
End-to-end Feature Selection Approach for Learning Skinny Trees

Shibal Ibrahim Kayhan Behdin Rahul Mazumder
MIT

Cambridge, MA, USA
shibal@mit.edu

MIT
Cambridge, MA, USA

behdink@mit.edu

MIT
Cambridge, MA, USA

rahulmaz@mit.edu

Abstract

We propose a new optimization-based ap-
proach for feature selection in tree ensembles,
an important problem in statistics and ma-
chine learning. Popular tree ensemble toolk-
its e.g., Gradient Boosted Trees and Ran-
dom Forests support feature selection post-
training based on feature importance scores,
while very popular, they are known to have
drawbacks. We propose Skinny Trees: an
end-to-end toolkit for feature selection in
tree ensembles where we train a tree ensem-
ble while controlling the number of selected
features. Our optimization-based approach
learns an ensemble of differentiable trees, and
simultaneously performs feature selection us-
ing a grouped ℓ0-regularizer. We use first-
order methods for optimization and present
convergence guarantees for our approach. We
use a dense-to-sparse regularization schedul-
ing scheme that can lead to more expressive
and sparser tree ensembles. On 15 synthetic
and real-world datasets, Skinny Trees can
achieve 1.5×− 620 × feature compression
rates, leading up to 10× faster inference over
dense trees, without any loss in performance.
Skinny Trees lead to superior feature selec-
tion than many existing toolkits e.g., in terms
of AUC performance for 25% feature bud-
get, Skinny Trees outperforms LightGBM
by 10.2% (up to 37.7%), and Random Forests
by 3% (up to 12.5%).

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

Decision trees have been popular in various machine
learning applications (Erdman and Bates, 2016; Chen
and Guestrin, 2016) for their competitive performance,
interpretability, robustness to outliers, and ease of
tuning (Hastie et al., 2009). Many scalable toolk-
its for learning tree ensembles have been developed
(Breiman, 2001; Chen and Guestrin, 2016; Ke et al.,
2017; Prokhorenkova et al., 2018). While these toolkits
are excellent for building tree ensembles, they do not
allow for feature selection during the training process.

Feature selection is a fundamental problem in machine
learning and statistics and has widespread usage across
various real-world tasks (Wulfkuhle et al., 2003; Cai
et al., 2018; Li et al., 2017). Popular tree ensemble
toolkits only allow selecting informative features post-
training based on feature importance scores, which are
known to have drawbacks1 in the context of feature
selection (Strobl et al., 2007; Boulesteix et al., 2011;
Zhou and Hooker, 2021). Recently, there has been
some work on optimization-based approaches for fea-
ture selection in trees. For example, (Zharmagambe-
tov and Carreira-Perpiñán, 2020) consider oblique de-
cision trees (hyperplane splits at every node), and use
ℓ1-penalization to encourage coefficient sparsity at ev-
ery node of the tree. This achieves node-level feature
selection and does not appear to be well-suited for tree-
level or ensemble-level feature selection (See Sec. 7.1).
Liu et al. (2021) proposed ControlBurn that consid-
ers a lasso based regularizer for feature selection on a
pre-trained forest. This can be viewed as a two-stage
procedure (unlike an end-to-end training procedure we
propose here), where one performs feature selection af-
ter training a tree ensemble with all original features,
While these methods serve as promising candidates for
feature selection, these works highlight that identifying
relevant features while learning compact trees remains
an open challenge—an avenue we address in this work.

1They are found to hurt performance in (a) settings
where number of samples are smaller than features and
(b) settings with correlated features (see Sec. 6).

End-to-end Feature Selection Approach for Learning Skinny Trees

In many real world problems there are costs associ-
ated with features reflecting time, money, and other
costs related to the procurement of data (Min et al.,
2014; Zhang, 2010). In this context, one would like
to collect a compact set of features to reduce experi-
mental costs. Additionally, selecting a compact set of
relevant features can lead to enhanced interpretability
(Ribeiro et al., 2016), faster inference, decreased mem-
ory footprint, and even improved model generalization
on unseen data (Chandrashekar and Sahin, 2014).

In this paper, we propose an end-to-end optimiza-
tion framework for feature selection in tree ensem-
bles where we jointly learn the trees and the rele-
vant features in one shot. Our framework is based
on differentiable (a.k.a. soft) tree ensembles (Jordan
and Jacobs, 1994; Kontschieder et al., 2015; Hazimeh
et al., 2020; Ibrahim et al., 2022) where tree ensem-
bles are learnt based on differentiable programming.
These works, however, do not address feature selec-
tion in trees which is our focus. We use a sparsity-
inducing penalty (based on the group ℓ0− ℓ2-penalty)
to encourage feature selection. While group ℓ0 − ℓ2
penalty has been found to be useful in recent work on
high-dimensional linear models (Hazimeh et al., 2022)
and additive models (Hazimeh et al., 2022; Ibrahim
et al., 2021), their adaptation to tree ensemble presents
unique challenges. To obtain high-quality models with
good generalization-and-sparsity tradeoffs, we need
to pay special attention to dense-to-sparse training,
which differs from sparse-to-dense training employed
in linear/additive models above. We demonstrate that
our end-to-end learning approach leads to better ac-
curacy and feature sparsity tradeoffs.

Contributions. We propose a novel end-to-end
optimization-based framework for feature selection in
tree ensembles. We summarize our contributions in
the paper as follows:

• We propose a joint optimization approach, where we
simultaneously perform feature selection and tree
ensemble learning. Our joint training approach
is different from post-training feature selection in
trees. Our approach learns (differentiable) tree en-
sembles with a budget on feature sparsity where the
latter is achieved via a group ℓ0-based regularizer.

• Our algorithmic workhorse is based on proximal
mini-batch gradient descent (GD). We also discuss
the convergence properties of our approach in the
context of a nonconvex and nonsmooth objective.
When our first-order optimization methods are used
with dense-to-sparse scheduling of regularization
parameter, we obtain tree ensembles with better ac-
curacy and feature-sparsity tradeoffs.

• We introduce a new toolkit: Skinny Trees. We
consider 15 synthetic and real-world datasets, show-

ing that Skinny Treescan lead to superior feature
selection and test AUC compared to popular toolk-
its. In particular, for 25% feature budget, Skinny
Trees outperforms LightGBM by 10.2% (up to
37.7%), XGBoost by 3.1% (up to 17.4%), and Ran-
dom Forests by 3% (up to 12.5%) in test AUC.

2 RELATED WORK

Trees. A popular and effective method to construct
a single decision tree is based on recursive greedy par-
titioning (e.g., CART) (Hastie et al., 2009). Popular
methods to construct tree ensembles are based on bag-
ging (Breiman, 2001), sequential methods like Boost-
ing (Hastie et al., 2009), etc. These have led to vari-
ous popular toolkits, e.g., Random Forests (Breiman,
2001), Gradient Boosted Trees (Chen and Guestrin,
2016; Ke et al., 2017; Prokhorenkova et al., 2018). An-
other line of work that is most related to our current
approach uses differentiable (or smooth) approxima-
tions of indicator functions at the split nodes (Jordan
and Jacobs, 1994). First-order methods (e.g, SGD)
are used for end-to-end differentiable training of tree
ensembles (Kontschieder et al., 2015; Hazimeh et al.,
2020; Ibrahim et al., 2022). Joint training of soft tree
ensembles often results in more compact representa-
tions (i.e., fewer trees) compared to boosting-based
procedures (Hazimeh et al., 2020). Despite the suc-
cess and usefulness of both these approaches, to our
knowledge, there is no prior work that performs si-
multaneous training and feature selection—a void we
seek to fill in this work. We next summarize some
popular feature selection methods.

Feature selection. We review some prior work on
feature selection as they relate to our work. We group
them into three major categories:

1. Filter methods attempt to remove irrelevant fea-
tures before model training. These methods per-
form feature screening based on statistical measures
that quantify feature-specific relevance scores (Bat-
titi, 1994; Peng et al., 2005; Estevez et al., 2009;
Song et al., 2007, 2012; Chen et al., 2017). These
scores consider the marginal effect of a feature over
the joint effect of feature interactions.

2. Wrapper methods (Kohavi and John, 1997; Stein
et al., 2005; Zhu et al., 2007; Reunanen, 2003;
Allen, 2013; Onnia et al., 2001; Monirul Kabir et al.,
2010; Roy et al., 2015) use the outcome of a model
to determine the relevance of each feature. Some
of these methods require recomputing the model
for a subset of features and can be computation-
ally expensive. This category also includes fea-
ture selection using feature importance scores of
a pre-trained model. Many tree ensemble toolk-

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

its (Breiman, 2001; Chen and Guestrin, 2016; Ke
et al., 2017; Prokhorenkova et al., 2018) produce
feature-importance scores from a pre-trained en-
semble. Lundberg and Lee (2017) propose SHAP
values as a unified measure of feature importance.
Sharma et al. (2023) uses SHAP values to select a
subset of features that can be useful for secondary
model performance characteristics e.g., fairness, ro-
bustness etc. Liu et al. (2021) propose Control-
Burn, which formulates an optimization problem
with a Lasso-type regularizer to perform feature se-
lection on a pre-trained forest.

3. Embedded methods simultaneously learn the model
and the relevant subset of relevant features. No-
table among these methods include ℓ0-based pro-
cedures (Hazimeh and Mazumder, 2020; Hazimeh
et al., 2022; Ibrahim et al., 2021, 2023a) and their
variants based on lasso (Tibshirani, 1996; Raviku-
mar et al., 2009; Zhao and Liu, 2012) in the linear
and additive model settings. Some distributed and
stochastic greedy methods have also been explored
for subset selection (see, for example, Khanna et al.,
2017, and references therein). Embedded nonlinear
feature selection methods have been explored for
neural networks. For example, Chen et al. (2021)
use an active-set style algorithm for cardinality-
constrained feature selection. Other approaches
include the use of (group) lasso type methods
(Scardapane et al., 2017; Feng and Simon, 2017;
Dinh and Ho, 2020; Lemhadri et al., 2021), or
reparameterizations of ℓ0-penalty with stochastic
gates (Louizos et al., 2018; Yamada et al., 2020).

We propose an embedded approach that simultane-
ously performs feature selection and tree ensemble
learning. This joint training approach can be useful for
compression, efficient inference, and/or generalization.

Organization. The rest of the paper is organized as
follows. Section 3 summarizes relevant preliminaries.
Section 4 presents a formulation for feature selection in
soft tree ensembles. Section 5 discusses our optimiza-
tion algorithm and its convergence properties. Later,
we discuss a scheduling approach that can result in
better accuracy and feature sparsity tradeoffs. Sec-
tions 6 and 7 perform experiments on a combination
of 15 synthetic and real-world datasets to highlight the
usefulness of our proposals.

3 PRELIMINARIES

We learn a mapping f : Rp → Rc, from input space
X ⊆ Rp to output space Y ⊆ Rc, where we parameter-
ize function f with a soft tree ensemble. In a regres-
sion setting c = 1, while in multi-class classification
setting c = C, where C is the number of classes. Let

m be the number of trees in the ensemble and let f j

be the jth tree in the ensemble. We learn an additive
model with the output being sum over outputs of all
the trees: f(x) =

∑m
j=1 f

j(x) for an input feature-
vector x ∈ Rp. A summary of the notation can be
found in Table S1 in Supplement.

Compared to classical trees, soft trees allow for much
more flexibility in catering to different loss functions
(Ibrahim et al., 2022), sparse routing in Mixture of
Experts (Ibrahim et al., 2023b) etc. A soft tree is
a differentiable variant of a classical decision tree, so
learning can be done using gradient-based methods. It
was proposed by Jordan and Jacobs (1994), and fur-
ther developed by Kontschieder et al. (2015); Hazimeh
et al. (2020); Ibrahim et al. (2022) for end-to-end op-
timization. Soft trees typically perform soft routing,
i.e., a sample is fractionally routed to all leaves; but
can be modified to do hard routing in the spirit of
conditional computing (Hazimeh et al., 2020; Ibrahim
et al., 2023b). Soft trees are based on hyperplane
splits, where the routing decisions rely on a linear
combination of the features. Particularly, each inter-
nal node is associated with a trainable weight vector
that defines the associated hyperplane. Formulations
(Ibrahim et al., 2022) for training soft tree ensembles
more efficiently have been proposed, which exploit ten-
sor structure of a tree ensemble. A summary of soft
trees and tensor formulation is in Supplement Sec. S2.

4 PROBLEM FORMULATION

Feature selection plays a ubiquitous role in modern
statistical regression, especially when the number of
predictors is large relative to the number of observa-
tions. We describe the problem of global feature selec-
tion. We assume a data-generating model p(x;y) over
a p-dimensional space, where x ∈ Rp is the covariate
and y is the response. The goal is to find the best
function f(x) for predicting y by minimizing:

minf∈F,Q E[L(y,f(xQ))] (1)

where Q ⊆ {1, 2, · · · , p} is an unknown (learnable)
subset of features of size at most K, f is a learn-
able non-parametric function from the function class
F , and L : Rp × Rc → R is a loss function. The
principal difficulty in solving (1) lies in the joint op-
timization of (f,Q)—the number of subsets Q grows
exponentially with p. In addition, the family of func-
tions F needs to be sufficiently flexible (here, F is the
class of soft tree ensembles with fixed ensemble size m
and depth d).

In the context of tree ensembles, our goal for global
feature selection is to select a small subset of features
across all the trees in the ensemble. More specifically,

End-to-end Feature Selection Approach for Learning Skinny Trees

we consider the framework with response y and predic-
tion f(x;W ,O), where the function f is parameter-
ized by learnable hyperplane parameters W ∈ Rp,m,|I|

across all the split nodes and learnable leaf parame-
ters O across all trees. Note that m is the number of
trees in the ensemble and |I| represents the number
of (split) nodes in each tree. This parameterization of
soft trees points to a group structure in W , where the
whole slice Wk,:,: in the tensor formulation has to be
zero to maintain feature sparsity both across all split
nodes in each tree and across the trees in the ensem-
ble — see Fig. 1. This is a natural feature-wise non-
overlapping group structure and allows adaptation of
the grouped selection problem in linear models (Bert-
simas et al., 2016; Hazimeh et al., 2022) to soft tree
ensembles.

Mixed Integer Problem (MIP) Formulation.
Let us consider the tensor W . Using binary variables
to model feature selection we obtain a regularized loss
function:

min
W,O,z

Ê[L(y,f(x;W ,O)] + λ0

∑
k∈[p]

zk, (2)

s.t. ||Wk,:,:||(1− zk) = 0, zk ∈ {0, 1} k ∈ [p],

where, the binary variable zk controls whether
the k-th feature is on or off via the constraint
||Wk,:,:||(1 − zk) = 0. Ê[L(y,f(x;W ,O))] :=
(1/N)

∑
n∈[N] L(yn,f(xn;W ,O)) is the empirical

loss; and λ0 is regularization strength. Note MIP
formulations (Bertsimas and Dunn, 2019) can also be
setup with classical trees under feature selection, but

Figure 1: Illustration of Skinny Trees. Each hor-
izontal slice Wk,:,: depicts a single feature. White
slices indicate features filtered out by the ensemble
while training. Each vertical slice (along the depth
of the page), W :,:,j = Wj corresponds to parameters
in j-th (splitting) supernode (blue circles) in the
ensemble, eventually producing the routing decisions.
The red squares depict leaf nodes. S(·) denotes an
activation function, which can be Sigmoid (Jordan and
Jacobs, 1994) or Smooth-Step (Hazimeh et al., 2020).

they would be difficult to scale beyond small problems.

Unconstrained formulation of Problem (2). For
computation we consider a penalized version of (2) in-
volving variables (W ,O) with the grouped ℓ0 (pseudo)
norm encouraging feature sparsity. We perform end-
to-end training via first-order methods (see Sec. 5 for
details). It has been observed in the linear model
setting that a vanilla (group) ℓ0 penalty may result
in overfitting (Hazimeh et al., 2022). A possible way
to ameliorate this problem is to include an additional
ridge regularization for shrinkage (Mazumder et al.,
2023; Hazimeh et al., 2022; Ibrahim et al., 2021). We
consider the following group ℓ0 − ℓ2 regularized prob-
lem:

minW,O Ê[L(y,f(x;W ,O))] (3)

+ λ0

∑
k∈[p]

1[Wk,:,: ̸= 0] + (λ2/m|I|)||W ||22

where 1[·] is the indicator function, λ0 ≥ 0 controls the
number of features selected, and λ2 ≥ 0 controls the
amount of shrinkage of each group. We normalize λ2

by the product m|I| for convenience in hyperparame-
ter tuning.

5 END-TO-END OPTIMIZATION
APPROACH

We propose a fast approximate algorithm to obtain
high-quality solutions to Problem (3). We use a
proximal (mini-batch) gradient-based algorithm (Lan,
2012) that involves two operations. A vanilla mini-
batch GD step is applied to all model parameters
followed by a proximal operator applied to the hy-
perplane parameters W . This sequence of operations
on top of backpropagation makes the procedure
simple to implement in popular ML frameworks e.g.
Tensorflow (Abadi et al., 2015), and contributes to
overall efficiency.

5.1 Proximal mini-batch gradient descent

We first present the proximal mini-batch GD algo-
rithm for solving Problem (3) in Algorithm 1. We
also discuss computation of the Prox operator in line
7 of Algorithm 1. Prox finds the global minimum of
the optimization problem:

W(t) = argminW (1/2η)||W −Z(t)||22
+ λ0

∑
k∈[p]

1[Wk,:,: ̸= 0] (4)

where Z(t) = W(t−1)−η∇Wh. Problem 4 decomposes
across features and a solution for the k-th feature can
be found by a hard-thresholding operator given by:

Hηλ0
(Z(t)

k,:,:) = Z(t)
k,:,: ⊙ 1

[
||Z(t)

k,:,:|| ≥
√

2ηλ0

]
. (5)

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

We use feature-wise separability for faster computa-
tion. The cost of Prox is of the order O(v), where
v is the total number of hyperplane parameters being
updated (i.e. v = pm|I|). This cost is negligible com-
pared to the computation of the gradients with respect
to the same parameters. We implement the optimizer
in standard deep learning APIs.

To our knowledge, our proposed approach (and al-
gorithm) for group ℓ0-based nonlinear feature selec-
tion in soft tree ensembles is novel. Note that Chen
et al. (2021) considers group ℓ0 based cardinality con-
strained formulation for feature selection in neural
networks. However, their active-set style approach
is very different from our iterative-hard-thresholding
based approach. Their toolkit also appears to be up to
900× slower than our toolkit. In the context of neu-
ral network pruning, modifications of iterative-hard-
thresholding based approaches (Jin et al., 2016; Peste
et al., 2021) have appeared for individual weight prun-
ing in neural networks which is different from feature-
selection.

5.2 Convergence Analysis of Algorithm 1

In this section, we analyze the convergence proper-
ties of Algorithm 1. For simplicity, we assume that
the outcomes are scalar, i.e. c = 1 and consider the
least squares loss (see Assumption (A2) below). We
also analyze the full-batch algorithm, i.e., we assume
batch-size = N . Extending our result to vector out-
puts and a mini-batch algorithm would require appro-
priate changes, and is omitted here. Before stating
our formal results, we discuss our assumptions on the
model.

(A1) (Activation function, S(·)). S(·) is a differen-

Algorithm 1 Proximal Mini-batch Gradient Descent
for Optimizing (3).

Input: Data: X,Y ;
Input: Hyperparameters: λ0, λ2, epochs, batch-size,

learning rate (η);
1: Initialize ensemble with m trees of depth d (|I| =

2d − 1): W ,O
2: for epoch = 1, 2, . . . , epochs do
3: for batch = 1, . . . , N/batch-size do
4: Randomly sample a batch: Xbatch,Ybatch

5: Compute gradient of loss h w.r.t. O, W.
6: Update leaves: O ← O − η∇Oh
7: Update hyperplanes: W ← Prox(W −

η∇Wh, η, λ0))
8: end for
9: end for

where h = Ê[L(Ybatch,Fbatch] + (λ2/m|I|)||W ||22

tiable piece-wise polynomial function,

S(x) =

1 if x > θ

p(x) if − θ ≤ x ≤ θ

0 if x < −θ

for some θ > 0 and a polynomial function p(x).
We assume the derivative of S(x) is continuous.

(A2) (Loss function, L). We use the least squares
loss L(x, y) = (x− y)2/2.

(A3) (Solutions). There exists a numerical constant
B > 0 only depending on the data, such that
∥O∥2 ≤ B for all iterations in Algorithm 1.

Assumption (A1) encompasses a general class of ac-
tivation functions, and includes the smooth-step func-
tion (Hazimeh et al., 2020) used in soft trees. The least
squares loss in Assumption (A2) is a standard loss for
regression problems. We consider the assumption on
the boundedness of leaf weights in Assumption (A3)
to be weak as the data is bounded2.

Theorem 1 states our main result in this section:

Theorem 1. Let λ2 > 0 and suppose Assump-
tions (A1), (A2) and (A3) hold. Then:

1. There is a sufficiently small η > 0 for which Al-
gorithm 1 (using full-batch) is a descent algorithm
with non-increasing objective values.

2. The sequence of hyperplane parameters W gener-
ated from Algorithm 1 is bounded.

3. The sequence of parameters W ,O generated from
Algorithm 1 converges if η > 0 is chosen as in
Part 1.

Theorem 1 shows that Algorithm 1 is a convergent
(descent) method for a suitably selected learning rate.
The proof of Theorem 1 is presented in Supplement S3.
Here, we note that Problem (3) is non-convex and
non-smooth. Moreover, the activation function and
therefore Ê[L(y,f(x;W ,O))] are not twice differen-
tiable everywhere. These lead to technical challenges
in proof, as discussed in the Supplement.

5.3 Dense-to-Sparse Learning (DSL)

Prior work in feature selection (Lemhadri et al., 2021)
recommend an interesting multi-stage approach: Train
a dense model completely and then learn a proges-
sively sparser model. At each sparsity level, the model
is trained till convergence. This approach appears to
effectively leverage favorable generalization properties

2Alternatively, one can add additional projection steps
for leaf weights in Algorithm 1, ensuring the boundedness
property, and remove Assumption (A3)

End-to-end Feature Selection Approach for Learning Skinny Trees

Lung Madelon

Figure 2: Trajectory of validation loss and feature
sparsity during training with dense-to-sparse learning.

of the dense solution and preserves them after drifting
into sparse local minima (Lemhadri et al., 2021)—in
particular, this seems to perform better than sparsely
training from scratch. However, this approach can be
expensive as it requires learning a dense model com-
pletely before starting the sparse-training process—the
training runtime is likely to increase for higher sparsity
settings (i.e., fewer number of features).

To reduce the computational cost of the above ap-
proach, we propose single-stage approach based on
dense-to-sparse learning (DSL). To this end, we an-
neal the sparsity-inducing penalty λ0 from small to
large values (0→ γ) during the course of training. We
use an exponential annealing scheduler of the form:
λ0 = γ(1 − exp(−s ∗ t)), where γ is the largest value
of regularization penalty (corresponds to a fully sparse
soft tree), s controls the rate of increase of the regu-
larization penalty and t denotes the iteration step.

We show the trajectory of the validation loss and the
number of features selected during training with dense-
to-sparse learning in Figure 2. We empirically ob-
served this scheduler to result in better out-of-sample
accuracy and feature-sparsity tradeoffs (see Figure 4
in Sec. 7.5).

6 SYNTHETIC EXPERIMENTS

We first evaluate our proposed method using data with
correlated features. In real-world, high-dimensional
datasets, features are often correlated. Such corre-
lations pose challenges for feature selection. Exist-
ing tree ensemble toolkits, e.g., XGBoost and Ran-
dom Forests, based on feature importance scores, may
produce misleading results (Zhou and Hooker, 2021)—
any of the correlated features can work as a splitting
variable, and the feature importance scores can get
distributed (and hence deflated) among the correlated
features. Below, we consider a setting with correlated
features and demonstrate the strong performance of
Skinny Trees in terms of true support recovery on
synthetic data.

Table 1: Test MSE, feature sparsity and support re-
covery metrics (F1-score) for a linear setting with
correlated design matrix. Skinny Trees outperforms
feature-importance-based methods across all metrics.

σ p N Model Test MSE #features F1-score

0.7 512

100
RF 6.49 ± 0.19 79 ± 17 0.21 ± 0.02
XGBoost 8.65 ± 0.27 32 ± 9 0.18 ± 0.03
Skinny Trees 0.65 ± 0.12 12 ± 1 0.86 ± 0.04

200
RF 4.90 ± 0.15 40 ± 8 0.35 ± 0.03
XGBoost 5.97 ± 0.12 110 ± 21 0.18 ± 0.02
Skinny Trees 0.34 ± 0.00 11 ± 1 0.89 ± 0.03

1000
RF 2.97 ± 0.03 11 ± 1 0.84 ± 0.02
XGBoost 1.81 ± 0.02 24 ± 1 0.50 ± 0.02
Skinny Trees 0.26 ± 0.00 8 ± 0 1.00 ± 0.00

0.5 256

100
RF 6.24 ± 0.13 42 ± 11 0.35 ± 0.03
XGBoost 7.93 ± 0.27 35 ± 10 0.25 ± 0.02
Skinny Trees 0.45 ± 0.06 10 ± 1 0.89 ± 0.03

200
RF 4.40 ± 0.13 18 ± 3 0.61 ± 0.04
XGBoost 5.61 ± 0.13 67 ± 12 0.26 ± 0.02
Skinny Trees 0.31 ± 0.00 12 ± 1 0.87 ± 0.04

1000
RF 2.90 ± 0.02 9 ± 0 0.94 ± 0.01
XGBoost 1.45 ± 0.01 10 ± 0 0.91 ± 0.01
Skinny Trees 0.26 ± 0.00 8 ± 0 1.00 ± 0.00

We evaluate our approach in a setting where the un-
derlying data comes from a sparse linear model. We
generate the data matrix, X ∈ RN×p with sam-
ples drawn from a multivariate normal distribution
N (0,Σ) where entries of the covariance matrix Σ are
given by Σij = σ|i−j|. We construct the response vari-
able y = Xβ∗+ϵ where ϵi, i ∈ [N] are drawn indepen-
dently fromN (0, 0.5). The locations of nonzero entries
of β∗ are equi-spaced in [p], with each nonzero entry
one, and ∥β∗∥0 = 8. We experiment with a range
of training set sizes N ∈ {100, 200, 1000}, correlation
strengths σ ∈ {0.5, 0.7}, and number of total features
p ∈ {256, 512}. We evaluate the final performance av-
eraged across 25 runs in terms of (i) test MSE, (ii)
number of features selected and (iii) support recovery
(computed via the F1-score between the true and re-
covered support). More details are in Supplement Sec.
S4.

Skinny Trees significantly outperforms both Random
Forests and XGBoost in all three measures across
various settings. With Skinny Trees, we observe
a 5-15 fold improvement in MSE performance and
9% − 65% improvement in the support recovery met-
ric (F1-score). Table 1 shows that even if the features
are correlated, Skinny Trees successfully recovers the
true support with high probability. We also visualize
this in Figure 3. Indices corresponding to those in
the true support are depicted in red. This confirms
the usefulness of our end-to-end feature selection ap-
proach.

7 REAL DATA EXPERIMENTS

We study the performance of Skinny Trees on real-
world datasets and compare against popular compet-
ing methods. We make the following comparisons:

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

Random Forests XGBoost Skinny Trees (ours)
N=100 N=100 N=100

N=200 N=200 N=200

N=1000 N=1000 N=1000

Figure 3: Features selected by Random Forests, XGBoost and Skinny Trees for different sample sizes

(i) Single Skinny Tree vs other single tree base-
line approaches with a limit on number of features,
(ii) Skinny Trees vs dense soft trees, (iii) Skinny

Trees vs wrapper-based feature selection tree toolk-
its, (iv) Skinny Trees vs neural network based em-
bedded feature selection toolkits, (v) Ablation study
for dense-to-sparse learning for feature selection.

Implementation. Skinny Trees are implemented
in TensorFlow Keras. Our code for Skinny Trees is
available at
https://github.com/mazumder-lab/SkinnyTrees.

Datasets. We use 14 open-source classification
datasets (binary and multiclass) from various domains
with a range of number of features: 20 − 100000.
Dataset details are in Table S3 in Supplement.

Tuning, Toolkits, and Details. For all the exper-
iments, we tune the hyperparameters using Optuna
(Akiba et al., 2019) with random search. The num-
ber of selected features affects the AUC. Therefore, to
treat all the methods in a fair manner, we tune the
hyperparameter that controls the sparsity level using
Optuna which optimizes the AUC across different K’s
(budget on number of selected features) e.g., 0.25p or
0.50p on a held-out validation set. Details are in the
Supplement.

7.1 Studying a single tree

We first study feature selection for a single tree on
4 classification tasks. We study the performance of
Skinny Tree (a single soft tree with group ℓ0 − ℓ2
regularization).

Competing Methods. We compare against:

1. Decision tree with hyperplane splits
(TAO (Carreira-Perpinan and Tavallali, 2018))

Table 2: Test AUC for TAO with ℓ1 regularization,
single soft tree with Group Lasso and Skinny Tree (a
single soft tree with Group ℓ0 − ℓ2).

Classical Tree Soft Tree w/ Skinny Tree

TAO Group Lasso
Churn 58.36 76.23 89.35±0.15
Satimage 58.53 83.89 88.66±0.05
Texture 58.90 93.83 98.42±0.01
Mice-protein 57.13 87.88 99.19±0.00

using ℓ1 regularization for node-level feature
selection.

2. Soft Tree with a Group Lasso (Yuan and Lin,
2006; Scardapane et al., 2017) regularization given
by λ1√

m|I|

∑
k∈[p] ∥Wk,:,:∥2.

Results. The numbers for classical-tree based TAO
with ℓ1 regularization and soft tree with Group Lasso
regularization are shown in Table 2 for 50% sparsity
budget. Results for Skinny Tree are also shown. We
see a huge gain in test AUC performance across all 4
datasets with Skinny Tree in comparison with TAO
and group lasso variant of a soft tree. This confirms

Table 3: Test AUC for Skinny Trees vs dense Soft
Trees. We also report feature compression.

Dense Trees Skinny Trees Compression
Churn 91.15±0.09 93.20±0.08 1.8×
Gisette 99.81±0.003 99.81±0.002 1.5×
Arcene 89.57±0.11 90.80±0.30 2×
Dorothea 90.67±0.03 92.15±0.25 2.7×
Madelon 65.32±0.15 95.44±0.05 26×
Smk 84.10±0.16 79.29±0.22 253×
Cll 81.70±0.82 92.86±0.31 189×
Gli 88.65±0.90 99.80±0.07 619×
Lung 99.40±0.09 99.80±0.03 253×
Tox 99.19±0.04 99.74±0.02 189×

https://github.com/mazumder-lab/SkinnyTrees

End-to-end Feature Selection Approach for Learning Skinny Trees

Table 4: Test AUC (%) performance of Skinny Trees and feature-importance-based toolkits for trees for 25%
feature budget (K = 0.25p). Bold and italics indicates best and runner-up models respectively.

Case Dataset Random Forests XGBoost LightGBM CatBoost Skinny Trees

N < p

Lung 93.80±0.28 86.38±0.48 80.83±1.87 94.72±0.56 99.80±0.03
Tox 94.52±0.14 97.10±0.09 95.94±0.54 95.95±0.14 99.74±0.02
Arcene 74.80±0.36 76.36±0.16 76.92±0.36 76.64±0.22 80.80±0.30
Cll 94.08±0.27 94.21±0.18 55.17±1.14 94.41±0.26 92.86±0.31
Smk 77.78±0.20 76.88±0.40 67.29±0.91 78.44±0.41 79.29±0.22
Gli 87.35±1.08 82.37±1.47 71.28±2.05 91.31±0.73 99.80±0.07
Dorothea 89.71±0.12 89.09±0.09 88.14±0.18 88.50±0.27 90.87±0.02

N > p

Churn 83.79±0.24 88.68±0.06 86.33±0.08 83.73±0.06 91.38±0.08
Satimage 97.62±0.005 98.23±0.01 94.00±0.05 95.11±0.05 98.05±0.01
Texture 99.60±0.003 99.94±0.001 96.14±0.03 94.90±0.07 99.97±0.002
Mice-protein 99.30±0.01 99.77±0.01 89.59±0.22 95.03±0.07 99.59±0.02
Isolet 99.17±0.002 99.86±0.002 97.62±0.003 99.89±0.001 99.94±0.01
Madelon 94.11±0.02 94.65±0.01 86.46±0.08 96.41±0.01 94.14±0.09
Gisette 98.99±0.004 99.64±0.004 98.09±0.50 99.57±0.01 99.81±0.002
Average 91.75 91.65 84.56 91.76 94.72

that in the context of feature selection at the ensemble
level, a node-level ℓ1 penalty is sub-optimal. Similarly,
it also suggests that joint selection and shrinkage using
Group Lasso can be less useful than Group ℓ0 − ℓ2.

7.2 Skinny Trees vs Dense Soft Trees

In this section, we compare our sparse trees with
dense soft trees. For dense soft trees, we use FAS-
TEL (Ibrahim et al., 2022) (an efficient state-of-the-
art toolkit for training soft tree ensembles). We
present test AUC performances in Table 3. Skinny

Trees matches or outperforms dense soft trees in 10
datasets. Notably, we observe a 30% gain in test
AUC on Madelon dataset with Skinny Trees. We
also observe 11% improvements in test AUC on Cll
and Gli datasets. Additionally, sparse trees achieve
1.3×−620× feature compression on 10 datasets. Note
that in soft trees, feature compression has a direct im-
pact on model compression—this has reduced storage
requirements and results in faster inference. We ob-
served up to 10× faster inference times for Skinny

Trees compared to dense soft trees for compression
rates of 1.5×−620×.

7.3 Skinny Trees vs Classical Trees

We compare Skinny Trees against wrapper meth-
ods for feature selection as available from ensembles of
classical trees (e.g., Random Forests, XGBoost, Light-
GBM, and CatBoost) on real-world datasets. For
Skinny Trees, we use the combined dense-to-sparse
scheduler. The tuning protocol and hyperparameters
for all methods are reported in the Supplement Sec.
S5.3. The results are in Table 4. Skinny Trees leads
on 10 datasets. In contrast, other methods lead on 2
datasets. In terms of test AUC, Skinny Trees outper-
forms LightGBM by 10.2% (up to 37.7%), XGBoost

by 3.1% (upto 17.4%), Random Forests by 3% (up to
12.5%) and CatBoost by 3% (up to 8.5%). Overall,
Skinny Trees provides a strong alternative to exist-
ing wrapper-based methods.

Additional comparison with ControlBurn (Liu et al.,
2021) is included in Supplement Sec. S5.6. Skinny

Trees also outperforms ControlBurn, achieving 2%
(up to 6%) improvement in AUC.

7.4 Skinny Trees vs Neural Networks

In this paper, we pursue embedded feature selection
methods for tree ensembles. However, for complete-
ness, we compare Skinny Trees against some state-
of-the-art embedded feature selection methods from
neural networks, namely LassoNet (Lemhadri et al.,
2021), AlgNet (Dinh and Ho, 2020) and DFS (Chen
et al., 2021). Details are in Supplement Sec. S5.4.

Results. We report AUC performance for 25% fea-
ture budget in Table 5. Skinny Trees leads across
many datasets. In terms of test AUC, Skinny

Trees outperforms LassoNet by 4.3% (up to 24%), Al-
gNet by 25.9% (up to 49%), and DFS by 2.6% (up to
11.4%).

7.5 Dense-to-Sparse Learning

We perform an ablation study in which we compare
the predictive performance achieved with dense-to-
sparse learning (DSL) over a range of feature selection
budgets. Tuning details are in the Supplement
Sec. S5.5. The results are reported in Figure 4.
Interestingly, we improve in test AUC across a range
of feature selection budgets with dense-to-sparse
learning over fixed regularization tuning.

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

Table 5: Test AUC (%) performance of Skinny Trees and embedded feature selection methods from neural
networks (LassoNet, AlgNet, DFS) for 25% feature budget.

Case Dataset LassoNet AlgNet DFS Skinny Trees

N < p

Lung 99.56±0.02 56.72±1.34 98.05±0.36 99.80±0.03
Tox 99.63±0.03 51.01±0.70 99.13±0.24 99.74±0.02
Arcene 66.26±0.29 51.00±1.77 69.37±0.59 80.80±0.30
Cll 95.04±0.24 64.96±2.54 92.85±0.32 92.86±0.31
Smk 85.56±0.31 53.92±2.16 79.62±0.29 79.29±0.22
Gli 97.78±0.56 61.37±4.27 92.25±0.64 99.80±0.07
Dorothea out of mem. 81.74±0.91 85.18* 90.87±0.02

N > p

Churn 67.34±1.58 70.10±0.91 85.70±0.52 91.38±0.08
Satimage 94.73±0.19 95.30±0.20 97.39±0.04 98.05±0.01
Texture 98.02±0.40 76.24±1.94 99.63±0.04 99.97±0.002
Mice-protein 94.90±0.26 89.07±0.59 99.04±0.03 99.59±0.02
Isolet 99.64±0.01 70.21±2.92 99.92±0.00 99.94±0.01
Madelon 81.15±2.53 68.55±1.42 92.73±0.45 94.14±0.09
Gisette 99.81±0.002 73.49±1.54 99.72∗ 99.81±0.002
Average 90.43** 68.83 92.18 94.72

∗DFS is very time-consuming to run, we report the test AUC for best trial (based on validation AUC)
during tuning on Gisette and Dorothea.
∗∗Adjusted Average: 90.72

(94.72∗14−90.87)/13 ∗ 94.72 = 90.43.

7.6 Discussion on training times.

Skinny Trees is very competitive in terms of training
times in comparison to existing toolkits. We compared

Smk

Dorothea

Figure 4: Performance without/with Dense-to-sparse
learning for different feature selection budgets.

timings on a single Tesla V100 GPU. For example, on
dorothea dataset, Skinny Trees trained in under 3
minutes for optimal hyperparameter setting. XGBoost
took 10 minutes. In contrast, DFS took 45 hours.

8 CONCLUSION

We introduce an end-to-end optimization approach for
joint feature selection and tree ensemble learning. Our
approach is based on differentiable trees with group
ℓ0 − ℓ2 regularization. We use a simple but effective
proximal mini-batch gradient descent algorithm and
present convergence guarantees. We propose a dense-
to-sparse regularization scheduling approach that can
lead to better feature-sparsity-vs-accuracy tradeoffs.
We demonstrate on various datasets that our toolkit
Skinny Trees can improve feature selection over sev-
eral state-of-the-art wrapper-based feature selection
methods in trees and embedded feature selection meth-
ods in neural networks.

9 Acknowledgments

This research was supported in part, by grants from
the Office of Naval Research (N000142112841), and
Liberty Mutual Insurance. The authors acknowledge
the MIT SuperCloud (Reuther et al., 2018) and Lin-
coln Laboratory for providing HPC resources that have
contributed to the research reported within this paper.

End-to-end Feature Selection Approach for Learning Skinny Trees

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, et al.
TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, et al.
Optuna: A next-generation hyperparameter opti-
mization framework. In Proceedings of the 25rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2019.

Genevera I. Allen. Automatic feature selection via
weighted kernels and regularization. Journal of
Computational and Graphical Statistics, 22(2):284–
299, 04 2013.

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter.
Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward–
backward splitting, and regularized gauss–seidel
methods. Mathematical Programming, 137(1-2):91–
129, 2013.

R. Battiti. Using mutual information for selecting fea-
tures in supervised neural net learning. IEEE Trans-
actions on Neural Networks, 5(4):537–550, 1994.
doi: 10.1109/72.298224.

D. Bertsimas and J. Dunn. Machine Learning Under
a Modern Optimization Lens. Dynamic Ideas LLC,
2019.

Dimitris Bertsimas, Angela King, and Rahul
Mazumder. Best subset selection via a modern opti-
mization lens. The Annals of Statistics, 44(2):813–
852, April 2016. doi: 10.1214/15-aos1388.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The
 lojasiewicz inequality for nonsmooth subanalytic
functions with applications to subgradient dynami-
cal systems. SIAM Journal on Optimization, 17(4):
1205–1223, 2007.

A.-L. Boulesteix, A. Bender, J. Lorenzo Bermejo, and
C. Strobl. Random forest gini importance favours
SNPs with large minor allele frequency: impact,
sources and recommendations. Briefings in Bioin-
formatics, 13(3):292–304, September 2011. doi:
10.1093/bib/bbr053. URL https://doi.org/10.

1093/bib/bbr053.

L. Breiman, J. Friedman, C.J. Stone, and R.A. Ol-
shen. Classification and Regression Trees. Taylor &
Francis, 1984. ISBN 9780412048418.

Leo Breiman. Random forests. Machine Learning, 45
(1):5–32, 2001.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang.
Feature selection in machine learning: A new per-
spective. Neurocomputing, 300:70–79, 2018.

Miguel A. Carreira-Perpinan and Pooya Tavallali. Al-
ternating optimization of decision trees, with appli-
cation to learning sparse oblique trees. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Girish Chandrashekar and Ferat Sahin. A survey
on feature selection methods. Computers & Elec-
trical Engineering, 40(1):16–28, 2014. ISSN 0045-
7906. doi: https://doi.org/10.1016/j.compeleceng.
2013.11.024. 40th-year commemorative issue.

Jianbo Chen, Mitchell Stern, Martin J Wainwright,
and Michael I Jordan. Kernel feature selection via
conditional covariance minimization. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Tianqi Chen and Carlos Guestrin. Xgboost: A scal-
able tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, page
785–794, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342322.

Yao Chen, Qingyi Gao, Faming Liang, et al. Non-
linear variable selection via deep neural networks.
Journal of Computational and Graphical Statistics,
30(2):484–492, 2021.

V. Dinh and L. S. T. Ho. Consistent feature selec-
tion for analytic deep neural networks. In NIPS’20,
NIPS’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. ISBN 9781713829546.

L. P. D. van den Dries. SEMIALGEBRAIC SETS,
page 31–42. London Mathematical Society Lecture
Note Series. Cambridge University Press, 1998. doi:
10.1017/CBO9780511525919.006.

Chandra Erdman and Nancy Bates. The low response
score (LRS). Public Opinion Quarterly, 81(1):144–
156, December 2016.

Pablo A. Estevez, Michel Tesmer, Claudio A. Perez,
and Jacek M. Zurada. Normalized mutual informa-
tion feature selection. IEEE Transactions on Neural
Networks, 20(2):189–201, 2009. doi: 10.1109/TNN.
2008.2005601.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. Liblinear: A library
for large linear classification. J. Mach. Learn. Res.,
9:1871–1874, jun 2008. ISSN 1532-4435.

Jean Feng and Noah Simon. Sparse-input neural net-
works for high-dimensional nonparametric regres-
sion and classification. arXiv: Methodology, 2017.

https://doi.org/10.1093/bib/bbr053
https://doi.org/10.1093/bib/bbr053

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

Nicholas Frosst and Geoffrey Hinton. Distilling a
neural network into a soft decision tree. ArXiv,
abs/1711.09784, 2017.

Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and
Gideon Dror. Result analysis of the nips 2003 fea-
ture selection challenge. In L. Saul, Y. Weiss, and
L. Bottou, editors, Advances in Neural Information
Processing Systems, volume 17. MIT Press, 2004.

T. J. Hastie, R. J. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, 2 edition,
2009.

H. Hazimeh, N. Ponomareva, P. Mol, et al. The tree
ensemble layer: Differentiability meets conditional
computation. In Hal Daumé III and Aarti Singh,
editors, ICML’20, volume 119 of Proceedings of Ma-
chine Learning Research, pages 4138–4148. PMLR,
13–18 Jul 2020.

Hussein Hazimeh and Rahul Mazumder. Fast best sub-
set selection: Coordinate descent and local combi-
natorial optimization algorithms. Oper. Res., 68(5):
1517–1537, September 2020. ISSN 0030-364X. doi:
10.1287/opre.2019.1919.

Hussein Hazimeh, Rahul Mazumder, and Peter Rad-
chenko. Grouped variable selection with discrete op-
timization: Computational and statistical perspec-
tives. arXiv preprint arXiv:2104.07084 (Annals of
Statistics, to appear), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.
doi: 10.1109/CVPR.2016.90.

Thomas M. Hehn, Julian F. P. Kooij, and Fred A.
Hamprecht. End-to-end learning of decision trees
and forests. International Journal of Computer Vi-
sion, 128:997–1011, 2019.

Shibal Ibrahim, Rahul Mazumder, Peter Radchenko,
and Emanuel Ben-David. Predicting census survey
response rates with parsimonious additive models
and structured interactions. arXiv, abs/2108.11328,
2021.

Shibal Ibrahim, Hussein Hazimeh, and Rahul
Mazumder. Flexible modeling and multitask learn-
ing using differentiable tree ensembles. In KDD’22,
KDD ’22, page 666–675, New York, NY, USA,
2022. Association for Computing Machinery. ISBN
9781450393850. doi: 10.1145/3534678.3539412.

Shibal Ibrahim, Gabriel Afriat, Kayhan Behdin,
and Rahul Mazumder. GRAND-SLAMIN’ inter-
pretable additive modeling with structural con-
straints. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023a. URL
https://openreview.net/forum?id=F5DYsAc7Rt.

Shibal Ibrahim, Wenyu Chen, Hussein Hazimeh, Na-
talia Ponomareva, Zhe Zhao, and Rahul Mazumder.
Comet: Learning cardinality constrained mixture of
experts with trees and local search. KDD ’23, page
832–844, New York, NY, USA, 2023b. Association
for Computing Machinery. ISBN 9798400701030.
doi: 10.1145/3580305.3599278.

Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and
Shuicheng Yan. Training skinny deep neural net-
works with iterative hard thresholding methods,
2016.

Michael I. Jordan and Robert A. Jacobs. Hierarchical
mixtures of experts and the em algorithm. Neural
Comput., 6(2):181–214, mar 1994. ISSN 0899-7667.

Guolin Ke, Qi Meng, Thomas Finley, et al. Light-
gbm: A highly efficient gradient boosting decision
tree. In I. Guyon, U. V. Luxburg, S. Bengio, et al.,
editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Rajiv Khanna, Ethan Elenberg, Alex Dimakis, Sahand
Negahban, and Joydeep Ghosh. Scalable Greedy
Feature Selection via Weak Submodularity. In Aarti
Singh and Jerry Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 1560–1568. PMLR, 20–
22 Apr 2017. URL https://proceedings.mlr.

press/v54/khanna17b.html.

Ron Kohavi and George H. John. Wrappers for feature
subset selection. Artificial Intelligence, 97(1):273–
324, 1997.

Peter Kontschieder, Madalina Fiterau, Antonio Cri-
minisi, et al. Deep neural decision forests. In 2015
IEEE International Conference on Computer Vision
(ICCV), pages 1467–1475, 2015.

Krzysztof Kurdyka. On gradients of functions defin-
able in o-minimal structures. Annales de l’institut
Fourier, 48(3):769–783, 1998. URL http://eudml.

org/doc/75302.

Guanghui Lan. An optimal method for stochastic com-
posite optimization. Mathematical Programming,
133(1):365–397, 2012.

Ismael Lemhadri, Feng Ruan, and Rob Tibshirani.
Lassonet: Neural networks with feature sparsity.
In Arindam Banerjee and Kenji Fukumizu, editors,
Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130
of Proceedings of Machine Learning Research, pages
10–18. PMLR, 13–15 Apr 2021.

Jundong Li, Kewei Cheng, Suhang Wang, Fred
Morstatter, Robert P. Trevino, Jiliang Tang, and
Huan Liu. Feature selection: A data perspective.

https://openreview.net/forum?id=F5DYsAc7Rt
https://proceedings.mlr.press/v54/khanna17b.html
https://proceedings.mlr.press/v54/khanna17b.html
http://eudml.org/doc/75302
http://eudml.org/doc/75302

End-to-end Feature Selection Approach for Learning Skinny Trees

ACM Comput. Surv., 50(6), dec 2017. ISSN 0360-
0300. doi: 10.1145/3136625.

Brian Liu, Miaolan Xie, and Madeleine Udell. Con-
trolburn: Feature selection by sparse forests. In
Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining,
KDD ’21, page 1045–1054, New York, NY, USA,
2021. Association for Computing Machinery. ISBN
9781450383325. doi: 10.1145/3447548.3467387.

Christos Louizos, Max Welling, and Diederik P.
Kingma. Learning sparse neural networks through
l0 regularization. In International Conference on
Learning Representations, 2018.

Scott M. Lundberg and Su-In Lee. A unified ap-
proach to interpreting model predictions. In Pro-
ceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17,
page 4768–4777, Red Hook, NY, USA, 2017. Cur-
ran Associates Inc. ISBN 9781510860964.

Rahul Mazumder, Peter Radchenko, and Antoine
Dedieu. Subset selection with shrinkage: Sparse lin-
ear modeling when the snr is low. Operations Re-
search, 71(1):129–147, 2023.

Fan Min, Qinghua Hu, and William Zhu. Feature selec-
tion with test cost constraint. International Journal
of Approximate Reasoning, 55(1, Part 2):167–179,
2014. ISSN 0888-613X. doi: https://doi.org/10.
1016/j.ijar.2013.04.003. Special issue on Decision-
Theoretic Rough Sets.

Md. Monirul Kabir, Md. Monirul Islam, and Kazuyuki
Murase. A new wrapper feature selection approach
using neural network. Neurocomputing, 73(16):
3273–3283, 2010.

Sreerama K. Murthy, Simon Kasif, and Steven
Salzberg. A system for induction of oblique deci-
sion trees. J. Artif. Int. Res., 2(1):1–32, aug 1994.
ISSN 1076-9757.

Randal S. Olson, William La Cava, Patryk Orze-
chowski, Ryan J. Urbanowicz, and Jason H. Moore.
Pmlb: a large benchmark suite for machine learning
evaluation and comparison. BioData Mining, 10(1):
36, 2017.

V. Onnia, M. Tico, and J. Saarinen. Feature selec-
tion method using neural network. In Proceedings
2001 International Conference on Image Process-
ing (Cat. No.01CH37205), volume 1, pages 513–516
vol.1, 2001. doi: 10.1109/ICIP.2001.959066.

Hanchuan Peng, Fuhui Long, and C. Ding. Feature se-
lection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(8):1226–1238, 2005. doi: 10.
1109/TPAMI.2005.159.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu,
and Dan Alistarh. AC/DC: Alternating com-
pressed/decompressed training of deep neural net-
works. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. URL https:

//openreview.net/forum?id=T3_AJr9-R5g.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr
Vorobev, et al. Catboost: Unbiased boosting with
categorical features. In Proceedings of the 32nd In-
ternational Conference on Neural Information Pro-
cessing Systems, NIPS’18, page 6639–6649, Red
Hook, NY, USA, 2018. Curran Associates Inc.

J. Ross Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1993. ISBN 1558602380.

P. Ravikumar, J. Lafferty, H. Liu, et al. Sparse addi-
tive models. Journal of the Royal Statistical Society,
B., 71:1009–1030, 2009.

Juha Reunanen. Overfitting in making comparisons
between variable selection methods. J. Mach. Learn.
Res., 3(null):1371–1382, mar 2003. ISSN 1532-4435.

Albert Reuther, Jeremy Kepner, Chansup Byun,
Siddharth Samsi, William Arcand, David Bestor,
Bill Bergeron, Vijay Gadepally, Michael Houle,
Matthew Hubbell, Michael Jones, Anna Klein, Lau-
ren Milechin, Julia Mullen, Andrew Prout, Anto-
nio Rosa, Charles Yee, and Peter Michaleas. Inter-
active supercomputing on 40,000 cores for machine
learning and data analysis. In 2018 IEEE High Per-
formance extreme Computing Conference (HPEC),
pages 1–6. IEEE, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. ”why should i trust you?”: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’16, page 1135–1144, New York, NY, USA,
2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939778.

Debaditya Roy, K. Sri Rama Murty, and C. Krishna
Mohan. Feature selection using deep neural net-
works. In 2015 International Joint Conference on
Neural Networks (IJCNN), pages 1–6, 2015. doi:
10.1109/IJCNN.2015.7280626.

Simone Scardapane, Danilo Comminiello, Amir Hus-
sain, and Aurelio Uncini. Group sparse regulariza-
tion for deep neural networks. Neurocomputing, 241:
81–89, 2017.

Shubham Sharma, Sanghamitra Dutta, Emanuele
Albini, Freddy Lecue, Daniele Magazzeni, and
Manuela Veloso. Refresh: Responsible and effi-
cient feature reselection guided by shap values. In

https://openreview.net/forum?id=T3_AJr9-R5g
https://openreview.net/forum?id=T3_AJr9-R5g

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

Proceedings of the 2023 AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’23, page 443–453,
New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702310. doi:
10.1145/3600211.3604706. URL https://doi.org/

10.1145/3600211.3604706.

Le Song, Alex Smola, Arthur Gretton, Karsten M.
Borgwardt, and Justin Bedo. Supervised feature
selection via dependence estimation. In Proceed-
ings of the 24th International Conference on Ma-
chine Learning, ICML ’07, page 823–830, New York,
NY, USA, 2007. Association for Computing Machin-
ery. ISBN 9781595937933. doi: 10.1145/1273496.
1273600.

Le Song, Alex Smola, Arthur Gretton, Justin Bedo,
and Karsten Borgwardt. Feature selection via de-
pendence maximization, 2012.

Gary Stein, Bing Chen, Annie S. Wu, and Kien A.
Hua. Decision tree classifier for network intrusion
detection with ga-based feature selection. In Pro-
ceedings of the 43rd Annual Southeast Regional Con-
ference - Volume 2, ACM-SE 43, page 136–141,
New York, NY, USA, 2005. Association for Com-
puting Machinery. ISBN 1595930590. doi: 10.1145/
1167253.1167288.

Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis,
and Torsten Hothorn. Bias in random forest variable
importance measures: Illustrations, sources and a
solution. BMC Bioinformatics, 8(1):25, 2007.

Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexan-
der, Antonio Criminisi, and Aditya V. Nori. Adap-
tive neural trees. ArXiv, abs/1807.06699, 2019.

Robert Tibshirani. Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288,
2022/05/03 1996.

Julia D. Wulfkuhle, Lance A. Liotta, and Emanuel F.
Petricoin. Proteomic applications for the early de-
tection of cancer. Nature Reviews Cancer, 3(4):267–
275, 2003.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban,
and Yuval Kluger. Feature selection using stochas-
tic gates. In Hal Daumé III and Aarti Singh, edi-
tors, Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 10648–
10659. PMLR, 13–18 Jul 2020.

M. Yuan and Y. Lin. Model selection and estimation
in regression with grouped variables. Journal of the
Royal Statistical Society, Series B, 68:49–67, 2006.

Shichao Zhang. Cost-sensitive classification with re-
spect to waiting cost. Know.-Based Syst., 23(5):

369–378, jul 2010. ISSN 0950-7051. doi: 10.1016/
j.knosys.2010.01.008. URL https://doi.org/10.

1016/j.knosys.2010.01.008.

Tuo Zhao and Han Liu. Sparse additive machine. In
Neil D. Lawrence and Mark Girolami, editors, Pro-
ceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, volume 22
of Proceedings of Machine Learning Research, pages
1435–1443, La Palma, Canary Islands, 21–23 Apr
2012. PMLR.

Arman Zharmagambetov, Suryabhan Singh Hada, and
Miguel Á. Carreira-Perpiñán. An experimental com-
parison of old and new decision tree algorithms.
CoRR, abs/1911.03054, 2019.

Arman Serikuly Zharmagambetov and Miguel Á.
Carreira-Perpiñán. Smaller, more accurate regres-
sion forests using tree alternating optimization. In
ICML, 2020.

Zhengze Zhou and Giles Hooker. Unbiased measure-
ment of feature importance in tree-based methods.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 15:1 – 21, 2021.

Zexuan Zhu, Yew-Soon Ong, and Manoranjan Dash.
Wrapper–filter feature selection algorithm using a
memetic framework. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernet-
ics), 37(1):70–76, 2007. doi: 10.1109/TSMCB.2006.
883267.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, includ-
ing external libraries. [Code is available
at https://github.com/mazumder-lab/

SkinnyTrees]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

https://doi.org/10.1145/3600211.3604706
https://doi.org/10.1145/3600211.3604706
https://doi.org/10.1016/j.knosys.2010.01.008
https://doi.org/10.1016/j.knosys.2010.01.008
https://github.com/mazumder-lab/SkinnyTrees
https://github.com/mazumder-lab/SkinnyTrees

End-to-end Feature Selection Approach for Learning Skinny Trees

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results
(either in the supplemental material or as
a URL). [Code is available at https://

github.com/mazumder-lab/SkinnyTrees]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator, if your work uses
existing assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

https://github.com/mazumder-lab/SkinnyTrees
https://github.com/mazumder-lab/SkinnyTrees

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

SUPPLEMENTARY MATERIAL

S1 NOTATIONS AND ACRONYMS

Notation Table S1 lists the notation used throughout the paper.

Table S1: List of notation used.

Notation Space or Type Explanation
[n] Set The set of integers {1, 2,, n}.
1m Rm Vector with all coordinates equal to 1.
U Rm,n Matrix with elements ((Uij))

u · v R A dot product between two vectors u,v.
U · v Rn A dot product between a matrix U ∈ Rm,n and a vector v ∈ Rm is denoted as

U · v = UT v ∈ Rn.
X Rp Input feature space.
Y Rc Output (label) space.
m Z>0 Number of trees in Skinny Trees.

f(x) Function The output of Skinny Trees, a function that takes an input sample and returns
a logit which corresponds to the sum of all the trees in the ensemble. Formally,
f : X → Rc.

f j(x) Function A single perfect binary tree which takes an input sample and returns a logit, i.e.,
f j : X → Rc.

d Z>0 The depth of tree f j .
Ij Set The set of internal (split) nodes in f j .
I Set The set of internal (split) supernodes in f .
Lj Set The set of leaf nodes in f j .
A(i) Set The set of ancestors of node i.
{x→ i} Event The event that sample x ∈ Rp reaches node i.

wi Rp Weight vector of internal node i (trainable). Defines the hyperplane split used in
sample routing.

Wi Rp,m Matrix of all weights in the internal supernode i of the ensemble in the tensor-
formulation.

W Rp,m,|I| Tensor of all weights across all internal supernodes in the ensemble.

Wk,:,: Rm,|I| Matrix of all weights for k-th feature/covariate across all internal supernodes in
the ensemble.

S Function Activation function R→ [0, 1]
S(wi · x) [0, 1] Probability (proportion) that internal node i routes x to the left.
S′(v) Function The derivative of S(v)
[l↙ i] Event The event that leaf l belongs to the left subtree of node i ∈ I.
[l↘ i] Event The event that leaf l belongs to the right subtree of node i ∈ I.
ol Rc Leaf l’s weight vector (trainable).
Ol Rm,c Matrix of weights in superleaf l.

O Rm,c,|L| Tensor of weights across the superleaves in the ensemble.
L Function Loss function for training (e.g., cross-entropy).
Q Set Unknown (learnable) subset of features of size at most K.
zk {0, 1} Binary variable controls whether k-th feature is on or off in Problem (2).
z {0, 1}p Binary vector controlling which features are on or off in Problem (2).
λ0 R≥0 Non-negative ℓ0 regularization parameter controlling the number of features se-

lected in Problem (3)
λ2 R≥0 Non-negative ℓ2 regularization parameter controlling the shrinkage in Problem (3)
λ1 R≥0 Non-negative ℓ0 regularization parameter controlling the number of features se-

lected and shrinkage in Problem (S19)
γ R≥0 Non-negative scaling parameter for the exponential ramp-up of ℓ0-penalty in dense-

to-sparse learning.
s R≥0 Non-negative temperature parameter for controlling the ramping rate of the ℓ0-

penalty in dense-to-sparse learning.
η R≥0 Learning rate parameter for proximal mini-batch gradient descent.

End-to-end Feature Selection Approach for Learning Skinny Trees

Acronyms Table S2 lists the acronyms used throughout the paper.

Table S2: List of Acronyms used.

Terms Acronyms
Gradient Descent GD
Dense-to-sparse learning DSL

S2 BACKGROUND: DIFFERENTIABLE (A.K.A. SOFT) DECISION TREES

A soft tree is a variant of a classical decision tree that performs soft routing, i.e., a sample is fractionally routed
to all leaves. It was proposed by Jordan and Jacobs (1994), and further developed in (Kontschieder et al., 2015;
Hazimeh et al., 2020) for end-to-end optimization. Soft routing makes soft trees differentiable, so learning can
be done using gradient-based methods.

Let us fix some j ∈ [m] and consider a single tree f j , which takes an input sample and returns an output vector
(logit), i.e., f j : X ∈ Rp → Rc. Moreover, we assume that f j is a perfect binary tree with depth d. Let Ij and
Lj denote the sets of internal (split) nodes and the leaves of the tree, respectively. For any node i ∈ Ij ∪Lj , we
define Aj(i) as its set of ancestors and use the notation x→ i for the event that a sample x ∈ Rp reaches i. See
Table S1 for detailed notation summary.

Routing Following existing work (Kontschieder et al., 2015; Hehn et al., 2019; Hazimeh et al., 2020), we present
routing in soft trees with a probabilistic model. Although the sample routing is formulated with a probabilistic
model, the final prediction of the tree f is a deterministic function as it assumes an expectation over the leaf
predictions. According to this probabilistic model, internal (split) nodes in a soft tree perform soft routing,
where a sample is routed left and right with different probabilities. Classical decision trees are modeled with
either axis-aligned splits (Breiman et al., 1984; Quinlan, 1993) or hyperplane (a.k.a. oblique) splits (Murthy
et al., 1994). Soft trees are based on hyperplane splits, where the routing decisions rely on a linear combination
of the features. Particularly, each internal node i ∈ Ij is associated with a trainable weight vector wj

i ∈ Rp that
defines the node’s hyperplane split.

Given a sample x ∈ Rp, the probability that internal node i routes x to the left is defined by S(wj
i ·x). Now we

discuss how to model the probability that x reaches a certain leaf l. Let [l
�
i] (resp. [i � l]) denote the event

that leaf l belongs to the left (resp. right) subtree of node i ∈ Ij . The probability that x reaches l is given by
P j({x→ l}) =

∏
i∈A(l) r

j
i,l(x), where rji,l(x) is the probability of node i routing x towards the subtree containing

leaf l, i.e., rji,l(x) := S(wj
i · x)1[l

�
i] ⊙ (1− S(wj

i · x))1[i
� l]. Let S : R→ [0, 1] be an activation function. Popular

choices for S include logistic function (Jordan and Jacobs, 1994; Kontschieder et al., 2015; Frosst and Hinton,
2017; Tanno et al., 2019; Hehn et al., 2019) and Smooth-step function (for hard routing) (Hazimeh et al., 2020).
Next, we define how the root-to-leaf probabilities can be used to make the final prediction of the tree.

Prediction As with classical decision trees, we assume that each leaf stores a learnable weight vector oj
l ∈ Rc.

For a sample x ∈ Rp, prediction of the tree is defined as an expectation over the leaf outputs, i.e., f j(x) =∑
l∈Lj P j({x→ l})oj

l .

S2.1 Tree Ensemble Tensor Formulation

Ibrahim et al. (2022) proposed a tensor formulation for modeling tree ensembles more efficiently, which can lead to
faster training times than classical formulations (Kontschieder et al., 2015; Hazimeh et al., 2020): ∼ 10× on CPUs
and ∼ 20× on GPUs. We use a similar tensor formulation, as we discuss below. The internal nodes in the trees
across the ensemble are jointly modeled as a “supernode”. In particular, an internal node i ∈ Ij at depth d in all
trees can be condensed together into a supernode i ∈ I. Let Wi ∈ Rp,m be learnable weight matrix, where each
j-th column of the weight matrix contains the learnable weight vector wj

i of the original j-th tree in the ensemble.
Similarly, the leaves in the trees across the ensemble are jointly modeled as a superleaf. Let Ol ∈ Rm,c be the
learnable weight matrix to store the leaf nodes, where each j-th row contains the learnable weight vector oj

l in the
original j-th tree in the ensemble. The prediction of the tree ensemble is f(x) = (

∑
l∈L Ol ⊙

∏
i∈A(l) Ri,l) · 1m,

where ⊙ denotes the element-wise product, Ri,l = S(Wi ·x)1[l
�
i]⊙(1−S(Wi ·x))1[i

� l] ∈ Rm,1 and the activation

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

function S is applied element-wise. 1m ∈ Rm is a vector of ones that combines the predictions of trees in the
ensemble. We denote all the hyperplane parameters across all the supernodes of the tree ensemble as a tensor
W ∈ Rp,m,|I| and the parameters across all the superleaves as a tensor O ∈ Rm,c,|L|.

S3 PROOF OF THEOREM 1

Overview and Preliminaries. Let us denote the training loss corresponding to the sample n as

Φn(O,W) = L(yn,f(xn;W ,O)). (S1)

We also use the notation X to denote the set of all decision variables in the model, X := (W ,O). For j ∈ [m]
and i ∈ Ij and t ∈ [p], we let wj

i,t be the t-th coordinate of wj
i .

In this proof, we follow the general steps outlined below:

1. First, we show that Φn is M-smooth for some M > 0 only depending on the data and the constants
appearing in Assumptions (A1), (A2) and (A3). That is, there exists M > 0 such that for any two
X1 = (W1,O1),X2 = (W2,O2) with ∥O1∥2, ∥O2∥2 ≤ B, we have

∥∇Φn(O1,W1)−∇Φn(O2,W2)∥2 ≤M∥X1 − X2∥2. (S2)

This will prove the descent property of the algorithm.

2. Next, we show that as long as λ2 > 0, the sequence of solutions generated by the algorithm is bounded.

3. Finally, we show that Φn is semi-algebraic (Dries, 1998; Attouch et al., 2013, Chapter 2) and therefore
satisfies the Kurdyka– Lojasiewicz (KL) property (Bolte et al., 2007; Kurdyka, 1998). This will complete the
proof of convergence.

Before continuing with the proof, we derive some results that will be useful. For notational convenience, we drop
the sample index n as our results will be true for all samples.

First, for j ∈ [m], i ∈ Ij and l ∈ Lj

∂f(x;W ,O)

∂wj
i

=
∑
l∈Lj

ojl
∂P j({x→ l})

∂wj
i

∂f(x;W ,O)

∂ojl
= P j({x→ l}).

(S3)

Thus,

∂Φ

∂wj
i

= L′(y, f(x;W ,O))
∂f(x;W ,O)

∂wj
i

= L′(y, f(x;W ,O))
∑
l∈Lj

ojl
∂P j({x→ l})

∂wj
i

. (S4)

If i /∈ A(l), then ∂P j({x→l})
∂wj

i

= 0. Otherwise,

∂P j({x→ l})
∂wj

i

=
∏

k∈A(l)
k ̸=i

rjk,l(x)
∂rji,l(x)

∂wj
i

. (S5)

Moreover, by the definition of rji,l, we have

∂rji,l(x)

∂wj
i

=

{
S′(wj

i · x)x if l
�
i

−S′(wj
i · x)x if l � i.

(S6)

End-to-end Feature Selection Approach for Learning Skinny Trees

In addition, for j ∈ [m] and l ∈ Lj ,

∂Φ

∂ojl
= L′(y, f(x;W ,O))

∂f(x;W ,O)

∂ojl

= L′(y, f(x;W ,O))P j({x→ l}). (S7)

We define

ϕj
i,t(X) =

∂Φ

∂wj
i,t

,

ϕj
l (X) =

∂Φ

∂ojl
.

(S8)

Next, we state a few technical lemma that will be useful in our proof.

Lemma 1. Define Ej
i,+, E

j
i,− ⊆ Rp,m,|I| × Rm,|L| for i ∈ Ij , j ∈ [m]:

Ej
i,+ = {wj

i · x = θ}, Ej
i,− = {wj

i · x = −θ} (S9)

and
D =

([
Rp,m,|I| × Rm,|L|

]⋂
{∥O∥2 ≤ B}

)
\

⋃
j∈[m]

i∈Ij

{
Ej

i,+ ∪ Ej
i,−

}

where B is defined in Assumption (A3). If X ∈ D, then Φ(X) is infinitely differentiable. Moreover, D can be
partitioned into finitely many subsets.

Proof. Note that Φ(X) may not have infinitely many derivatives only if S(wj
i · x) is not smooth for some

j ∈ [m], i ∈ Ij . By the construction of S(·) from Assumption (A1), the activation S(x) function is not infinitely
differentiable only for x = ±θ. As a result, if X ∈ D, all activation functions are smooth and therefore Φ(X) is
infinitely differentiable.
Moreover, note that each Ej

i,± is an affine space with codimension 1. Therefore, each Ej
i,± partitions the space

(excluding Ej
i,±) into two subsets {wj

i · x > ±θ}, {wj
i · x < ±θ}. Therefore, all Ej

i,± can partition D into finitely

many subsets, as there are finitely many of sets Ej
i,±.

Lemma 2. Suppose X ∈ D. Under the assumption of Theorem 1, there exists a numerical constant C > 0, only
depending on the data and the constants appearing in the assumptions of the theorem, such that the following
functions and their gradients are bounded by C:

rji,l(x), j ∈ [m], l ∈ Lj , i ∈ A(l)

∂rji,j(x)

∂wj
i,t

, j ∈ [m], l ∈ Lj , i ∈ A(l), t ∈ [p]

P j({x→ l}), j ∈ [m], l ∈ Lj .

(S10)

Proof. First, note that rji,l(x) ∈ [0, 1] and therefore rji,l(x) is uniformly bounded. Moreover, from (S6)

∂rji,l(x)

∂wj
i

=

{
S′(wj

i · x)x if l
�
i

−S′(wj
i · x)x if l � i

(S11)

with other partial derivatives of rji,l(x) being zero. As a result, rji,l(x) has uniformly bounded derivative, where
the bound only depends on Assumption (A1) and the data. This is true as S′ is bounded by the assumption.

This also shows that
∂rji,l(x)

∂wj
i,t

is uniformly bounded. Next,

∂2rji,l(x)

∂(wj
i)2

=

{
S′′(wj

i · x)xxT if l
�
i

−S′′(wj
i · x)xx if l � i

(S12)

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

which is similarly uniformly bounded by Assumption (A1). Therefore,
∂rji,j(x)

∂wj
i,t

has a uniformly bounded gradient.

Finally, P j({x→ l}) ∈ [0, 1] and by equation S5, the gradient of P j({x→ l}) is the product of bounded functions,
and therefore bounded.

Lemma 3. Suppose X ∈ D. Under the assumption of Theorem 1, there exists a numerical constant C > 0, only
depending on the data and the constants appearing in the assumptions of the theorem, such that the following
functions and their gradients are bounded by C:

f(x;W ,O)

L′(y, f(x;W ,O))
(S13)

Proof. First,

|f(x;W ,O)| =

∣∣∣∣∣∣
m∑
j=1

∑
l∈Lj

ojlP
j({x→ l})

∣∣∣∣∣∣
≤

m∑
j=1

∑
l∈Lj

|ojl |

≤ m|L1|B. (S14)

Moreover, from equation S3 and Lemma 2, each coordinate of the gradient of f(x;W ,O) is finite summation
and product of uniformly bounded functions, which is bounded.
Next, as f(x;W ,O) is bounded, L′(y, f(x;W ,O)) is bounded by Assumption (A2). Moreover,

∇L′(y, f(x;W ,O) = L′′(y, f(x;W ,O))∇f(x;W ,O)

which is bounded as L′′ is bounded by Assumption (A2) and ∇f(x;W ,O) is bounded as we showed above.

Lemma 4. There exists a numerical constant M > 0, only depending on the data and constants introduced in
Assumptions (A1), (A2) and (A3), such that if for X1,X2 and α ∈ (0, 1), αX1 + (1− α)X2 ∈ D, then one has

|ϕj
i,t(X1)− ϕj

i,t(X2)| ≤M∥X1 − X2∥2, t ∈ [p], j ∈ [m], i ∈ Ij

where ϕj
i,t is defined in equation S8.

Proof. Note that by the definition of ϕj
i,t,

ϕj
i,t(X) = L′(y, f(x;W ,O))

∂f(x;W ,O)

∂wj
i,t

which is the product of two bounded functions with bounded derivatives by Lemma 3. As a result, there exists
a constant M > 0 such that ∥∥∥∥∥∂ϕ

j
i,t(X)

∂X

∥∥∥∥∥
2

≤M. (S15)

For α ∈ [0, 1], let ϕ̂j
i,t(α) = ϕj

i,t((1−α)X1 +αX2). Then, ϕ̂j
i,t(α) is differentiable for α ∈ (0, 1), ϕ̂j

i,t(0) = ϕj
i,t(X1)

and ϕ̂j
i,t(1) = ϕj

i,t(X2). Moreover, by the chain rule,

dϕ̂j
i,t(α)

dα
=

〈
∂ϕ̂j

i,t(α)

∂ [(1− α)X1 + αX2]
,
∂ [(1− α)X1 + αX2]

∂α

〉
=

〈
(X2 − X1),

∂ϕj
i,t(α)

∂ [(1− α)X1 + αX2]

〉

End-to-end Feature Selection Approach for Learning Skinny Trees

where ⟨·, ·⟩ denotes the inner product. As a result, by the fundamental theorem of calculus,

∣∣∣ϕ̂j
i,j(α)− ϕ̂j

i,j(0)
∣∣∣ =

∣∣∣∣∣
∫ α

0

dϕ̂j
i,t(u)

du
du

∣∣∣∣∣
≤ ∥X2 − X1∥2

∫ α

0

∥∥∥∥∥ ∂ϕ̂j
i,t(u)

∂ [(1− u)X1 + uX2]

∥∥∥∥∥
2︸ ︷︷ ︸

≤M by equation S15

du

≤ αM∥X2 − X1∥2.

In particular, by setting α = 1 the proof is complete.

Lemma 5. Take any two X1,X2 such that ∥O1∥2, ∥O2∥2 ≤ B. Suppose for all j ∈ [m], i ∈ Ij, {X1,X2} ̸⊆ Ej
i,+

or {X1,X2} ̸⊆ Ej
i,−. Then

|ϕj
i,t(X1)− ϕj

i,t(X2)| ≤M∥X1 − X2∥2 t ∈ [p], j ∈ [m], i ∈ Ij

where ϕj
i,t is defined in equation S8 and M is defined in Lemma 4.

Proof. By Lemma 1, the sets Ej
i,± are affine and therefore if both X1,X2 do not belong to one of these sets, the

segment connecting X1,X2 will intersect each set Ej
i,± at most once. Thus, there exist K ≥ 1 and X̃0, · · · , X̃K

such that X̃0 = X1, X̃K = X2, and X̃0, · · · , X̃K lie in the segment connecting X1,X2. Moreover, we have that

{(1− α)X̃k + αX̃k+1 : α ∈ (0, 1)} ⊆ D ∀k ∈ [K − 1].

By triangle inequality, we have

|ϕj
i,t(X1)− ϕj

i,t(X2)| =

∣∣∣∣∣
K−1∑
k=0

{ϕj
i,t(X̃k)− ϕj

i,t(X̃k+1)}

∣∣∣∣∣
≤

K−1∑
k=0

∣∣∣ϕj
i,t(X̃k)− ϕj

i,t(X̃k+1)
∣∣∣

≤M

K−1∑
k=0

∥X̃k − X̃k+1∥2

= M∥X1 − X2∥2

where the last inequality is by Lemma 4 and the last equality is by the fact that X̃0, · · · , X̃K lie in the segment
connecting X1,X2.

Lemma 6. There exists a numerical constant M > 0, only depending on the data and constants introduced in
Assumptions (A1), (A2) and (A3), such that Φ(O,W) isM-smooth for ∥O∥2 ≤ B.

Proof. First, note that

∥∇Φ(O1,W1)−∇Φ(O2,W2)∥2 ≤
m∑
j=1

∑
l∈Lj

|ϕj
l (X1)− ϕj

l (X2)|+
m∑
j=1

∑
i∈Ij

p∑
t=1

|ϕj
i,t(X1)− ϕj

i,t(X2)|. (S16)

Take X1,X2 with ∥O1∥2, ∥O2∥2 ≤ B. If these two solutions simultaneously do not belong to some Ej
i,±, by

Lemma 5 we have
|ϕj

i,t(X1)− ϕj
i,t(X2)| ≤M∥X1 − X2∥2.

A similar result follows for ϕj
l , hence by equation S16 we achieve

∥∇Φ(O1,W1)−∇Φ(O2,W2)∥2 ≤ m(|L1|+ p|I1||)M∥X1 − X2∥2

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

which completes the proof. Suppose there exists i0, j0 such that X1,X2 ∈ Ej0
i0,+

. Then,(
(1− α)(w1)j0i0

)
· x +

(
α(w2)j0i0

)
· x = θ

therefore S
((

(1− α)(w1)j0i0

)
· x +

(
α(w2)j0i0

)
· x

)
= 1 by Assumption (A1). As a result, S(wj0

i0
· x) = 1 for the

whole segment connecting X1,X2. Let X̃1, X̃2 be such that all their weights are the same as X1,X2, except that

(w̃1)j0i0 = 2(w1)j0i0 , (w̃2)j0i0 = 2(w2)j0i0 .

As a result, (
(1− α)(w̃1)j0i0

)
· x +

(
α(w̃2)j0i0

)
· x = 2θ

so S
((

(1− α)(w̃1)j0i0

)
· x +

(
α(w̃2)j0i0

)
· x

)
= 1. Therefore, one has

f(x; (1− α)X̃1 + αX̃2) = f(x; (1− α)X1 + αX2), α ∈ [0, 1],

∂f(x; (1− α)X̃1 + αX̃2)

∂wj
i

=
∂f(x; (1− α)X1 + αX2)

∂wj
i

, α ∈ [0, 1], j ∈ [m], i ∈ Ij

as for all i, j,

S
((

(1− α)(w̃1)ji

)
· x +

(
α(w̃2)ji

)
· x

)
= S

((
(1− α)(w1)ji

)
· x +

(
α(w2)ji

)
· x

)
.

As a result, for all i, j, t,

ϕj
i,t(X̃1) = ϕj

i,t(X1), ϕj
i,t(X̃2) = ϕj

i,t(X2)

However, X̃1, X̃2 /∈ Ej0
i0,+

. In words, the new points effectively replace the problematic coefficient wj0
i0

in the

model coefficients. Repeat this process until all such coefficients are removed and therefore X̃1, X̃2 fit into the
assumptions of Lemma 5. This completes the proof.

Lemma 7. Under Assumption (A1), the activation function S(x) is semi-algebraic.

Proof. Consider the epigraph of the activation function

G(S) = {(x, y) : y ≥ S(x)}.

Let
A1 = {y ≥ 0, x ≤ −θ}
A2 = {y ≥ 1, x ≥ θ}
A3 = {y ≥ p(x),−θ ≤ x ≤ θ}.

Then,

G(S) = A1 ∪A2 ∪A3

showing G(S) and consequently, S are semi-algebraic.

Lemma 8. The function 1[Wk,:,: ̸= 0] is semi-algebraic.

Proof. Consider the epigraph:

G = G(1[Wk,:,: ̸= 0]) = {(y,W) : y ≥ 1[Wk,:,: ̸= 0]}.

Let A1 = {y ≥ 1} and A2 = {∥Wk,:,:∥22 = 0, y ≥ 0}. Then, G = A1 ∪ A2 showing 1[Wk,:,: ̸= 0] is semi-
algebraic.

End-to-end Feature Selection Approach for Learning Skinny Trees

Proof of Theorem 1. Part 1) Note that by Assumption (A3), Algorithm 1 can be equivalently run on the
problem

minW,O Ê[L(y,f(x;W ,O))] + λ0

∑
k∈[p]

1[Wk,:,: ̸= 0] + (λ2/m|I|)∥W∥22 s.t. ∥O∥2 ≤ B (S17)

and result in the same sequence of solutions. Let

h(W ,O) = Ê[L(y,f(x;W ,O))] + (λ2/m|I|)∥W∥22
g(W ,O) = λ0

∑
k∈[p]

1[Wk,:,: ̸= 0] + χ(∥O∥2 ≤ B)
(S18)

where χ(∥O∥2 ≤ B) = 0 if ∥O∥2 ≤ B and χ(∥O∥2 ≤ B) =∞ otherwise. Then, Problem S17 can be written as
minimizing g + h. By Lemma 6, the function h is (M + 2λ2/m|I|)-smooth. Hence, if η < 1/(M + 2λ2/m|I|),
by Lemma 3.1 of Attouch et al. (2013) (and calculations leading to (52) of Attouch et al. (2013)) the descent
property is proved.

Part 2) Let c0 be the objective value for the initial solution to Algorithm 1. That is,

1

N

N∑
n=1

L(yn,f(xn;W ,O))] + λ0

∑
k∈[p]

1[Wk,:,: ̸= 0] + (λ2/m|I|)∥W∥22 = c0.

As the sequence of the objectives is non-increasing by the first part of the theorem, at each iteration we have

(λ2/m|I|)∥W∥22

≤ 1

N

N∑
n=1

L(yn,f(xn;W ,O))] + λ0

∑
k∈[p]

1[Wk,:,: ̸= 0] + (λ2/m|I|)∥W∥22

≤c0

completing the proof as λ2 > 0.

Part 3) Note that the function f(x;W ,O) is a composition, finite sum and finite product of semi-algebraic
functions by Lemma 7, therefore it is semi-algebraic. As L is polynomial, L(f(x;W ,O)) is semi-algebraic. As
a result, by Lemma 8 the functions g, h defined in equation S18 are semi-algebraic and hence, possess the KL
property. Therefore, g, h satisfy the required conditions of Theorem 5.1 of Attouch et al. (2013), proving the
convergence.

S4 APPENDIX FOR SECTION 6

Data Design We generate the data matrix, X ∈ RN×p with samples randomly drawn from a multivariate
normal distribution N (0,Σ) with a correlated design matrix Σ whose values are defined by Σij = σ|i−j|. We
construct the response variable y = Xβ∗ + ϵ where the values of the noise ϵi, i = [N] are drawn independently
from N (0, 0.5). We use a known sparsity β∗ with equi-spaced nonzeros, where ∥β∗∥0 = 8.

Simulation Procedure We experiment with a range of training set sizes N ∈ {100, 200, 1000}, correlation
strengths σ ∈ {0.5, 0.7}, and number of total features p ∈ {256, 512}. For each setting, we run 25 simulations
with randomly generated samples. We evaluate on 10, 000 test samples drawn from the data generating model
described above. Out of N samples, we allocate 80% for training and 20% for validation for model selection. For
each simulation, we perform 500 tuning trials (hyperparameters are given below) and select the model with the
smallest validation mean squared error (MSE). We evaluate the final performance in terms of (i) test MSE, (ii)
number of features selected and (iii) support recovery via f1-score between the true support and the recovered
feature set. We compute averages and standard errors across the 25 simulations to report final results.

Skinny Trees with DSL

• Number of trees: Discrete uniform with range [1, 50],
• Depths: Discrete uniform with range [1, 5],
• Batch sizes: 16b with b uniform over the range {1, 2, . . . , 8},

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

• Number of Epochs: Discrete uniform with range [5, 500],
• λ0: exponentially ramped up 0 → 100 with temperature distributed as Log uniform in the range [10−4, 0.1]

for group ℓ0 − ℓ2 with DSL,
• λ2: Log uniform over the range [10−2, 102] for group ℓ0 − ℓ2,
• Learning rates, lr: Log uniform over the range [10−3, 10−1].

XGBoost, Random Forests

• Number of trees: Discrete uniform with range [1, 100] for XGBoost and Random Forests,
• Depths: Discrete uniform with range [1, 10] for XGBoost and Random Forests,
• Learning rates: Discrete uniform with range [10−4, 1.0] for XGBoost,
• Feature importance threshold: Log uniform over the range [10−7, 10−1] for XGBoost and Random Forests.
• Subsample: Uniform over the range [0.5, 1.0].

S5 APPENDEX FOR SECTION 7

S5.1 Datasets, Computing Setup and Tuning Setup

Table S3: Classification datasets

Dataset N p C
Churn 5,000 20 2
Satimage 6,435 36 6
Texture 5,500 40 11
Mice-protein 1,080 77 8
Isolet 7,797 617 26
Madelon 2,600 500 2
Lung 203 3,312 5
Gisette 7,000 5,000 2
Tox 171 5,748 4
Arcene 200 10,000 2
CLL 111 11,340 3
SMK 187 19,993 2
GLI 85 22,283 2
Dorothea 1,150 100,000 2

Datasets We consider 5 classification datasets from the Penn Machine
Learning Benchmarks (PMLB) repository (Olson et al., 2017). These are
Churn, Satimage, Mice-protein, Isolet and Texture; Mice-protein and Isolet
were used in prior feature selection literature Lemhadri et al. (2021). We
used fetch openml in Sklearn to download the full datasets. We used 4
datasets from NIPS2003 feature selection challenge (Guyon et al., 2004).
These are Arcene, Madelon, Gisette, Dorothea. We used 5 datasets (Smk,
Cll, Gli, Lung, Tox) from the feature selection datasets given in this repo1.
The datasets contain continuous, categorical and binary features. The
metadata was used to identify the type of features and categorical features
were one-hot encoded. For first non-NIPS2003 datasets, we randomly split
each of the dataset into 64% training, 16% validation and 20% testing sets.
For the datasets from NIPS2003, we split the training set into 80% training
and 20% validation and treated the original validation set as the test set.
The labels for original test set were unavailable, hence we discarded the
original test set. The continuous features in all datasets were z-normalized
based on training set statistics. A summary of the 14 datasets considered
is in Table S3.

Computing Setup We used a cluster running Ubuntu 7.5.0 and equipped
with Intel Xeon Platinum 8260 CPUs and Nvidia Volta V100 GPUs. For all experiments of Sec. 6 and 7, each job
involving Skinny Trees, Random Forests, XGBoost, LightGBM, CatBoost and neural networks were restricted
to 4 cores and 64GB of RAM. Jobs involving Skinny Trees and neural networks on larger datasets (Gisette,
Dorothea) were run on Tesla V100 GPUs.

Tuning The tuning was done in parallel over the competing models and datasets. The number of selected
features affects the AUC. Therefore, to treat all the methods in a fair manner, we tune the hyperparameter that
controls the sparsity level using Optuna (Akiba et al., 2019) which optimizes the overall AUC across different
Ks. A list of all the tuning parameters and their distributions is given for every experiment below.

S5.2 Appendix for Sec. 7.1

Classical tree: TAO Implementation Given that the authors of TAO do not open-source their implementa-
tion, we have written our own implementation of the TAO algorithm proposed by Carreira-Perpinan and Tavallali
(2018), following the procedure outlined in Sec. 3.1 of Zharmagambetov et al. (2019). For TAO, we use oblique
(i.e. hyperplane splits) decision trees with constant leaves. We take as an initial tree a complete binary tree with
random parameters at each node. We perform TAO updates until maximum number of iterations are reached
(i.e. there is no other stopping criterion). TAO uses an ℓ1-regularized logistic regression to solve the decision

1https://jundongl.github.io/scikit-feature/datasets.html

https://jundongl.github.io/scikit-feature/datasets.html

End-to-end Feature Selection Approach for Learning Skinny Trees

node optimization (using LIBLINEAR Fan et al. (2008)) where λ ≥ 0 parameter (controlling node-level sparsity
of the tree) is used as a regularization parameter (C = 1/λ). We tune depth in the range [1, 10], λ ∈ [10−5, 105]
and number of maximum iterations in the range [20, 100]. We perform 500 tuning trials. We find the optimal
trial that satisfies 50% sparsity budget.

Soft tree with group lasso We compare group ℓ0-based method with a competitive benchmark: the convex
group lasso regulurizer, popularly used in high-dimensional statistics literature (Yuan and Lin, 2006). We
consider group-lasso regularization in the context of soft trees: (λ1/

√
m|I|)

∑
k∈[p] ∥Wk,:,:∥2 . Although group

lasso has not been used in soft trees, it has been used for feature selection in neural networks (Scardapane et al.,
2017). However, their proposal to use GD on a group ℓ1 regularized objective does not lead to feature selection
as highlighted by (Lemhadri et al., 2021). For a fairer comparison, we implement our own proximal mini-batch
GD method for group lasso in the context of soft trees, which actually leads to feature selection.

We consider the following optimization problem with group-lasso regularization in the context of soft trees:

minW,O Ê[L(y,f(x;W ,O)] + (λ1/
√

m|I|)
∑

k∈[p]
∥Wk,:,:∥2 . (S19)

where λ1 is a non-negative regularization parameter that controls both shrinkage and sparsity. We solve it with
the algorithm presented in Alg. 2.

Algorithm 2 Proximal Mini-batch Gradient Descent for Optimizing (S19).

Input: Data: X,Y ; Hyperparameters: λ1, epochs, batch-size (b), learning rate (η);
1: Initialize ensemble with m trees of depth d (|I| = 2d − 1): W,O
2: for epoch = 1, 2, . . . , epochs do
3: for batch = 1, . . . , N/b do
4: Randomly sample a batch: Xbatch,Ybatch

5: Compute gradient of loss g w.r.t. O, W, where g = Ê[L(Ybatch,Fbatch].
6: Update leaves: O ← O − η∇Og
7: Update hyperplanes: W ← S-Prox(W − η∇Wg, η, λ1))
8: end for
9: end for

S-Prox in Algorithm 2 finds the global minimum of an optimization problem of the form:

W(t) = argminW
1

2η

∥∥∥W −Z(t)
∥∥∥2
2

+
λ1√
m|I|

p∑
k=1

∥Wk,:,:∥2 (S20)

where Z(t) = W(t−1) − η∇Wg and g = Ê[L(Ybatch,Fbatch]. This leads to a feature-wise soft-thresholding
operator given by:

S ηλ1√
m|I|

(Z(t)
k,:,:) =

Z(t)
k,:,: −

ηλ1√
m|I|

Z(t)
k,:,:∥∥∥Z(t)
k,:,:

∥∥∥ if
∥∥∥Z(t)

k,:,:

∥∥∥ ≥ ηλ1√
m|I|

0 otherwise

(S21)

In these experiments, we used a single tree and mini-batch PGD without any dense-to-sparse scheduler for both
models i.e, (i) Soft tree with group lasso (ii) Skinny Tree. We tune the key hyperparameters, which are given
below.

• Batch sizes: 64 ∗ b with b uniform over the range {1, 2, . . . , 64},
• Learning rates for mini-batch PGD: Log uniform over the range [10−2, 10],
• Number of Epochs: Discrete uniform with range [5, 1000],
• λ0: Log uniform over the range [10−3, 10] for group ℓ0 − ℓ2 for Skinny Tree,
• λ2: Log uniform over the range [10−2, 102] for group ℓ0 − ℓ2 for Skinny Tree,
• λ1: Log uniform over the range [10−3, 10] for group lasso.

S5.3 Appendix for Sec. 7.2 and 7.3

We describe the tuning grid for these experiments below.

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

Skinny Trees

• Number of trees: Discrete uniform with range [1, 100],
• Depths: Discrete uniform with range [1, 5],
• Batch sizes: Uniform over the set {16, 64, 256, 1024},
• Number of Epochs: Discrete uniform over the range [5, 1000] (Note tuning over epochs is important to achieve

some trials with desired sparsity for dense-to-sparse learning, we do not use any validation loss early stopping
as that is less robust during averages across runs/seeds in terms of feature support.),

• λ0: exponentially ramped up 0 → 1 with temperature distributed as Log uniform in the range [10−4, 1] for
group ℓ0 − ℓ2 with DSL,

• λ2: Log uniform over the range [10−3, 1] for group ℓ0 − ℓ2,
• Learning rate (lr) for minibatch PGD: Log uniform over the range [10−2, 10].

XGBoost, LightGBM, CatBoost, Random Forests

• Number of trees: Discrete uniform with range [1, 300] for XGBoost, LightGBM, CatBoost and Random Forests,
• Depths: Discrete uniform with range [1, 10] for XGBoost, LightGBM, CatBoost and Random Forests,
• Learning rates: Discrete uniform with range [10−4, 1.0] for XGBoost, LightGBM and CatBoost,
• Feature importance threshold: Log uniform over the range [10−7, 10−1] for XGBoost, LightGBM, CatBoost

and Random Forests,
• Subsample: Uniform over the range [0.5, 0.9] for XGBoost, LightGBM, CatBoost and Random Forests.
• Bagging Frequency: Uniform over the set {1, · · · , 7} for LightGBM.

FASTEL (Dense soft trees)

• Number of trees: Discrete uniform with range [1, 100],
• Depths: Discrete uniform with range [1, 5],
• Batch sizes: Uniform over the set {16, 64, 256, 1024},
• Number of Epochs: Discrete uniform over the range [5, 1000],
• Learning rates (lr) for minibatch SGD: Log uniform over the range [10−2, 10].

S5.4 Appendix for Sec. 7.4

In this paper, we pursue embedded feature selection methods for tree ensembles. However, for completeness,
we also compare Skinny Trees against some state-of-the-art embedded feature selection methods from neural
networks.

Competing Methods We compare against the following baselines.

1. LassoNet (Lemhadri et al., 2021) is based on a ResNet-like (He et al., 2016) architecture with residual
connections. Feature selection is done using hierarchical group lasso.

2. AlgNet (Dinh and Ho, 2020) is based on adaptive lasso and uses proximal full-batch gradient descent for
feature selection in a tanh-activated feedforward network.

3. DFS (Chen et al., 2021) solves cardinality constrained feature selection problem with an active-set style
method.

We describe the tuning details for these neural network models below. We perform 2000 tuning trials for each
method. For DFS, we capped number of trials completed in total 200 GPU hours. DFS is really slow for even
medium sized datasets (in terms of feature dimensions).

LassoNet (Lemhadri et al., 2021)

• ResNet architecture with 2-layered relu-activated feedforward network with (linear) skip connections.
• Number of hidden units: Discrete uniform in the set {p3 ,

2
3p, p,

4
3p},

• Batch sizes: Discrete uniform in the set {64, 128, 256, 512},
• λ: Log uniform over the range [1, 10000].
• Tuning protocol: 1000 for dense training stage and 1000 for each successive sparse training stages with early

stopping with a patience of 25. We consider 100 sequential stages (100 values for λ).

End-to-end Feature Selection Approach for Learning Skinny Trees

AlgNet (Dinh and Ho, 2020)

• Tanh-activated 4-layered feedforward neural network with number of hidden units chosen uniformly from a
discrete set {p3 ,

2
3p, p,

4
3p},

• Learning rates (lr) for proximal GD: Log uniform over the range [0.01, 1].
• λ: Log uniform over the range [0.1, 1000].
• Number of Epochs: Discrete uniform with range [5, 2000],

DFS (Chen et al., 2021)

• ReLU-activated 4-layered feedforward neural network with number of hidden units chosen uniformly from a
discrete set {p3 ,

2
3p, p,

4
3p},

• Learning rates (lr) for Adam: Log uniform over the range [0.001, 0.1].
• Weight decay: 0.0025 for feature selection layer and 0.005 for remaining layers.
• k: Number of features selected in the range [1, 0.5p].
• Number of Epochs: 500 with early stopping.

S5.5 Appendix for Sec. 7.5

We perform 2000 tuning trials for each method.

Skinny Trees

• Number of trees: Discrete uniform with range [1, 100],
• Depths: Discrete uniform with range [1, 5],
• Batch sizes: Uniform over the set {16, 64, 256, 1024},
• Number of Epochs: Discrete uniform with range [5, 1000],
• λ0 (without Dense-to-sparse learning): Log uniform in the range [1, 104] for group ℓ0 − ℓ2,
• λ0 (with Dense-to-sparse learning): exponentially ramped up 0 → 1 with temperature s distributed as Log

uniform in the range [10−4, 1] for group ℓ0 − ℓ2 with DSL,
• λ2: Log uniform over the range [10−3, 1] for group ℓ0 − ℓ2,
• Learning rates (lr): Log uniform over the range [10−2, 10].

S5.6 Comparison with ControlBurn

Table S4: Comparison of test AUC (%) performance of
Skinny Trees against ControlBurn for 25% feature se-
lection budget on binary classification tasks.

Dataset ControlBurn Skinny Trees
Churn 85.66±0.25 91.38±0.08
Madelon 94.23±0.08 94.14±0.09
Gisette 99.36±0.01 99.81±0.002
Arcene 77.89±0.32 80.80±0.30
Smk 79.94±0.32 79.29±0.22
Gli 98.62±0.16 99.80±0.07
Dorothea 84.85±0.28 90.87±0.02
Average 88.65 90.87

We also compare against ControlBurn (Liu et al.,
2021) on binary classification tasks. ControlBurn
does not support multiclass classification. Con-
trolBurn is another post-training feature selection
method, which formulates an optimization problem
with group-lasso regularizer to perform feature selec-
tion on a pre-trained forest. It relies on a commer-
cial solver to optimize their formulation. We report
the results for 25% feature selection budget in Ta-
ble S4. We can observe that Skinny Trees outper-
forms ControlBurn across many datasets, achieving
2% (up to 6%) improvement in AUC.

We note the hyperparameter tuning for ControlBurn
below:

• Method: bagboost,
• Depths: Discrete uniform with range [1, 10],
• α: Log uniform over the range [10−7, 1.0].

S6 MEASURING STATISTICAL SIGNIFICANCE

We follow the following procedure to test the significance of all models. For all models, we tune over hyper-
parameters for 2000 trials. We select the optimal trial (within the desired feature sparsity budget) based on

Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder

validation set. Next, we train each model for 100 repetitions with the optimal hyperparameters and report the
mean results on test set along with the standard errors.

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	PROBLEM FORMULATION
	END-TO-END OPTIMIZATION APPROACH
	Proximal mini-batch gradient descent
	Convergence Analysis of Algorithm 1
	Dense-to-Sparse Learning (DSL)

	SYNTHETIC EXPERIMENTS
	REAL DATA EXPERIMENTS
	Studying a single tree
	Skinny Trees vs Dense Soft Trees
	Skinny Trees vs Classical Trees
	Skinny Trees vs Neural Networks
	Dense-to-Sparse Learning
	Discussion on training times.

	CONCLUSION
	Acknowledgments
	NOTATIONS AND ACRONYMS
	BACKGROUND: DIFFERENTIABLE (A.K.A. SOFT) DECISION TREES
	Tree Ensemble Tensor Formulation

	PROOF OF THEOREM 1
	APPENDIX FOR SECTION 6
	APPENDEX FOR SECTION 7
	Datasets, Computing Setup and Tuning Setup
	Appendix for Sec. 7.1
	Appendix for Sec. 7.2 and 7.3
	Appendix for Sec. 7.4
	Appendix for Sec. 7.5
	Comparison with ControlBurn

	MEASURING STATISTICAL SIGNIFICANCE

