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Abstract

In this work, we consider monotone Rie-
mannian Variational Inequality Problems
(RVIPs), which encompass both Riemannian
convex optimization and minimax optimiza-
tion as particular cases. In Euclidean space,
the last-iterates of both the extragradient
(EG) and past extragradient (PEG) meth-
ods converge to the solution of monotone
variational inequality problems at a rate
of O

(
1√
T

)
(Cai et al., 2022). However,

analogous behavior on Riemannian mani-
folds remains open. To bridge this gap,
we introduce the Riemannian extragradient
(REG) and Riemannian past extragradient
(RPEG) methods. We show that both exhibit
O
(

1√
T

)
last-iterate convergence and O

(
1
T

)
average-iterate convergence, aligning with ob-
servations in the Euclidean case. These re-
sults are enabled by judiciously addressing
the holonomy effect so that additional com-
plications in Riemannian cases can be re-
duced and the Euclidean proof inspired by
the performance estimation problem (PEP)
technique or the sum-of-squares (SOS) tech-
nique can be applied again.

1 Introduction

Variational inequality problems (VIPs) (Kinderlehrer
and Stampacchia, 2000; Facchinei and Pang, 2003)
play a pivotal role in mathematical programming, en-
compassing areas such as convex optimization and
minimax optimization. Specifically, for the Euclidean
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space under the unconstrained setting, the objective of
a VIP is to find z∗ satisfying:

⟨F (z∗), z− z∗⟩ ≥ 0 ∀z ∈ Rd,

where F : Rd → Rd represents an operator. In par-
ticular, by setting z = z∗ − ηF (z∗), the solution to
an unconstrained VIP can be reduced to identifying
the zeros of F (·). At first glance, it might seem
intuitive to employ gradient descent (GD) given by
zt+1 = zt− ηF (zt) to solve a VIP. However, while GD
shows convergence for convex optimization tasks, it
can, unfortunately, diverge for even monotone VIPs1,
irrespective of the step-sizes chosen (Facchinei and
Pang, 2003). Fortunately, sophisticated methods such
as extragradient (EG) (Korpelevich, 1976):

z̃t = zt − ηF (zt)

zt+1 = zt − ηF (z̃t),
(1)

and past extragradient (PEG) (Popov, 1980):

z̃t = zt − ηF (z̃t−1)

zt+1 = zt − ηF (z̃t).
(2)

offer solutions to this hurdle. In the unconstrained
domain, PEG is equivalent to the optimistic gradient
descent ascent (OGDA) technique:

z̃t+1 = z̃t − 2ηF (z̃t) + ηF (z̃t−1).

Since extragradient type methods are easy to im-
plement, relatively scalable to dimension, and have
demonstrated pleasant empirical performance, they
have become the standard tools for addressing VIPs
and saddle point problems over the past few decades
(Tseng, 2000; Gidel et al., 2018; Hsieh et al., 2019).
At present, we understand that for convex-concave
saddle point problems, both EG and PEG achieve
O
(
1
T

)
average-iterate convergence (Nemirovski, 2004;

1Monotone VIP means the operator F is monotone:
⟨F (z)− F (z′), z− z′⟩ ≥ 0 holds for any z, z′ ∈ Rd.
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Table 1: Comparison of our results and previous extragradient type methods on the Riemannian gsc-convex
gsc-concave saddle point problems, where ζ and σ are geometric constants arising from Riemannian cosine laws
(Zhang and Sra, 2016; Alimisis et al., 2020). Notably, we achieve the first non-asymptotic last-iterate convergence
for Riemannian extragradient type methods.

Algorithm Results

RCEG (Zhang et al., 2023) average-iterate: O

(√
ζ
σ · 1

T

)
, best-iterate: O

(√
ζ

σ · 1√
T

)
ROGDA (Wang et al., 2023) average-iterate: O

(
ζ
σ · 1

T

)
, best-iterate: O

(
ζ√
σ3

· 1√
T

)
REG (Theorem 2) average-iterate: O

(
ζ
σ · 1

T

)
, last-iterate: O

(
ζ√
σ3

· 1√
T

)
RPEG (Theorem 4) average-iterate: O

(
ζ
σ · 1

T

)
, last-iterate: O

(
ζ√
σ3

· 1√
T

)

Mokhtari et al., 2020) and O
(

1√
T

)
last-iterate con-

vergence (Golowich et al., 2020b,a; Gorbunov et al.,
2022a,b; Cai et al., 2022).2 The last-iterate conver-
gence, although slower than the average-iterate con-
vergence, offers two distinct advantages: (i) the last-
iterate convergence is an appropriate performance met-
ric even for non-convex-concave games, a condition not
met by the average-iterate convergence due to the ab-
sence of Jensen’s inequality; (ii) in practical scenar-
ios like GAN training, the last-iterate exhibits strong
empirical results (Daskalakis et al., 2018; Chavdarova
et al., 2019).

Meanwhile, in recent years, Riemannian convex op-
timization and minimax optimization have attracted
considerable interest (Zhang and Sra, 2016; Alimisis
et al., 2020; Ahn and Sra, 2020; Kim and Yang, 2022;
Zhang et al., 2023; Jordan et al., 2022; Martínez-Rubio
et al., 2023). However, Riemannian variational in-
equality problems (RVIPs), the generalized counter-
part of Riemannian convex optimization and minimax
optimization, remain relatively underexplored. In this
paper, we consider extragradient type methods for the
following RVIP: identify z∗ such that〈

F (z∗),Exp−1
z∗ z

〉
≥ 0, ∀z ∈ M.

Here, M denotes a d-dimensional Riemannian man-
ifold and F (·) is a vector field defined on M. For
Riemannian convex-concave saddle point problems,
Zhang et al. (2023) introduce the Riemannian cor-
rected extragradient (RCEG), while Wang et al.
(2023) propose the Riemannian optimistic gradient de-
scent ascent (ROGDA), both achieving O

(
1
T

)
average-

iterate convergence. However, the non-asymptotic
last-iterate convergence of these methods remains
unexplored except for strongly geodesically convex-
concave problems (Jordan et al., 2022; Wang et al.,
2023). This naturally raises the question:

2The average-iterate and the last-iterate consider the
convergence of z̄T := 1

T

∑T
t=1 z̃t and zT , respectively.

Do there exist Riemannian analogs of EG and
PEG that concurrently exhibit non-asymptotic average-
iterate and last-iterate convergence behaviors?

In this study, we confirm this question and outline the
following contributions.

• We introduce Riemannian extragradient (REG)
and Riemannian past extragradient (RPEG) as
novel first-order methods tailored for monotone
RVIPs.

• Both REG and RPEG, as detailed in Theorems
1 and 3, exhibit O

(
1√
T

)
last-iterate convergence

in the context of monotone RVIPs.

• In the realm of Riemannian minimax optimiza-
tion, both REG and RPEG achieve O

(
1√
T

)
last iterate convergence and O

(
1
T

)
average-iterate

convergence, as delineated in Table 1.

For completeness, we have included the proof of the
best-iterate convergence for RCEG in Appendix 9.1.
It is beneficial to compare the convergence rates of
the algorithms listed in Table 1, focusing on the ge-
ometric constants ζ and σ. Given that ζ ≥ σ, the
average-iterate convergence rate of RCEG algorithm
comes with a more favorable geometric constant com-
pared to our REG algorithm. Meanwhile, the geomet-
ric constants of ROGDA show similarities to those of
our REG and RPEG algorithms. This similarity may
arise because all those methods rely on bounding the
holonomy distortion. An intriguing open question is
how to enhance the last-iterate convergence of REG
and RPEG by optimizing the curvature constants.

We now outline the primary technical challenges and
our solutions. State-of-the-art proofs validating the
last-iterate convergence of EG and PEG are generally
inspired by either the performance estimation problem
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(PEP) approach (Gorbunov et al., 2022a,b) or the sum-
of-squares (SOS) technique (Cai et al., 2022). At their
core, both methods cast the estimation of an optimiza-
tion algorithm’s convergence rate as an optimization
problem, subsequently obtaining a numerical solution
through sequential convex relaxation. This solution in-
herently offers insights into crafting a proof. However,
applying the PEP and SOS techniques directly to the
manifold setting proves difficult, largely because they
intrinsically depend on the “interpolation condition”
(Taylor et al., 2017), which is inherently tied to the
Euclidean space, not geodesic metric spaces3.

Yet, this challenge does not inherently restrict us from
leveraging the insights gleaned from the PEP or SOS
methods. In our study, we meticulously craft REG
and RPEG based on these insights, demonstrating
that validating the last-iterate convergence in mani-
fold contexts can largely mirror the proofs in the Eu-
clidean setting, provided that the holonomy effect4 is
handled with care. We posit that this novel approach
not only resolves our immediate challenges but could
potentially benefit a broader range of Riemannian op-
timization problems in the future.

2 Related Work

In this section, we briefly review prior research on ex-
tragradient type algorithms in the Euclidean space and
Riemannian minimax optimization.

Extragradient Type Methods in Euclidean
Space. Nemirovski (2004) demonstrate an O

(
1
T

)
average-iterate convergence rate of EG with respect to
the primal-dual gap. A comparable result for OGDA
is documented by Mokhtari et al. (2020). Building on
additional assumptions, specifically the Lipschitz con-
tinuity of the Jacobian of F , Golowich et al. (2020b,a)
are the first to establish an O

(
1√
T

)
last-iterate con-

vergence rate for EG and PEG. This milestone is fur-
ther developed by Gorbunov et al. (2022a), who by-
pass the aforementioned assumption and showcase an
O
(

1√
T

)
last-iterate convergence using the PEP tech-

nique. Various works such as Cai et al. (2022) and
Gorbunov et al. (2022b) extend these results to con-
strained settings. One intriguing discrepancy that
emerges is between the average-iterate convergence
O
(
1
T

)
and the last-iterate convergence O

(
1√
T

)
rates.

It raises the question: are there accelerated first-order
3For a deeper exploration of the “geodesically con-

vex interpolation”, readers are referred to Criscitiello and
Boumal (2023, Section 8).

4To put it simply, after a vector undergoes parallel trans-
port along a geodesic loop, the end result differs from its
original form, a phenomenon termed holonomy.

methods that can achieve O
(
1
T

)
last-iterate conver-

gence? Drawing inspiration from the Halpern iteration
(Lieder, 2021), Yoon and Ryu (2021) introduce the ex-
tra anchored gradient (EAG), which achieves O

(
1
T

)
last-iterate convergence rate.

Riemannian Minimax Optimization. Zhang et al.
(2023) propose RCEG, which achieves O

(
1
T

)
average-

iterate convergence for geodesically convex-concave
problems. Our contributions, REG and RPEG, sur-
pass this by attaining both O

(
1√
T

)
last-iterate and

O
(
1
T

)
average-iterate convergence rates. Hu et al.

(2023) consider how to make RCEG work in the online
improper learning setting. Han et al. (2023) put forth
the Riemannian Hamiltonian gradient descent, which
exhibits linear convergence under the Riemannian
Polyak-Lojasiewicz condition. However, this condition
predominantly applies to strongly geodesically convex-
concave problems. Other notable contributions in-
clude Jordan et al. (2022), who demonstrate linear
last-iterate convergence of RCEG for strongly convex-
concave settings, and Wang et al. (2023), who pro-
pose ROGDA. This method achieves O

(
1
T

)
average-

iterate convergence and linear last-iterate convergence
in convex-concave and strongly convex-concave set-
tings, respectively. It should be noted that while Wang
et al. (2023) rely on quantifying the holonomy effect
in geodesic quadrilaterals, our approach capitalizes on
the analogous effect in geodesic triangles. As we will
see later, this is a key observation that enables us to es-
tablish the last-iterate convergence within the Rieman-
nian context. The Riemannian gradient descent ascent
(RGDA) in the deterministic setting and the stochas-
tic setting has been considered by Jordan et al. (2022);
Huang and Gao (2023). By leveraging the idea of con-
verting minimax optimization to sequential strongly
convex optimization problems, Martínez-Rubio et al.
(2023) introduce doubly-looped algorithms specifically
designed for Hadamard manifolds. Furthermore, the
algorithms proposed in Martínez-Rubio et al. (2023)
demonstrate accelerated convergence rates and inher-
ently address the constrained scenario. The quest
for singly-looped Riemannian first-order minimax op-
timization algorithms featuring accelerated rates con-
tinues to be a compelling area of investigation. Cai
et al. (2023) show a curvature-independent linear last-
iterate convergence of Riemannian gradient descent
for strongly monotone RVIPs. Our approach offers
a slower O

(
1√
T

)
last-iterate convergence rate, but ap-

plies to general monotone RVIPs.

3 Preliminaries

In this section, we provide an overview of Riemannian
geometry, RVIPs, and Riemannian minimax optimiza-
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tion. We also introduce some assumptions that are
necessary to establish our key results.

3.1 Riemannian Geometry

We outline the foundational concepts of Riemannian
geometry here. For a more in-depth exposition, the
reader is directed to Petersen (2006); Lee (2018). We
consider a d-dimensional smooth manifold M, a topo-
logical space where every point possesses an open
neighborhood that can be smoothly mapped to an
open subset in Rd. For each point x on the manifold
M, there are d directions (tangent vectors). Begin-
ning at x and moving infinitesimally in any of these
directions remains within M. The tangent space at
x, symbolized as TxM, is a vector space comprising
all these tangent vectors. A Riemannian manifold is
a smooth manifold equipped with a continuously dif-
ferentiable Riemannian metric. For any point x ∈ M,
this metric allows the calculation of the inner prod-
uct ⟨u,v⟩x and the magnitude ∥u∥x =

√
⟨u,u⟩x for

tangent vectors u,v ∈ TxM. We sometimes omit the
reference point x when it is clear from the context.

A geodesic segment connecting two points x,y ∈ M
is a constant-speed curve that locally minimizes the
distance between x and y, serving as a natural ex-
tension of line segments in Euclidean space. For-
mally, γ(t) : [0, 1] → M represents a geodesic seg-
ment, with γ(0) = x, γ(1) = y, and its initial ve-
locity given by γ̇(0) = v ∈ TxM. The exponential
map, Expx(·), transitions from a tangent space to the
manifold, while the inverse exponential map, Exp−1

x (·),
maps from the manifold to a tangent vector. For the
aforementioned geodesic segment γ(t), Expxv = y and
Exp−1

x y = v hold true. The Riemannian distance,
d(x,y), quantifies the geodesic distance between x and
y. Given the constant speed of the geodesic, we have
d(x,y) = ∥Exp−1

x y∥. For two distinct points x and y
and a tangent vector u ∈ TxM, the parallel transport
operation, denoted by Γy

xu, smoothly shifts u from be-
ing an element in TxM to being an element in TyM
via the geodesic joining x and y. This operation pre-
serves both the inner product and the norm of the
tangent vector.

The curvature of a Riemannian manifold is precisely
defined by the Riemannian curvature tensor. For prac-
ticality, the sectional curvature is used more frequently
in machine learning (Zhang and Sra, 2016; Ahn and
Sra, 2020; Kim and Yang, 2022). The sectional curva-
ture at any point x ∈ M relies on all 2-planes in TxM.
On Riemannian manifolds with positive, zero, and neg-
ative sectional curvatures, geodesics that start out par-
allel will, respectively, converge, remain parallel, and
diverge. A class of Riemannian manifolds of particular
interest is the Hadamard manifolds, which are com-

plete and simply connected spaces with non-positive
curvature. There, any pair of distinct points are con-
nected by a globally length-minimizing geodesic.

A geodesically-convex (gsc-convex) set contains all
length-minimizing geodesics connecting two distinct
points within the set. Let N ⊆ M be a gsc-convex
set. A function f : N → R is termed gsc-convex if and
only if f is convex when restricted to any geodesic with
the minimum length connecting two distinct points in
N . Formally, for all geodesic paths γ(t) ⊆ N ,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

For differentiable functions, geodesic convexity can be
represented as:

f(y) ≥ f(x) + ⟨∇f(x),Exp−1
x y⟩, ∀x,y ∈ N ,

where ∇f(x) ∈ TxM is the Riemannian gradient.
Consequently, the notion of geodesically-smooth (gsc-
smooth) functions emerges. A function f is termed
L-gsc-smooth if

∥∇f(x)− Γx
y∇f(y)∥ ≤ L · d(x,y),

or equivalently, for all x,y ∈ N :

f(y) ≤ f(x) + ⟨∇f(x),Exp−1
x y⟩+ L

2 d(x,y)
2.

The holonomy effect, originating from the curvature
of the Riemannian manifold, captures the “turning”
of a vector as it undergoes parallel transport around
a geodesic loop. As depicted in Figure 1, beginning
with a tangent vector u ∈ TxM, and translating u
along geodesic segments xy, yz and zx, upon return-
ing to x, the vector Γx

zΓ
z
yΓ

y
xu, though still in TxM,

deviates in direction from the initial tangent vector
u. Although quantifying the holonomy effect for gen-
eral geodesic loops is complex, this work demonstrates
that approximating the holonomy effect on a geodesic
triangle is sufficient to ascertain the last-iterate con-
vergence of Riemannian extragradient type methods.

z

u

Γx
zΓ

z
yΓ

y
xu

x

y

Figure 1: An illustration of the holonomy effect on a
sphere.
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3.2 RVIPs and Riemannian Minimax
Optimization

Recall the definition of the Riemannian VIP is to seek
a point z∗ such that

⟨F (z∗),Exp−1
z∗ z⟩ ≥ 0, ∀z ∈ M, (3)

which is equivalent to finding z∗ for which F (z∗) = 0
by substituting z = Expz∗(−ηF (z∗)). We demon-
strate that Riemannian convex optimization and min-
imax optimization are special cases of Riemannian
VIPs in the sequel.

A Riemannian convex optimization problem is given
by

min
z∈M

f(z), (4)

where f(z) is a gsc-convex function on a Riemannian
manifold M. The corresponding RVIP is obtained by
selecting F (z) = ∇f(z). Riemannian convex optimiza-
tion finds applications in operator scaling (Allen-Zhu
et al., 2018), Gaussian mixture models (Hosseini and
Sra, 2015), and the calculation of the Fréchet mean
(Lou et al., 2020). Another additional remark is, most
algorithms for convex optimization still work in gen-
eral, nonconvex settings, and it is just that their quan-
titative convergence guarantees may not carry through.
General Riemannian optimizations lead to even more
applications, such as large scale eigenvalue/PCA/SVD
problems Tao and Ohsawa (2020), generic improve-
ment of transformer and approximation of optimal
transport (Wasserstein) distance in high dimensions
Kong et al. (2022).

A Riemannian minimax problem can be articulated as

min
x∈M1

max
y∈M2

f(x,y), (5)

where M1 and M2 are Riemannian manifolds and f
is gsc-convex in x and gsc-concave in y. Examples in
this category encompass Riemannian constrained con-
vex optimization, robust geometry-aware PCA, and ro-
bust matrix Fréchet mean computation (Zhang et al.,
2023; Jordan et al., 2022). Adopting z =

( x
y

)
and

F (z) =
(

∇xf(x,y)
−∇yf(x,y)

)
, it is evident that z∗ =

(
x∗

y∗

)
,

the RVIP solution, stands as a saddle point of f(x,y).

For (unconstrained) RVIP which seeks a z∗ such that
F (z∗) = 0, the norm ∥F (zt)∥ serves as the convergence
criterion, aligning with standard proofs of last-iterate
convergence in the Euclidean domain (Golowich et al.,
2020b; Gorbunov et al., 2022a; Cai et al., 2022). How-
ever, for constrained situations, the norm ∥F (zt)∥ is
unsuitable since the RVIP solution does not inherently
ensure F (z∗) = 0. In Euclidean space, an alterna-
tive concept known as the “tangent residual” has been
shown to be effective in constrained cases, as detailed

in (Cai et al., 2022). It would be intriguing to explore
the applicability of this technique within the Rieman-
nian context.

For Riemannian saddle point problems, a conver-
gence measure analogous to ∥F (zt)∥ is the Riemannian
Hamiltonian:
Definition 1 (Riemannian Hamiltonian). For a
geodesically convex-concave objective f defined on
M1 ×M2, the Riemannian Hamiltonian at (x,y) is

Hamf (x,y) := ∥∇xf(x,y)∥2+∥∇yf(x,y)∥2 = ∥F (z)∥2.

An alternative convergence metric introduces the Rie-
mannian primal-dual gap:
Definition 2 (Riemannian Primal-dual Gap). As-
sume f : M1×M2 → R is geodesically convex-concave,
and sets X ⊆ M1 and Y ⊆ M2 are gsc-convex and
compact. The primal-dual gap on X ×Y is defined as:

GapX×Y
f (x,y) = maxy′∈Y f(x,y′)−minx′∈X f(x′,y).

This gap measures how the utility derived by one par-
ticipant changes upon unilateral action modification.
It is imperative to define the primal-dual gap on com-
pact sets X × Y to ensure the quantity is bounded.

3.3 Assumptions

In this part, we provide some key assumptions that
will be essential to our later results.
Assumption 1. Let M be a d-dimensional complete
and simply connected Riemannian manifold with sec-
tional curvature lower bounded by κ and upper bounded
by K. Assume F (·) is a vector field on M and F (z) = 0
admits a solution z∗. We denote D as an upper bound
of d(z0, z∗). When K > 0, we require that D ≤ 4π

9
√
K

.
Definition 3. Under Assumption 1, we define Km =
max{|κ|, |K|} and D = {z|d(z, z∗) ≤ 6D

5 }. We also
define σ̄ = σ

(
K, 91D

81

)
and ζ̄ = ζ

(
κ, 7D

5

)
, where σ(K, ·)

and ζ(κ, ·) are geometric constants defined in Lemmas
21 and 22 (Appendix 9.2), respectively.
Remark 1. Note that D < π

2
√
K

is required to guaran-
tee the unique geodesic property (Cheeger et al., 1975,
Theorem 5.14) and our condition D ≤ 4π

9
√
K

is substan-
tially close to D < π

2
√
K

.

Assumption 2. F (·) is monotone on D:〈
Γz
z′F (z′)− F (z),Exp−1

z z′
〉
≥ 0.

Assumption 3. F (·) is L-Lipschitz on the manifold
M, which means

∥F (z)− Γz
z′F (z′)∥ ≤ L · d(z, z′).
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Assumption 4. On the set D, the norm of F (·) is
bounded:

∥F (z)∥ ≤ G.

Remark 2. We utilize the fact that F (z∗) = 0, which
leads to

∥F (z)∥ = ∥F (z)− Γz
z∗F (z∗)∥ ≤ L · d(z, z∗).

If the algorithm’s trajectory remains bounded, it di-
rectly implies an upper bound on ∥F (z)∥. Initiating
with z0 where d(z0, z

∗) ≤ D, it can be verified (see
Corollaries 1 and 2 for details) that all iterates of both
REG and RPEG are confined within

D =
{
z | d(z, z∗) ≤ 6D

5

}
,

allowing us to dispense with Assumption 4 without sac-
rificing generality.

4 Riemannian Extragradient

In this part, we discuss the last-iterate and average-
iterate convergence of the Riemannian extragradient
method. The details of the proof for this section are
deferred to Appendix 7. As a precursor, we revisit the
proof in the Euclidean space.

4.1 Warm-up: the Euclidean Case

The extragradient (EG) method is pivotal for tack-
ling saddle point and variational inequality problems.
Given an operator F : Rd → Rd, the EG algorithm
updates as follows at each iteration:

zt+1 = zt − ηF (z̃t) := zt − ηF (zt − ηF (zt)). (6)

When F (·) is monotone and L-Lipschitz, as detailed in
Assumptions 5 and 6, EG enjoys O

(
1
T

)
average-iterate

convergence (Nemirovski, 2004; Mokhtari et al., 2020)
and O

(
1√
T

)
last-iterate convergence rate (Golowich

et al., 2020b; Gorbunov et al., 2022a; Cai et al., 2022).
Assumption 5. F (·) is monotone, which means

⟨F (z)− F (z′), z− z′⟩ ≥ 0 ∀z, z′ ∈ Rd.

Assumption 6. F (·) is L-Lipschitz, which means

∥F (z)− F (z′)∥ ≤ L∥z− z′∥ ∀z, z′ ∈ Rd.

The analysis of the last-iterate convergence of EG con-
tains two parts:

• (Best-iterate convergence) There exists t′ ∈ [T ]:

∥F (zt′)∥ ≤ O
(

1√
T

)
.

• (Non-increasing operator norm) For any t ∈ [T ],

∥F (zt+1)∥ ≤ ∥F (zt)∥.

While the best-iterate convergence of the extragradi-
ent method is well-established (Korpelevich, 1976; Ne-
mirovski, 2004), the proof on the monotonicity of the
operator norm is far from obvious. By introducing
an additional assumption that the Jacobian of F is
Λ-Lipschitz, Golowich et al. (2020b) demonstrate a
marginally weaker inequality:

∥F (zt+1)∥ ≤ (1 + ϵt)∥F (zt)∥.

where ϵt is small, thus establishing the O
(

1√
T

)
last-

iterate convergence. Subsequent studies by Gorbunov
et al. (2022a); Cai et al. (2022) eliminate this ad-
ditional assumption by resorting to the Performance
Estimation Problem (PEP) and the Sum-of-Squares
(SOS) technique. The following lemma lays the
groundwork for these findings.
Lemma 1. (Cai et al., 2022) Suppose

0 ≤ ⟨F (zt)− F (zt+1) , F (z̃t)⟩ ,

∥F (z̃t)− F (zt+1)∥2 ≤ L2η2 ∥F (z̃t)− F (zt)∥2
(7)

hold, where L2η2 ≤ 1, then ∥F (zt+1)∥ ≤ ∥F (zt)∥.

In Euclidean case, Equation (7) can be derived from
Equation (6), Assumptions 5 and 6.

4.2 Riemannian Extragradient and
Convergence Rates

A natural inquiry arises: what is the last-iterate con-
vergence of the Riemannian extragradient for mono-
tone RVIPs? In this section, we demonstrate that the
answer remains O

(
1√
T

)
.

Intuitively, we aim to identify an analog of Equation
(7) in the Riemannian setting. To this end, we propose
Riemannian extragradient (REG):

z̃t = Expzt
(−ηF (zt))

zt+1 = Expzt
(−ηΓzt

z̃t
F (z̃t)),

(8)

which employs the parallel transport to respect the
Riemannian metric. In the high level, given REG’s
update rule, we can establish a Riemannian analog of
Equation (7) and invoke Lemma 1 to show the operator
norm ∥F (zt)∥ is still non-increasing.

We first delve into the demonstration of the O
(

1√
T

)
best-iterate convergence of REG. Since Assumptions 2
and 4 are only valid on D rather than the entire mani-
fold M, it is crucial to ensure that all iterates of REG
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remain bounded. This fact is demonstrated with the
aid of Lemma 2 and Corollary 1. Apart from estab-
lishing the boundedness of zt, Lemma 2 also suggests
an O

(
1√
T

)
best-iterate convergence of REG.

Lemma 2. Under Assumptions 1, 3 and 4. For the
iterates of REG as in Equation (8),

d(zt, z
∗) ≤ D

holds for any t ≥ 0 and

η ≤ min

{
1√

8L2 + 306KmG2
,

σ̄

56
√
KmDL+ 8ζ̄L+ σ̄L

}
.

Also, we can show there exists t′ ∈ [T ] such that

∥F (zt′)∥ = O
(

ζ̄√
σ̄3T

)
.

Therefore, under mild conditions, we can ensure that
the trajectory of REG remains bounded.
Corollary 1. Under Assumptions 1, 3 and 4. For the
iterates of REG as in Equation (8), zt, z̃t ∈ D holds
for any t ≥ 0 and

η ≤ min
{

1√
8L2+306KmG2 ,

σ̄
56

√
KmDL+8ζ̄L+σ̄L

}
,

where D is defined in Definition 3.

To establish the last-iterate convergence of REG, we
need to show the operator norm ∥F (zt)∥ does not in-
crease. The following lemma, which quantifies the
holonomy effect on a geodesic triangle, plays a crucial
role in achieving that objective.
Lemma 3. (Informal) For a small geodesic triangle
△xyz on a Riemannian manifold M and u ∈ TxM,
we have

∥Γx
zΓ

z
yΓ

y
xu− u∥ = O(1) · ∥u∥ · d(y, z).

Remark 3. It is beneficial to recognize a more potent
implication of Lemma 3:

∥Γx
zΓ

z
yΓ

y
xu− u∥ = O(1) ·min{d(x,y), d(x, z), d(y, z)}

holds for a small geodesic triangle, given that parallel
transport preserves the norm of a tangent vector.

A formal description and proof of Lemma 3 can be
found in Appendix 9.3. For REG, with a small step-
size η, we demonstrate in the subsequent lemma that
the distortion due to the holonomy effect is small and
the operator norm does not increase.
Lemma 4. Under Assumptions 1, 2, 3, 4. For the
iterates of REG as in Equation (8), we can show

∥F (zt+1)∥ ≤ ∥F (zt)∥,

by choosing

η ≤ min
{

1√
8L2+306KmG2 ,

σ̄
56

√
KmDL+8ζ̄L+σ̄L

}
.

Now we are ready to present the last-iterate conver-
gence of REG.
Theorem 1. Under Assumptions 1, 2, 3, 4. For the
iterates of REG as in Equation (8), we can choose

η = min
{

1√
8L2+306KmG2 ,

σ̄
56

√
KmDL+8ζ̄L+σ̄L

}
to achieve O

(
1√
T

)
last-iterate convergence for the

monotone variational problem with an operator F .
Remark 4. It is instructive to compare the step-
size from Theorem 1 against that of Gorbunov et al.
(2022a). When we consider the Riemannian manifold
as an Euclidean space, our required step-size is η ≤ 1

8L ,
whereas Gorbunov et al. (2022a) prescribes η ≤ 1√

2L
.

This disparity hints that the constants in our findings
may not be the tightest.

When we consider Riemannian saddle point problems,
Theorem 2 shows REG attains O

(
1√
T

)
last-iterate

convergence and O
(
1
T

)
average-iterate convergence, si-

multaneously.
Theorem 2. Consider a Riemannian minimax opti-
mization problem

min
x∈M1

max
y∈M2

f(x,y)

where f is geodesically convex-concave. Let M :=
M1 × M2, z∗ :=

(
x∗

y∗
)

to be the saddle point, and
X = B

(
x∗,

√
2D
2

)
, Y = B

(
y∗,

√
2D
2

)
to be geodesic

balls. Under Assumptions 1, 2, 3, 4, if we apply REG
in Equation (8) with

η = min
{

1√
8L2+306KmG2 ,

σ̄
56

√
KmDL+8ζ̄L+σ̄L

}
,

then

maxy∈Y f(xT ,y)−minx∈X f(x,yT ) = O
(

ζ̄√
σ̄3T

)
,

and

maxy∈Y f(x̄T ,y)−minx∈X f(x, ȳT ) = O
(

ζ̄
σ̄T

)
,

where x̄T = Expx̄T−1

(
1
T Exp−1

x̄T−1
x̃T

)
and ȳT =

ExpȳT−1

(
1
T Exp−1

ȳT−1
ỹT

)
are the geodesic ergodic av-

erages of x̃t and ỹt for t = 1, . . . , T .

Up to now, a natural question that might arise is
whether the technique regarding holonomy distortion
suffices to establish the last-iterate convergence for
RCEG (Zhang et al., 2023) or ROGDA (Wang et al.,
2023). We explored the possibility of establishing the
last-iterate convergence of RCEG Appendix 7.7. The
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issue appears to involve a new distortion term and we
use an alternative update zt+1 = Expzt

(−ηΓzt

z̃t
F (z̃t))

in REG to eliminate it. For ROGDA, note that the
proof in Wang et al. (2023) heavily relies on the holon-
omy effect on a geodesic quadrilateral:

∥Γx
wΓw

z Γz
yΓ

y
xu− u∥

=O(1) · (d(x,y) + d(y, z) + d(w,x)) · (d(y, z) + d(w,x))

In our Lemma 24, we actually consider the case of
w = x, so the quadrilateral degenerates to be a
geodesic triangle. This aspect is crucial in the proof
of our Lemma 4, where we aim to bound the holon-
omy effect using a specific geodesic edge d(zt+1, z̃t),
rather than summing two edges, mirroring the ap-
proach in Euclidean cases. Given these considerations,
demonstrating the last-iterate convergence of RCEG
and ROGDA presents non-trivial challenges.

5 Riemannian Past Extragradient

In the Euclidean space, the Past Extragradient (PEG)
method, introduced by Popov (1980), performs iter-
ates as in Equation (2). One of the advantages of PEG
over EG is the halving of gradient queries in each itera-
tion. The two inequalities presented in Gorbunov et al.
(2022b, Lemma 3.1) are crucial for demonstrating the
last-iterate convergence of PEG:

0 ≤ ⟨F (zt)− F (zt+1) , F (z̃t)⟩ ,

∥F (z̃t)− F (zt+1)∥2 ≤ L2η2 ∥F (z̃t)− F (z̃t−1)∥2 .
(9)

And they can be deduced from Equation (2), Assump-
tions 5 and 6.

With insights gained from the Euclidean space, we in-
troduce the Riemannian Past Extragradient (RPEG):

z̃t = Expzt

(
−ηΓzt

z̃t−1
F (z̃t−1)

)
zt+1 = Expzt

(
−ηΓzt

z̃t
F (z̃t)

) (10)

One can readily observe that RPEG is distinct from
ROGDA (Wang et al., 2023):

z̃t+1 = Expz̃t

(
−2ηF (z̃t) + ηΓz̃t

z̃t−1
F (z̃t−1)

)
,

even in the unconstrained scenario, owing to the non-
linear nature of the exponential map. This distinc-
tion becomes particularly noteworthy when contrasted
with the Euclidean setting.

Following Gorbunov et al. (2022b), we use a Lyapunov
analysis argument to show the last-iterate convergence
of RPEG. Proof details of this part are deferred to
Appendix 8 due to page limitations. We first establish
the following lemma, which implies d(zt, z∗) ≤ D holds
for any t ≥ 0.

Lemma 5. Under Assumptions 1, 3 and 4. For the
iterates of RPEG in Equation (10) with

η ≤ min
{

σ̄
141LD

√
Km+32ζ̄L

, 1√
648KmG2

}
,

d(zt, z
∗) ≤ D holds for any t ≥ 0.

Similar to REG, the trajectory of RPEG is also
bounded due to the following corollary.
Corollary 2. Under Assumptions 1, 3 and 4. For the
iterates of RPEG as in Equation (10), zt, z̃t ∈ D holds
for any t ≥ 0 and

η ≤ min
{

σ̄
141LD

√
Km+32ζ̄L

, 1√
648KmG2

}
,

where D is defined in Definition 3.

In Gorbunov et al. (2022b), it is discussed that for
PEG, the function ∥F (zt)∥ does not monotonically de-
crease with respect to t. However, they demonstrate
that

∥F (zt+1)∥2 + 2∥F (zt+1)− F (z̃t)∥2

≤∥F (zt)∥2 + 2∥F (zt)− F (z̃t−1)∥2

holds when the step-size η is small. We introduce a
Riemannian counterpart to this proposition under the
help of Lemma 3.
Lemma 6. With Assumptions 1, 2, 3 and 4, the iter-
ates of RPEG satisfies

∥F (zt+1)∥2 + 2∥F (zt+1)− Γ
zt+1

z̃t
F (z̃t)∥2

≤∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

+ ρ∥Γzt

z̃t
F (z̃t)− Γzt

z̃t−1
F (z̃t−1)∥2

for any

η ≤ min
{

σ̄
141LD

√
Km+32ζ̄L

, 1√
648KmG2

}
.

where ρ :=
((
24L2 + 432KmG2 + 48GL

√
2Km

)
η2 − 2

3

)
.

Now, we are able to establish a Lyapunov analysis for
RPEG in Lemma 7.
Lemma 7. We define

Φt := d(zt, z
∗)2

+ λtη2
(
∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

)
with λ = σ̄

16 . Under Assumptions 1, 2, 3 and 4, the
iterates of RPEG as in Equation (10) satisfies Φt+1 ≤
Φt for any

η ≤ min

{
σ̄

152LD
√
Km+35ζ̄L

, 1√
36L2+648KmG2+72

√
2KmGL

}



Zihao Hu, Guanghui Wang, Xi Wang, Andre Wibisono, Jacob Abernethy, Molei Tao

The last-iterate convergence of RPEG is achieved by
combining Lemmas 5, 6, 7, so the final step-size needs
to satisfy all these requirements.
Theorem 3. Under Assumptions 1, 2, 3, 4. For the
iterates of RPEG as in Equation (10), we can achieve
O
(

ζ̄√
σ̄3T

)
last-iterate convergence for monotone vari-

ational problems by choosing

η = min

{
σ̄

152LD
√
Km+35ζ̄L

, 1√
36L2+648KmG2+72

√
2KmGL

}

Similar to REG, we can show RPEG also achieves
O
(

1√
T

)
last-iterate convergence and O

(
1
T

)
average-

iterate convergence, when applied to Riemannian
convex-concave saddle point problems.
Theorem 4. Consider a Riemannian minimax opti-
mization problem

min
x∈M1

max
y∈M2

f(x,y)

where f is geodesically convex-concave. Let M :=
M1 × M2, z∗ :=

(
x∗

y∗
)

to be the saddle point, and
X = B

(
x∗,

√
2D
2

)
, Y = B

(
y∗,

√
2D
2

)
to be geodesic

balls. Under Assumptions 1, 2, 3, 4, if we apply RPEG
in Equation (10) with

η ≤ min

{
σ̄

192LD
√
2Km+35ζ̄L

, 1√
36L2+648KmG2+72

√
2KmGL

}
then

maxy∈Y f(xT ,y)−minx∈X f(x,yT ) = O
(

ζ̄√
σ̄3T

)
,

and

maxy∈Y f(x̄T ,y)−minx∈X f(x, ȳT ) = O
(

ζ̄
σ̄T

)
,

where x̄T = Expx̄T−1

(
1
T Exp−1

x̄T−1
x̃T

)
and ȳT =

ExpȳT−1

(
1
T Exp−1

ȳT−1
ỹT

)
are the ergodic averages of

x̃t and ỹt for t = 1, . . . , T .

We wrap up this section with a comparison between
our work and Martínez-Rubio et al. (2023). The work
of Martínez-Rubio et al. (2023) can achieve a faster
O
(
1
T

)
last-iterate convergence rate for Riemannian

gsc-convex gsc-concave problems, but there are some
key distinctions: (i) their algorithm employs a double
loop, while our algorithms are single looped and eas-
ier to implement, (ii) for gsc-convex gsc-concave op-
timization problems, they rely on the reduction from
the strongly gsc-convex strongly gsc-concave case, and
a predefined precision is required before starting the al-
gorithm, while our algorithms are “anytime” and can
find better solutions the longer they are running, and

(iii) while our last-iterate rate of O
(

1√
T

)
is slower,

it aligns with the lower bound for p-SCLI algorithms
in Euclidean space as established by Golowich et al.
(2020b,a).

6 Conclusion

In this study, we introduce Riemannian adaptations
of the extragradient and past extragradient methods.
We establish O

(
1
T

)
average-iterate convergence and

O
(

1√
T

)
last-iterate convergence for minimax opti-

mization on Riemannian manifolds. A cornerstone
of our approach is the realization that the proof for
last-iterate convergence in the Riemannian setting can
be significantly simplified by transitioning to the Eu-
clidean domain, provided the holonomy effect is care-
fully bounded. Looking forward, we are keen to ex-
plore achieving last-iterate convergence in constrained
scenarios and pursuing O

(
1
T

)
accelerated rate through

the use of single-loop first-order algorithms. Other in-
teresting open problems include how to improve the
curvature-dependence of the last-iterate convergence
rate and investigate whether it is possible to replace
the exponential map with computationally more effi-
cient retractions.
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(b) Complete proofs of all theoretical results.
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(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
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URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
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the random seed after running experiments
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with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Applica-
ble]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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7 Omitted Proof for Section 4

7.1 Proof of Lemma 1

For simplicity, let a, b and c be F (zt), F (z̃t) and F (zt+1) respectively. We indeed have

0 ≤ λ ⟨a− c,b⟩

and
∥b− c∥2 ≤ L2η2∥b− a∥2

for any λ ≥ 0. Add the above two inequalities and rearrange, we obtain

L2η2∥a∥2 + (L2η2 − 1)∥b∥2 − ∥c∥2 + (2− λ) ⟨b, c⟩+
(
λ− 2L2η2

)
⟨a,b⟩ ≥ 0.

Since L2η2 ≤ 1, there exists λ ≤ 2 such that λ− 2L2η2 ≥ 0. Applying Young’s inequality on the cross product
term, we have

0 ≤L2η2∥a∥2 + (L2η2 − 1)∥b∥2 − ∥c∥2 + (2− λ) ⟨b, c⟩+
(
λ− 2L2η2

)
⟨a,b⟩

≤L2η2∥a∥2 + (L2η2 − 1)∥b∥2 − ∥c∥2 + (2− λ)
∥b∥2 + ∥c∥2

2
+
(
λ− 2L2η2

) ∥a∥2 + ∥b∥2

2

=
λ

2
∥a∥2 − λ

2
∥c∥2.

Hence, ∥c∥ ≤ ∥a∥, which means
∥F (zt+1)∥ ≤ ∥F (zt)∥

as asserted.

7.2 Auxillary Lemmas on the Iterates of REG

To demonstrate the O
(

1√
T

)
best-iterate convergence of REG, the succeeding three lemmas prove to be instru-

mental in this regard. Lemma 8 indicates that d(z̃t, zt+1) = O(η2), while Lemma 9 elucidates the relationship
between ∥F (zt)∥ and ∥F (z̃t)∥. Lemma 10 is a helpful lemma for proving that all iterates of REG remain bounded.
Lemma 8. Under Assumptions 1, 3. For the iterates of REG in Equation (8), suppose η is chosen to ensure
max{d(zt, z̃t), d(zt, zt+1)} ≤ 1√

Km
, then we have

d(z̃t, zt+1) ≤ 2Lη2∥F (zt)∥.

Proof. We have

d(z̃t, zt+1)

≤2∥Exp−1
zt

z̃t − Exp−1
zt

zt+1∥ = 2η · ∥F (zt)− Γzt

z̃t
F (z̃t)∥

≤2ηLd(zt, z̃t) = 2Lη2∥F (zt)∥.

where the first inequality is due to Lemma 17 and the second one is due to Assumption 3.
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Lemma 9. Under Assumptions 1, 3. For the iterates of REG in Equation (8), we have

(1− Lη)∥F (zt)∥ ≤ ∥F (z̃t)∥ ≤ (1 + Lη)∥F (zt)∥.

Proof. Due to the triangle inequality,

∥F (zt)∥+ ∥Γz̃t
zt
F (zt)− F (z̃t)∥ ≤ ∥F (z̃t)∥ = ∥Γz̃t

zt
F (zt)− Γz̃t

zt
F (zt) + F (z̃t)∥ ≤ ∥F (zt)∥+ ∥Γz̃t

zt
F (zt)− F (z̃t)∥.

According to Assumption 3, we have

∥Γz̃t
zt
F (zt)− F (z̃t)∥ ≤ L · d(zt, z̃t) = ηL∥F (zt)∥.

By combining the two aforementioned inequalities, the proof of the lemma is complete.

Lemma 10. Considering the iterates of REG as given in Equation (8) and with a step-size of η ≤ 1
9L , if we

assume that d(zt, z∗) ≤ D and Assumptions 1 and 3 are valid, then the following results hold:

d(zt+1, z
∗) ≤ 91D

81

and
d(z̃t, z

∗) ≤ 10D

9
.

We can also obtain zt, zt+1, z̃t ∈ D holds where D is defined in Definition 3.

Proof. This lemma can be proved via a combination of the triangle inequality, Lemma 9 and Assumption 3. For
d(zt+1, z

∗):

d(zt+1, z
∗) ≤ d(zt, z

∗) + d(zt+1, zt)

≤D + η∥F (z̃t)∥ ≤ D + η(1 + ηL)∥F (zt)∥

≤D +
10

9
ηDL ≤ D +

10

9

1

9L
DL =

91D

81
.

We can bound d(z̃t, z
∗) in a similar way:

d(z̃t, z
∗) ≤ d(zt, z

∗) + d(z̃t, zt)

≤D + η∥F (zt)∥ ≤ D + ηDL ≤ D +
1

9L
DL =

10D

9
.

7.3 Proof of Lemma 2

Proof. To confirm that d(zt, z∗) ≤ D for any t ≥ 0, we employ an induction approach. The base case d(z0, z
∗) ≤

D is straightforward. Assume d(zt, z
∗) ≤ D, we proceed to establish that d(zt+1, z

∗) ≤ D.

By Riemannian cosine law Lemma 21, we have

d(zt+1, z
∗)2−d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
−σ(K, d(zt, zt+1)+min {d(zt, z∗), d(zt+1, z

∗)}) ·d(zt, zt+1)
2.

(11)
Based on the monotonicity of σ(K, ·) and η ≤ σ̄

8ζ̄L+σ̄L
≤ 1

9L , we have

− σ(K, d(zt, zt+1) + min {d(zt, z∗), d(zt+1, z
∗)})

≤− σ(K, d(zt, z
∗) + d(zt, zt+1))

≤− σ

(
K,

91D

81

)
= −σ̄,

(12)
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The second inequality is based on the condition d(zt, z
∗) + d(zt+1, zt) ≤ 91D

81 , as established in the proof of
Lemma 10. Thus, we can deduce

d(zt+1, z
∗)2 − d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
− σ̄ · d(zt, zt+1)

2. (13)

by combining the above two inequalities.

We establish an upper bound for 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉

as follows:

2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
= 2η

〈
Γzt+1
zt

Γzt

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉

=2η
〈
Γzt+1
zt

Γzt

z̃t
F (z̃t)− Γ

zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉
+ 2η

〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉

≤2η∥Γzt+1
zt

Γzt

z̃t
F (z̃t)− Γ

zt+1

z̃t
F (z̃t)∥ · d(zt+1, z

∗) + 2η
〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉 (14)

The term ∥Γzt+1
zt Γzt

z̃t
F (z̃t)− Γ

zt+1

z̃t
F (z̃t)∥ corresponds to the geometric distortion due to the holonomy effect and

can be addressed by Lemma 24. Specifically,

∥Γzt+1
zt

Γzt

z̃t
F (z̃t)− Γ

zt+1

z̃t
F (z̃t)∥

≤36Km∥F (z̃t)∥ ·min{d(zt+1, z̃t) + d(zt, zt+1), d(zt+1, z̃t) + d(zt, z̃t)} · d(zt+1, z̃t)

≤36c
√
Km∥F (z̃t)∥ · d(z̃t, zt+1)

≤72c
√

KmLη2∥F (z̃t)∥ · ∥F (zt)∥

(15)

where the second inequality is due to

min{d(zt+1, z̃t) + d(zt, zt+1), d(zt+1, z̃t) + d(zt, z̃t)}
≤d(zt+1, zt) + 2d(zt, z̃t) = η∥F (z̃t)∥+ 2η∥F (zt)∥

≤3ηG ≤ 3√
306Km

≤ 1

1152
1
4

√
Km

:=
c√
Km

,

(16)

and the third one follows from Lemma 8. Note that the second inequality of Equation (16) is due to Lemma 10
and Assumption 4. Now it remains to bound 2η

〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉

:

2η
〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉
= 2η

〈
F (z̃t),Γ

z̃t
zt+1

Exp−1
zt+1

z∗
〉

=2η
〈
F (z̃t),Γ

z̃t
zt+1

Exp−1
zt+1

z∗ − Exp−1
z̃t

z∗
〉
+ 2η

〈
F (z̃t),Exp−1

z̃t
z∗
〉

≤2ηζ̄∥F (z̃t)∥ · d(z̃t, zt+1) + 0

≤4ηζ̄Lη2∥F (z̃t)∥ · ∥F (zt)∥ = 4η3ζ̄L∥F (zt)∥ · ∥F (z̃t)∥.

(17)

where the first inequality is by Lemma 22, the monotonicity of ζ(κ, ·) and

d(z̃t, zt+1) + min {d(z̃t, z∗), d(zt+1, z
∗)}

≤d(z̃t, zt) + d(zt, zt+1) + d(zt, z
∗) + d(z̃t, zt)

≤2η∥F (zt)∥+ η∥F (z̃t)∥+D

≤ (2η + η(1 + ηL)) ∥F (zt)∥+D

≤28

9
η ·DL+D

≤28D

81
+D ≤ 7D

5
.

(18)

And the second inequality of Equation (17) is due to Lemma 8. Combining Equations (13), (14), (15) and (17),
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we have

d(zt+1, z
∗)2 − d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
− σ̄d(zt, zt+1)

2

≤η3
(
144c

√
Km

91

81
DL+ 4ζ̄L

)
∥F (zt)∥ · ∥F (z̃t)∥ − σ̄η2∥F (z̃t)∥2

≤η2

(
(144c

√
Km

91
81DL+ 4ζ̄L)η

1− Lη
− σ̄

)
∥F (z̃t)∥2

≤− σ̄η2

2
∥F (z̃t)∥2.

(19)

where we use Lemma 9, Lemma 10, the fact that c = 1

1152
1
4

and η ≤ σ̄
56

√
KmDL+8ζ̄L+σ̄L

≤ σ̄
288c

√
Km

91
81DL+8ζ̄L+Lσ̄

.
By Equation (19), we know d(zt+1, z

∗) ≤ d(zt, z
∗) ≤ D, and by induction, d(zt, z∗) ≤ D holds for any t ≥ 0.

Also, since η ≤ σ̄
(8ζ̄+σ̄)L

, we sum over Equation (19) from t = 1 to T to obtain:

T∑
t=1

∥F (zt)∥2 ≤
T∑

t=1

1

(1− Lη)2
∥F (z̃t)∥2 ≤

T∑
t=1

(8ζ̄ + σ̄)2

(8ζ̄)2
· ∥F (z̃t)∥2

≤ 2

σ̄η2

(
8ζ̄ + σ̄

8ζ̄

)2

· d(z0, z∗)2 = O

(
ζ̄2

σ̄3

)
.

Thus,

T · min
t′∈[T ]

∥F (zt′)∥2 ≤
T∑

t=1

∥F (zt)∥2 = O

(
ζ̄2

σ̄3

)
,

and there exists t′ ∈ [T ], such that

∥F (zt′)∥ = O

(
ζ̄√
σ̄3T

)
.

7.4 Proof of Lemma 4

Proof. It is noteworthy that the chosen step-size η satisfies the requirement of Corollary 1, thus zt, z̃t ∈ D for
all t ≥ 0. This observation is pivotal since Assumptions 2 and 4 are only applicable to D.

We can directly show an analog of the first inequality in Equation (7) by

0 ≤
〈
Γzt
zt+1

F (zt+1)− F (zt),Exp−1
zt

zt+1

〉
=
〈
F (zt)− Γzt

zt+1
F (zt+1), ηΓ

zt

z̃t
F (z̃t)

〉
, (20)

where the inequality is due to Assumption 2, while the equality follows from Equation (8). Achieving an analog
of the second inequality in Equation (7) is more complicated. We first show

∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2

=∥Γzt

z̃t
F (z̃t)− Γzt

z̃t
Γz̃t
zt+1

F (zt+1) + Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥2

≤2∥Γzt

z̃t
F (z̃t)− Γzt

z̃t
Γz̃t
zt+1

F (zt+1)∥2 + 2∥Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥2
(21)

where the inequality is due to ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2).

Applying Lemma 24 with x = zt, y = zt+1, z = z̃t and Γy
xu = F (zt+1), then we can easily verify

∥Γx
zΓ

z
yΓ

y
xu− u∥ =∥Γzt

z̃t
Γz̃t
zt+1

Γzt+1
zt

Γzt
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥

=∥Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥
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and notice
3ηG ≤ 3√

306Km

≤ 1

1152
1
4

√
Km

:=
c√
Km

by η ≤ 1√
8L2+306KmG2 . Thus, by the triangle inequality,

min{d(zt, zt+1) + d(zt+1, z̃t), d(zt, z̃t) + d(zt+1, z̃t)} ≤ 3ηG ≤ c√
Km

,

and we have
∥Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥
≤36Km∥F (zt+1)∥ ·min{d(zt, zt+1) + d(zt+1, z̃t), d(zt, z̃t) + d(zt+1, z̃t)} · d(zt+1, z̃t)

≤36 · c
√
KmG · d(z̃t, zt+1),

(22)

where we use Corollary 1 to show zt+1 ∈ D, and thus ∥F (zt+1)∥ ≤ G by Assumption 4.

Combining Equations (21) and (22) yields

∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2

(1)

≤2∥Γzt

z̃t
F (z̃t)− Γzt

z̃t
Γz̃t
zt+1

F (zt+1)∥2 + 2∥Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥2

(2)

≤ (2L2 + 2592c2KmG2)d(z̃t, zt+1)
2

(3)

≤ (2L2 + 2592c2KmG2) · 4∥Exp−1
zt

z̃t − Exp−1
zt

zt+1∥2

=(8L2 + 10368c2KmG2)η2∥F (zt)− Γzt

z̃t
F (z̃t)∥2

(4)

≤ (8L2 + 306KmG2)η2∥F (zt)− Γzt

z̃t
F (z̃t)∥2

(23)

where the second inequality is by Assumption 3, the third is by Lemma 17, and for the last inequality, we use
the fact that 10368c2 = 10368√

1152
≤ 306.

Combining Equations (20) and (23), we have

0 ≤
〈
F (zt)− Γzt

zt+1
F (zt+1),Γ

zt

z̃t
F (z̃t)

〉
∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 ≤ (8L2 + 306KmG2)η2∥F (zt)− Γzt

z̃t
F (z̃t)∥2.

(24)

Since η satisfying (8L2 + 306KmG2)η2 ≤ 1, we can apply Lemma 1 with a = F (zt), b = Γzt

z̃t
F (z̃t) and c =

Γzt
zt+1

F (zt+1) to obtain
∥F (zt+1)∥ = ∥Γzt

zt+1
F (zt+1)∥ ≤ ∥F (zt)∥,

where the equality is due to the parallel transport preserves the vector norm. We note that
F (zt),Γ

zt

z̃t
F (z̃t),Γ

zt
zt+1

F (zt+1) are tangent vectors in the same tangent space Tzt
M.

7.5 Proof of Theorem 1

Proof. The theorem can be proved by directly combining Lemma 2 and Lemma 4.

7.6 Proof of Theorem 2

To establish the average-iterate convergence, the following lemma proves beneficial.
Lemma 11. Under Assumptions 1, 3 and 4. For the iterates of REG as in Equation (8) with

η ≤ min

{
1√

8L2 + 306KmG2
,

σ̄

56
√
KmDL+ 8ζ̄L+ σ̄L

}
,

we have
d(zt+1, z)

2 − d(zt, z)
2 ≤ 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
.

holds for any t ≥ 0 and z ∈ B(z∗, D), where B(z∗, D) denotes the geodesic ball with center z∗ and radius D.
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Proof. The proof is similar to that of Lemma 2. Combining Equations (13), (14), (15) and (17) but replacing z∗

with z, we have

d(zt+1, z)
2 − d(zt, z)

2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z
〉
− σ̄d(zt, zt+1)

2

≤η3
(

144

1152
1
4

√
Km · d(zt+1, z)L+ 4ζ̄L

)
∥F (zt)∥ · ∥F (z̃t)∥ − σ̄η2∥F (z̃t)∥2 + 2η

〈
F (z̃t),Exp−1

z̃t
z
〉

≤η3
(

144

1152
1
4

√
Km · 2DL+ 4ζ̄L

)
∥F (zt)∥ · ∥F (z̃t)∥ − σ̄η2∥F (z̃t)∥2 + 2η

〈
F (z̃t),Exp−1

z̃t
z
〉

≤ η3

1− Lη

(
144

1152
1
4

√
Km · 2DL+ 4ζ̄L

)
· ∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 + 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
,

(25)

where the third inequality is due to Lemma 2 and d(zt+1, z) ≤ d(zt+1, z
∗)+d(z∗, z) ≤ 2D, and the last inequality

follows from Lemma 9. Now, we can pick up η to ensure

η3

1− Lη

(
144

1152
1
4

√
Km · 2DL+ 4ζ̄L

)
· ∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 ≤ 0,

which means:
η ≤ σ̄

288

1152
1
4

√
KmDL+ 4ζ̄L+ σ̄L

≈ σ̄

49.43
√
KmDL+ 4ζ̄L+ σ̄L

.

Therefore,

η ≤ min

{
1√

8L2 + 306KmG2
,

σ̄

56
√
KmDL+ 8ζ̄L+ σ̄L

}
≤ σ̄

288

1152
1
4

√
KmDL+ 4ζ̄L+ σ̄L

,

which concludes the proof.

Now we are able to provide the proof of Theorem 2.

Proof. We denote z =
( x
y

)
and Z = B(z∗, D) for convenience. To show the last-iterate convergence,

max
y∈Y

f(xT ,y)−min
x∈X

f(x,yT ) ≤ max
y∈Y

〈
∇yf(xT ,yT ),Exp−1

yT
y
〉
+max

x∈X

〈
∇xf(xT ,yT ),−Exp−1

xT
x
〉

=max
z∈Z

〈
−F (zT ),Exp−1

zT
z
〉
≤ ∥F (zT )∥ ·max

z∈Z
d(zT , z) ≤ ∥F (zT )∥ ·

(
d(zT , z

∗) + max
z∈Z

d(z∗, z)

)
≤∥F (zT )∥ · 2D = O

(
ζ̄√
σ̄3T

)
.

where the last equality is due to Theorem 1. For the average-iterate convergence,

f(x̄T ,y)− f(x, ȳT )
(1)

≤ 1

T

(
T∑

t=1

f(x̃t,y)−
T∑

t=1

f(x, ỹt)

)
(2)

≤ 1

T

T∑
t=1

〈
−F (z̃t),Exp−1

z̃t
z
〉

(3)

≤ 1

2ηT

T∑
t=1

(
d(zt, z)

2 − d(zt+1, z)
2
)

(4)

≤ d(z0, z)
2

2ηT
≤ (2D)2

2ηT
=

2D2

ηT
= O

(
ζ̄

σ̄T

)
,

where the first inequality is due to a nested application of Jensen’s inequality for gsc-convex functions:

f(x̄t,y) ≤
1

t
f(x̃t,y) +

t− 1

t
f(x̄t−1,y),

the second is by the gsc-convexity, and the third comes from Lemma 11.
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7.7 Challenge for Establishing the Last-iterate Convergence of RCEG

We briefly touch upon our decision to omit a discussion on the last-iterate convergence of RCEG, as proposed
by Zhang et al. (2023). This variant introduces a correction term to ensure metric compatibility:

z̃t = Expzt
(−ηF (zt))

zt+1 = Expz̃t
(−ηF (z̃t) + Exp−1

z̃t
(zt)).

A keen reader may wonder about the behavior of RCEG when we aim to derive an equivalent of Equation (7).
For RCEG, crafting a counterpart to the first inequality in Equation (7) appears challenging.

By Lemma 22, we have

0 ≤
〈
F (zt)− Γzt

zt+1
F (zt+1),−Exp−1

zt
zt+1

〉
=
〈
F (zt)− Γzt

zt+1
F (zt+1),Γ

zt

z̃t
(Exp−1

z̃t
zt − Exp−1

z̃t
zt+1)

〉
+
〈
F (zt)− Γzt

zt+1
F (zt+1),−Exp−1

zt
zt+1 − (Γzt

z̃t
(Exp−1

z̃t
zt − Exp−1

z̃t
zt+1))

〉
≤η
〈
F (zt)− Γzt

zt+1
F (zt+1),Γ

zt

z̃t
F (z̃t)

〉
+ L ·max{ζ(κ, τ)− 1, 1− σ(K, τ)} · d(zt, zt+1) · d(zt, z̃t)

where τ = d(zt, z̃t) + min {d(zt, zt+1), d(z̃t, zt+1)}. We observe that the distortion term, proportional to
d(zt, zt+1) · d(zt, z̃t), poses challenges in establishing bounds. In contrast, for REG, the geometric distortion
due to the holonomy effect can be handled with the aid of Lemma 24. Hence, in this study, we predominantly
focus on REG, demonstrating that it indeed achieves O

(
1√
T

)
last-iterate convergence.

8 Omitted Proof for Section 5

8.1 Auxillary Lemmas on the Iterates of RPEG

Lemma 12 confirms that d(z̃t, zt+1) = O(η2), whereas Lemmas 13 and 14 delineate the relationship between
∥F (zt)∥, ∥F (z̃t)∥ and ∥F (z̃t+1)∥. Lemma 15 demonstrates that if zt is bounded, then zt+1, z̃t, z̃t−1 are also
bounded.
Lemma 12. For the iterates of RPEG as in Equation (10) with η ≤ 1

G
√
Km

, we have

d(z̃t, zt+1) ≤ 2Lη2(2∥F (z̃t−1)∥+ ∥F (z̃t−2)∥).

Proof. We begin with Lemma 17,

d(z̃t, zt+1) ≤ 2∥Exp−1
zt

z̃t − Exp−1
zt

zt+1∥ = 2η∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥

=2η∥Γzt

z̃t−1
F (z̃t−1)− F (zt) + F (zt)− Γzt

z̃t
F (z̃t)∥

≤2ηL · d(zt, z̃t−1) + 2ηLd(zt, z̃t)

≤2ηL(d(zt, zt−1) + d(z̃t−1, zt−1) + d(zt, z̃t))

=2η2L(∥F (z̃t−1)∥+ ∥F (z̃t−2)∥+ ∥F (z̃t−1)∥)
=2η2L(2∥F (z̃t−1)∥+ ∥F (z̃t−2)∥).

Lemma 13. (Chavdarova et al., 2021) Suppose η ≤ 1
8L , then

1

2
≤ ∥F (z̃t+1)∥

∥F (z̃t)∥
≤ 3

2

holds for RPEG in Equation (10).
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In Chavdarova et al. (2021), Lemma 13 has been established for PEG. However, given that the primary argument
hinges on the triangle inequality and the Lipschitz continuity of F , extending the proof to the manifold setting
is straightforward.
Lemma 14. Suppose η ≤ 1

8L , for the iterates of RPEG as in Equation (10), we have

(1− 2Lη)∥F (z̃t)∥ ≤ ∥F (zt)∥ ≤ (1 + 2Lη)∥F (z̃t)∥.

Proof. The proof is immediate by the triangle inequality, Lemma 13 and Assumption 3. First, we have

∥F (zt)∥ ≤∥F (z̃t)∥+ ∥F (zt)− Γzt

z̃t
F (z̃t)∥

=∥F (z̃t)∥+ L · d(zt, z̃t) = ∥F (z̃t)∥+ Lη∥F (z̃t−1)∥
≤(1 + 2ηL)∥F (z̃t)∥.

Next, we demonstrate that:

∥F (zt)∥ ≥∥F (z̃t)∥ − ∥F (zt)− Γzt

z̃t
F (z̃t)∥

=∥F (z̃t)∥ − L · d(zt, z̃t) = ∥F (z̃t)∥ − Lη∥F (z̃t−1)∥
≥(1− 2ηL)∥F (z̃t)∥.

Lemma 15. For the iterates of RPEG as in Equation (10), with step-size η ≤ 1
32L , assume d(zt, z

∗) ≤ D,
Assumptions 1 and 3 holds. Then we have

d(zt+1, z
∗) ≤ 31D

30

d(z̃t, z
∗) ≤ 16D

15

d(z̃t−1, z
∗) ≤ 6D

5
.

We can also obtain zt, zt+1, z̃t, z̃t−1 ∈ D holds where D is defined in Definition 3.

Proof. This lemma can be proved via a combination of the triangle inequality, Lemma 13, Lemma 14 and
Assumption 3. For d(zt+1, z

∗):

d(zt+1, z
∗) ≤ d(zt, z

∗) + d(zt+1, zt)

≤D + η∥F (z̃t)∥ ≤ D +
η

1− 2Lη
∥F (zt)∥

≤D +
η

1− 2Lη
DL ≤ D +

1

30
D =

31D

30
.

We can bound d(z̃t, z
∗) in a similar way:

d(z̃t, z
∗) ≤ d(zt, z

∗) + d(z̃t, zt)

≤D + η∥F (z̃t−1)∥
≤D + 2η∥F (z̃t)∥

≤D +
2

30
D =

16D

15
.

The case of d(z̃t−1, z
∗) is slightly more involved. First, by the triangle inequality,

d(z̃t−1, z
∗) ≤ d(z̃t−1, zt−1) + d(zt−1, z

∗).

We bound both terms individually as:

d(zt−1, z
∗) ≤ d(zt, zt−1) + d(zt, z

∗) ≤ η∥F (z̃t−1)∥+D ≤ 16D

15

d(z̃t−1, zt−1) = η∥F (z̃t−2)∥ ≤ 4η∥F (z̃t)∥ ≤ 4η

1− 2Lη
DL ≤ 2D

15
.
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Thus,
d(z̃t−1, z

∗) ≤ d(z̃t−1, zt−1) + d(zt−1, z
∗) ≤ 2D

15
+

16D

15
=

6D

5
.

8.2 Proof of Lemma 5

Proof. We again prove the lemma by induction. The case of t = 0 is obvious. Now, we assume d(zt, z
∗) ≤ D

and we intend to show d(zt+1, z
∗) ≤ D. We define c := 1

6
√
2

for convenience.

By Lemma 21,

d(zt+1, z
∗)2−d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
−σ(K, d(zt, zt+1)+min {d(zt, z∗), d(zt+1, z

∗)}) ·d(zt, zt+1)
2.

(26)
Based on the monotonicity of σ(K, ·) and η ≤ σ̄

32ζ̄L
≤ 1

32L , we have

− σ(K, d(zt, zt+1) + min {d(zt, z∗), d(zt+1, z
∗)})

≤− σ(K, d(zt, z
∗) + d(zt, zt+1))

≤− σ

(
K,

31D

30

)
≤ −σ̄,

(27)

where d(zt, z
∗) + d(zt, zt+1) ≤ 31D

30 follows from the proof of Lemma 15. Thus, we can deduce

d(zt+1, z
∗)2 − d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
− σ̄ · d(zt, zt+1)

2. (28)

We can decompose the term 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉

as:

2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
= 2η

〈
Γzt+1
zt

Γzt

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉

=2η
〈
Γzt+1
zt

Γzt

z̃t
F (z̃t)− Γ

zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉
+ 2η

〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉 (29)

The first term on the RHS of Equation (29) corresponds to the holonomy effect and can be bounded by Lemma
24. To this end, we first compute

min{d(zt, zt+1) + d(zt+1, z̃t), d(zt, z̃t) + d(zt+1, z̃t)}
≤d(zt, zt+1) + d(zt+1, z̃t) ≤ 2d(zt, zt+1) + d(zt, z̃t) = 2η∥F (z̃t)∥+ η∥F (z̃t−1)∥ ≤ 3ηG

≤3G · 1√
648KmG2

=
1

6
√
2 ·

√
Km

=
c√
Km

.

where 2η∥F (z̃t)∥+ η∥F (z̃t−1)∥ ≤ 3ηG is due to Lemma 15 and Assumption 4.

Now we have

2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉

(1)

≤36c
√

Km · ∥F (z̃t)∥ · d(z̃t, zt+1) · 2ηd(z∗, zt+1) + 2η
〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉

(2)

≤144cL
31D

30

√
Kmη3∥F (z̃t)∥ · (2∥F (z̃t−1)∥+ ∥F (z̃t−2)∥) + 2η

〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉
,

(30)

where the first inequality follows from Lemma 24 and the second is a result of Lemma 12 and Lemma 15.

min{d(zt, zt+1) + d(zt+1, z̃t), d(zt, z̃t) + d(zt+1, z̃t)}
≤d(zt, zt+1) + d(zt+1, z̃t) ≤ 2d(zt, zt+1) + d(zt, z̃t) = 2η∥F (z̃t)∥+ η∥F (z̃t−1)∥ ≤ 3ηG

≤3G · 1√
648KmG2

=
1

6
√
2 ·

√
Km

=
c√
Km

.
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while the second is a result of Lemma 12. We also achieve an upper bound on 2η
〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉

as
follows:

2η
〈
Γ
zt+1

z̃t
F (z̃t),Exp−1

zt+1
z∗
〉
= 2η

〈
F (z̃t),Γ

z̃t
zt+1

Exp−1
zt+1

z∗
〉

=2η
〈
F (z̃t),Γ

z̃t
zt+1

Exp−1
zt+1

z∗ − Exp−1
z̃t

z∗
〉
+ 2η

〈
F (z̃t),Exp−1

z̃t
z∗
〉

≤2ηζ̄∥F (z̃t)∥ · d(z̃t, zt+1)

≤4ζ̄Lη3∥F (z̃t)∥ · (2∥F (z̃t−1)∥+ ∥F (z̃t−2)∥),

(31)

where the inequality is due to Lemma 22 and Assumption 2, while the last equality is due to Lemma 12. The
correctness of the geometric distortion ζ̄ can be verified in an analog way as Equation (18). More specifically,

d(z̃t, zt+1) + min {d(z̃t, z∗), d(zt+1, z
∗)}

≤d(z̃t, zt+1) +
31D

30

≤d(z̃t, zt) + d(zt, zt+1) +
31D

30

=η∥F (z̃t−1)∥+ η∥F (z̃t)∥+
31D

30

≤3η∥F (z̃t)∥+
31D

30

≤ 3η

1− 2Lη
∥F (zt)∥ ≤ 3η

1− 2ηL
·DL+D ≤ 11D

10
≤ 7D

5
.

Combining Equations (28), (30) and (31), we have

d(zt+1, z
∗)2 − d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
− σ̄ · d(zt, zt+1)

2

≤(144cLD
√
Km + 4ζ̄L)η3 · ∥F (z̃t)∥ · (2∥F (z̃t−1)∥+ ∥F (z̃t−2)∥)− σ̄η2∥F (z̃t)∥2

≤8

(
144cL

31D

30

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2,

(32)

where the third inequality follows from Lemma 13. Remind that c = 1
6
√
2
, we can guarantee the RHS of Equation

(32) to be non-positive by choosing
η ≤ σ̄

141LD
√
Km + 32ζ̄L

.

Since
η ≤ min

{
σ̄

141LD
√
Km + 32ζ̄L

,
1√

648KmG2

}
,

already satisfies this requirement, by induction, we know d(zt, z
∗) ≤ D holds for t ≥ 0.

8.3 Proof of Lemma 6

Proof. First, we note that the step-size η already satisfies the requirement of Lemma 2, so we know
zt, zt+1, z̃t, z̃t−1 ∈ D holds for any t ≥ 0 by combining Lemmas 10 and 2. This is important, because As-
sumptions 2 and 4 only hold on D. By Assumption 2, we have

0 ≤
〈
Γzt
zt+1

F (zt+1)− F (zt),Exp−1
zt

zt+1

〉
=− η

〈
Γzt
zt+1

F (zt+1)− F (zt),Γ
zt

z̃t
F (z̃t)

〉
,

which is an analog of the first inequality in Equation (9). To show the second inequality, by Assumption 3,

∥Γz̃t
zt+1

F (zt+1)− F (z̃t)∥2 ≤ L2d(zt+1, z̃t)
2,
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and our goal is
∥Γzt

zt+1
F (zt+1)− Γzt

z̃t
F (z̃t)∥2 ≤ O(1) · d(zt+1, z̃t)

2.

First, we have

∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2

=∥Γzt

z̃t
F (z̃t)− Γzt

z̃t
Γz̃t
zt+1

F (zt+1) + Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− Γzt
zt+1

F (zt+1)∥2

≤2∥Γzt

z̃t
F (z̃t)− Γzt

z̃t
Γz̃t
zt+1

F (zt+1)∥2 + 2∥Γzt+1
zt

Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− F (zt+1)∥2
(33)

where the inequality follows from ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2). Since

min{d(zt, zt+1) + d(zt+1, z̃t), d(zt, z̃t) + d(zt+1, z̃t)}
≤d(zt, zt+1) + d(zt+1, z̃t) ≤ 2d(zt, zt+1) + d(zt, z̃t) ≤ 3ηG

≤3G · 1√
648KmG2

=
1

6
√
2 ·

√
Km

:=
c√
Km

By Lemma 24,

∥Γzt+1
zt

Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− F (zt+1)∥
≤36Km∥F (zt+1)∥ ·min{d(zt, zt+1) + d(zt+1, z̃t), d(zt, z̃t) + d(zt+1, z̃t)} · d(zt+1, z̃t)

≤36c
√

KmG · d(z̃t, zt+1)

(34)

Combining Equations (33) and (34) yields

∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2

(1)

≤2∥Γzt

z̃t
F (z̃t)− Γzt

z̃t
Γz̃t
zt+1

F (zt+1)∥2 + 2∥Γzt+1
zt

Γzt

z̃t
Γz̃t
zt+1

F (zt+1)− F (zt+1)∥2

(2)

≤ (2L2 + 2592c2KmG2)d(z̃t, zt+1)
2

(3)

≤ (2L2 + 2592c2KmG2) · 4∥Exp−1
zt

z̃t − Exp−1
zt

zt+1∥2

=(8L2 + 10368c2KmG2)η2∥Γzt

z̃t
F (z̃t)− Γzt

z̃t−1
F (z̃t−1)∥2,

(35)

where the first inequality is due to ∥a + b∥2 ≤ 2(∥a∥2 + ∥b∥2), the second is by Assumption 3 and Lemma 24,
the third is due to Lemma 17. Thus, we have

0 ≤
〈
F (zt)− Γzt

zt+1
F (zt+1),Γ

zt

z̃t
F (z̃t)

〉
(36)

and
∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 ≤ (8L2 + 10368c2KmG2)η2∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥2. (37)

Adding two times of Equation (36) and three times of Equation (37) together yields

3∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2

≤2
〈
F (zt)− Γzt

zt+1
F (zt+1),Γ

zt

z̃t
F (z̃t)

〉
+ 3(8L2 + 10368c2KmG2)η2∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥2

=∥F (zt)∥2 − ∥F (zt)− Γzt

z̃t
F (z̃t)∥2 + ∥Γzt

zt+1
F (zt+1)− Γzt

z̃t
F (z̃t)∥2 − ∥F (zt+1)∥2

+ 3(8L2 + 10368c2KmG2)η2∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥2

where we use 2 ⟨a,b⟩ = ∥a∥2+ ∥b∥2−∥a−b∥2 holds for a,b in the same tangent space. Rearranging, we obtain

∥F (zt+1)∥2 + 2∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2

≤∥F (zt)∥2 − ∥F (zt)− Γzt

z̃t
F (z̃t)∥2 + 3(8L2 + 10368c2KmG2)η2∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥2.

(38)
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Applying −∥a − b∥2 ≤ − 1
1+α∥a∥

2 + 1
α∥b∥

2 with a = Γzt

z̃t
F (z̃t) − Γzt

z̃t−1
F (z̃t−1), b = F (zt) − Γzt

z̃t−1
F (z̃t−1) and

α = 1
2 , we have

−∥F (zt)− Γzt

z̃t
F (z̃t)∥2 ≤ −2

3
∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2.

Plugging into Equation (38), rearranging, we have

∥F (zt+1)∥2 + 2∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 ≤∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

+ 3

(
8L2 + 10368c2KmG2η2 − 2

9

)
∥Γzt

z̃t
F (z̃t)− Γzt

z̃t−1
F (z̃t−1)∥2.

(39)

We are nearing the completion of the proof, but a subtle issue arises. The left-hand side (LHS) of Equation (39)
should feature 2∥F (zt+1)−Γ

zt+1

z̃t
F (z̃t)∥2 as opposed to 2∥Γzt

z̃t
F (z̃t)−Γzt

zt+1
F (zt+1)∥2 to better suit the subsequent

Lyapunov analysis. Fortunately, this discrepancy can be rectified by taking a closer look at the holonomy effect
and bounding it appropriately. To that end, we present the following calculations:

∥Γzt+1

z̃t
F (z̃t)− F (zt+1)∥2 = ∥Γzt+1

z̃t
F (z̃t)− Γ

zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1)∥2

+
〈
2Γ

zt+1

z̃t
F (z̃t)− F (zt+1)− Γ

zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1),Γ
zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1)− F (zt+1)
〉

≤∥Γzt+1

z̃t
F (z̃t)− Γ

zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1)∥2 + 2
〈
Γ
zt+1

z̃t
F (z̃t)− F (zt+1),Γ

zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1)− F (zt+1)
〉

=∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 + 2

〈
Γ
zt+1

z̃t
F (z̃t)− F (zt+1),Γ

zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1)− F (zt+1)
〉

≤∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 + 2L · d(z̃t, zt+1) · ∥F (zt+1)− Γ

zt+1

z̃t
Γz̃t
zt
Γzt
zt+1

F (zt+1)∥

≤∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 + 2L · 36c

√
KmGd(z̃t, zt+1)

2

≤∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 + 2L · 36c

√
KmG · 4∥Exp−1

zt
z̃t − Exp−1

zt
zt+1∥2

=∥Γzt

z̃t
F (z̃t)− Γzt

zt+1
F (zt+1)∥2 + 288cGL

√
Kmη2∥Γzt

z̃t−1
F (z̃t−1)− Γzt

z̃t
F (z̃t)∥2

(40)

where the first equality and the first inequality follows from

∥a− b∥2 = ∥a− c∥2 + ⟨2a− b− c, c− b⟩ ≤ ∥a− c∥2 + 2 ⟨a− b, c− b⟩

holds for a,b, c ∈ Tzt+1
M. Combining Equations (39) and (40), we get

∥F (zt+1)∥2 + 2∥F (zt+1)− Γ
zt+1

z̃t
F (z̃t)∥2

≤∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

+

((
24L2 + 31104c2KmG2 + 576cGL

√
Km

)
η2 − 2

3

)
∥Γzt

z̃t
F (z̃t)− Γzt

z̃t−1
F (z̃t−1)∥2

=∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

+

((
24L2 + 432KmG2 + 48GL

√
2Km

)
η2 − 2

3

)
∥Γzt

z̃t
F (z̃t)− Γzt

z̃t−1
F (z̃t−1)∥2

where for the equality, we plug in c = 1
6
√
2
.
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8.4 Proof of Lemma 7

Proof. Similar to the proof of Lemma 5, we define c := 1
6
√
2
. Since η ≤ 1√

36L2+648KmG2+72
√
2KmGL

≤ 1√
648KmG2 ,

by Lemma 6, Lemma 21, the definition of Φt, and an analog of Equation (27), we have

Φt+1 − Φt =d(zt+1, z
∗)2 + λ(t+ 1)η2

(
∥F (zt+1)∥2 + 2∥F (zt+1)− Γ

zt+1

z̃t
F (z̃t)∥2

)
−
(
d(zt, z

∗)2 + λtη2
(
∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

))
≤2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
− σ̄η2∥F (z̃t)∥2

+ λη2(∥F (zt)∥2 + 2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2)

+ λ(t+ 1)

((
24L2 + 432KmG2 + 48GL

√
2Km

)
η2 − 2

3

)
∥Γzt

z̃t
F (z̃t)− Γzt

z̃t−1
F (z̃t−1)∥2.

(41)

By η ≤ 1√
36L2+648KmG2+72

√
2KmGL

, we have

((
24L2 + 432KmG2 + 48GL

√
2Km

)
η2 − 2

3

)
≤ 0,

thus, the last term on the RHS of Equation (41) vanishes. Note that since η satisfies the requirement in Lemma
5, by Equation (32), we have

d(zt+1, z
∗)2 − d(zt, z

∗)2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z∗
〉
− σ̄ · d(zt, zt+1)

2

≤(144cLD
√
Km + 4ζ̄L)η3 · ∥F (z̃t)∥ · (2∥F (z̃t−1)∥+ ∥F (z̃t−2)∥)− σ̄η2∥F (z̃t)∥2

≤8

(
144cL

31D

30

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2,

(42)

By η ≤ 1
32L and Lemmas 13 and 14, we also have

∥F (zt)∥ ≤ (1 + 2Lη)∥F (z̃t)∥ ≤ 17

16
∥F (z̃t)∥

and

∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥ ≤Ld(zt, z̃t−1) ≤ L(d(zt, zt−1) + d(zt−1, z̃t−1)

=Lη(∥F (z̃t−1)∥+ ∥F (z̃t−2)∥) ≤ 6Lη∥F (z̃t)∥.

Thus,

λη2∥F (zt)∥2 + 2λη2∥F (zt)− Γzt

z̃t−1
F (z̃t−1)∥2

≤289

256
λη2∥F (z̃t)∥2 + 2λη2 · 36L2η2∥F (z̃t)∥2

=

(
289

256
λη2 + 72λL2η4

)
∥F (z̃t)∥2.

(43)

Combining Equations (41), (42) and (43) and choosing λ = σ̄
16 , we have

Φt+1 − Φt ≤8

(
144cL

31D

30

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 +

(
289

256
λη2 + 72λL2η4

)
∥F (z̃t)∥2

≤8

(
144cL

31D

30

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 +

(
σ̄

14
η2 +

9σ̄

64
Lη3

)
∥F (z̃t)∥2

≤
((

141LD
√

Km + 32ζ̄L+
9σ̄L

64

)
η3 − 13σ̄η2

14

)
· ∥F (z̃t)∥2
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where we recall c = 1
6
√
2
. Now, we find by taking

η =
σ̄

152LD
√
Km + 35ζ̄L

,

Φt+1 ≤ Φt holds. This requirement is always satisfied because

η ≤ min

{
σ̄

152LD
√
Km + 35ζ̄L

,
1√

36L2 + 648KmG2 + 72
√
2KmGL

}
≤ σ̄

152LD
√
Km + 35ζ̄L

always holds.

8.5 Proof of Theorem 3

Proof. By Lemma 7, we have

d(zT , z
∗)2 +

σ̄

16
Tη2

(
∥F (zT )∥2 + 2∥F (zT )− ΓzT

z̃T−1
F (z̃T−1)∥2

)
=ΦT ≤ ΦT−1 ≤ · · · ≤ Φ0 = d(z0, z

∗)2 ≤ D2.

Thus,

∥F (zT )∥2 ≤ D2 · 16

σ̄Tη2
= O

(
ζ̄2

σ̄3T

)
and ∥F (zT )∥ = O

(
ζ̄√
σ̄3T

)
.

8.6 Proof of Theorem 4

Similar to REG, we need the following auxillary lemma to establish the average-iterate convergence of RPEG.
Lemma 16. Under Assumptions 1, 3 and 4. For the iterates of RPEG as in Equation (10) with

η ≤ min

{
σ̄

192LD
√
2Km + 32ζ̄L

,
1√

648KmG2

}
,

we have
d(zt+1, z)

2 − d(zt, z)
2 ≤ 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
.

holds for any t ≥ 0 and z ∈ B(z∗, D) where B(z∗, D) denotes the geodesic ball with center z∗ and radius D.

Proof. The proof is similar to that of Lemma 5. Combining Equations (28), (30) and (31), and replacing z∗ with
z, we have

d(zt+1, z)
2 − d(zt, z)

2 ≤ 2
〈

Exp−1
zt+1

zt,Exp−1
zt+1

z
〉
− σ̄d(zt, zt+1)

2

≤8

(
144

6
√
2
L · d(zt+1, z)

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 + 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
,

=
(
96
√
2L · d(zt+1, z)

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 + 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
,

≤
(
192

√
2L ·D

√
Km + 4ζ̄L

)
η3∥F (z̃t)∥2 − σ̄η2∥F (z̃t)∥2 + 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
,

(44)

where the last inequality is due to Lemma 5 and d(zt+1, z) ≤ d(zt+1, z
∗) + d(z∗, z) ≤ 2D. It is straightforward

to see, for any
η ≤ σ̄

192LD
√
2Km + 32ζ̄L

,

we have
d(zt+1, z)

2 − d(zt, z)
2 ≤ 2η

〈
F (z̃t),Exp−1

z̃t
z
〉
,

which concludes the proof.
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Now, we can start to prove Theorem 4.

Proof. The proof closely parallels that of Theorem 2, but we provide details for the sake of completeness. Denote
z =

( x
y

)
and Z = B(z∗, D). We start with the last-iterate convergence,

max
y∈Y

f(xT ,y)−min
x∈X

f(x,yT ) ≤ max
y∈Y

〈
∇yf(xT ,yT ),Exp−1

yT
y
〉
+max

x∈X

〈
∇xf(xT ,yT ),−Exp−1

xT
x
〉

=max
z∈Z

〈
−F (zT ),Exp−1

zT
z
〉
≤ ∥F (zT )∥ ·max

z∈Z
d(zT , z) ≤ ∥F (zT )∥ ·

(
d(zT , z

∗) + max
z∈Z

d(z∗, z)

)
≤∥F (zT )∥ · 2D = O

(
ζ̄√
σ̄3T

)
.

where the last equality is due to Theorem 3. For the average-iterate convergence,

f(x̄T ,y)− f(x, ȳT )
(1)

≤ 1

T

(
T∑

t=1

f(x̃t,y)−
T∑

t=1

f(x, ỹt)

)
(2)

≤ 1

T

T∑
t=1

〈
−F (z̃t),Exp−1

z̃t
z
〉

(3)

≤ 1

2ηT

T∑
t=1

(
d(zt, z)

2 − d(zt+1, z)
2
)

(4)

≤ d(z0, z)
2

2ηT
≤ (2D)2

2ηT
=

2D2

ηT
= O

(
ζ̄

σ̄T

)
,

where the first inequality comes from a nested application of Jensen’s inequality for gsc-convex functions:

f(x̄t,y) ≤
1

t
f(x̃t,y) +

t− 1

t
f(x̄t−1,y),

the second is by the gsc-convexity, and the third comes from Lemma 16. We also note that

η ≤ min

{
σ̄

192LD
√
2Km + 35ζ̄L

,
1√

36L2 + 648KmG2 + 72
√
2KmGL

}
satisfies the requirement for η as specified in Lemma 16.

9 Technical Lemmas

9.1 Best-iterate Convergence of RCEG

For completeness, we provide the O
(

1√
T

)
rate for the best-iterate convergence of RCEG as follows. The proof

is inspired by Proposition 5 of Martínez-Rubio et al. (2023).
Theorem 5. Consider a Riemannian manifold M with sectional curvature in [κ,K], D = d(z0, z

∗). If K > 0,
we require that D < 2π

2
√
K

. Let ζ̄ = ζ(κ, 3D
2 ) and σ̄ = σ(K, 3D

2 ) be geometric constants defined in Lemma 22 and
Lemma 21. With η ≤

√
σ̄

4ζ̄L2 , RCEG defined by

z̃t = Expzt
(−ηF (zt))

zt+1 = Expz̃t

(
−ηF (z̃t) + Exp−1

z̃t
zt
)
.

achieves O
(

1√
T

)
best-iterate convergence for Riemannian variational inequality problems.

Proof. We use mathematical induction to establish d(zt, z
∗) ≤ D holds for any t ≥ 0. The base case t = 0 is

straightforward. Assuming that d(zt, z
∗) ≤ D holds, we proceed to show that
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d(z̃t, z
∗) ≤ d(z̃t, zt) + d(zt, z

∗)

= η∥F (zt)∥+ d(zt, z
∗)

= η∥F (zt)− Γzt
z∗F (z∗)∥+ d(zt, z

∗)

≤ ηLd(zt, z
∗) + d(zt, z

∗)

= (1 + ηL)d(zt, z
∗)

≤ 3

2
d(zt, z

∗),

(45)

where the second inequality is due to the L-Lipschitzness of F and the third inequality follows from η ≤
√

σ̄
4ζ̄L2 ≤

1
2L .

Now by Equation (45), Lemma 23 and Lemma 21,

2
〈
Exp−1

z̃t
z∗,Exp−1

z̃t
zt+1 − Exp−1

z̃t
zt
〉

≤ζ̄d(z̃t, zt+1)
2 − σ̄d(z̃t, zt)

2 + d(z∗, zt)
2 − d(z∗, zt+1)

2

=ζ̄η2∥F (z̃t)− Γz̃t
zt
F (zt)∥2 − σ̄d(z̃t, zt)

2 + d(z∗, zt)
2 − d(z∗, zt+1)

2

≤
(
ζ̄η2L2 − σ̄

)
d(z̃t, zt)

2 + d(z∗, zt)
2 − d(z∗, zt+1)

2.

(46)

On the other hand, we have 〈
Exp−1

z̃t
z∗,Exp−1

z̃t
zt+1 − Exp−1

z̃t
zt
〉

=
〈
Exp−1

z̃t
z∗,−ηF (z̃t)

〉
=η
〈
Γz̃t
z∗F (z∗)− F (z̃t),Exp−1

z̃t
z∗
〉
≥ 0.

(47)

Combining Equation (46) and Equation (47), we have

d(zt, z
∗)2 ≥ d(zt+1, z

∗)2 + (σ̄ − ζ̄η2L2)d(z̃t, zt)
2. (48)

Given that ζ̄η2L2 ≤ σ̄, it follows that d(zt+1, z
∗) ≤ d(zt, z

∗) ≤ D, which completes the induction step. Summing
over Equation (48), we obtain

d(z0, z
∗)2 ≥(σ̄ − ζ̄η2L2)

T−1∑
t=0

d(z̃t, zt)
2

=η2(σ̄ − ζ̄η2L2)

T−1∑
t=0

∥F (zt)∥2

≥η2(σ̄ − ζ̄η2L2)T · min
t′∈[T ]

∥F (z′t)∥2,

where the final inequality demonstrates that the best-iterate convergence rate of RCEG is O

( √
ζ̄

σ̄
√
T

)
.

9.2 Miscellaneous Technical Lemmas

Lemma 17. For a Riemannian manifold M with sectional curvature in [κ,K] and a geodesic triangle on M
with vertices x,y, z. If K > 0, we require the maximum side length is smaller than π√

K
. If κ < 0, we assume

max{d(x, z), d(y, z)} ≤ 1√
−κ

,

then we have
d(x,y) ≤ 2 · ∥Exp−1

z x− Exp−1
z y∥.
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Proof. By Proposition B.2 in Ahn and Sra (2020) and Rauch Comparison Theorem, we have

d(x,y) ≤

{
sinh(

√
−κmax{d(x,z),d(y,z)})√

−κmax{d(x,z),d(y,z)} · ∥Exp−1
z x− Exp−1

z y∥ κ < 0

∥Exp−1
z x− Exp−1

z y∥ κ ≥ 0.

Since sinh x
x is monotonically increasing with respect to x and

max{d(x, z), d(y, z)} ≤ 1√
−κ

,

we have
sinh(

√
−κmax{d(x, z), d(y, z)})√

−κmax{d(x, z), d(y, z)}
≤ sinh 1

1
≤ 2,

which completes the proof.

Lemma 18. (Lee, 2018, Theorem 7.11), (Wang et al., 2023, Lemma 11) For a Riemannian manifold M
with sectional curvature in [κ,K], denote Λ(s, t) : [0, 1] × [0, 1] → M to be a rectangle map and ℓ to be the
geodesic loop connecting Λ(0, 0), Λ(0, 1), Λ(1, 1) and Λ(1, 0). We also define Km = max(|κ|, |K|), vector fields
S(s, t) = Λ⋆

∂
∂s (s, t) and T (s, t) = Λ⋆

∂
∂t (s, t). Then for any u ∈ TΛ(0,0)M, we have

∥Γℓu− u∥ ≤ 12Km∥u∥ ·
∫ 1

0

∫ 1

0

∥T∥ · ∥S∥dsdt,

where Γℓ is the parallel transport along the geodesic loop ℓ.
Definition 4. We define

S(K, t) =

{
sin(

√
Kt)√
K

K > 0

t K ≤ 0,

and

s(κ, t) =

{
sinh(

√
−κt)√

−κ
κ < 0

t κ ≥ 0.

Lemma 19. (Lee, 2018) Let the sectional curvature of a Riemannian manifold M be in [κ,K], γ(t) : [0, s] → M
be a geodesic with unit velocity , and J be a Jacobi field along γ(t). When K > 0, we assume the length of γ(t)
is smaller than π√

K
. Then

S(K, t)∥∇γ̇J(γ(0))∥ ≤ ∥J(γ(t))∥ ≤ s(κ, t)∥∇γ̇J(γ(0))∥,

where s(κ, t) and S(K, t) are defined in Definition 4.

Lemma 20. (Wang et al., 2023) We denote Km = max(|κ|, |K|). For any 0 ≤ t ≤ 1√
Km

, we have s(κ,t)
S(K,t) ≤ 3,

where s(κ, t) and S(K, t) are defined in Definition 4.
Lemma 21. (Alimisis et al., 2020) Let M be a Riemannian manifold with sectional curvature upper bounded
by K. Consider a geodesic triangle with side lengths a, b, c such that

b+min{a, c} <

{ π√
K

K > 0

∞ K ≤ 0.

Then we have
a2 ≥ σ(K, b+min{a, c})b2 + c2 − 2bc cosA

where

σ(K, τ) :=

{ √
Kτ cot(

√
Kτ) K > 0

1 K ≤ 0.
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Remark 5. Lemma 21 is indeed a variant of Corollary 2.1 of Alimisis et al. (2020). The original version therein
states: given a geodesic triangle with vertices x, y, and z, and corresponding edge lengths a, b, and c. There
exists a point q ∈ xz such that

a2 ≥ σ(K, d(y,q))b2 + c2 − 2bc cosA.

By the triangle inequality

d(y,q) ≤ min{d(x,y) + d(x, z), d(x, z) + d(y, z)} = b+min{a, c}.

Thus, by the monotonicity of σ(K, ·), we have

a2 ≥σ(K, d(y,q))b2 + c2 − 2bc cosA

≥σ(K, b+min{a, c})b2 + c2 − 2bc cosA.

Lemma 22. (Alimisis et al., 2021) Assume M is a Riemannian manifold with sectional curvature in [κ,K].
For a geodesic triangle on M with vertices x,y, z such that

τ := d(x, z) + min{d(x,y), d(y, z)} <

{ π√
K

K > 0

∞ K ≤ 0.

Then

1)
∥Exp−1

x y − Γx
zExp−1

z y∥ ≤ ζ(κ, τ) · d(x, z)

2)
∥Exp−1

x y − Γx
zExp−1

z y − Exp−1
x z∥ ≤ max{ζ(κ, τ)− 1, 1− σ(K, τ)} · d(x, z)

where
ζ(κ, τ) :=

{ √
−κτ coth(

√
−κτ) κ < 0

1 κ ≥ 0,

and σ(K, τ) is defined in Lemma 21.
Lemma 23. (Zhang and Sra, 2016, Lemma 5). Let M be a Riemannian manifold with sectional curvature lower
bounded by κ. Consider a geodesic triangle fully lies within M with side lengths a, b, c, we have

a2 ≤ ζ(κ, c)b2 + c2 − 2bc cosA

where ζ(κ, c) is defined in Lemma 22.

9.3 Bounding the Holonomy Effect on a Geodesic Triangle

Lemma 24. For a Riemannian manifold M with sectional curvature in [κ,K] and a geodesic triangle △xyz on
M, we denote Km = max{|κ|, |K|}. Then as long as

min{d(x,y) + d(y, z), d(x, z) + d(y, z)} ≤ 1√
Km

,

for any u ∈ TxM, we have

∥Γx
zΓ

z
yΓ

y
xu− u∥ ≤ 36Km∥u∥ ·min{d(x,y) + d(y, z), d(x, z) + d(y, z)} · d(y, z).

Proof. We define Λ(s, t) : [0, 1]× [0, 1] → M to be a rectangle map such that

Λ(s, t) := Expγ1(s)(tExp−1
γ1(s)

γ2(s))
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where γ1(s) and γ2(s) are geodesics which satisfy γ1(0) = Λ(0, 0) := x, γ1(1) = Λ(1, 0) := w, γ2(0) = Λ(0, 1) := y
and γ2(1) = Λ(1, 1) := z. Also, we denote

S(s, t) = Λ⋆
∂

∂s
(s, t)

T (s, t) = Λ⋆
∂

∂t
(s, t).

We use ℓ to denote the geodesic loop starts at x and consists of geodesic segments xy, yz, zw and wx, then by
Lemma 18, we have

∥Γℓu− u∥ ≤ 12Km∥u∥ ·
∫ 1

0

∫ 1

0

∥T∥ · ∥S∥dsdt (49)

By the triangle inequality, T (s, t) simultaneously satisfies

∥T (s, t)∥ = d(γ1(s), γ2(s))

≤d(γ1(s),x) + d(x,y) + d(y, γ2(s))

≤d(w,x) + d(x,y) + d(y, z)

and

∥T (s, t)∥ = d(γ1(s), γ2(s))

≤d(γ1(s),w) + d(w, z) + d(z, γ2(s))

≤d(x,w) + d(w, z) + d(z,y),

we have
∥T (s, t)∥ ≤ min{d(w,x) + d(x,y) + d(y, z), d(x,w) + d(w, z) + d(z,y)}

Note that S is a Jacobi field with ∥S(s, 0)∥ = d(x,w) and ∥S(s, 1)∥ = d(y, z). Now as we set w = x,

∥T (s, t)∥ ≤ min{d(x,y) + d(y, z), d(x, z) + d(y, z)}
∥S(s, 0)∥ = 0

∥S(s, 1)∥ = d(y, z).

(50)

We define a unit speed geodesic γ(t) such that γ(0) = γ1(s) and γ(b) = γ2(s), where b := d(γ1(s), γ2(s)). Then
we find J(γ(t)) := S(s, t/b) is a Jacobi field associated with the geodesic γ(t). By Lemma 19, for any t ∈ [0, b],
we have

S(K, b)∥∇γ̇J(γ(0))∥ ≤ ∥J(γ(b))∥

and
∥J(γ(t))∥ ≤ s(K, t)∥∇γ̇J(γ(0))∥ ≤ s(K, b)∥∇γ̇J(γ(0))∥.

Combining the above two inequalities yields

∥J(γ(t))∥ ≤ s(κ, b)

S(K, b)
∥J(γ(b))∥ =

s(κ, b)

S(K, b)
∥S(s, 1)∥ =

s(κ, b)

S(K, b)
d(y, z)

holds for any t ∈ [0, b], which is equivalent to∥∥∥∥S (s, tb
)∥∥∥∥ ≤ s(κ, b)

S(K, b)
d(y, z). (51)

holds for any t ∈ [0, b]. By combining Equations (49) , (50) and (51), we find

∥Γx
zΓ

z
yΓ

y
xu− u∥ ≤12Km∥u∥ ·min{d(x,y) + d(y, z), d(x, z) + d(y, z)} · s(κ, ∥T (s, t)∥)

S(K, ∥T (s, t)∥)
d(y, z)

≤36Km∥u∥ ·min{d(x,y) + d(y, z), d(x, z) + d(y, z)} · d(y, z),
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where in the second inequality, we apply

∥T (s, t)∥ ≤ min{d(x,y) + d(y, z), d(x, z) + d(y, z)} ≤ 1√
Km

and Lemma 20.

Remark 6. In the literature (Karcher, 1977; Sun et al., 2019), a proposition similar to our Lemma 24 is
presented as:

∥Γx
zΓ

z
yΓ

y
xu− u∥ ≤ C̃ · d(x,y) · d(y, z)∥u∥, (52)

which holds for some constant C̃ and for all x,y, z ∈ M. By comparison, Lemma 24 explicitly elucidates the
dependence of C̃ on both the diameter of the geodesic triangle △xyz and the Riemannian curvature.


