time t. In actual implementation, we can add additional selection/dummy nodes
to simulate the random selection and query the joint distribution of the focal node with the dummy node. A 25
node SD-BNA would have a similar construction with far more Y nodes representing 2nd degree and 3rd degree
neighbors. For the exact model and CPT values, please refer to the full version of (Hsiao et al., 2021).



Surrogate Bayesian Networks for Approximating Evolutionary Games

Table S2: Symmetric Dynamic Bayesian Network Approximation settings

8 node SD-BNA 25 node SD-BNA

Input X,Nb1(X), ...Nb4(X), + 3 X,Nb1(X), ...Nb4(X), + 20
Output X ′ X ′, Nb1(X)′, ...Nb4(X)′

Query
pi = P (X ′)
pij = P (X ′|Nb(X))

pi = P (X ′)
pij = P (X ′|Nb(X)′)

Figure S1: Labeled input neighborhood for 8 node SD-BNA

Figure S2: Example (simplified) Bayesian network corresponding to an 8 node SD-BNA for an evolutionary game
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S3 Proof of Theorem 6.0.1

Theorem 6.0.1 (Asymptotic Convergence of KL-Search Minimization). Let θL be the result of KL-Search
Minimization [Algorithm 1 in the main paper] given L samples. Then for a given family of extended networks
Bθ parameterized by θ:

lim
L→∞

θL = argmin
θ

DKL(PA||PBθ
) (S3)

Proof Since samples are generated from leaf nodes who are guaranteed to be different, it implies that no
samples are identical. If the search tree is fully expanded, our optimization problem becomes:

θ∗ = argmax
θ

∑
X∈A

logPBθ
(X) · PA(X)

= argmax
θ

EX∼PA
[logPBθ

(X)] (S4)

which is just maximizing the log likelihood. With some additional derivation:

θ∗ = argmax
θ

∑
X∈A

logPBθ
(X) · PA(X)

= argmax
θ

∑
X∈A

logPBθ
(X) · PA(X)− logPA(X) · PA(X)

= argmax
θ

∑
X∈A

log
PBθ

(X)

PA(X)
· PA(X)

= argmin
θ

∑
X∈A

− log
PBθ

(X)

PA(X)
· PA(X)

= argmin
θ

∑
X∈A

log
PA(X)

PBθ
(X)

· PA(X)

= argmin
θ

DKL(PA(X)||PBθ
(X)) (S5)

it can be shown that maximizing the expectation EX∼PA
[logPBθ

(X)] is equivalent to minimizing the KL-
divergence DKL[PA(X)||PB(X)], so our search procedure is guaranteed to eventually find the 8 node parame-
terized model having minimum KL-divergence as the search tree approaches full expansion.

S4 Additional Computational Details

Optimization In practice it is difficult for black-box solvers to satisfy the probability constraint in Eq. 9 in
the main paper. This is even more of an issue in games with a larger number of strategies. To address this, we
turn the hard constraint into a soft constraint:

θ∗ = argmax
θ

L∑
k

logPBθ
(xk) · PA(x

k)+

C ·
∑
x

px(t+ 1)− (
∑

y,z∈S

θx,y,z · pyz(t).

2

(S6)

For our empirical tests, we solve this optimization problem with Sequential Least Squares Programming (SLSQP)
through the minimize routine in the SciPy python library (Kraft, 1988; Virtanen et al., 2020).

Computation In the KL-Search algorithm, we can reduce the PBθ
(X) to just the θ expression. Since model B

is a Bayesian network and θ only controls the CPTs that we added, we can decompose PBθ
(X) = θ(X) ·P ′

B(X),
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Figure S3: KL divergence for KL-search using a single configuration (Fast KL-search) on RPS (left) and Deadlock
(right)

such that P ′
B(X) does not depend on θ.

θ∗ = argmax
θ

N∑
k

logPBθ
(xj) · PA(x

j)

= argmax
θ

N∑
j

(log θ(xj) + logP ′
B(x

j)) · PA(x
j)

= argmax
θ

N∑
k

log θ(xj)PA(x
j) (S7)

yielding a a simple constrained optimization problem. The intuition for using a best-first search guided by the
KL-heuristic is that we are greedily generating samples in regions of high KL-distance in order to get informative
samples.

Computational Resources All experiments in this work are evaluated on a 64-bit machine with an Intel
i7-10870H 2.2 GHz CPU and 32 GB of RAM. No GPU resources are used in our experiments.

Abstraction Sampling In the main paper we compare against the use of Abstraction Sampling to estimate
P (Xt+1|Nb(X)t+1). Since Abstraction Sampling is an algorithm for estimating the partition function, we use it
query the partition function conditioned on the partial configuration (Xt+1 = si, Nb(X)t+1 = sj) for every pair
of values si, sj ∈ S. This necessitates splitting up the sampling procedure across O(|S|2) different sample sets,
one set for each value pair. To improve the quality (e.g. reduce the variance) of our final result, after doing an
initial 5 samples for each configuration of (Xt+1, Nb(X)t+1), we perform adaptive variance sampling. To do this
we calculate the variance of the samples currently taken for each configuration of (Xt+1, Nb(X)t+1) and the next
sample taken will be for the configuration with the highest sample variance. We stop this process once we reach
L total samples. In this process each configuration is not guaranteed an even number of samples, but we found
that this reduces the variance of the estimated joint probability (and thus the estimated conditional probability)
compared to an even split across O(|S|2) different sample sets.

Individual Runs In Fig. S3, we show two of the divergence curves for the Fast KL-Search method. The
behavior of our method is somewhat different from standard sampling algorithms as the final step of the method
is an optimization problem. As a result, there are certain points in the graph where the optimization problem
switches between different local maxima. This becomes less frequent as more samples are obtained.

S5 Extended Comparison

For a lengthier comparison, we test Abstraction Sampling vs KL-search on Rock-Paper-Scissors for approximately
2.5 and 5 minutes in Fig. S4. Each test is performed over an average of 30 independent runs. We also provide a
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Figure S4: KL divergence for KL-search (left 3 bars) vs Abstraction Sampling (right 3 bars) for longer sample
time

comparison to the 100 sample results from the main paper. The time taken for KL-search is not exactly 2.5/5
minutes due to the stopping criteria used. Since we need to solve an optimization problem and an inference
problem for P (Xt+1|Nb(X)t+1) after sampling, we add an early stopping criteria of 10s before 2.5/5 minutes for
post-sampling computation. The KL-divergence continues to converge towards 0 for both methods even beyond
the initial 100-200 samples.

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [No]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [No]

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [No]
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(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Not Applicable]

(b) The license information of the assets, if applicable. [Not Applicable]

(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. [Not Applicable]
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