
Parameter-Agnostic Optimization under Relaxed Smoothness
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Abstract

Tuning hyperparameters, such as the step-
size, presents a major challenge of training
machine learning models. To address this
challenge, numerous adaptive optimization
algorithms have been developed that achieve
near-optimal complexities, even when step-
sizes are independent of problem-specific pa-
rameters, provided that the loss function
is L-smooth. However, as the assumption
is relaxed to the more realistic (L0, L1)-
smoothness, all existing convergence results
still necessitate tuning of the stepsize. In
this study, we demonstrate that Normalized
Stochastic Gradient Descent with Momen-
tum (NSGD-M) can achieve a (nearly) rate-
optimal complexity without prior knowledge
of any problem parameter, though this comes
at the cost of introducing an exponential
term dependent on L1 in the complexity. We
further establish that this exponential term
is inevitable to such schemes by introduc-
ing a theoretical framework of lower bounds
tailored explicitly for parameter-agnostic al-
gorithms. Interestingly, in deterministic set-
tings, the exponential factor can be neutral-
ized by employing Gradient Descent with a
Backtracking Line Search. To the best of
our knowledge, these findings represent the
first parameter-agnostic convergence results
under the generalized smoothness condition.
Our empirical experiments further confirm
our theoretical insights.
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1 INTRODUCTION

We consider the unconstrained optimization problem

min
x∈Rd

F (x), (1)

where F : Rd → R may be non-convex and admits
access to unbiased stochastic gradients. This setting
has been extensively studied due to its prevalence in
modern machine learning and data-driven optimiza-
tion (Bottou et al., 2018).

When the objective function F is L-smooth, i.e., F has
L-Lipschitz gradients, the problem is well-explored.
For the goal of finding an ε-stationary point, lower
bounds have been established, notably by Arjevani
et al. (2022), setting a limit of Ω

(
L∆1σ

2ε−4
)

for
stochastic first-order methods. Here σ denotes the
variance of the stochastic gradient and ∆1 the ini-
tialization gap. Stochastic Gradient Descent (SGD)
achieves this complexity but with stepsizes depend-
ing on problem parameters like L (Ghadimi and
Lan, 2013). Remarkably, several algorithms such as
AdaGrad-Norm, oblivious to problem parameters, are
recently proven to achieve a nearly rate-optimal com-
plexity Õ

(
ε−4
)
, up to the dependency on problem pa-

rameters and logarithmic factors (Faw et al., 2022;
Yang et al., 2022). We call algorithms with this charac-
teristic parameter-agnostic, and parameter-dependent
otherwise.

However, Zhang et al. (2020b) highlight that not
all machine learning applications adhere to the L-
smoothness assumption. Their experiments in lan-
guage modeling tasks revealed that the norm of the
Hessian is not uniformly upper-bounded as required
by L-smoothness. Rather, it may increase affinely with
the gradient norm. To bridge the gap between theory
and this observation, they introduced a more general
smoothness condition termed (L0, L1)-smoothness:∥∥∇2F (x)

∥∥ ≤ L0 + L1 ∥∇F (x)∥ .

This condition has since been further validated in vari-
ous machine learning tasks (Zhang et al., 2020a; Craw-
shaw et al., 2022).
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In light of this more realistic smoothness assumption, a
substantial body of literature has emerged. The nearly
rate-optimal complexity Õ

(
ε−4
)
has been established

for various algorithms, including SGD (Li et al., 2023b),
Clipped SGD (Zhang et al., 2020b,a), Normalized SGD

(Zhao et al., 2021), AdaGrad-Norm (Faw et al., 2023;
Wang et al., 2023) and ADAM (Li et al., 2023a). Yet,
all of these algorithms require prior information of the
problem, such as the values of L0 and L1. Notably, un-
like the L-smooth setting, AdaGrad-Norm may diverge
without access to L1 (Wang et al., 2023), shedding
its fully parameter-agnostic nature. This dependence
on problem parameters poses a significant challenge
as these parameters are usually unknown in practi-
cal applications, necessitating resource-intensive tun-
ing (Ward et al., 2019). These observations culminate
in the pressing question:

Is there an algorithm that converges with
near-optimal complexity, without having ac-
cess to any problem parameters in the (L0,
L1)-smoothness setting?

With the growing interest in the development of
parameter-agnostic algorithms, a fundamental trade-
off becomes evident: while these algorithms demand
less prior knowledge about the problem, they may
also offer weaker convergence guarantees. For in-
stance, under L-smoothness, SGD with decaying step-
sizes ηt = η/

√
t achieves the near-optimal complexity

Õ
(
L∆1σ

2ε4
)
when η is selected based on knowledge of

problem parameters (Ghadimi and Lan, 2013). With-
out this information, however, using the same step-
sizes has been shown to suffer from a lower bound of
Ω
(
η−4L−2e(ηL)2/8ε−4

)
, even in the deterministic set-

ting (Yang et al., 2022).

This underscores the need to differentiate between
parameter-agnostic and parameter-dependent algo-
rithms when establishing lower bounds to truly grasp
the potential of parameter-agnostic algorithms. How-
ever, the existing lower bound framework is con-
structed in a way that implicitly allows algorithms to
have access to problem-specific parameters. This work
addresses another pivotal question:

Can we develop a lower bound framework that
distinguishes between parameter-agnostic and
parameter-dependent algorithms?

1.1 Our Contributions

To tackle these challenges, this work makes the follow-
ing contributions:

Firstly, we show that under the general (L0, L1)-
smoothness condition, Normalized Stochastic Gradi-

ent Descent with Momentum (NSGD-M), as introduced
by (Cutkosky and Mehta, 2020), converges with a

nearly rate-optimal complexity of Õ
(
ε−4
)
without any

prior knowledge of the problem parameters L0, L1.
However, it results in an exponential dependency on
L1, which vanishes when the stepsize is informed by
L1. Furthermore, we prove that this exponential
dependency can also be avoided in the determinis-
tic setting using Gradient Descent (GD) with Back-
tracking Line Search, resulting in a complexity of
O
((
L0∆1 + L2

1∆
2
1

)
ε−2
)
. To the best of our knowledge,

these are the first parameter-agnostic convergence re-
sults in the (L0, L1)-smoothness setting.

Secondly, we provide a novel framework for lower
bound analysis tailored to parameter-agnostic al-
gorithms. Within this framework, we show that
the exponential term in L1 is indispensable for a
class of Normalized Momentum Methods, including
NSGD-M, when the problem parameters are unknown.
This framework distinctly delineates the parameter-
agnostic setting from the parameter-dependent set-
ting, in which NSGD-M does not suffer from the ex-
ponential term. Additionally, it suggests that the
(L0, L1)-smoothness setting may be more challenging
than the L-smoothness setting.

1.2 Related Work

Parameter-Agnostic Algorithms. If the objec-
tive function is L-smooth, convergence results are
typically contingent upon stepsizes being less than
2/L (Bottou et al., 2018). In the deterministic context,
GD with a constant stepsize that does not satisfy this
threshold may diverge (Nesterov, 2018). However, this
can be rectified using a Backtracking Line Search to
determine the stepsize, which does not rely on knowing
problem parameters, and achieves an optimal complex-
ity of O(ϵ−2) (Armijo, 1966). Conversely, in stochas-
tic environments, Vaswani et al. (2022) highlighted
that line search techniques might not always converge.
SGD with a parameter-agnostic diminishing stepsize of
1/

√
t still reaches a near-optimal complexity of Õ(ϵ−4),

though it introduces an inescapable exponential term
in L (Yang et al., 2023). Various adaptive methods,
such as AdaGrad (Duchi et al., 2011; McMahan and
Streeter, 2010), its variants AdaGrad-Norm (Streeter
and McMahan, 2010) and NSGD-M (Cutkosky and
Mehta, 2020), bypass this exponential term, even with-
out knowledge of the problem parameters, as recently
shown in (Faw et al., 2022; Yang et al., 2023). These
adaptive methods are typically considered more robust
to different problem parameters (Ward et al., 2019;
Kavis et al., 2019), given their ability to tune algo-
rithm hyperparameters dynamically during training.
In the convex setting, the issue can furthermore be
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rectified using Polyak stepsizes, which only requires
knowledge of ∆1 (Polyak, 1987). While this stepsize
schedule achieves an O

(
ε−2
)
oracle complexity in de-

terministic environments (Hazan and Kakade, 2019),
it again falls short in stochastic environments, where
convergence is only guaranteed to a neighbourhood
(Loizou et al., 2021; Orvieto et al., 2022). Only un-
der stronger assumptions, modifications of the Polyak
stepsize guarantee convergence to a minimum (Orvi-
eto et al., 2022; Jiang and Stich, 2023). There is an-
other line of research dedicated to “parameter-free”
algorithms for online convex optimization (Orabona
and Pal, 2016; Cutkosky and Orabona, 2018). How-
ever, this research emphasizes the optimal dependence
on ∥x∗ − x0∥, where x∗ is the predictor in the regret
bound.

(L0, L1)-Smoothness. Zhang et al. (2020b) intro-
duced the concept of (L0, L1)-smoothness, defined
by the following affine bound on the Hessian-norm:∥∥∇2F (x)

∥∥ ≤ L0 + L1 ∥∇F (x)∥. The convergence of
both GD and SGD was only recently established in this
setting (Li et al., 2023b). However, their stepsizes re-
quire prior knowledge of L0, L1, and also the exact
gradient norm of the initial point, which can be un-
available in stochastic settings. Clipped SGD (Zhang
et al., 2020b), and its momentum-augmented counter-
part (Zhang et al., 2020a), both demand knowledge
of L0 and L1 for convergence. They attain an op-
timal complexity of O(ε−4) and are believed to im-
prove over SGD in constants. Additionally, Zhang et al.
(2020a) also provided a convergence result for Finite
Horizon NSGD-M in the appendix. Their analysis does
however make use of a stronger noise assumption and
requires access to all parameters. Similar complexi-
ties have been established for Normalized SGD (Zhao
et al., 2021), signed SGD (Crawshaw et al., 2022),
AdaGrad-Norm (Faw et al., 2023; Wang et al., 2023),
and ADAM (Li et al., 2023a; Wang et al., 2022). How-
ever, each of these methods requires prior knowledge
of problem-specific parameters. Notably, in stark con-
trast to the L-smooth setting, even AdaGrad-Norm is
not wholly parameter-agnostic. It risks divergence if
the stepsize is not informed by L1, despite the method
generally demanding knowledge of fewer problem pa-
rameters than other algorithms (Wang et al., 2023).

Lower Bound Theory. Lower bounds for seeking
near-stationary points have been extensively studied
within the L-smoothness setting. Nesterov (2012)
first addressed constrained optimization under box
constraints. Subsequently, a seminal study by Car-
mon et al. (2020) established a tight lower bound of
Ω
(
∆1Lε

−2
)
for the deterministic setting. Arjevani

et al. (2022) extended the results to the stochastic

setting, introducing the Ω
(
∆1Lσ

2ε−4
)
lower bound.

Specific algorithms, such as SGD (Drori and Shamir,
2020) and Newton’s method (Cartis et al., 2010), also
have associated lower bounds. However, the algo-
rithm classes considered by these lower bounds in-
clude algorithms with stepsizes that can depend on
problem parameters, so they might not be tight in the
parameter-agnostic setting. Vaswani et al. (2022) dis-
covered that parameter-agnostic SGD with a specific
exponentially decreasing stepsize suffers from an expo-
nential dependence during its initial phase when min-
imizing strongly convex functions. Later, Yang et al.
(2023) also derived a lower bound for SGD under a
polynomially decreasing stepsize in the nonconvex set-
ting. Yet the implications of the parameter-agnostic
lower bound for a class of algorithms remain ambigu-
ous. The aforementioned studies consider the function
class of L-smooth functions, so they are also applica-
ble to (L0, L1)-smooth functions. In the realm of on-
line convex optimization, Cutkosky and Boahen (2016,
2017) have introduced a lower bound featuring an ex-
ponential term when the norm of the predictor and the
Lipschitz constant are allowed to scale with the total
number of iterations.

2 PRELIMINARIES

Let us introduce basic notations, definitions and as-
sumptions needed in the upcoming analysis.

Notation Throughout the paper, d ∈ N≥1 de-
notes the dimension of the variable to be optimized,
F : Rd → R the objective and ∇f(·, ·) the gradi-
ent oracle. We use the common convention that
empty sums and products are given by their corre-
sponding neutral element. The conic combination of
x1, . . . , xn ∈ Rd is denoted by cone (x1, . . . , xn) :=
{
∑n

i=1 λixi : λ1, . . . , λn ≥ 0}.

Problem Setup Since finding a solution to (1) is
computationally intractable (Nemirovskij and Yudin,
1983), we aim to find an ε-stationary point. Further-
more we only allow access to a (possibly noisy) gradi-
ent oracle ∇f(·, ξ) of ∇F , where ξ is a random vector.
Due to this randomness, our specific goal is finding an
approximate solution x ∈ Rd with E [∥∇F (x)∥] ≤ ε.

Assumptions Building on established work in
stochastic optimization (Ghadimi and Lan, 2013; Arje-
vani et al., 2022), we employ the following two de-facto
standard assumptions in various results of this study.

Assumption 1 (Lower Boundedness). The objective
function F is lower bounded by F ∗ > −∞.

Assumption 2 (Bounded Variance). The gradient or-
acle is unbiased and has finite variance, i.e. there ex-
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ists σ ≥ 0 such that

i) E [∇f(x, ξ)] = ∇F (x), and

ii) E
[
∥∇f(x, ξ)−∇F (x)∥2

]
≤ σ2.

Instead of the traditional L-smoothness assumption,
we adopt the weaker concept of (L0, L1)-smoothness,
as proposed by Zhang et al. (2020b). Following the
work of Zhang et al. (2020a), we choose a definition
that does not require the Hessian. This definition is
therefore weaker than the original (L0, L1)-smoothness
assumption by Zhang et al. (2020b, Definition 1).

Definition 3. Let L0, L1 ≥ 0 and f : Rd → R be a dif-
ferentiable function. Then f is called (L0, L1)-smooth
if for all x, y ∈ Rd and all c > 0 with L1 ∥x− y∥ ≤ c
it holds that

∥∇f(x)−∇f(y)∥
≤ (A0(c)L0 +A1(c)L1 ∥∇f(x)∥) ∥x− y∥ ,

where A0(c) := 1 + ec − ec−1
c and A1(c) :=

ec−1
c .

Assumption 4 ((L0, L1)-smoothness). The objective
function F is (L0, L1)-smooth.

Notably, the two definitions are equivalent if the ob-
jective function is twice differentiable as the following
Lemma shows.

Lemma 1. Let F : Rd → R be twice continuously
differentiable and L0, L1 ≥ 0. Then F satisfies∥∥∇2F (x)

∥∥ ≤ L0 + L1 ∥∇F (x)∥ if and only if F is
(L0, L1)-smooth according to Definition 3.

3 PARAMETER-AGNOSTIC
UPPER BOUNDS

In this section, we present the first parameter-agnostic
convergence results for (L0, L1)-smooth functions. In
Section 3.1, we show that in the stochastic setting,
NSGD-M (see Algorithm 1) achieves the nearly rate-

optimal complexity of Õ
(
ε−4
)
, even without access to

problem-dependent parameters. However, this is ac-
companied by an undesirable exponential dependence
on L1. In Section 3.2 we show that in the determin-
istic setting, GD with Backtracking Line Search can
avoid this exponential dependence, while still being
parameter-agnostic.

3.1 Stochastic Setting

The convergence of NSGD-M occurs in two phases. In
the initial adaptation phase, the algorithm accumu-
lates error due to a large stepsize. Unfortunately, this
error grows exponentially with L1. This behaviour is
intrinsic to NSGD-M and cannot be eliminated, as we
will show in Section 4. Once the stepsize decreases

below a threshold (which is polynomial in L1), the al-
gorithm transitions into the convergence phase. In this
latter phase, the error decays at a rate of T−1/4 log (T ).
The following Theorem 2 formalizes this behaviour. Its
more verbose version (Theorem 14), and proof can be
found in Appendix C.1.1.

Algorithm 1: Normalized SGD with Momentum
(NSGD-M) (Cutkosky and Mehta, 2020)

Input: Starting point x1 ∈ Rd, stepsizes ηt > 0,
moving average parameters βt ∈ [0, 1)

m0 ← 0
for t = 1, 2, . . . do

Indep. sample ξt from the distribution of ξ.
gt ← ∇f(xt, ξt)
mt ← βtmt−1 + (1− βt)gt
xt+1 ← xt − ηt

∥mt∥mt

end

Theorem 2 (Convergence of NSGD-M). Assume
(Lower Boundedness), ((L0, L1)-smoothness) and
(Bounded Variance). Furthermore, define the parame-

ters βt := 1− t−1/2 and ηt :=
t−

3/4

7 . Then NSGD-M with
starting point x1 ∈ Rd satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ Õ

(
∆1e

L2
1 + σ + eL

2
1L0

T 1/4

)

where ∆1 := F (x1)− F ∗ is the initialization gap.

Since (L0, L1)-smoothness includes L-smoothness as a
special case, the lower bound of O(ε−4) to find an ε-
stationary point is still applicable here. Theorem 2 im-
plies an optimal complexity in ε up to the logarithmic
factor without any prior knowledge of the problem pa-
rameters, but it comes with the cost of an exponential
term in L1. The following proposition shows that this
cost arises from the parameter-agnostic stepsize; that
is, the exponential term disappears when the stepsize
is determined based on the parameters.

Proposition 3. Under the assumptions of Theorem 2,

define the parameters βt := 1 − t−1/2 and ηt :=
t−

3/4

12L1
.

Then NSGD-M with starting point x1 ∈ Rd satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤ Õ

(
L1∆1 + σ + L0

L1

T 1/4

)

where ∆1 := F (x1)− F ∗ is the initialization gap.

These results indicate that NSGD-M is potentially more
robust to hyper-parameter selection than other exist-
ing algorithms. In comparison, SGD necessitates knowl-
edge of both L0 and L1, as well as the exact value
of ∥∇f(x1)∥ (Li et al., 2023b). Clipped SGD requires
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Algorithm 2: GD with Backtracking Line Search

Input: Starting point x1 ∈ Rd, Armijo
Parameters β ∈ (0, 1) and γ ∈ (0, 1)

for t = 1, 2, . . . do
Choose k minmal such that βk ≤ ηt−1 and

F
(
xt − βk∇F (xt)

)
≤ F (xt)−βkγ∥∇F (xt)∥2

ηt ← βk

xt+1 ← xt − ηt∇F (xt)

end

to know L0 and L1 (Zhang et al., 2020a), and even
AdaGrad-Norm demands knowledge of L1 (Faw et al.,
2023; Wang et al., 2023). It is important to note that
our analysis is significantly different from the previ-
ous analysis for NSGD-M in (Zhang et al., 2020a). The
latter focused on constant stepsizes and momentum
parameters determined by L0, L1, target accuracy ε,
and variance σ.

3.2 Deterministic Setting

Given the prior results, one might naturally wonder if
there exists any algorithm that can attain parameter-
agnostic convergence without exponential dependence
on L1. The subsequent theorem confirms that this
is indeed possible, at least in the deterministic set-
ting. This is achieved by using Gradient Descent with
a Backtracking Line-search (see Algorithm 2).

Theorem 4. Assume (Lower Boundedness) and
((L0, L1)-smoothness) in the deterministic setting.
Then GD with Backtracking Line Search (see Algo-
rithm 2) with any parameters β, γ ∈ (0, 1) satisfies

1

T

T∑
t=1

∥∇F (xt)∥2 ≤
4L0∆1 + 14L2

1∆
2
1

βγ(1− γ)T

where ∆1 := F (x1)− F ∗.

This implies a complexity of O
((
L0∆1 + L2

1∆
2
1

)
ε−2
)
,

which is optimal in the dependence of ε and L0 in
the deterministic setting. The proof rests on the ob-
servation that GD with Backtracking Line Search is a
descent algorithm and hence both the function value
and gradient norm remain upper bounded along the
trajectory. Consequently, the algorithm behaves as if
it is addressing (L0 + L1C)-smooth functions, where
C represents the gradient norm’s upper bound. The
formal proof can be found in Appendix C.1.2. We have
not extended our considerations to the stochastic set-
ting for this algorithm, as a stochastic line search can
potentially fail even under the stricter L-smoothness
assumption (Vaswani et al., 2022).

4 PARAMETER-AGNOSTIC
LOWER BOUNDS

In the previous section, we highlighted that the first
provable parameter-agnostic algorithm, NSGD-M, comes
at the cost of an exponential L1-dependence. This
naturally raises the question: Is such an undesirable
term unavoidable for this class of algorithms? Since
most existing lower bounds focus on the parameter-
dependent setting — where hyper-parameters of al-
gorithms can be set based on problem parameters —
we begin by introducing the concept of lower bounds
specifically designed for parameter-agnostic setting in
Section 4.1. Subsequently, in Section 4.2, we utilize
this concept to show that NSGD-M indeed suffers from
an exponential dependence on L1.

4.1 A Lower Bound Framework

To motivate the need for specific lower bounds for
parameter-agnostic algorithms, let us consider the al-
gorithm class A consisting of GD with all constant step-
sizes {η : η > 0}. Furthermore, we consider the well-
studied function class comprising of L-smooth func-
tions with initialization gap F (x1)−F ∗ ≤ ∆1, denoted
as FL,∆1

. A well-established lower bound for A to find
an ϵ-stationary point in this setting is Ω

(
L∆1ε

−2
)
, as

demonstrated by the seminal work of Carmon et al.
(2020). This lower bound is tightly matched by GD

with a parameter-dependent stepsize smaller than 2/L,
and hence cannot be improved. However, without
knowledge of L, GD with constant stepsize generally
fails to converge (Nesterov, 2018). Thus, a parameter-
agnostic notion of lower bounds would be more infor-
mative under this setting.

For simplicity, our discussion focuses on deterministic
algorithms. However, this can be readily generalized to
the stochastic setting by incorporating a stochastic or-
acle into the algorithm’s definition, as detailed in (Ar-
jevani et al., 2022). Additionally, algorithms with a
deterministic gradient oracle can be viewed as specific
instances of their stochastic equivalents when there is
no gradient noise. Consequently, the lower bounds
established for deterministic algorithms are generally
stronger and are also applicable to their stochastic
counterparts.

Definition 5 (Deterministic Algorithm (Carmon
et al., 2020)). We say that A is a first order deter-
ministic algorithm if it, given a differentiable function
f , produces iterates of the form

xt = At(f(x1),∇f(x1), . . . , f(xt−1),∇f(xt−1)),

where At is a (Lebesgue-) measurable mapping. We
denote the set of all such algorithms as Adet.
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It is important to note that an algorithm A ∈ Adet is a
function that takes a differentiable function as its argu-
ment and outputs a sequence in Rd. When we mention
an “algorithm with a specific stepsize scheme”, we are
technically referring to a set of algorithms {Aη}η>0,
where η serves as the hyperparameter of this stepsize
scheme, and each distinct η defines a unique algorithm.

To begin with, we consider general parameterized func-
tion spaces, denoted by Fθ, where the parameter θ
lives in a parameter space Θ. Specifically, in our ap-
plication, it is given by θ = (∆1, L0, L1). We use
FΘ := {Fθ : θ ∈ Θ} to denote a parameterized family
of function spaces. For an algorithm class A ⊆ Adet,
existing lower bound literature usually considers the
following challenge (Carmon et al., 2020): for any
problem parameter θ ∈ Θ and target accuracy ϵ > 0,
find a lower bound for

inf
A∈A

sup
f∈Fθ

Tε(A, f), (2)

where Tε(A, f) := inf {t ∈ N≥1 | ∥∇f(xt)∥ ≤ ε} de-
notes the number of iterations required for A to reach
an ε-stationary point of f . Importantly, the param-
eter θ is fixed for the function class Fθ before taking
the infimum over the algorithm class and supremum
over the function class. This implicitly assumes that
algorithms have the ability to adjust their hyperpa-
rameters based on θ.

In contrast to the framework above, we propose the
concept of parameter-agnostic lower bounds.

Definition 6 (Parameter-Agnostic Lower Bound).
Let A ⊆ Adet be an algorithm class and FΘ :=
{Fθ : θ ∈ Θ} a parameterized family of function spaces.
A function g : (0,∞) × Θ → [0,∞] is called a
parameter-agnostic lower bound of A on FΘ if there
does not exist an algorithm A ∈ A such that for
all κ > 0, there exists ε0, θ0 > 0 such that for all
ε ≤ ε0, θ ≥ θ0, supf∈Fθ

Tε(A, f) ≤ κg(ε, θ). The com-
parisons of θ ∈ Θ and scalars are to be understood
component-wise.

In other words, this definition states that g(ε, θ) serves
as a parameter-agnostic lower bound if no algorithm
has a complexity that is better than g asymptotically.
Here, ε0, θ0 and κ can depend on A, which excludes
the possibility that A can pick its hyperparameters
according to the parameter θ. The performance of A
is therefore evaluated across all function spaces with
θ large enough. On the other hand, the conventional
definition in Equation (2) states that for any θ ∈ Θ
— which means the parameter is determined first —
there does not exist an algorithm A ∈ A such that for
all κ > 0, supf∈Fθ

Tε(A, f) ≤ κg(ε, θ).

Note that Definition 6 also outlines a way to com-
pare complexities for different algorithms within the

parameter-agnostic framework by assessing their per-
formance with asymptotically large θ. The earlier
parameter-agnostic lower bounds presented in (Yang
et al., 2023; Vaswani et al., 2022) apply solely to a
particular algorithm with a specified stepsize. Conse-
quently, it is ambiguous how one might define a lower
bound across a class of algorithms.

To establish that g serves as an parameter-agnostic
lower bound of A on FΘ, one could instead prove the
following stronger result.

Proposition 5. If for any algorithm A ∈ A there exist
constants ε0, θ0,K > 0 such that

∀ ε ∈ (0, ε0], θ ≥ θ0 : sup
f∈Fθ

Tε(A, f) ≥ Kg(ε, θ),

where θ ∈ Θ, then g is a parameter-agnostic lower
bound of A on FΘ.

The condition presented in Proposition 5 is more
handy for use in proofs, and will be our primary tool
for deriving lower bounds in the subsequent subsec-
tion. However, Definition 6 offers a more precise depic-
tion of the lower bounds’ asymptotic behaviors com-
pared to the condition in Proposition 5. We will delve
deeper into this distinction in Appendix D.

The upcoming example demonstrates how the notion
of parameter-agnostic lower bounds is able to close the
gap described in the beginning of this section.

Example (Parameter-Agnostic Lower Bound for Con-
stant Stepsize GD). In the parameter-dependent regime,
GD with properly tuned constant stepsize converges for
L-smooth functions. However, it is well-known that
GD with stepsize η > 2/L does not converge in gen-
eral. We now show how this is reflected by our frame-
work of parameter-agnostic lower bounds. Let Aη de-
note GD with constant stepsize η > 0 and FL the
set of L-smooth functions. It is well-known that Aη

diverges on the function F (x) = L
2 x

2 if L > 2/η.
In particular, we have for all L ≥ L0 := 3/η that
supf∈FL

Tε(Aη, f) = ∞. By choosing ε0 = 1,K = 1
and L0 as above we obtain

∀ ε ∈ (0, ε0], L ≥ L0 : sup
f∈FL

Tε(Aη, f) ≥ 1 · ∞.

Since we chose η arbitrary in the start, Proposition 5
implies that g ≡ ∞ is a parameter-agnostic lower
bound for the family of GD with all constant stepsizes.

4.2 Lower Bound for A Family of
Normalized Momentum Methods

In this subsection we establish a parameter-agnostic
lower bound for a generalized version of NSGD-M. More
specifically, for η > 0 and α ∈ (0, 1), we consider the
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following iteration rule:

gt ← ∇f(xt, ξt)

Choose mt ∈ cone (g1, . . . , gt)

xt+1 ← xt −
η

tα
mt

∥mt∥

(3)

We call algorithms that follow this procedure General
Normalized Momentum Methods (see also Algorithm 3
in Appendix C.2). It is clear that NSGD-M from Theo-
rem 2 is a member of this family of algorithms.

Theorem 6 (Parameter Agnostic Lower Bound for
General Normalized Momentum Methods). Let A be
the class of algorithms defined by (3) with α ≥ 1/2 and
FL0,L1,∆1

the set of (L0, L1)-smooth functions with
F (x1) − infx∈Rd F (x) ≤ ∆1. Furthermore assume the
deterministic setting, i.e. the gradient oracle returns
the true gradient. Then, for any δ ∈ (0, 1),

g(ε, θ) :=

∆1 +
1
L1

(
eL

1−δ
1 − 1

)
ε

2

is a parameter-agnostic lower bound for A on
{FL0,L1,∆1

: L0, L1,∆1 ≥ 0}. The subset Ã ⊆ A that
satisfies α ≥ 3/4 furthermore has the parameter-
agnostic lower bound

g̃(ε, θ) :=

∆1 +
1
L1

(
eL

1−δ
1 − 1

)
ε

4

.

In particular this lower bound applies to NSGD-M in
Theorem 2.

This lower bound reveals that one cannot achieve
a parameter-agnostic convergence result for NSGD-M

without an exponential dependence on L1. It is im-
portant to note that the above is a parameter-agnostic
lower bound. Consequently, this finding does not con-
tradict Proposition 3. Moreover, it also suggests that
finding an ε-stationary point in a parameter-agnostic
fashion is strictly harder in this relaxed smoothness
setting: in the L-smooth setting, equivalent to (L, 0)-
smoothness, the exponential term in Theorem 2 van-
ishes, aligning with previous upper bounds (Yang
et al., 2023; Cutkosky and Mehta, 2020).

Proof Sketch As shown in Proposition 5, to estab-
lish such a lower bound, we need a set of hard functions
for each algorithm and large enough parameters. The
subsequent Lemma accomplishes this.

Lemma 7. Consider a General Normalized Momen-
tum Method A with parameters η > 0 and α ∈ (0, 1).
Let 0 < ε < 1/2,∆1 ≥ 1/4, L0 ≥ 8/η, L1 > 0. Then

there exists an (L0, L1)-smooth function F and initial-
ization x1 with F (x1) − infx∈Rd F (x) ≤ ∆1 for which
A requires at least

T ≥
(
1− α

2

) 1
1−α
(
∆1

η
+

2

ηL1

(
e

ηL1
4 − 1

)) 1
1−α

ε−
1

1−α

iterations to find an ε-stationary point in the deter-
ministic setting.

To prove the lemma, we consider the following function
constructed by its derivatives: F (x) := ∆1 +

∫ x

0
F ′dλ,

with

F ′(x) =



−1, if x ≤ 0

L0x− 1, if 0 < x ≤ z1

eL1(x−z1), if z1 < x ≤ η
2

F ′(η − x), if η
2 < x ≤ z2

−2ε, if z2 < x ≤ z3,
2ε

z4−z3
x− 2εz3

z4−z3
− 2ε, if z3 < x ≤ z4,

0, if x > z4

where z1 :=
2

L0
, z2 := η − 1− 2ϵ

L0
, z3 := η +

M

2ε
,

z4 := z3 +
2ε

L0
, and M := ∆1 +

2

L1

(
e

ηL1
4 − 1

)
.

In the appendix, we provide a plot of the function (see
Figure 3). Notably, within the range [z1, η/2], the gra-
dient increases exponentially with x. This steep gra-
dient change is permissible due to the relaxed smooth-
ness assumption. Initiating from x1 = 0 and taking
a step, the iterate arrives at x2 = η. At this point,
we can demonstrate that F (x2) ≥ M , signifying the
emergence of an exponential dependency on L1.

Subsequently, along the x-axis, the function’s value
descends with a gradient of −2ε. Iterations will con-
sistently shift to the right due to these negative gra-
dients. Given the algorithm’s intrinsic normalization,
the shift in x is limited to η/tα during the t-th iteration.
To move beyond the interval [z2, z3] (where gradients

remain large at −2ε), the condition
∑T

t=1
η/tα ≥ z3

must be satisfied, which gives us the lower bound for
T . This completes the proof of Lemma 7.

It is worth noting that this construction is also ap-
plicable to other algorithms and settings, such as SGD
with diminishing stepsizes under L-smoothness.

Now we are ready to use Proposition 5 to finish the
proof of Theorem 6. Therefore choose δ ∈ (0, 1) and
let A ∈ A be specified by η > 0, α ∈ (1/2, 1) and any
momentum generating rule. Define ε0 := 1/2, C1 :=

max {1/2, 8/η} and K := ((1−α)/2η)
1

1−α . By Lemma 7
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Figure 1: Training curve of NSGD-M for different step-
sizes.

we have that

Tε(A,FL0,L1,∆1
) ≥ K

∆1 +
1
L1

(
e

ηL1
4 − 1

)
ε


1

1−α

for all ∆1, L0, L1 ≥ C1. Finally we define θ0 :=

max
{
C1, (4/η)

1
δ

}
to obtain ηL1

4 ≥ L1−δ
1 for all L1 ≥

θ0. This completes the proof.

5 EXPERIMENTS

In this section, we present experiments designed to
empirically validate the theoretical findings of this pa-
per. In concordance with our theory, the primary
focus is to demonstrate the robustness of NSGD-M to
hyperparameter selection in the context of (L0, L1)-
smoothness. Language modeling tasks with LSTM
and Transformer architectures are well-known settings
for which (L0, L1)-smoothness was empirically con-
firmed to be necessary (Crawshaw et al., 2022; Zhang
et al., 2020b). We therefore focus on these tasks.

Experimental Setup. To match the assumptions
of our theory, we conduct training on the Penn Tree-
bank (PTB) dataset (Mikolov et al., 2010) using the
AWD-LSTM architecture (Merity et al., 2018). Ad-
ditional experiments can be found in Appendix E.
Besides NSGD-M, we also include AdaGrad-Norm (Faw
et al., 2023) and Clipped SGD (Zhang et al., 2020b).
For each algorithm we first chose the optimal stepsize
ηopt based on a course grid search in a 50 epoch train-
ing. The clipping threshold was fixed to be 0.25 in
concordance to previous work (Zhang et al., 2020b)

Figure 2: Minimal training loss within 150 epochs of
different algorithms with stepsize λ · ηopt. Shaded ar-
eas represent the minimal and maximal value within 5
seeds, the line the median.

and the decay-rates of NSGD-M were chosen according
to Theorem 2. For each algorithm, the final training
was then carried out with stepsizes η = λ · ηopt, where
λ = 10k/5, k ∈ {−5,−4, . . . , 8}, for 150 epochs. This
procedure is replicated with five different seeds to get
more reliable results. The code is based on the exper-
iments by Zhang et al. (2020a).

Discussion. Figure 1 shows the behaviour of NSGD-M
with different stepsizes. The result supports the nar-
rative behind Theorem 2 that NSGD-M needs an adap-
tion phase before transitioning to a convergence phase.
Only after reaching a threshold, NSGD-M starts to de-
crease the loss. Figure 2 focuses on the robustness
to hyperparameter selection. It compares the smallest
training loss across 150 epochs of different algorithms
on scaled versions of their optimally tuned stepsize.
As expected, well-tuned Clipped SGD with constant
stepsize outperforms all decaying algorithms, while de-
caying algorithms are more robust to untuned step-
sizes. Between NSGD-M and AdaGrad-Norm we notice
that NSGD-M has slightly preferable behaviour for small
stepsizes. Furthermore the trend for large stepsizes
points towards a more robust behaviour of NSGD-M.

6 CONCLUSION

In this work, we conduct a theoretical investigation
into parameter-agnostic algorithms under the (L0, L1)-
smoothness assumption. In the stochastic setting,
we show that without requiring any knowledge about
problem parameters, Normalized Stochastic Gradient
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Descent with Momentum (NSGD-M) converges at an
order-optimal rate, albeit with an exponential term
in L1. Further, we introduce a lower bound frame-
work specifically for the parameter-agnostic context,
revealing that this exponential term is inescapable for
a family of General Normalized Momentum Methods.
In the deterministic setting, we show the exponential
dependency can be circumvented using GD with Back-
tracking Line Search while being parameter-agnostic.

This work motivates several questions for future re-
search. The most pressing one is whether there exists
a fully parameter-agnostic algorithm in the stochastic
setting without an exponential term. Another inter-
esting topic is the derivation of lower bounds for all
first-order parameter-agnostic methods.
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and Khudanpur, S. (2010). Recurrent neural net-
work based language model. In Proc. Interspeech
2010, pages 1045–1048.

Nemirovskij, A. S. and Yudin, D. B. (1983). Problem
Complexity and Method Efficiency in Optimization.

Nesterov, Y. (2012). How to make the gradients
small. Optima. Mathematical Optimization Society
Newsletter, (88):10–11.

Nesterov, Y. (2018). Lectures on Convex Optimiza-
tion, volume 137 of Springer Optimization and Its
Applications. Springer, Cham. Second edition of
[MR2142598].

Orabona, F. and Pal, D. (2016). Coin Betting
and Parameter-Free Online Learning. In Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., and Gar-
nett, R., editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates,
Inc.

Orvieto, A., Lacoste-Julien, S., and Loizou, N. (2022).
Dynamics of SGD with Stochastic Polyak Stepsizes:
Truly Adaptive Variants and Convergence to Exact
Solution. In Oh, A. H., Agarwal, A., Belgrave, D.,
and Cho, K., editors, Advances in Neural Informa-
tion Processing Systems.

Polyak, B. T. (1987). Introduction to Optimization.
Translations Series in Mathematics and Engineer-
ing. Optimization Software, Inc., Publications Divi-
sion, New York. Translated from the Russian, With
a foreword by Dimitri P. Bertsekas.

Streeter, M. and McMahan, H. B. (2010). Less
Regret via Online Conditioning. arXiv preprint
arXiv:1002.4862.

Vaswani, S., Dubois-Taine, B., and Babanezhad, R.
(2022). Towards Noise-adaptive, Problem-adaptive
(Accelerated) Stochastic Gradient Descent. In
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S., editors, Proceedings of the
39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 22015–22059. PMLR.

Wang, B., Zhang, H., Ma, Z., and Chen, W. (2023).
Convergence of AdaGrad for Non-convex Objec-
tives: Simple Proofs and Relaxed Assumptions. In
Neu, G. and Rosasco, L., editors, Proceedings of
Thirty Sixth Conference on Learning Theory, vol-
ume 195 of Proceedings of Machine Learning Re-
search, pages 161–190. PMLR.

Wang, B., Zhang, Y., Zhang, H., Meng, Q., Ma, Z.-M.,
Liu, T.-Y., and Chen, W. (2022). Provable adaptiv-
ity in adam. arXiv preprint arXiv:2208.09900.

Ward, R., Wu, X., and Bottou, L. (2019). Ada-
Grad Stepsizes: Sharp Convergence Over Noncon-
vex Landscapes. In Chaudhuri, K. and Salakhut-
dinov, R., editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
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Supplementary Materials

A BASIC PROPERTIES OF (L0, L1)-SMOOTHNESS

In this section, we prove basic properties of (L0, L1)-Smoothness. We start with the proof of the relation to the
original definition by Zhang et al. (2020b).

Proof of Lemma 1. “⇒”: This implication was already shown by Zhang et al. (2020a, Corollary A.4).

“⇐”: We slightly adapt the proof by Faw et al. (2023, Proposition 1). Assume F is (L0, L1)-smooth according
to Definition 3. Let x, s ∈ Rd with ∥s∥ = 1. For α > 0 our assumption gives

∥∇F (x+ αs)−∇F (x)∥ ≤ (A0(αL1)L0 +A1(αL1)L1 ∥∇F (x)∥)α,

and hence, ∥∥∥∥∇F (x+ αs)−∇F (x)

α

∥∥∥∥ ≤ A0(αL1)L0 +A1(αL1)L1 ∥∇F (x)∥ .

Using the continuity of norms and the assumption that F is twice continously differentiable, we get

L0 + L1 ∥∇F (x)∥ = lim
α→0

A0(αL1)L0 +A1(αL1)L1 ∥∇F (x)∥

≥ lim
α→0

∥∥∥∥∇F (x+ αs)−∇F (x)

α

∥∥∥∥
=

∥∥∥∥ limα→0

∇F (x+ αs)−∇F (x)

α

∥∥∥∥
=
∥∥∇2F (x)s

∥∥ .
Taking the sup over all such s yields the claim.

The following lemma serves as the (L0, L1)-smooth counterpart to the well-known quadratic upper bound on the
function value change in the L-smooth setting.

Lemma 8 (c.f. (Zhang et al., 2020a, Lemma A.3)). Let d ∈ N≥1 and L0, L1 ≥ 0. Assume that f : Rd → R is
(L0, L1)-smooth. Then all x, y ∈ Rd satisfy

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
1

2
(B0(L1 ∥x− y∥)L0 +B1(L1 ∥x− y∥)L1 ∥∇f(x)∥)∥x− y∥2,

where

B0(c) = 1 + 2
ec − 1

c
− 4

ec − 1− c

c2
,

B1(c) = 2
ec − 1− c

c2

tend to 1 as c tends towards 0.



Florian Hübler, Junchi Yang, Xiang Li, Niao He

Proof. This proof closely follows the arguments from Zhang et al. (2020a). We include the proof for completeness.
Let x, y ∈ Rd and calculate

f(y)− f(x)−∇f(x)⊤(y − x) =

∫ 1

0

∇f(x+ t(y − x))
⊤
(y − x)dt−∇f(x)⊤(y − x)

≤
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥ ∥x− y∥ dt

≤ ∥x− y∥2
(
L0

∫ 1

0

tA0(tc)dt+ L1 ∥∇f(x)∥
∫ 1

0

tA1(tc)dt

)
where c := L1 ∥x− y∥. We now calculate∫ 1

0

tA0(tc) =
1

2
+

ec − 1

c
− 2

ec − 1− c

c2
=:

1

2
B0(c)

and ∫ 1

0

tA1(tc)dt =
ec − 1− c

c2
=:

1

2
B1(c).

This shows the claim.

Analogous to the L-smooth setting, we can also derive an upper bound for the gradient norm based on the
suboptimality gap.

Lemma 9 (Gradient Bound, c.f. (Zhang et al., 2020a, Lemma A.5)). Let L0, L1 > 0 and assume that f : Rd → R
is (L0, L1)-smooth. Further assume that f is lower bounded by f∗. Then all x ∈ Rd satisfy

min

{
∥∇f(x)∥

L1
,
∥∇f(x)∥2

L0

}
≤ 8(f(x)− f∗).

Proof. This proof is again based on Zhang et al. (2020a). We include it for the sake of completeness. Let x ∈ Rd.
Firstly note that, for A1 from Definition 3, the equation

c =
L1 ∥∇f(x)∥

A1(c)L0 + L1A1(c) ∥∇f(x)∥

has a solution c ∈ (0, 1). Now we set λ := 1
2A1(c)(L0+L1∥∇f(x)∥) and y := x− λ∇f(x). Then Lemma 8 yields

f∗ ≤ f(y) ≤ f(x)− λ∥∇f(x)∥2 +A1(c)(L0 + L1 ∥∇f(x)∥)λ2∥∇f(x)∥2 = f(x)− λ

2
∥∇f(x)∥2.

We now differentiate between the two cases ∥∇f(x)∥ ≤ L0

L1
and ∥∇f(x)∥ > L0

L1
. Therefore,

2(f(x)− f∗) ≥ ∥∇f(x)∥2

A1(c)(L0 + L1 ∥∇f(x)∥)
≥

{
∥∇f(x)∥2

4L0
, if ∥∇f(x)∥ ≤ L0

L1
∥∇f(x)∥

4L1
, otherwise.

This shows the claim.
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B TECHNICAL LEMMAS

This section presents crucial technical lemmas and their proofs. These results may be of interest on their own
as they can potentially be applied in the analysis of other momentum-based algorithms.

Lemma 10 (Technical Lemma). Let q ∈ (0, 1), p ≥ 0 and t > 0. Further let a, b ∈ N≥2 with a ≤ b. Then the
following statements are true.

i) We have

b∏
t=a

(
1− t−q

)
≤ exp

(
1

1− q

(
a1−q − b1−q

))
.

ii) If p ≥ q, then

b∑
t=a

t−p
t∏

τ=a

(
1− τ−q

)
≤

(a− 1)
q−p

exp
(

a1−q−(a−1)1−q

1−q

)
− bq−p exp

(
a1−q−b1−q

1−q

)
1 + (p− q)bq−1

,

and in particular,

b∑
t=a

t−p
t∏

τ=a

(
1− τ−q

)
≤ (a− 1)

q−p
exp

(
a1−q − (a− 1)

1−q

1− q

)
= O

(
aq−p

)
.

iii) (c.f. (Fatkhullin et al., 2023, Lemma 15)1) If a ≥ p
1

1−q and a ≥
(
p−q
2

) 1
1−q , then

b∑
t=a

t−p
b∏

τ=t+1

(
1− τ−q

)
≤ 2 exp

(
1

1− q

)
(b+ 1)

q−p
.

Note that these requirements are always fulfilled for p ≤ 1.

Proof. i) The first claim follows from the calculation

b∏
t=a

(
1− t−q

)
≤ exp

(
−

b∑
τ=a

t−q

)
≤ exp

(
−
∫ b+1

a

t−qdt

)
= exp

(
1

1− q

(
a1−q − (b+ 1)

1−q
))

, (4)

where we used 1 − x ≤ e−x in the first, and the monotonicity of t−q in the second inequality. Weakening the
inequality by replacing (b+ 1) with b finishes the proof.
ii) For the second inequality we use i) to derive

b∑
t=a

t−p
t∏

τ=a

(
1− t−q

)
≤ exp

(
a1−q

1− q

) b∑
t=a

t−p exp

(
− t1−q

1− q

)
.

Using the monotonicity of t−p exp
(
−t1−q

)
we obtain

b∑
t=a

t−p exp

(
− t1−q

1− q

)
≤
∫ b

a−1

t−p exp

(
− t1−q

1− q

)
dt =

∫ b

a−1

tq−pt−q exp

(
− t1−q

1− q

)
dt.

Partial integration now yields∫ b

a−1

tq−pt−q exp

(
− t1−q

1− q

)
dt

=

[
−tq−p exp

(
− t1−q

1− q

)]t=b

t=a−1

− (p− q)

∫ b

a−1

tq−p−1 exp

(
− t1−q

1− q

)
dt

= (a− 1)
q−p

exp

(
− (a− 1)

1−q

1− q

)
− bq−p exp

(
− b1−q

1− q

)
+ (q − p)

∫ b

a−1

tq−p−1 exp

(
− t1−q

1− q

)
dt.

1Note that the proof in the paper has a typo in the last line of page 42. Instead of (1− q) the authors meant (1− q)−1.
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Finally, we use that tq−p−1 exp
(
− t1−q

1−q

)
is monotonically decreasing and p ≥ q to derive

(q − p)

∫ b

a−1

tq−p−1 exp

(
− t1−q

1− q

)
dt ≤ (q − p)bq−1

∫ b

a−1

t−p exp

(
− t1−q

1− q

)
dt.

Noting that this is the integral we started with and rearranging yields the claim.
iii) The proof of the last claim uses the same arguments as in (Fatkhullin et al., 2023). First we use i) to obtain

b∑
t=a

t−p
b∏

τ=t+1

(
1− τ−q

)
≤

b∑
t=a

t−p exp

(
−

b∑
τ=t+1

τ−q

)
= exp

(
−

b∑
τ=1

τ−q

)
b∑

t=a

t−p exp

(
t∑

τ=1

τ−q

)
.

Using the monotonicity of τ−q, we get

exp

(
−

b∑
τ=1

τ−q

)
≤ exp

(
−
∫ b+1

1

τ−qdτ

)
= exp

(
1− (b+ 1)

1−q

1− q

)
and

exp

(
t∑

τ=1

τ−q

)
≤ exp

(∫ t

0

τ−qdτ

)
= exp

(
t1−q

1− q

)
.

We now proceed to bound

b∑
t=a

t−p exp

(
t∑

τ=1

τ−q

)
≤

b∑
t=a

t−p exp

(
t1−q

1− q

)
.

Therefore, note that f(t) := t−p exp
(

t1−q

1−q

)
is monotonically increasing for t ≥ a by our assumption on a. This

implies

b∑
t=a

t−p exp

(
t1−q

1− q

)
≤
∫ b+1

a

t−p exp

(
t1−q

1− q

)
dt =: I.

Integration by party now yields

I =

∫ b+1

a

tq−pt−q exp

(
t1−q

1− q

)
dt

=

[
tq−p exp

(
t1−q

1− q

)]t=b+1

t=a

− (q − p)

∫ b+1

a

tq−p−1 exp

(
t1−q

1− q

)
dt

≤ (b+ 1)
q−p

exp

(
(b+ 1)

1−q

1− q

)
− aq−p exp

(
a1−q

1− q

)
+ (p− q)aq−1I,

where we used p ≥ q in the last inequality. By our second assumption on a we now get that (p− q)aq−1 ≤ 1/2
and hence

I ≤ 2(b+ 1)
q−p

exp

(
(b+ 1)

1−q

1− q

)
− 2aq−p exp

(
a1−q

1− q

)
.

Putting together the pieces yields

b∑
t=a

t−p
b∏

τ=t+1

(
1− τ−q

)
≤ 2 exp

(
1− (b+ 1)

1−q

1− q

)(
(b+ 1)

q−p
exp

(
(b+ 1)

1−q

1− q

)
− aq−p exp

(
a1−q

1− q

))

= 2 exp

(
1

1− q

)
(b+ 1)

q−p − aq−p exp

(
1− (b+ 1)

1−q
+ a1−q

1− q

)
,

thus proving the last claim.
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The following lemma applies the specific values of p and q to Lemma 10.

Lemma 11 (Technical Lemma). Let η > 0 and for t ∈ N≥1 we set

βt := 1− t−
1/2,

ηt := ηt−
3/4.

Then, for Et := eL1ηt , the following statements hold.

a) For all T ∈ N≥1 we have

i)
∑T

t=1 ηt
∏t

τ=2 βτ ≤ 7
2η;

ii)
∑T

t=1 ηt

√∑t
τ=1 (1− βτ )

2∏t
κ=τ+1 β

2
κ ≤ η

(
7
2 +
√
2e2 log (T )

)
.

b) For all T ∈ N≥1 we have

i)
∑T

t=1 η
2
tEt ≤ 3η2eηL1 ;

ii)
∑T

t=1 ηt
∑t

τ=2 ητ−1Eτ−1

∏t
κ=τ βκ ≤ 5

2η
2
(
3eηL1 + log (T )

)
.

c) For t ∈ N≥1 define δt := 4η(t− 1)
1
4 − 3η. Then, for all b ∈ N≥2, we have

i)
∑b

t=2 L1ηtEtt
− 1

4 δte
L1δt ≤ 1

2η
2L1e

2ηL1 + 4ηe−
5
2ηL1

(
e4ηL1b

1
4 − e4ηL1

)
;

ii)
∑b

t=1 L1ηtEtt
− 1

4 eL1δt ≤ 3
2ηL1e

5
3ηL1 + e−

5
2ηL1

(
e4ηL1b

1
4 − e4ηL1

)
;

iii) If additionally ηL1 ≥ 1
2 , we have

∑b
t=1 L1ηtEtt

− 1
4 eL1δt ≤ 3

2ηL1e
5
3ηL1 + e−

5
2ηL1

(
2b−

1
4 e4ηL1b

1
4 − e4ηL1

)
.

Proof. Let T ∈ N≥1 and denote p := 3/4, q := 1/2 for simplicity.

a) i) The inequality follows from

T∑
t=1

ηt

t∏
τ=2

βτ = η +

T∑
t=2

ηt

t∏
τ=2

βτ ≤ η + η exp
(
2
√
2− 2

)
≤ 7

2
η,

where we used Lemma 10 ii) in the first inequality.

a) ii) For ease of notation let αt := 1− βt. We start by regrouping

T∑
t=1

ηt

√√√√ t∑
τ=1

α2
τ

t∏
κ=τ+1

β2
κ <

T∑
t=1

ηt

 t∏
κ=2

(
1− κ−q

)
+

√√√√ t∑
τ=2

τ−2q

t∏
κ=τ+1

(1− κ−q)

.

Applying Lemma 10 i), iii) and a) i) now yields the statement:

T∑
t=1

ηt

√√√√ t∑
τ=1

α2
τ

t∏
κ=τ+1

β2
κ

i),10

≤ 7

2
η +

T∑
t=2

ηt

√
2e2(t+ 1)

−q ≤ η

(
7

2
+
√
2e2 log (T )

)
.

Note that the first inequality is rather loose, a more precise analysis might yield a better result. The above
result does however suffice for our use-case.

b) i) We start by calculating

T∑
t=1

η2tEt = η2eηL1 +

T∑
t=2

η2tEt ≤ η2eηL1 + η2
∫ T

1

t−2peηL1t
−p

.

Next, the local uniform convergence of the exponential series yields∫ T

1

t−2peηL1t
−p

=

∫ T

1

t−2p
∞∑
k=0

(ηL1t
−p)

k

k!
dt =

∞∑
k=0

(ηL1)
k

k!

∫ T

1

t−p(k+2)dt ≤
∞∑
k=0

(ηL1)
k

k!

4

3k + 2
≤ 2eηL1 ,

and combining these results yields the claim.
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b) ii) We first use Lemma 10 ii) to derive

T∑
t=1

ηt

t∑
τ=2

ητ−1Eτ−1

t∏
κ=τ

βκ =

T∑
τ=2

ητ−1Eτ−1

T∑
t=τ

ηt

t∏
κ=τ

βκ

≤
T∑

τ=2

ητ−1Eτ−1η exp
(
2
(√

τ −
√
τ − 1

))
(τ − 1)

−1/4

≤ 5

2
η2

T∑
τ=2

(τ − 1)
−1

Eτ−1

≤ 5

2
η2

(
eηL1 +

∫ T

1

τ−1eηL1τ
−p

dτ

)
.

As in b) i) we now calculate∫ T

1

τ−1eηL1τ
−p

dτ =

∞∑
k=0

(ηL1)
k

k!

∫ T

1

τ−pk−1dτ ≤ log (T ) +

∞∑
k=1

(ηL1)
k

k!

4

3k
≤ log (T ) + 2eηL1 .

Combining these two results yields the claim.

c) i) We start off by calculating

b∑
t=2

L1ηtEtt
− 1

4 δte
L1δt ≤ L1η2E22

− 1
4 ηeηL1 +

b∑
t=3

L1ηtEtt
− 1

4 δte
L1δt

≤ 1

2
η2L1e

2ηL1 + 4η

b∑
t=3

L1ηtEte
L1δt

and further

b∑
t=3

L1ηtEte
L1δt ≤

b∑
t=3

L1ηt exp
(
L1

(
4η(t− 1)

1
4 − 3η + ηt

))
≤ e−

5
2ηL1

b∑
t=3

L1ηt−1e
4ηL1(t−1)

1
4

≤ e−
5
2ηL1

∫ b+1

2

ηL1(t− 1)
−p

e4ηL1(t−1)1−p

dt

= e−
5
2ηL1

(
e4ηL1b

1
4 − e4ηL1

)
.

(5)

Here we used that g(t) := L1ηt−1e
4ηL1(t−1)

1
4 is non-negative and monotonically decreasing before turning

monotonically increasing in the third inequality. Noting that (5) also holds for b = 2 yields the claim.

ii) We have

b∑
t=1

L1ηtEtt
− 1

4 eL1δt = ηL1E1 +
1

2
ηL1E2e

ηL1 +

b∑
t=3

L1ηtEtt
− 1

4 eL1δt

≤ ηL1e
ηL1 +

1

2
ηL1e

(
1+2−

3
4

)
ηL1 +

b∑
t=3

L1ηtEte
L1δt

(6)

and using (5) yields

b∑
t=1

L1ηtEtt
− 1

4 eL1δt ≤ 3

2
ηL1e

5
3ηL1 + e−

5
2ηL1

(
e4ηL1b

1
4 − e4ηL1

)
.
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iii) We first again calculate

b∑
t=3

L1ηtEtt
− 1

4 eL1δt ≤ e−
5
2ηL1

∫ b+1

2

t−
1
4L1η(t− 1)

− 3
4 e4ηL1(t−1)

1
4 dt

before, similar to the proof of Lemma 10 iii), using partial integration to derive

I :=

∫ b+1

2

t−
1
4L1η(t− 1)

− 3
4 e4ηL1(t−1)

1
4 dt

=

[
t−

1
4 e4ηL1(b−1)

1
4

]t=b+1

t=2

+
1

4

∫ b+1

2

t−
5
4 e4ηL1(t−1)

1
4 dt

≤ b−
1
4 e4ηL1b

1
4 − 1

2
e4ηL1 +

1

2
1
4 4ηL1

∫ b+1

2

ηL1(t− 1)
−1

e4ηL1(t−1)
1
4

≤ b−
1
4 e4ηL1b

1
4 − 1

2
e4ηL1 +

1

4ηL1
I.

By our assumption we have 1
4ηL1

≤ 1
2 and hence

I ≤ 2b−
1
4 e4ηL1b

1
4 − e4ηL1 .

Finally (6) yields the claim.
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C MISSING PROOFS

This section contains the proofs for Section 3 and Section 4.

C.1 Proofs for Parameter-Agnostic Upper Bounds

C.1.1 Stochastic Setting

We start with the proof of Theorem 2, which has the same structure as in the L-smooth setting (Cutkosky and
Mehta, 2020): We first derive a Descent Lemma, second bound the momentum deviation ∥mt −∇F (xt)∥ and
third combine these two to show the result. The last step is however more intricate, as large stepsizes in the
beginning can lead to an exponential increase in the gradient norm. The main intuitions behind the third step
are the following:

Due to potentially too large stepsizes, we cannot use the descent lemma to control the expected gradient norm in
the beginning. Only after reaching a threshold t0 ∝ (ηL1)

4
the gradient norms can be controlled in this fashion.

Before this threshold, in the adaption phase, we instead use (L0, L1)-smoothness to control the gradient norms
based on ∥∇F (x1)∥. After this threshold, in the convergence phase, Lemma 11 essentially establishes that the
diminishing step-size rule ηt = t−p exhibits the same asymptotically behaviour as if the stepsizes were chosen
constantly as ηt ≡ T−p, where T denotes the iteration horizon. This aligns with the behaviour of NSGD-M in
the L-smooth setting (Yang et al., 2022). In particular, this implies that p = 3/4 is the only possible choice to
achieve the optimal complexity (Cutkosky and Mehta, 2020; Zhang et al., 2020a).

Unless stated otherwise, the notations {ξ1, ξ2, . . .}, {g1, g2, . . .}, {m1,m2, . . .} and {x1, x2, . . .} correspond to the
iterations generated by NSGD-M throughout this section. We denote the natural filtration of ξ1, . . . , ξt with respect
to the underlying probability space by Ft := σ(ξ1, ξ2, . . . , ξt).

Lemma 12 (Descent Lemma). Assume ((L0, L1)-smoothness) and let t ∈ N≥2. Then

F (xt+1)− F (xt) ≤ −ηt ∥∇F (xt)∥+ 2ηt ∥∇F (xt)−mt∥+
η2tEt

2
(L0 + L1 ∥∇F (xt)∥),

where Et := eL1ηt . If we further assume (Lower Boundedness) we also get

T∑
t=1

(
ηt −

L1η
2
tEt

2

)
∥∇F (xt)∥ ≤ ∆1 +

L0

2

T∑
t=1

η2tEt + 2

T∑
t=1

ηt ∥∇F (xt)−mt∥ ,

where ∆1 := F (x1)− F ∗.

Proof. The proof follows the arguments by Zhao et al. (2021). Using Lemma 8 we get

F (xt+1)− F (xt) ≤ ∇F (xt)
⊤
(xt+1 − xt) +

η2t
2
(L0B0(L1ηt) + L1B1(L1ηt) ∥∇F (xt)∥)

= − ηt
∥mt∥

∇F (x)⊤mt +
η2tEt

2
(L0 + L1 ∥∇F (xt)∥)

= − ηt
∥mt∥

(∇F (xt)−mt)
⊤
mt − ηt ∥mt∥+

η2tEt

2
(L0 + L1 ∥∇F (xt)∥),

where we used that B0(c), B1(c) ≤ ec. Utilizing Cauchy-Schwarz and ηt ∥∇F (xt)∥ ≤ ηt ∥∇F (xt)−mt∥+ηt ∥mt∥
now yields

F (xt+1)− F (xt) ≤ −ηt ∥∇F (xt)∥+ 2ηt ∥∇F (xt)−mt∥+
η2tEt

2
(L0 + L1 ∥∇F (xt)∥)

and hence the first claim. For the second statement we sum up to get

T∑
t=1

(
ηt −

L1η
2
tEt

2

)
∥∇F (x)∥ ≤ ∆1 +

1

2

T∑
t=1

L0η
2
tEt + 2

T∑
t=1

ηt ∥∇F (xt)−mt∥ .
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Lemma 13 (General Momentum Deviation Bound). Assume ((L0, L1)-smoothness), (Bounded Variance) and
let t ∈ N≥1. Suppose β1 = 0. Then we have

E [∥mt −∇F (xt)∥] ≤ σ

√√√√ t∑
τ=1

β2
(τ+1):t(1− βτ )

2
+ L0

t∑
τ=2

ητ−1Eτ−1βτ :t + L1

t∑
τ=2

ητ−1Eτ−1βτ :tE [∥∇F (xτ )∥] ,

where βa:b denotes
∏b

t=a βt and Eτ = eL1ητ .

Proof. This proof is motivated by Cutkosky and Mehta (2020), and similar arguments are carried by Zhang et al.
(2020a) and Yang et al. (2022). To simplify notation we first define

µt := mt −∇F (xt),

γt := gt −∇F (xt),

αt := 1− βt,

βa:b :=

b∏
t=a

βt.

Now let i, j ∈ N, i < j and calculate

E
[
γ⊤
j γi
]
= E

[
E
[
γ⊤
j γi

∣∣Fj−1

]]
= E

[
E [γj | Fj−1]

⊤
γi

]
= 0,

(7)

where we used that E [γj | Fj−1] = 0 in the last equality. Next we define St := ∇F (xt−1)−∇F (xt) and calculate

mt = βtmt−1 + (1− βt)gt

= βt(∇F (xt−1) + µt−1) + (1− βt)(γt +∇F (xt))

= ∇F (xt) + (1− βt)γt + βtSt + βtµt−1.

This yields

µt = β2:tµ1 +

t∑
τ=2

β(τ+1):tατγτ +

t∑
τ=2

βτ :tSτ =

t∑
τ=1

β(τ+1):tατγτ +

t∑
τ=2

βτ :tSτ ,

where we used β1 = 0 in the second equality. Therefore

E [∥µt∥] ≤ E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατγτ

∥∥∥∥∥
]
+

t∑
τ=2

βτ :tE [∥Sτ∥] .

To further concretize this upper bound, (7) firstly yields

E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατγτ

∥∥∥∥∥
]
≤

√√√√ t∑
τ=1

β2
(τ+1):tα

2
tσ

2.

Secondly, ((L0, L1)-smoothness) implies

∥St∥ ≤ ηt−1(A0(L1ηt−1)L0 +A1(L1ηt−1)L1 ∥∇F (xt)∥)≤ ηt−1Et−1(L0 + L1 ∥∇F (xt)∥)

and hence

t∑
τ=2

βτ :tE [∥Sτ∥] ≤ L0

t∑
τ=2

ητ−1Eτ−1βτ :t + L1

t∑
τ=2

ητ−1Eτ−1βτ :tE [∥∇F (xτ )∥] .

Putting these results together we get the claim.
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Now we are ready for the main result.

Theorem 14 (NSGD-M for (L0, L1)-smoothness). Assume (Lower Boundedness), ((L0, L1)-smoothness) and
(Bounded Variance). Let η > 0 and define the parameters

βt := 1− t−
1/2

ηt := ηt−
3/4.

Then NSGD-M with starting point x1 ∈ Rd satisfies

T∑
t=1

ηt
2
E [∥∇F (xt)∥] ≤ ∆1 + ησ

(
7 + 2

√
2e2 log (T )

)
+ η2L0

(
15eηL1 + 5 log (T )

)
+ 21η2L0e

48(ηL1)
2

+ 6ηe48(ηL1)
2

∥∇F (x1)∥ ,

where ∆1 := F (x1)−F ∗. Furthermore, if L1 ≥ 1/2η, the statement also holds when replacing 6ηe48(ηL1)
2 ∥∇F (x1)∥

with e48(ηL1)2

L1
∥∇F (x1)∥.

The main workhorse behind the following proof is Lemma 11. It intuitively states that the quantities which
emerge due to the nonconstant parameters behave (nearly) asymptotically the same as constant stepsizes would.

Proof. To simplify notation we define

βa:b :=

b∏
τ=a

βτ .

We start the proof by combining Lemma 12 and Lemma 13 to obtain

T∑
t=1

ηtE [∥∇F (xt)∥]
12
≤ ∆1 +

L0

2

T∑
t=1

η2tEt +
L1

2

T∑
t=1

η2tEtE [∥∇F (xt)∥] + 2

T∑
t=1

ηtE [∥∇F (xt)−mt∥]

13
≤ ∆1 +

L0

2

T∑
t=1

η2tEt +
L1

2

T∑
t=1

η2tEtE [∥∇F (xt)∥] + 2σ

T∑
t=1

ηt

√√√√ t∑
τ=1

α2
τ

(
β(τ+1):t

)2
+ 2L0

T∑
t=1

ηt

t∑
τ=2

ητ−1Eτ−1βτ :t + 2L1

T∑
t=1

ηt

t∑
τ=2

ητ−1Eτ−1βτ :tE [∥∇F (xτ )∥] .

Next, we use Lemma 11 a) and b) to bound all terms that are independent of the iterates xt. This leaves us with

T∑
t=1

ηtE [∥∇F (xt)∥] ≤ ∆1 + ησ
(
7 + 2

√
2e2 log (T )

)
+ η2L0

(
17eηL1 + 5 log (T )

)
+

L1

2

T∑
t=1

η2tEtE [∥∇F (xt)∥] + 2L1

T∑
τ=2

ητ−1Eτ−1

(
T∑

t=τ

ηtβτ :t

)
E [∥∇F (xτ )∥]︸ ︷︷ ︸

=:(A)

,
(8)

where we rearranged the sums of the last term. We then focus on upper bounding (A). Therefore we use
Lemma 10 ii) which yields

(A) ≤
T∑

t=1

ηtEt

(
L1

2
ηt + 2e2(

√
2−1)L1ηt

− 1
4

)
E [∥∇F (xt)∥] ≤

T∑
t=1

ηtEt

(
ML1ηt

−1/4
)
E [∥∇F (xt)∥] ,

where M := 1
2 + 2 exp

(
2
√
2− 2

)
≤ 5.1. In a setting with access to problem parameters, we could now set

η := 1
12L1

and hence guarantee that MηL1t
− 1

4Et ≤ 1
2 , which would complete the proof. In the parameter

agnostic setting we have to wait until the stepsize decreased below this threshold. We therefore define the
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threshold t0 := ⌈(12ηL1)
4⌉ after which we again have MηL1t

− 1
4Et ≤ 1

2 . This is due to Et ≤ Et0 ≤ 12
2M for t ≥ t0.

We are therefore left with the task of controlling the sum in (A) up to t0, i.e. (B) in

(A) ≤
t0−1∑
t=1

ηt

(
ML1ηt

−1/4Et

)
E [∥∇F (xt)∥]︸ ︷︷ ︸

(B)

+

T∑
t=t0

ηt
2
E [∥∇F (xt)∥] . (9)

We start by upper bounding ∥∇F (xt)∥ using ((L0, L1)-smoothness). For δt := ∥xt − x1∥ ≤ 4ηt
1
4 − 3η our

smoothness assumption implies

∥∇F (xt)∥ ≤ ∥∇F (x1)∥+ ∥∇F (xt)−∇F (x1)∥ ≤ eL1δtL0δt + eL1δt ∥∇F (x1)∥

and plugging into (B) yields

(B) ≤

(
ηM

t0−1∑
t=2

L1ηtt
− 1

4 δtEte
L1δt

)
︸ ︷︷ ︸

=:(B1)

L0 +

(
ηM

t0−1∑
t=1

L1ηt
−1Ete

L1δt

)
︸ ︷︷ ︸

=:(B2)

∥∇F (x1)∥ .

Now Lemma 11 c) i) allows us to upper bound (B1) via

(B1) ≤ η2ML0

(
ηL1

2
e2ηL1 + 4e−

5
2ηL1

(
e4ηL1(t0−1)

1
4 − e4ηL1

))
≤ η2ML0

((
ηL1

2
− 4

)
e2ηL1 + 4e4ηL1(t0−1)

1
4

)
≤ η2ML0

((
ηL1

2
− 4

)
e2ηL1 + 4e48(ηL1)

2

)
,

where we used the definition of t0 in the last inequality. Next we use that, for all x ≥ 0, we have (x/2− 4)e4x +

e48x
2 ≤ 21

4M e48x
2

and hence

(B1) ≤ 21η2L0e
48(ηL1)

2

.

Using Lemma 11 c) ii) and the same technique as for (B1) we obtain

(B2) ≤ ηM

(
3

2
ηL1e

5/3ηL1 + e−
5/2ηL1

(
e4ηL1(t0−1)

1
4 − e4ηL1

))
≤ ηM

((
3

2
ηL1 − 1

)
e2ηL1 + e48(ηL1)

2

)
≤ 6ηe48(ηL1)

2

<
3

L1
e48(ηL1)

2

.

We plug these results into (9) to obtain

(A) ≤ 21η2L0e
48(ηL1)

2

L0 + 6ηe48(ηL1)
2

∥∇F (x1)∥+
T∑

t=t0

ηt
2
E [∥∇F (xt)∥]

and combing with (8) yields

1

2

T∑
t=1

ηtE [∥∇F (xt)∥] ≤ ∆1 + ησ
(
7 + 2

√
2e2 log (T )

)
+ η2L0

(
17eηL1 + 5 log (T )

)
+ 21η2L0e

48(ηL1)
2

L0 + 6ηe48(ηL1)
2

∥∇F (x1)∥ .

This finishes the proof of the first statement.
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For the second statement assume ηL1 ≥ 1/2. In this case we apply Lemma 11 c) iii) and get

(B2) ≤ ηM

(
3

2
ηL1e

5/3ηL1 + e−
5/2ηL1

(
2(t0 − 1)

−1/4
e4ηL1(t0−1)

1/4

− e4ηL1

))
≤ ηM

((
3

2
ηL1 − 1

)
e2ηL1 +

1

6ηL1
e48(ηL1)

2

)
≤ 1

L1
e48(ηL1)

2

Proceeding as before yields the second claim.

By plugging in η = 1/7 we now get the formal result of Theorem 2.

Corollary 15. Assume (Lower Boundedness), ((L0, L1)-smoothness) and (Bounded Variance). Furthermore

define the parameters βt := 1 − t−1/2 and ηt := t−
3/4

7 . Then NSGD-M with starting point x1 ∈ Rd and T ∈ N≥3

satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤

(
14 + 96L1e

L2
1

)
∆1 +

(
6eL1/7 + 2 log (T ) + 6eL

2
1

)
L0

T
1
4

+
12e log (T )σ + 12eL

2
1 min

{
L0

L1
,
√
8L0∆1

}
T

1
4

,

where ∆1 := F (x1) − F ∗ is the initialization gap. Furthermore, if L1 ≥ 7/2, we get the following improved
dependence on L1:

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
126eL

2
1∆1 + 12e log (T )σ +

(
8eL

2
1 + 2 log (T )

)
L0

T
1
4

.

Proof. Plugging the choice of η = 1
7 into Theorem 14 and using that log (T ) ≥ 1 yields

η

2

T∑
t=1

t−
3/4E [∥∇F (xt)∥] ≤ ∆1 + 6eη log (T )σ + 6ηeL

2
1 ∥∇F (x1)∥+ ηL0

(
3e

L1/7 + log (T ) + 3eL
2
1

)
.

Next, from the proof of Lemma 9, we get that

∥∇F (x1)∥ ≤ 8L1∆1 +min

{
L0

L1
,
√
8L0∆1

}
and hence, by noting that 1

T

∑T
t=1 E [∥∇F (xt)∥] ≤ T− 1

4

∑T
t=1 t

−3/4E [∥∇F (xt)∥] we obtain

1

T 3/4

T∑
t=1

E [∥∇F (xt)∥] ≤
(
14 + 96L1e

L2
1

)
∆1 + 12e log (T )σ +

(
6e

L1/7 + 2 log (T ) + 6eL
2
1

)
L0

+ 12eL
2
1 min

{
L0

L1
,
√
8L0∆1

}
and hence proved the first claim.

For the second claim assume L1 ≥ 7/2. We now can use the second statement in Theorem 14 to get

1

T 3/4

T∑
t=1

E [∥∇F (xt)∥] ≤
(
14 + 112eL

2
1

)
∆1 + 12e log (T )σ +

(
6e

L1/7 + 2 log (T ) + 6eL
2
1

)
L0

+
2eL

2
1

L1
min

{
L0

L1
,
√
8L0∆1

}
≤ 126eL

2
1∆1 + 12e log (T )σ +

(
8eL

2
1 + 2 log (T )

)
L0,
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where we used that 14eL1/7 + 2L−2
1 eL

2
1 ≤ 2eL

2
1 for L1 ≥ 7/2.

Finally we provide the formal statement of Proposition 3.

Corollary 16 (Non parameter-agnostic NSGD-M). Assume (Lower Boundedness), ((L0, L1)-smoothness) and

(Bounded Variance). Furthermore define the parameters βt := 1 − t−1/2 and ηt := t−
3/4

12L1
. Then NSGD-M with

starting point x1 ∈ Rd satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
24L1∆1 +

(
14 + 4

√
2e2 log (T )

)
σ + (4 + log (T ))L0

L1

T 1/4
.

where ∆1 := F (x1)− F ∗ is the initialization gap.

Proof. Denote η := 1/12. By plugging our choice of ηt into (8) we obtain

T∑
t=1

1

2
ηtE [∥∇F (xt)∥] ≤ ∆1 + ησ

(
7 + 2

√
2e2 log (T )

)
+ η2L0(19 + 5 log (T ))

and by using the same arguments as in the proof of Theorem 2 we get

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
2∆1

η +
(
14 + 4

√
2e2 log (T )

)
σ + η(38 + 10 log (T ))L0

T 1/4
.

C.1.2 Deterministic Setting

In this subsection, we provide the result for GD with Backtracking Line Search.

Proof of Theorem 4. By Lemma 9 we have that ∥∇F (x)∥ ≤ max
{
8L1(F (x)− F ∗), L0

L1

}
. Since GD with Back-

tracking Line Search is a descent algorithm, we get that ∥∇F (xt)∥ ≤ max
{
8L1∆1,

L0

L1

}
=: u(L0, L1,∆1) for all

t ∈ N. Now let x ∈ Rd be an iterate of GD with Backtracking Line Search and η ≤ 1
L1

. Then Lemma 8 implies

F (x− η∇F (x)) ≤ F (x)− η∥∇F (x)∥2 + η2(2L0 + (e− 1)L1 ∥∇F (x)∥)∥∇F (x)∥2

≤ F (x)− η∥∇F (x)∥2 + η2(2L0 + (e− 1)u(L0, L1,∆1))∥∇F (x)∥2

= F (x)− η(1− ηL)∥∇F (x)∥2,

where L := 2L0 + (e− 1)L1u(L0, L1,∆1). In particular we have that F (x− η∇F (x)) ≤ F (x) − ηβ∥∇F (x)∥2

whenever η ≤ 1−β
L . This allows us to lower bound our stepsizes by ηt >

γ(1−β)
L . As in the L-smooth setting, the

definition of xt+1 now yields

β

T

T∑
t=1

ηt∥∇F (xt)∥2 ≤
∆1

T

and thus

1

T

T∑
t=1

∥∇F (xt)∥2 ≤
L∆1

βγ(1− β)T
.

This finishes the proof.
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Algorithm 3: General Normalized Momentum Method

Input: Starting point x1 ∈ Rd, stepsize η > 0, power α > 0
m0 ← 0
for t = 1, 2, . . . do

Independently sample ξt from the distribution of ξ.
gt ← ∇f(xt, ξt)
Choose mt ∈ cone (g1, . . . , gt) \ {0}
xt+1 ← xt − η

tα
mt

∥mt∥
end

η
2

z1 z2

∆1

M

η x

F (x)

(a) Plot of F (x)

z1 η
2

eηL1/4

z2 z3

x

F ′(x)

(b) Plot of F ′(x)

Figure 3: Plot of the hard function used in the proof of Lemma 7.
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C.2 Proofs for Parameter-Agnostic Lower Bounds

In this section, we provide the formal proofs for Section 4.

Proof of Lemma 7. Define z1 := 2
L0

and the derivatives

p′(x) := L0x p′1(x) := p′(x)− 1, p′2(x) := p′(η − x)− 1,

q′(x) := eL1x q′1(x) := q′(x− z1), q′2(x) := q′(η − z1 − x).

We now define the function F via its derivative

F ′ := −1(−∞,0) + 1[0,z1)p
′
1 + 1[z1,η/2)q

′
1 + 1[η/2,η−z1)q

′
2 + 1[η−z1,z2)p

′
2 − 2ε1[z2,z3) + 1[z3,z4)h

where z2 := η − z1 + 1+2ε
L0
≤ η and z3, z4 and h will be determined later. Then F (x) := ∆1 +

∫ x

0
F ′dλ (see

Figure 3a) satisfies

F (x) = ∆1 +
2

L1

(
eL1(η/2−z1) − 1

)
1[η/2,∞)(x)− 1(−∞,0)(x) · x

+ 1[0,z1)(x) ·
(
L0

2
x2 − x

)
+ 1[z1,η/2)(x) ·

1

L1

(
eL1(x−z1) − 1

)
− 1[η/2,η−z1)(x)

1

L1

(
eL1(η−z1−x) − 1

)
+ 1[η−z1,z2)(x)

(
x− η − z1 −

L0(x− 1− z1)
2

2

)
− 2ε1[z2,z3)(x) + 1[z3,z4)(x)h(x)

and in particular

F (η) ≥ ∆1 +
2

L1

(
eL1(η/2−z1) − 1

)
.

By our choice of L0 we get that η
2 − z1 ≥ η

4 which implies F (η) ≥ ∆1 +
2
L1

(
e

ηL1
4 − 1

)
=: C. We have

xT = η

T−1∑
t=1

t−α ≤ η

(
1 +

1

1− α

(
(T − 1)

1−α − 1
))
≤ η

1− α
T 1−α

and hence

F (xT ) ≥ C − 2ε(xT − η) ≥ 2ηε+ C − 2ηε

1− α
T 1−α.

Since

T ≤
(
1− α

2

) 1
1−α
(
∆1

η
+

2

ηL1

(
e

ηL1
4 − 1

)) 1
1−α

ε−
1

1−α

now implies that F (xT ) ≥ 2ηε, the gradient of F at xT is still 2ε > ε and we have not yet reached an ε-stationary
point. Finally we are left with the task of flattening F out while making sure it never attains negative values
and is still (L0, L1)-smooth. Therefore set z3 := η + C

2ε and z4 := z3 +
2ε
L0

. Now let h(x) := p′(x− z3)− 2ε and
note that this achieves the exact goal we were aiming for.

The only thing left to do, is to show that F is indeed (L0, L1)-smooth. It is clear that F is (L0, L1)-smooth on
each of the subintervals (−∞, 0), ..., [z3, z4), [z4,∞). The claim hence follows from the upcoming Lemma 17.

Lemma 17. Let I ⊆ R be an interval, a ∈ I and set I− := {x ∈ I | x ≤ a}, I+ := {x ∈ I | x ≥ a}. Further Let
f : R→ R be continuously differentiable and suppose that f satisfied the inequality from Definition 3 on I+ and
I−. Then the inequality is also satisfied on I, i.e. it also holds for x ∈ I−, y ∈ I+.
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Proof. W.l.o.g. let x ∈ I−, y ∈ I+ and set c := L1 ∥x− y∥. Furthermore set c1 := L1 ∥x− a∥ , c2 := L1 ∥a− y∥
and calculate

∥∇f(x)−∇f(y)∥ = ∥∇f(x)−∇f(a) +∇f(a)−∇f(y)∥
≤ L0(∥x− a∥A0(c1) + ∥a− y∥A0(c2))

+ L1 ∥x− a∥A1(c1) ∥∇f(x)∥+ L1 ∥a− y∥A1(c2) ∥∇f(a)∥ .
(10)

Next, since a ∈ I−, we get that

∥∇f(a)∥ ≤ L0 ∥x− a∥A0(c1) + ec1 ∥∇f(x)∥

and hence

L1 ∥a− y∥A1(c2) ∥∇F (a)∥ ≤ L0L1 ∥a− y∥A1(c2) ∥x− a∥A0(c1) + L1 ∥a− y∥A1(c2)e
c1 ∥∇f(x)∥

= L0(e
c2 − 1) ∥x− a∥A0(c1) + L1 ∥a− y∥A1(c2)e

c1 ∥∇f(x)∥

We now plug this result into (10) and rearrange to obtain

∥∇f(x)−∇f(y)∥ ≤ L0(e
c2 ∥x− a∥A0(c1) + ∥a− x∥A0(c2))

+ L1 ∥∇f(x)∥ (∥x− a∥A1(c1) + ∥a− y∥A1(c2)e
c1).

(11)

Now we focus on the second term, involving L1 ∥∇f(x)∥. Therefore we calculate

∥x− a∥A1(c1) + ∥a− y∥A1(c2)e
c1

=
eL1∥x−a∥ − 1

L1
+

eL1∥x−y∥ − eL1∥x−a∥

L1

= A1(c) ∥x− y∥ .

Next we focus on the first term in (11), which corresponds to the L0-dependence. Calculating yields

ec2 ∥x− a∥A0(c1) + ∥a− y∥A0(c2)

= ∥x− a∥ eL1∥a−y∥ + ∥x− a∥ eL1∥x−y∥ − eL1∥x−y∥ − eL1∥a−y∥

L1

+ ∥a− y∥+ ∥a− y∥ eL1∥a−y∥ − eL1∥a−y∥ − 1

L1

= ∥a− y∥+ ∥x− y∥ eL1∥a−y∥ + ∥x− a∥ eL1∥x−y∥ − eL1∥x−y∥ − 1

L1

≤ ∥x− y∥+ ∥x− y∥ eL1∥x−y∥ − eL1∥x−y∥ − 1

L1
= A0(L1 ∥x− y∥) ∥x− y∥ .

In the last inequality we used that for all a, b, L1 ≥ 0 the following inequality holds: b+(a+ b)eL1b+ beL1(a+b) ≤
a+ b+ (a+ b)

L1(a+b)
. This follows by taking partial derivatives with respect to L1. Finally we plug everything

into (11) and obtain

∥∇f(x)−∇f(y)∥ ≤ (A0(c)L0 +A1(c)L1 ∥∇f(x)∥) ∥x− a∥ .

This finishes the proof.
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D ADDITIONAL DISCUSSION ON PARAMETER-AGNOSTIC LOWER
BOUNDS

In this section, we provide further discussion on the notion of parameter-agnostic lower bounds. Additionally,
we highlight the difference between Definition 6 and the condition in Proposition 5.

The section is organised as follows: We start by introducing the necessary notation, assumptions, and definitions
in Appendix D.1. Subsequently, in Appendix D.2, we present an alternative way to motivate our definition of
parameter-agnostic lower bounds. This alternative perspective allows for a more intuitive distinctions between
Definition 6 and the condition in Proposition 5, as discussed in Remark 1.

D.1 Preliminaries

Notation. Throughout this section, let Θ ⊆ Rk denote a parameter space that is unbounded in each dimension,

i.e. there exists a sequence θ(n) ∈ Θ such that θ
(n)
i →∞ for all i ∈ [k]. Additionally, let FΘ = {Fθ : θ ∈ Θ} be a

parameterized family of function spaces.

For simplicity, we furthermore assume that all algorithms satisfy x1 = 0. If this is not the case, we can apply A
to the shifted function f̃(x) = f(x− x1). For the scope of this section, we therefore restrict Adet to deterministic
algorithms that use x1 = 0.

Lastly, we introduce a multivariate O-notation. While the extension of the O-notation to a multivariate setting
comes with technical complexities, as noted by Howell (2008), the straightforward extension is sufficient for our
purposes.

Definition 7 (Multivariate O-Notation). Consider a function h : (0,∞)×Θ→ [0,∞]. We employ the following
definitions:

i) The multivariate O is given by the set

O(h) := {f : (0,∞)×Θ→ [0,∞] | ∃ ε0, θ0,K > 0∀ ε ∈ (0, ε0], θ ≥ θ0 : f(ε, θ) ≤ Kh(ε, θ)}.

ii) Analogously, the multivariate o is defined as the set

o(h) := {f : (0,∞)×Θ→ [0,∞] | ∀κ > 0 ∃ ε0, θ0 > 0∀ ε ∈ (0, ε0], θ ≥ θ0 : f(ε, θ) ≤ κh(ε, θ)}.

Here θ ≥ C is to be understood component-wise. We also adopt standard O-notation f(ε, θ) = O(h(ε, θ)),
(ε→ 0, θ →∞) to indicate f ∈ O(h). Analogously, we use f(ε, θ) = o(h(ε, θ)), (ε→ 0, θ →∞) to signify
f ∈ O(h).

D.2 Another Point of View

In this section, we re-examine the definition of parameter-agnostic lower bounds through the lens of order
theory. This perspective serves two purposes. Firstly, it enables us to formally compare the performance
of two parameter-agnostic algorithms. Secondly, it better highlights the differences between Definition 6 and
Proposition 5.

To start off, we address the question of how to compare different parameter-agnostic algorithms to determine
which one is “better”. To this end, we first introduce the concept of parameter-agnostic complexity of an
algorithm, which maps each combination of θ and ε to the corresponding worst-case performance.

Definition 8 (Parameter-Agnostic Complexity of an Algorithm). For any A ∈ Adet we call hA : (0,∞)×Θ→
[1,∞],

hA(ε, θ) := sup
f∈Fθ

Tε(A, f)

the parameter-agnostic complexity for A on FΘ. Here Tε(A, f) = inf {t ∈ N≥1 | ∥∇f(xt)∥ ≤ ε} denotes the
number of iterations required for A to reach an ε-stationary point of f .
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To illustrate this notion, let us consider the example of Gradient Descent with constant stepsizes applied to
L-smooth functions.

Example 1. Let {Aη : η > 0} = A ⊆ Adet be the set of Gradient Descent algorithms with constant stepsizes
η > 0 and x1 = 0. Furthermore, for each L ≥ 0 and ∆1 ≥ 0, let FL,∆1

denote the set of all L-smooth functions
with initialization gap F (0)− infx∈Rd F (x) ≤ ∆1, and Θ = [0,∞)2. For each Aη ∈ A we will now calculate the
parameter-agnostic complexity on FΘ. Firstly, for η < 2/L it is well known that

hAη
(ε, L,∆1) ≤

 ∆1

η
(

Lη
2 − 1

)ε−2

.
On the other hand, if η ≥ 2/L, we can construct the function F (x) = L

2

(
x+
√
2 ε
L

)2
that is L-smooth and on

which Aη will not converge. Hence we get that

Tε(Aη, F ) =∞. (12)

Now note that F belongs to FL,∆1
for all ∆1 ≥ ε2/L. Therefore (12) implies that for all such ∆1 and η ≥ 2/L we

have hAη
(ε, L,∆1) =∞. In particular, as L,∆1 →∞ and ε→ 0 we get that hAη

(ε, L,∆1) =∞.

Now that we have established a measure for the parameter-agnostic complexity of an individual algorithm, the
next logical step is to consider how to compare two algorithms to determine which one is “better”. We argue
that in general algorithms are considered better than others, if they have a preferable behaviour as problems get
harder. We therefore introduce the following (pre-)order for parameter-agnostic complexities.

Definition 9 (Ordering Complexities). Let C = {f : (0,∞)×Θ→ [1,∞]} denote the set of all possible com-
plexities. Then we define the relation ⪯ on C as

h1 ⪯ h2 ⇔ h1(ε, θ) = O(h2(ε, θ)), (ε→ 0, θ →∞)

where O denotes the multivariate O-notation (see Definition 7).

This definition paves the way for comparing the parameter-agnostic complexities of different algorithms. We
say that a (parameter-agnostic) algorithm A is at least as good as algorithm B, if hA ⪯ hB . This observation
naturally leads to the following definition.

Definition 10 (Näıve Parameter-Agnostic Lower Bound). Let A ⊆ Adet be an algorithm class and g : (0,∞)×
Θ→ [1,∞]. Then we call g weak parameter-agnostic lower bound for A on FΘ, if

∀A ∈ A : g ⪯ hA. (13)

When comparing the definition of ⪯ with the assumption in Proposition 5, we can observe that (13) is equivalent
to the assumption stated in the proposition. Therefore, discussing the difference between Proposition 5 and
Definition 6 boils down to understanding how Definition 6 and Definition 10 differ.

Though the concept of a weak parameter-agnostic lower bound is intuitive and straightforward, its limitations
become evident when examined more closely. The following example highlights this issue.

Example 2. Consider A = {A1, A2} ⊆ Adet and let FL,∆1 ,FΘ be defined as in Example 1. Suppose the
parameter-agnostic complexities of A1 and A2 are given by

hA1(ε, L,∆1) =
∆1 + eL

ε2
,

hA2
(ε, L,∆1) =

e∆1 + L

ε2
.

The best possible weak parameter-agnostic lower bound for A on FΘ is then given by g(ε, L,∆1) = ∆1+L
ε2 .

However, this lower bound fails to capture the fact that all algorithms in A suffer from an exponential dependence
on at least one parameter.

Motivated by this shortcoming of weak parameter-agnostic lower bounds, we instead chose Definition 6 for our
notion of parameter-agnostic lower bounds. In our current setting, Definition 6 can be rephrased as follows.
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Proposition 18. Let A ⊆ Adet be an algorithm class and g : (0,∞)×Θ→ [1,∞]. Then g is a parameter-agnostic
lower bound of A on FΘ as defined in Definition 6 if and only if

∄A ∈ A : hA ≺ g. (14)

Here we define h1 ≺ h2 if h1(ε, θ) = o(h2(ε, θ)) for ε→ 0, θ →∞ (see Definition 7).

Specifically, (14) ensures that no algorithm A in the class A can have a parameter-agnostic complexity hA that
is “better” (in the little-o sense) than the proposed lower bound g.

Let us revisit Example 2 to see how this definition fixes the previously discussed issue.

Example 3. Consider the same setting as in Example 2 and define g1(ε, L,∆1) :=
∆1+eL

ε2 , g2(ε, L,∆1) :=
e∆1+L

ε2 .
Then both, g1 and g2 are parameter-agnostic lower bounds of A on FΘ, while neither of them is a weak parameter-
agnostic lower bound. This notion of lower bound does hence capture the fact, that there is exponential dependence
in at least one variable.

This demonstrates the utility of employing the definition in Proposition 18 over weak parameter-agnostic lower
bounds. The more nuanced criterion allows for a better representation of the complexities from algorithms in A.
The following remark delves deeper into this distinction.

Remark 1. The main difference between Definition 6 and Definition 10 (and therefore Proposition 5) is how
they handle incomparable algorithms, i.e. algorithms for which neither hA ⪯ hB nor hB ⪯ hA. Definition 10
enforces a) that g is comparable with all complexities and b) that g must be at least as good as all complexities.
Definition 6 on the other hand only requires that complexities which are comparable with g must not be strictly
better than g.

When focusing on parameters, the difference can be characterized as follows: A weak parameter-agnostic lower
bound guarantees that there does not exist an algorithm in A, that has a better dependence in any single
parameter. Parameter-agnostic lower bounds on the other hand guarantee, that there does not exist an algorithm
A which has better dependencies in all parameters.

From an order-theoretic standpoint, the difference is nearly the same as the difference between lower bounds
and minimal elements. The only small difference is that we do not force g to be in the set of complexities
{hA : A ∈ A}.

Finally we show that every weak parameter-agnostic lower bound is also a parameter-agnostic lower bound, as
claimed by Proposition 5.

Lemma 19 (Rephrased Proposition 5). Let A ⊆ Adet be an algorithm class and g : (0,∞)×Θ→ [1,∞]. If g is
a weak parameter-agnostic lower bound of A on FΘ, then g is also a parameter-agnostic lower bound of A on
FΘ.

Proof. Let us first first recall the logical statements behind the two version of lower bounds. Firstly, (13) can be
rewritten to

∀A ∈ A∃ ε0, θ0,K > 0∀ ε ∈ (0, ε0], θ ≥ θ0 : g(ε, θ) ≤ KhA(ε, θ). (15)

Secondly, (14) corresponds to

∀A ∈ A∃κ > 0 ∀ ε′0, θ′0 > 0 ∃ ε ∈ (0, ε′0], θ ≥ θ′0 : hA(ε, θ) ≥ κg(ε, θ). (16)

Now the proof is straightforward. Suppose g satisfies (15) and let A ∈ A. Choose κ := 1/K and let ε′0, θ
′
0 > 0

be arbitrary. Lastly define ε := min {ε0, ε′0} and θ := max {θ0, θ′0}, where the max for θ is to be understood
component-wise. Since ε ∈ (0, ε0] and θ ≥ θ0 we get that

g(ε, θ) ≤ KhA(ε, θ) =
1

κ
hA(ε, θ).

This completes the proof.
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(a) Training curves of NSGD-M. (b) Minimal training loss.

Figure 4: Results on the WikiText-2 dataset. Figure 4a represents the training curves of NSGD-M for stepsizes
η = 10k/3 · ηopt, where ηopt = 90 and k ∈ {−1, 0, 1, 2, 3}. Figure 4b shows the best train loss within 150 epochs
of different algorithms with stepsizes λ · ηopt. Shaded areas represent the minimal and maximal value within 3
seeds, the line the median.

E ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments on the WikiText-2 dataset (Merity et al., 2017). Crawshaw
et al. (2022) empirically motivated, that this task also requires the weaker notion of (L0, L1)-smoothness.

Experimental Setup. We conduct training on the WikiText-2 dataset (Merity et al., 2017) using the AWD-
LSTM architecture (Merity et al., 2018). As in the previous experiment, we compare NSGD-M to AdaGrad-Norm

(Faw et al., 2023) and Clipped SGD (Zhang et al., 2020b). For each algorithm we first chose the optimal stepsize
ηopt based on a course grid search in a 20 epoch training. The clipping threshold for Clipped SGD was fixed to
be 0.25 in concordance to previous work (Zhang et al., 2020b), the decay-rates of NSGD-M were chosen according
to Theorem 2 and b0 of AdaGrad-Norm was set to be b0 = 10−6. For each algorithm, the final training was then
carried out with stepsizes η = λ · ηopt, where λ = 10k/3, k ∈ {−3,−2, . . . , 6}, for 150 epochs. This procedure is
replicated with three different seeds to get more reliable results. The code is based on the experiments by Zhang
et al. (2020a).

Discussion. In Figure 4a we can again notice the same threshold behaviours for NSGD-M as experienced on
the PTB dataset. Instead of a plateau we do however observe higher trainings losses before the fast decrease.
Training curves of Clipped SGD and AdaGrad-Norm can be found in Figure 5. Figure 4b showcases the robustness
of NSGD-M to hyperparmeter-tuning to an greater extend than Figure 2. We can see that NSGD-M outperforms
AdaGrad-Norm for nearly all stepsizes, with the gap increasing as stepsizes increase relative to the optimal stepsize.
While Clipped SGD outperforms the adaptive methods when using the optimally-tuned stepsize or less, it suffers
from an order of magnitude higher training loss as stepsizes increase relative to the optimally tuned stepsize.
When compared to Figure 2, a large improvement in performance can be noticed for NSGD-M. We offer the
following explanation: While, in both cases, we trained for 150 epochs, the training on the smaller PTB dataset
consisted of roughly 680 batches per epoch. On the larger WikiText-2 dataset, epochs consisted of roughly
1500 batches, increasing the total number of iterations from roughly 100000 to roughly 230000. When assuming
similar values of L0, L1, NSGD-M hence more likely reached the threshold needed, entering the fast convergence
phase, while AdaGrad-Norm behaves more steadily, as can be seen in Figure 5b.
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(a) NSGD-M with ηopt = 90. (b) AdaGrad-Norm with ηopt = 100.

(c) Clipped SGD with ηopt = 22.

Figure 5: Logarithmic training curves of NSGD-M, AdaGrad-Norm and Clipped SGD on WikiText-2 for stepsizes
η = 10k/3 · ηopt with k ∈ {−1, 0, 1, 2, 3}.
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