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Abstract

Clinical trials are typically run in order to
understand the effects of a new treatment on
a given population of patients. However, pa-
tients in large populations rarely respond the
same way to the same treatment. This het-
erogeneity in patient responses necessitates
trials that investigate effects on multiple sub-
populations—especially when a treatment has
marginal or no benefit for the overall pop-
ulation but might have significant benefit
for a particular subpopulation. Motivated
by this need, we propose Syntax, an ex-
ploratory trial design that identifies subpopu-
lations with positive treatment effect among
many subpopulations. Syntax is sample effi-
cient as it (i) recruits and allocates patients
adaptively and (ii) estimates treatment effects
by forming synthetic controls for each subpop-
ulation that combines control samples from
other subpopulations. We validate the perfor-
mance of Syntax and provide insights into
when it might have an advantage over conven-
tional trial designs through experiments.

1 INTRODUCTION

Randomized controlled trials (RCTs) remain an es-
sential part of evidence-based medicine (Sackett and
Rosenberg, 1995) despite their recognized shortcomings
(Feinstein and Horwitz, 1997). Many of these shortcom-
ings are starting to be addressed by machine learning
(Curth et al., 2023; Hüyük et al., 2023); in this paper,
we focus on a specific one: RCTs typically only consider
average treatment effects across a given population, yet
patients in large populations rarely respond the same
way to receiving the same treatment. Differences in ge-
netics, environments, and clinical backgrounds among
patients lead to differences in the benefit they receive
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Figure 1: Tradeoff between individual benefit and
cost. Consider two clinical trials that are both designed
to confirm the effectiveness of a new treatment for one or
multiple subpopulations. While Trial A investigates only
two candidate subpopulations, Trial B investigates eight.
As a result, Trial B has the potential to succeed for two
subpopulations (SP2 & SP6) while Trial A is likely to fail
for all. However, Trial B needs to allocate fewer samples to
each subpopulation, which makes confirming positive effects
more challenging. We propose Syntax as an exploratory
pilot study that finds good subpopulations to target (such
as SP2 & SP6) ahead of a confirmatory trial.

from a treatment as well. This heterogeneity in patient
responses necessitates clinical trial designs that investi-
gate the treatment effect not only for the overall popula-
tion but also for various subpopulations within it (Chiu
et al., 2018). Investigating multiple subpopulations at
once becomes especially important when a treatment
only has marginal benefit for the population as a whole
while it might have significant benefit for a particular
subpopulation (Moineddin et al., 2008; Lipkovich et al.,
2017). Declaring such a treatment to be ineffective after
a clinical trial that ignores heterogeneity might result
in the treatment being needlessly denied to the sub-
population that would have actually benefited from it.

Running more “complex” trials that investigate larger
numbers of subpopulations provides an opportunity to
identify more personalized treatments for each subpop-
ulation, rather than identifying one-size-fits-all treat-
ments that are supposed to be beneficial for everyone
(Wand et al., 2007; Lazar et al., 2016). However, such
trials also come with increased costs as dividing the
population into finer subpopulations naturally requires
more patients to be recruited into the trial when the
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recruitment is done in a randomized manner (Brookes
et al., 2004; Ondra et al., 2016). When determining how
many subpopulations a trial should investigate, there
is a clear tradeoff between the benefit provided to the
individual and the cost of running the trial (Figure 1).

Motivated by this issue, we propose Syntax (Synthetic
Adaptive eXploration), an exploratory trial design for
subpopulation selection. Exploratory (Phase I & II)
trials are commonly run to establish a treatment’s
safety and to determine the correct dosage for the
treatment. In contrast, confirmatory (Phase III) trials
aim to validate the efficacy of a treatment with type I
error control. Syntax, as an exploratory (pre-Phase
III, similar to Phase I & II) trial design, aims to find
suitable populations for which validating efficacy would
be easier in a subsequent confirmatory trial. Specifi-
cally, our objective is to identify subpopulations with
positive treatment effect among a pre-determined set
of candidate subpopulations with a limited budget of
samples—that is a limited number of patients that can
be recruited into the trial. While a conventional Phase
II trial determines the “right” dosage for a Phase III
trial, in a similar vein, Syntax determines the “right”
populations to target in a Phase III trial.

Our trial design has two key characteristics that con-
tribute to its efficiency in identifying subpopulations:

(i) Syntax recruits patients and allocates them into
control or treatment groups adaptively, not ran-
domly. This allows more samples to be allocated
into subpopulations that have higher variability in
their responses to the treatment.

(ii) When estimating treatment effects, Syntax forms
synthetic controls for each subpopulation, by de-
composing them into a linear combination of others,
instead of relying on control samples just from the
subpopulation itself. This allows information from
control samples to be shared between different sub-
populations and more samples to be allocated to
the treatment group.

An important difference bears emphasis here: Conven-
tionally, synthetic controls replace the control group in
a trial outright, they are sourced from offline datasets
collected ahead of the trial, and no new control sam-
ples are observed during the trial itself. In this work,
we consider synthetic control in an online context and
investigate how they can still facilitate more efficient
use of the control samples that are being collected as a
trial continues. This setting is unique within the syn-
thetic control literature, as it requires an experimenter
to decide continually for each subpopulation, whether
to (i) collect new real data as controls, or (ii) rely on
synthetic controls constructed from previously observed
data for other subpopulations.

Contributions Our contributions are three-fold:
First, we outline a treatment effect estimator based on
decomposing subpopulations into linear combinations
of others as in synthetic control. Within this estimator,
the unique decision between collecting new real data
vs. relying on synthetic controls is reflected by the fact
that we allow decompositions of a given subpopulation
to include the subpopulation itself.

Second, we provide an upper bound on the variance of
our proposed estimator (Proposition 1), which can be
tighter than the variance of a naive estimator based
on conventional controls (Proposition 2). This upper
bound also establishes the rate at which deviations from
proper control samples—in favor of synthetic controls—
contribute to the error in estimating treatment effects.
Identifying this rate leads to an important insight: Dur-
ing an adaptive trial, constructing synthetic controls
over collecting real control samples is the most effec-
tive when (latent) factors that lead to heterogeneity
in patient responses have a stronger effect during the
pre-treatment period than the post-treatment period.

Finally, making use of our upper bound, we propose a
novel algorithm called Syntax that recruits patients
from candidate subpopulations and assigns them into
control or treatment groups adaptively to identify sub-
populations with positive treatment effect in a sample-
efficient manner. Although we motivate and formulate
Syntax from the perspective of clinical trials, it re-
mains generally applicable to any thresholding bandit
problem with time-series contexts. Through numerical
experiments, we validate the performance of our algo-
rithm and provide insight into when it might have an
advantage over conventional trial designs.

2 PROBLEM FORMULATION

We are given a pre-specified set of patient subpop-
ulations [K] = {1, 2, . . . ,K}. These subpopulations
could have been specified according to any arbitrary
criteria (for instance, according to biomarkers or ge-
ographical location). Each subpopulation i ∈ [K]
has known/observable features xi ∈ RDx and un-
known/unobservable factor loadings zi ∈ RDz . As an
example, the overall cardiovascular health of a subpopu-
lation could be a latent factor that effects heart-related
features such as ejection fraction, heart rate, and blood
pressure. We let X = [x1 · · ·xK ] and Z = [z1 · · · zK ].
Patients from population i, when they receive no treat-
ment, exhibit the baseline response with mean

ȳit = δt +wT
t xi + µT

t zi for t ∈ [T ] (1)

where δt ∈ R determines the constant portion of the
baseline response, wt ∈ RDx are weights that determine
the portion based on features, and µt ∈ RDz are factors
that determine the portion based on factor loadings.
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Now, suppose a clinical trial is run over episodes where
each episode corresponds to one sample or the recruit-
ment of one patient. At each episode η ∈ [H], the
experimenter first recruits a patient from some sub-
population i[η] ∈ [K]. Then, they observe the baseline
response of the patient they have recruited:

yt[η] ∼ Nσ2(ȳi[η]t) for t ∈ {1, . . . , T − 1} (2)

where Nσ2(µ) is the normal distribution with mean µ
and variance σ2. This is called the pre-treatment period.
Once the pre-treatment period ends at time t = T ,
the experimenter assigns the recruited patient either
to the control group, α[η] = 0, or to the treatment
group, α[η] = 1. Depending on this assignment, they
either continue observing the baseline response or they
observe the response affected by the treatment:

yT [η] ∼

{
Nσ2(ȳi[η]T ) if α[η] = 0

Nσ2(ri[η] + ȳi[η]T ) if α[η] = 1
(3)

where ri is the treatment effect for subpopulation i.

Objective The experimenter seeks to identify all of
the subpopulations with positive treatment effect

I∗ = {i ∈ [K] : ri > 0} (4)

at the end of the episode horizon H, without knowing
parameters {δt,wt,µt} or observing factor loadings
{zi}. However, we assume that features xi are ob-
served ahead of the clinical trial. Denoting with Î∗ the
experimenter’s best estimate of I∗, we measure their
success through their (i) true positive rate (TPR) given
by |Î∗∩I∗|/|I∗|, and their (ii) false positive rate (FPR)
given by |Î∗∩[K]\I∗|/|[K]\I∗|.

On Modeling Assumptions We formulated the
problem of subpopulation selection with a linear model
(cf. Equation 1) and normal error distributions (cf.
Equation 2). It should be emphasized that these are not
just arbitrary assumptions that we made because they
are common in the literature. Instead, they are careful
modeling decisions that are particularly suitable for cap-
turing population-level effects as the units of interest in
our problem happen to be populations of patients rather
than individual patients themselves. Regarding linear-
ity, Shi et al. (2022) explain how linear relationships
can emerge on a population level when outcomes are
averaged over multiple individuals, even when the gen-
erative process for an individual is non-linear—briefly,
this is due to the inherent linearity of the expecta-
tion operator. Similarly, error distributions for out-
comes averaged over multiple individuals can be ap-
proximated as normal due to the central limit theorem.
We will evaluate the performance of Syntax under
model mismatch—that is when the linearity in Equa-
tion 1 is violated—during our experiments in Section 6.

3 ESTIMATING TREATMENT
EFFECTS WITH SYNTHETIC
CONTROLS

As it will become more apparent why in Section 4, effi-
cient exploration of the subpopulations and treatment
groups rely on forming estimators of the treatment
effects that have low variance. In order to find such
estimators, we first start by analyzing the case where
recruitment decisions i[η], α[η] are made independently
from observed responses yt[η] so that the observed re-
sponses remain independent from each other—that
is yt[η] ⊥⊥ yt′ [η

′] if t 6= t′ or η 6= η′ for all time
steps t, t′ ∈ [T ] and episodes η, η′ ∈ [H]. For a given
episode η, denote with

n(α)

i =
∑

η′<η
I{i[η′] = i, α[η′] = α} (5)

the number of patients recruited from subpopulation i
into treatment group α until that episode, and with

ŷ(α)

it =
∑

η′<η
yt[η

′] · I{i[η
′] = i, α[η′] = α}

n(α)

i

(6)

the empirical mean responses of those patients. Sim-
ilarly, denote with ni = n(0)

i + n(1)

i the total num-
ber of patients recruited from subpopulation i (re-
gardless of their treatment group) and with ŷit =
(ŷ(0)

it n
(0)

i + ŷ(1)

it n
(1)

i )/ni the empirical mean responses
of those patients. We let N (α) = diag(n(α)

1 , . . . , n(α)

K ),
N = diag(n1, . . . , nK), ŷ(α)

·T = [ŷ(α)

1T · · · ŷ
(α)

KT ]T, ŷi¬T =
[ŷi1 · · · ŷi(T−1)]T, and Ŷ¬T = [ŷ1¬T · · · ŷK¬T ].

Ignoring any potential relationship between the re-
sponses of different subpopulations, a naive estimate
for the treatment effect ri can be written as

r̂ naive
i = ŷ(1)

iT − ŷ
(0)

iT (7)

which is an unbiased estimate of treatment effects,
E[ri−r̂ naive

i ] = 0, and has a variance of V[ri−r̂ naive
i ] =

σ2(1/n(0)

i + 1/n(1)

i ). However, considering true mean
responses ȳiT are related to each other as described
in (1), it should be possible to form other estimates
with tighter variances. Specifically, if the joint fea-
ture/factor space has lower dimensionality than the
number of subpopulations—that is Dx+Dz < K—one
can explore the feature/factor space more efficiently
than the subpopulations themselves. Moreover, if the
pre-treatment responses {yt}t<T are observed for a time
period long enough to infer unobserved factor loadings
{zi}—that is T > Dz—such exploration could be fea-
sible. We aim to achieve this via synthetic control.

Synthetic Control Rather than using ŷ(0)

iT as our
control when estimating ri, we first decompose sub-
population i as a linear combination of other subpop-
ulations with weights β ∈ RK such that xi = Xβ,
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zi ≈ Zβ, and the elements of β sum up to one.1 Then,
(1) would imply that ȳiT ≈ βTȳ·T hence we can use
βTŷ(0)

·T as our control instead. This leads to a family
of synthetic estimators:

r̂i(β) = ŷ(1)

iT − β
Tŷ(0)

·T (8)

In Proposition 1, we show that synthetic estimators
become unbiased when β satisfies verifiable conditions
that do not depend on unknown or unobservable quan-
tities such as factors µt or factor loadings zi. Moreover,
we provide an upper bound on their variance. As we
will argue next, synthetic estimators include the naive
estimate in (7) as well, moreover, the tightness of the
variance bound in Proposition 1 makes it possible to
find synthetic estimates with even lower variances than
the naive estimate.
Proposition 1. Assuming M¬T = [µ1 · · ·µT−1] has
full rank and T > Dz, we have E[ri − r̂i(β)] = 0 and

V[ri − r̂i(β)]

≤ Vi(β;N (0), N (1))
.
= σ2

(
1/n(1)

i + ‖β‖2(N(0))−1︸ ︷︷ ︸
epistemic uncertainty

+ λ‖β − 1i‖2N−1︸ ︷︷ ︸
representation error

)
(9)

for λ = ‖MT
¬T (M¬TMT

¬T )−1µT ‖2 when β is such that
xi = Xβ, ŷi¬T = Ŷ¬Tβ, and 1Tβ = 1.

Proof. All proofs can be found in the appendix.

3.1 Interpreting Proposition 1

To gain a more intuitive understanding of the bound in
Proposition 1, first consider the trivial decomposition
of subpopulation i as itself—that is β = 1i where
(1i)j = I{i = j}. Normally, having ŷi¬T = Ŷ¬Tβ
would not guarantee zi = Zβ due to the observation
noise. However, for the trivial decomposition uniquely,
we know for certain that zi = Zβ holds. In other words,
β = 1i is the only known representation of subpopula-
tion i that is perfectly accurate even in the latent factor
space. The representation error λ‖β − 1i‖2N−1 takes
deviations from this perfect representation into account
when quantifying the variance of synthetic estimators.
Synthetic control relies on matching observed responses
ŷ between a subpopulation i and its representation β
such that ŷi¬T = Ŷ¬Tβ as it leads to a near match in
terms of unobservable factor loadings zi ≈ Zβ as well,

1It is intentional here that xi = Xβ, zi ≈ Zβ and
not xi = X¬iβ, zi ≈ Z¬iβ. This is part of our con-
tribution: Unlike previous work on synthetic control, we
allow weights β to include a subpopulation itself such that
xi = xiβi +X¬iβ¬i, zi ≈ ziβi + Z¬iβ¬i. Of course, one
trivial β that satisfies this condition would be βi = 1,
β¬i = 0 (i.e. β = 1i). However, as we will discuss next,
alternative weights can lead to lower-variance estimates.

and notably, the deviations from the perfect represen-
tation are weighted by N−1 which corresponds to the
uncertainty of observed responses Ŷ¬T .

The remaining terms capture the epistemic uncertainty
of ŷ(1)

iT and ŷ(0)

·T which are composed together to form
the final estimate r̂i(β). Even when β is a perfect
representation, the accuracy of r̂i(β) is limited by how
close ŷ(1)

iT and ŷ(0)

·T are to their ground-truth values.

Importantly, the trivial representation β = 1i (of sub-
population i as itself) recovers the naive estimate in (7):

r̂i(1i) = r̂ naive
i (10)

Moreover, when β = 1i, the representation error
in Vi(β) vanishes and the epistemic uncertainty be-
comes identical to the naive estimate’s variance—that
is Vi(1i) = V[ri − r̂ naive

i ]. This means that the family
of estimators r̂i(β) not only include the naive esti-
mate but also the variance bound in Proposition 1 is
optimally tight for the naive estimate.

Having made this important observation, the key idea
behind Syntax is to search for β that leads to even
tighter variance bounds Vi(β). This can easily be
achieved by solving the quadratic program

β∗i = argminβ:xi=Xβ, ŷi¬T=Ŷ¬Tβ, 1Tβ=1 Vi(β) (11)

Due to Proposition 1, it is guaranteed that r̂i(β∗i ) has
variance at least as small as that of the naive estimator.
Proposition 2. V[ri − r̂i(β∗i )] ≤ V[ri − r̂ naive

i ].

3.2 When is synthetic control the most
effective in estimating treatment effects?

Proposition 1 provides an intuition as to when syn-
thetic control might be the most effective in estimating
treatment effects. Notice that, in Proposition 1, the rep-
resentation error contributes to the total variance pro-
portionally to constant λ = ‖MT

¬T (M¬TMT
¬T )−1µT ‖2.

Earlier, we have discussed how representation error is
caused mainly due to a mismatch between a subpopula-
tion’s factor loadings zi and the synthetic composition
ZTβ. As such, it is no surprise that λ exclusively
depends on factors µt. Since

λ = ‖MT
¬T (M¬TM

T
¬T )−1µT ‖2 ≤ (‖µT ‖/‖M¬T ‖)2 (12)

we also expect that λ—hence the contribution of repre-
sentation error to the total variance—is smaller when
post-treatment factors are small in magnitude (i.e.
‖µT ‖ is small) and pre-treatment factors are large
in magnitude (i.e. ‖M¬T ‖).

This makes intuitive sense as well: With synthetic con-
trol, we are essentially trying to infer factor loadings
zi from pre-treatment responses {yt}t<T in order to
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estimate the post-treatment responses yT . During the
pre-treatment period, if the contribution of factors to
responses is stronger relative to the noise level—that
is when ‖M¬T ‖/σ is large—we expect our inference of
factor loadings to be more accurate. Later, when we
estimate the post-treatment response yT , if the contri-
bution of factors to the final response is now weaker rel-
ative to the noise level—that is when ‖µT ‖/σ is small—
we expect to gain more from our earlier inference of the
factor loadings compared with a naive estimate (which
now has to detect a weaker signal without any addi-
tional information from the previous time steps t < T
during the pre-treatment period). We will confirm this
intuition empirically with simulations in Section 6.

4 SYNTAX

Making use of the synthetic estimator r̂i(β∗) given
by (11) and the upper bound on its variance given
in Proposition 1, we propose Syntax described in
Algorithm 1. It is an adaptation of the algorithm of
Locatelli et al. (2016) for solving thresholding bandit
problems. At each episode η ∈ [H]:

(i) First, a sensitivity index is computed for each sub-
population i ∈ [K]:

Si =
|r̂i(β∗i )|√
Vi(β∗i )

≤ |r̂i(β∗i )|√
V[ri − r̂i(β∗i )]

(13)

Intuitively, the lower the sensitivity index of a
subpopulation is, the harder it is to determine
whether its treatment effect is positive or not.

(ii) Then, the subpopulation i∗ = argminSi with the
lowest sensitivity index is determined and the pa-
tient that is expected to cause the largest increase
in Si∗ is recruited.

Algorithm 1 Syntax

Parameters: Horizon H, factor effect parameter λ
Output: Subpopulations Î∗ with positive treat. effect
1: n(α)

i ← 0, ŷ(α)

iT ← 0, ŷi¬T ← 0, ∀i ∈ [K], α ∈ {0, 1}
2: for η ∈ {1, 2, . . . ,H} do
3: i∗ ← argmini∈[K] Si
4: i, α← argmini∈[K],α∈{0,1}

minβ: xi∗=Xβ, ŷi∗¬T=Ŷ¬Tβ, 1Tβ=1

Vi∗(β;N (0)+(1− α)1i1i
T, N (1)+α1i1i

T)
5: Recruit from population i and treatment group α
6: Observe baseline outcomes y¬T = [y1 · · · yT−1]T

and the final outcome yT
7: n(α)

i ← n(α)

i + 1
8: ŷi¬T ← ŷi¬T + (y¬T − ŷi¬T )/ni
9: ŷ(α)

iT ← ŷ(α)

iT + (yT − ŷ(α)

iT )/n(α)

i

10: end for
11: Î∗ ← {i ∈ [K] : r̂i(β

∗
i ) > 0}

Finally, when the experiment ends, Syntax simply re-
turns all subpopulations that have a positive treatment
effect estimate: Î∗ = {i ∈ [K] : r̂i(β

∗
i )}. Note that,

computing Vi(β) hence sensitivity indices Si requires
specifying λ. The ideal λ given Proposition 1 cannot
be computed in practice as it depends on unknown
factors µt, and we call it the factor effect parameter
due to this dependence.

5 RELATED WORK

Our objective in this paper is to identify subpopulations
with positive treatment effect given a fixed budget of
samples. A trial designed to do so would consist of (i)
an inference strategy that dictates which subpopulation
is identified at the end of the trial, and (ii) a sampling
strategy that dictates how the samples are allocated
between different subpopulations as well as control and
treatment groups. Our trial design, Syntax, happen to
combine inference techniques from the synthetic control
literature and sampling principals originally developed
for solving thresholding bandit problems. Table 1 sum-
marizes alternative trial designs one might consider,
which differ from Syntax in terms of their inference
and sampling strategies. We give an overview of these
alternative strategies in this section.

Synthetic Control It is not always practical to
perform large randomized experiments to understand
the effects of an intervention (Bica et al., 2020). For
instance, investigating the effects of new policies tar-
geting large geographic areas, often at the level of indi-
vidual countries, is challenging. As an inference tech-
nique, synthetic control (Abadie and Gardeazabal, 2003;
Abadie et al., 2010, 2015) was first introduced to ad-
dress this challenge. In typical synthetic control studies,
the outcome observed for a single treated unit is com-
pared against a control unit that is synthetically gener-
ated as a linear combination of other untreated units.

More recently, Doudchenko et al. (2021) introduced a
trial design based on synthetic control, where treated
and untreated units are not fixed but rather chosen
by the designer before the experiment is run. Notably
though, their trial design does not adapt to the out-
comes observed sequentially once the experiment starts.
In contrast, Syntax recruits and assigns patients—
which is akin to choosing which units will be treated—
in a fully adaptive way. Farias et al. (2022) study the
adaptive use of synthetic controls but in a setting or-
thogonal to ours: They consider treatment assignments
over time steps t for a single unit/patient whereas we
consider the treatment assignment at a final time point
T for multiple units/patients over multiple episodes η.

Thresholding Bandits As an online algorithm,
Syntax is closely related to the multi-armed bandit lit-
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Table 1: Comparison of related trial designs. Syntax makes inferences via synthetic control and recruits adaptively.

Approach Inference Strategy Sampling Strategy Related Work

Conventional studies Simple statistics
r̂i = ŷ

(1)
iT − ŷ

(0)
iT

Randomized –
Thresholding bandits Adaptive Locatelli et al. (2016)

Synthetic studies Synthetic control
r̂i = ŷ

(1)
iT − (β∗i = argminβ Vi(β))

Tŷ
(0)
·T

Randomized Abadie et al. (2015)
Synthetic design Pre-planned Doudchenko et al. (2021)
Syntax Adaptive (Ours)

erature (e.g. Auer et al., 2002; Hüyük and Tekin, 2019,
2020, 2021), and our objective is most similar to that of
the thresholding bandit problem (Locatelli et al., 2016;
Zhong et al., 2017; Mukherjee et al., 2017; Tao et al.,
2019) and the good arm identification problem (Kano
et al., 2019; Katz-Samuels and Jamieson, 2020), which
similarly aim to identify arms with rewards higher than
a given threshold among a set of candidate arms. Sub-
populations in our work can be thought of as arms
in a thresholding bandit problem with one important
caveat: While in thresholding bandits, each arm has
only one reward distribution associated with it, in our
setting, the treatment effect of each subpopulation de-
pends on two response distributions that cannot be
sampled from simultaneously. Complicating matters
further, while there are underlying relationships be-
tween the responses of different subpopulations for the
control group as described in (1), no such relationship
exists for the treatment group.

Another related problem in the multi-armed bandit
literature is the best arm identification (BAI) problem
(Bubeck et al., 2009; Audibert et al., 2010; Gabillon
et al., 2011, 2012; Soare et al., 2014; Xu et al., 2018;
Alieva et al., 2021; Degenne et al., 2020). In our context,
BAI would correspond to finding the subpopulation
with the largest treatment effect. This objective is
clinically less suitable as it is important to provide
the treatment to all patients who would benefit from
it, regardless of how little that benefit might be com-
pared to other patients. Aside from “pure-exploration”
problems such as thresholding bandits or BAI, there
are numerous other work on multi-armed bandits that
focus on maximizing the cumulative reward instead. In
our context, this would correspond to maximizing the
benefit received by all participant of a trial whereas
clinical trials are usually exploratory in nature.

Adaptive Clinical Trials Finally, it should be men-
tioned that adaptive trial designs that target objectives
other than ours exist. Lewis and Bessen (1990); White-
head (1997) consider when to terminate a trial, Hu and
Rosenberger (1997); Berry (2006); Villar et al. (2015)
maximizes the benefit for the recruited patients, Bhatt
and Mehta (2006) consider when to stop further inves-
tigating one of two subpopulations, O’Quigley et al.
(1990); Riviere et al. (2014); Wages et al. (2015); Yan
et al. (2017); Shen et al. (2020); Lee et al. (2020, 2021)

determine safe but effective dosage for treatments, and
Hüyük et al. (2023) consider the portfolio-level man-
agement of trials. Notably, Atan et al. (2019); Curth
et al. (2023) also aim to identify subpopulations with
positive treatment effects but not in the setting where
pre-treatment responses are available for all partici-
pants. Adaptive enrichment designs (Stallard et al.,
2014) perform interim analyses to select subpopulations.
However there, the focus is to seamlessly adapt the
inclusion criteria of a confirmatory trial without com-
promising its type I error rate. In contrast, we focus
purely on selecting subpopulations in an exploratory
trial that can then be targeted in a confirmatory trial.

6 EXPERIMENTS

Environments To confirm our earlier intuition in
Section 3.2 about when synthetic control might be the
most effective, we consider two types of environments:

(i) Diminishing Factor Effects: In these environments,
the contributions of factors µt to the baseline re-
sponses gets weaker over time. Formally, we set
µt = (2−10t−T )µ′

t, where µ′
t is sampled uniformly

at random from the unit ball in RDz .

(ii) Increasing Factor Effects: In contrast to Dimin-
ishing Factor Effects, in these environments, the
contributions of factors µt to the baseline re-
sponses gets stronger over time. Formally, we set
µt = 10t−Tµ′

t, where µ′
t is sampled uniformly at

random from the unit ball in RDz .

Remember that we expect our gain from synthetic
control to be larger for Diminishing Factor Effects since
we infer factor loadings based on earlier responses—for
which we would prefer factors to provide a stronger
signal—and we aim to estimate later responses—for
which we would gain the most from our earlier inference
if factors now provide a weaker signal that is harder to
pick up with naive estimates. We set N = 25, T = 5,
Dx = Dz = 2. Notably, Dx+Dz < N and T > Dz. We
sample the remaining parameters of the environment so
that xij ∼ N1(0), zij ∼ N1(0), δt ∼ N1(0), ri ∼ N1(0),
and wt is picked uniformly at random from the unit
ball in RDx . We repeat all our experiments ten times
to obtain error bars. During each repetition, we sample
a new environment and we average FPR and TPR of
all our benchmark algorithms over 1000 runs.
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Table 2: Performance comparison of Syntax and benchmarking algorithms. Inline with our intuition from
Section 3.2, Syntax performs the best for Diminishing Factor Effects. Again inline with our intuition, it does not provide
any benefit for Increasing Factor Effects but still performs on par with Thresholding Bandits since synthetic estimators
have variances at least as low as the naive estimate (as stated in Proposition 2).

Diminishing Factor Effects Increasing Factor Effects

H = 200 H = 400 H = 200 H = 400

Algorithm FPR TPR FPR TPR FPR TPR FPR TPR

Conventional study 19.5% (0.2%) 80.7% (0.3%) 14.9% (0.3%) 85.4% (0.3%) 19.5% (0.2%) 80.7% (0.3%) 14.9% (0.3%) 85.4% (0.3%)
Thresholding bandits 17.6% (0.4%) 82.6% (0.4%) 13.7% (0.4%) 86.4% (0.2%) 17.6% (0.4%) 82.6% (0.4%) 13.7% (0.4%) 86.4% (0.2%)
Synthetic study 16.7% (0.3%) 83.4% (0.3%) 12.5% (0.3%) 87.7% (0.2%) 19.5% (0.2%) 80.7% (0.3%) 14.9% (0.3%) 85.4% (0.3%)
Synthetic design 16.4% (0.4%) 83.8% (0.4%) 12.1% (0.4%) 88.2% (0.3%) 19.7% (0.4%) 80.5% (0.3%) 14.9% (0.3%) 85.4% (0.4%)

Syntax 14.6% (0.4%) 85.6% (0.3%) 11.0% (0.3%) 89.1% (0.2%) 17.5% (0.4%) 82.6% (0.3%) 13.7% (0.4%) 86.4% (0.3%)
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(b) Adaptive Algorithms
Figure 2: Comparison of (a) synthetic algorithms and (b) adaptive algorithms. Switching to a pre-planned
sampling strategy from an adaptive one or switching to a naive inference strategy from a synthetic one both cause FPR to
increase and TPR to decrease at comparable scales.

Benchmarks We adapt the alternative trial designs
summarized in Table 1 to our problem setting as bench-
marks. Adapting Thresholding Bandits, when there
are two response distributions associated with each
subpopulation rather than a single reward distribution,
involves forming naive estimates as in (7). Synthetic
Design normally requires knowing the mean responses
for the pre-treatment period before forming a fixed sam-
pling plan. When adapting it, we allowed the sampling
plan to be updated using the latest empirical mean re-
sponses ŷ(α)

i¬T at each episode. However, unlike Syntax,
Synthetic Design still does not take the final responses
yT into consideration when allocating samples. Details
regarding each benchmark can be found in the appendix.

Main Results Table 2 compares Syntax and other
benchmarks in terms of their performance. We con-
sider two metrics: (i) false positive rate (FPR), which
is the proportion of subpopulations incorrectly iden-
tified as having positive treatment effect among all
subpopulations with negative treatment effect, and (ii)
true positive rate (TPR), which is the proportion of
subpopulations correctly identifies as having positive
treatment effect among all subpopulations with posi-
tive treatment effect. We see that our intuition from
Section 3.2 holds: Syntax performs the best for Di-
minishing Factor Effects. Although it does not provide
any additional benefit for Increasing Factor Effects, it
still performs on par with Thresholding Bandits, which
relies on the naive estimate in (7). This is because
synthetic estimators given by (11) have variances at
least as low as the naive estimate (i.e. they are as
informative) as stated in Proposition 2.

To understand how much impact each design aspect of
Syntax has on its performance, we compare all three
synthetic algorithms in Figure 2a and the two adap-
tive algorithms in Figure 2b (for Diminishing Factor
Effects). These figures show how the FPR/TPR of
different algorithms improve as the sample budget H
gets larger. We see that switching to a naive inference
strategy or a pre-planned sampling strategy both result
in similar performance drops—indicating that synthetic
and adaptive aspects of Syntax are equally important.

Significance of the Main Results Looking at
Table 2, the performance difference between Syntax
and a conventional RCT might not seem like much
at a first glance. After all, it is merely (!) a ∼5%
difference in terms of FPR/TPR for Diminishing Factor
Effects with H = 200. However, the implications of
this seemingly small difference are significant in the
larger context of clinical trials. We highlight two points:
(i) how hard it actually is to gain this ∼5% difference
and (ii) what tangible benefits it would offer if the same
gain were to be realized in practice:

(i) Notice that the performance of a traditional RCT
in terms of FPR/TPR also improves only by ∼5%
when the sample size is increased to H = 400. This
means that achieving the same performance gain as
Syntax with a traditional RCT requires doubling
the size of the RCT—meaning just by allocating
control samples smartly, Syntax is able to match
the performance of a trial that has double the size.

(ii) A typical RCT costs 12-35 million USD, which
primarily scales with the number of patients in-
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Figure 3: Proportion of samples allocated to the
treatment group over the control group. By sharing
information between the control samples of different sub-
populations, Syntax is able allocate more of its samples to
the treatment group compared with alternative designs.

volved (Moore et al., 2018), and takes 1-2 years,
where as much as 86% of trials get delayed due to
failures to reach recruitment targets (Huang et al.,
2018). Having the required number of samples ef-
fectively halved by designs like Syntax would save
upwards of 17.5 million USD per trial—note that
more than 9000 trials are launched each year in
the US alone (World Health Organization)—and
help deliver much faster results.

Similarly, the 1-2% difference between Syntax and the
next best-performing benchmark, Synthetic Design, for
Diminishing Factor Effects, translates into a significant
difference in terms of the sample size: Syntax with
H = 150 achieves an FPR of 16.3% (0.4%) and TPR
of 83.9% (0.2%)—the same performance as synthetic
design with H = 200 but using 25% fewer samples.

Sample Allocation Characteristics We men-
tioned how sharing information between the control
samples of different subpopulations would allow more
samples to be allocated to the treatment group. Fig-
ure 3 shows the proportion of samples allocated to the
treatment group by different algorithms (for Diminish-
ing Factor Effects). Indeed, Syntax allocates more of
its samples to the treatment group. Proposition 1 might
provide insight into how this is achieved: The uncer-
tainty of the treated response of each subpopulation i
contributes directly to the variance of synthetic estima-
tors through the term 1/n(1)

i . Whereas, it is possible
to mitigate the uncertainty of baseline responses by
distributing its contribution among multiple different
subpopulations—more precisely, minβ ‖β‖(N(0))−1 ≤
‖1i‖(N(0))−1 = 1/n(0)

i . In contrast to Syntax, a conven-
tional study allocates all samples uniformly at random
and Thresholding Bandits distributes samples adap-
tively among subpopulations but tends to not differen-
tiate between different treatment groups.

Performance under Model Mismatch We also
evaluate the performance of Syntax under model

Table 3: Performance comparison of Syntax and
benchmarking algorithms under model mismatch—
when outcomes are non-linear with respect to features.

H = 200 H = 400

Algorithm FPR TPR FPR TPR

Conventional study 19.5% (0.2%) 80.7% (0.3%) 14.9% (0.3%) 85.4% (0.3%)
Thresholding bandits 17.6% (0.4%) 82.6% (0.4%) 13.7% (0.4%) 86.4% (0.2%)
Synthetic study 18.1% (0.4%) 81.8% (0.3%) 14.2% (0.4%) 85.9% (0.3%)
Synthetic design 18.3% (0.5%) 82.0% (0.4%) 14.2% (0.4%) 85.8% (0.3%)

Syntax 16.2% (0.4%) 84.0% (0.4%) 12.9% (0.4%) 87.3% (0.3%)

Table 4: Performance comparison of Syntax and
benchmarking algorithms under model mismatch—
when the number of latent factors Dz = T .

H = 200 H = 400

Algorithm FPR TPR FPR TPR

Conventional study 19.5% (0.2%) 80.7% (0.3%) 14.9% (0.3%) 85.4% (0.3%)
Thresholding bandits 17.6% (0.4%) 82.6% (0.4%) 13.7% (0.4%) 86.4% (0.2%)
Synthetic study 15.8% (0.3%) 71.2% (0.7%) 12.3% (0.3%) 74.9% (0.9%)
Synthetic design 15.7% (0.3%) 71.5% (0.8%) 12.1% (0.3%) 75.0% (0.9%)

Syntax 14.1% (0.3%) 73.1% (1.0%) 11.1% (0.2%) 76.1% (1.0%)

mismatch—specifically when the linearity assumption
in (1) is violated (although it is a natural assumption to
make in our setting, see “On Modeling Assumptions” in
Section 2). This can only happen in two ways: (i) Out-
comes yit might not be linear with respect to features
xi. (ii) Outcomes yit can always be expressed as a
linear function of some latent factors zi, however the
minimum number of factors needed to do so might be
equal to the number of total time steps (i.e. Dz = T ).

For the first scenario, we consider the same simulation
setup as Diminishing Factor Effects but generate mean
outcomes according to equation

ȳit = δt +wT
t (x2

i ) + µT
t zi for t ∈ [T ] (14)

instead, where x2
i denotes the element-wise square of

xi. The results are given in Table 3. We see that all
methods based on synthetic control, including Syntax,
naturally lose performance after this change. However,
Syntax still outperforms all benchmarks.

For the second scenario, we again consider the same
simulation setup as Diminishing Factor Effects but
this time set Dz = T . The results are given in Table 4.
We see that TPR of Syntax is more sensitive to this
change than its FPR. This observation is directly re-
lated to a balance between FPR-TPR. In all of our
experiments, we fixed the threshold for declaring a
positive effect at zero (for instance, see line 11 in Algo-
rithm 1). Adjusting this threshold would have tuned
the balance between FPR nad TPR (higher thresholds
would achieve better FPR but worse TPR). Fixing the
threshold at zero is a natural choice when all of our
benchmarks are based on unbiased estimates. Under
model mismatch however, synthetic inference becomes
biased, the effect of which is equivalent to changing the
classification threshold. Since the FPR performance
stays better relative to the TPR performance, we can
tell that the bias introduced happens to be negative
(equivalent to a higher classification threshold).
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(a) Diminishing Factor Effects, H = 200
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Figure 4: Sensitivity of Syntax to parameter λ.

Sensitivity to the Factor Effect Parameter Tun-
ing hyper-parameters is a general challenge that affects
all online algorithms, including Syntax, since in an
online setting, no a-priori data would be available to
perform cross-validation. We run additional exper-
iments to evaluate the sensitivity of Syntax to its
hyper-parameter λ for Diminishing Factor Effects by
varying λ logarithmically from 0.001 to 100 (the ideal
λ according to Proposition 1 varies between 0.1 and 1).
The results are given in Figure 4. We see that Syn-
tax outperforms all of the benchmarks without the
hyper-parameter λ—namely Conventional Study and
Thresholding Bandits—for almost all configurations.
Notably, the performance of Syntax degrades only
when λ is exceedingly large and converges to that of
Thresholding Bandits. This is because λ punishes the
errors in synthetic representations (‖β−1i‖). As λ gets
larger, Syntax reverts back to representing each sub-
population only as itself (β = 1i) and hence becomes
equivalent to Thresholding Bandits.

7 CONCLUSION

We introduced Syntax, a clinical trial design that re-
cruits patients adaptively to identify subpopulations
with positive treatment effect. As we already argued for
in the introduction, running trials that take multiple
populations into consideration is absolutely essential.
By reducing the length of such trials through designs
like Syntax that seek to make more efficient use of
sample would not only make multi-population trials
more feasible but also help treatment get to the market
sooner, benefiting the patients. Although we presented
the problem mainly from a clinical trial perspective,
Syntax can generally be applied to any threshold-
ing bandit problem where time-series context (such as
baseline responses) are available.

On Clinical Equipoise From the perspective of
clinical equipoise, the use of adaptive trials, including
Syntax, is understood to be situational (Palmer and
Rosenberger, 1999; Fillion, 2019). We emphasize that
running a Syntax-based clinical trial should only be
considered if there is a genuine lack of information
to determine the target population for a promising
new treatment, especially when responses of different
subpopulations to the treatment are expected to be
highly heterogenous. More specifically, the principle of
clinical equipoise requires two conditions to be met: (i)
there should be uncertainty among clinicians regarding
the effectiveness of a treatment, and (ii) the results of
a clinical trial should be convincing enough to resolve
this uncertainty (Freedman, 1987; Miller and Brody,
2007). We examine Syntax on these tow axises:

(i) Syntax is an exploratory trial design rather than a
confirmatory trial design. This means that, even at
the end of a Syntax-based trial, there would still
be genuine uncertainty regarding the effectiveness
of the treatment for all subpopulations (hence the
need for a subsequent confirmatory trial). At no
point during the trial, Syntax assigns a patient
to a treatment that can readily be confirmed to
be ineffective for them; and the first condition is
maintained through the trial. Moreover, the ulti-
mate goal of Syntax is to identify subpopulations
as the potential targets of a subsequent Phase III
trial. As such, it would be in contradiction with
the first condition to use Syntax when there is
already a clear candidate to target in such a trial.
As we already mentioned above, the use of Syntax
should be reserved to the cases where there is dis-
agreement in terms of which subpopulations would
be the most suitable targets of a Phase III trial.

(ii) Being an exploratory trial design, Syntax cannot
resolve all uncertainties regarding the effectiveness
of a treatment. But, it can determine the appropri-
ate target population for a subsequent confirmatory
trial, and thereby help satisfy the second condition.
As pointed out by Chiu et al. (2018), a confirmatory
trial is more likely to be inconclusive regarding sub-
population effects when the potential heterogene-
ity in patient responses is not taken into account.

On Real-data Validation A real-data validation of
Syntax would essentially require running a new clinical
trial. This would be infeasible (and potentially unethi-
cal) for a method development paper as ours. Hence,
the standard approach to evaluating adaptive clinical
trial designs is only to use simulated data (e.g. Atan
et al., 2019; Curth et al., 2023; Hüyük et al., 2023), even
in the biostatistics literature (e.g. Friede et al., 2012;
Magnusson and Turnbull, 2013; Stallard et al., 2014;
Henning and Westfall, 2015; Rosenblum et al., 2016).
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 2 for the mathematical set-
ting and assumptions, see (1) and (2) in Sec-
tion 2 for our model, and see Algorithm 1 in
Section 4 for our algorithm.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] See Section 2 for
the full set of assumptions.

(b) Complete proofs of all theoretical results. Yes,
proofs are given in Appendix A.

(c) Clear explanations of any assumptions. [Yes]
See “On Modeling Assumptions” in Section 2.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes] See “Environments” and “Benchmarks”
in Section 6 and the benchmark algorithms
in Appendix B.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
See Appendix B.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] See “Environments” in
Section 6.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] See Appendix B.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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A PROOFS OF PROPOSITIONS

A.1 Proof of Proposition 1

Denote with e(0)iT = ŷ(0)

iT − ȳiT , e
(1)

iT = ŷ(1)

iT − ȳiT −ri, and eit = ŷit− ȳit the observation noises. Similar to Abadie et al.
(2010), we start by showing that unobservable factor loadings zi can be inferred through observable responses ŷ
if responses are observed for a long enough pre-treatment period. More specifically, a good match in terms of
responses ŷi¬T = Ŷ¬Tβ leads to a good match in terms of factor loadings zi ≈ Zβ. We have

0 = ŷi¬T − Ŷ¬Tβ (15)
= ei¬T − E¬Tβ + ȳi¬T − Ȳ¬Tβ (16)

= ei¬T − E¬Tβ + δ¬T +WT
¬Txi +MT

¬Tzi − (δ¬T1T +WT
¬TX +MT

¬TZ)β (17)

= ei¬T − E¬Tβ +MT
¬T (zi − Zβ) (18)

where (16) is due to (2), (17) is due to (1), and (18) holds if xi = Xβ and 1Tβ = 1. Hence,

zi − Zβ = (M+
¬T )TE¬T (β − 1i) (19)

whereM+
¬T = MT

¬T (M¬TMT
¬T )−1 is the right inverse ofM¬T . Notably, this right inverse exists only ifM¬T has full

rank and T > Dz (i.e. when the pre-treatment period is long enough). It is already possible to spot that the term
in (19) is the source of representation error in Proposition 1. This provides the insight that representation error
is essentially caused by the imperfect estimation of factor loadings zi through noisy observations of responses ŷ.

With this result, we are now ready to characterize the estimation error ri − r̂i(β) in terms of observation noises
eit, e

(0)

iT , e
(1)

iT . We have

ri − r̂i(β)

= ri − ŷ(1)

iT + βTŷ(0)

·T (20)

= ri − (ri + ȳiT + e(1)iT ) + βT(ȳ·T + e(0)

·T ) (21)

= −e(1)iT + βTe(0)

·T − δT −w
T
Txi − µT

Tzi + βT(δT1 +XTwT + ZTµT ) (22)

= −e(1)iT + βTe(0)

·T + µT
T (zi − Zβ) (23)

= −e(1)iT + βTe(0)

·T + µT
T (M+

¬T )TE¬T (β − 1i) (24)

where (21) is due to (3), (22) is due to (1), and (23) holds if xi = Xβ and 1Tβ = 1. Since e(0)iT , e
(1)

iT , and {eit}t<T
all have zero mean and are independent from each other, E[ri − r̂i(β)] = 0 and

V[ri − r̂i(β)] = E[(ri − r̂i(β))2] (25)

= E[(e(1)iT )2] + E[‖β‖2
e
(0)
·T (e

(0)
·T )T

] + E[‖µT
T (M+

¬T )TE¬T (β − 1i)‖2] (26)

≤ E[(e(1)iT )2] + E[‖β‖2
e
(0)
·T (e

(0)
·T )T

] + ‖M+
¬TµT ‖

2E[‖β − 1i‖2ET
¬TE¬T

] (27)

= σ2/n(1)

i + σ2‖β‖2(N(0))−1 + λσ2‖β − 1i‖2N−1 (28)

A.2 Proof of Proposition 2

Proposition 2 is a corollary of Proposition 1. We simply have

V[ri − r̂i(β∗i )] ≤ Vi(β∗i ) (29)
≤ Vi(1i) (30)

= V[ri − r̂ naive
i ] (31)

where (29) is due to Proposition 1 and (30) is by definition of β∗i in (11).
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B BENCHMARK ALGORITHMS

Algorithm 2 summarizes all benchmarks (except Syntax, which is given in Algorithm 1 instead). We set the factor
effect parameter λ to its optimal value given in Proposition 1 (except for the sensitivity experiments in Figure 4).
This means the results we present are for perfectly tuned versions of each algorithm. All experiments are run on
a personal computer with an Intel i9 processor. Finally, the code to reproduce our experimental results can be
found at https://github.com/alihanhyk/syntax and https://github.com/vanderschaarlab/syntax.

Algorithm 2 Benchmarks

Parameters: Episode horizon H, factor effect parameter λ
Output: Subpopulations Î∗ with positive treatment effect

1: n(α)

i ← 0, ŷ(α)

iT ← 0, ŷi¬T ← 0, ∀i ∈ [K], α ∈ {0, 1}
2: for η ∈ {1, 2, . . . ,H} do
3: if Conventional Study or Synthetic Study then
4: Sample i, α uniformly at random from [K]× {0, 1}
5: else if Thresholding Bandits then
6: i← argmini∈[K] S

naive
i = |r̂ naive

i |/(1/n(0)

i + 1/n(1)

i )1/2

7: α← argminα∈{0,1} n
(α)

i

8: else if Synthetic Design then
9: i, α← argmini∈[K],α∈{0,1}maxi∗∈[K] minβ: xi∗=Xβ, ŷi∗¬T=Ŷ¬Tβ, 1Tβ=1

Vi∗(β;N (0) + (1− α)1i1i
T, N (1) + α1i1i

T)
10: end if
11: Recruit from population i and treatment group α
12: Observe pre-treatment outcomes y¬T = [y1 · · · yT−1]T and the final outcome yT
13: n(α)

i ← n(α)

i + 1
14: ŷ(α)

iT ← ŷ(α)

iT + (yT − ŷ(α)

iT )/n(α)

i

15: ŷi¬T ← ŷi¬T + (y¬T − ŷi¬T )/ni
16: end for
17: if Conventional Study or Thresholding Bandits then
18: Î∗ ← {i ∈ [K] : r̂ naive

i > 0}
19: else if Synthetic Study or Synthetic Design then
20: Î∗ ← {i ∈ [K] : r̂i(β

∗
i ) > 0}

21: end if

https://github.com/alihanhyk/syntax
https://github.com/vanderschaarlab/syntax
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