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Abstract

In this study, we propose a novel multi-
objective Bayesian optimization (MOBO)
method to efficiently identify the Pareto front
(PF) defined by risk measures for black-
box functions under the presence of input
uncertainty (IU). Existing BO methods for
Pareto optimization in the presence of IU
are risk-specific or without theoretical guar-
antees, whereas our proposed method ad-
dresses general risk measures and has the-
oretical guarantees. The basic idea of the
proposed method is to assume a Gaussian
process (GP) model for the black-box func-
tion and to construct high-probability bound-
ing boxes for the risk measures using the
GP model. Furthermore, in order to reduce
the uncertainty of non-dominated bounding
boxes, we propose a method of selecting the
next evaluation point using a maximin dis-
tance defined by the maximum value of a
quasi distance based on bounding boxes. As
theoretical analysis, we prove that the algo-
rithm can return an arbitrary-accurate solu-
tion in a finite number of iterations with high
probability, for various risk measures such
as Bayes risk, worst-case risk, and value-at-
risk. We also give a theoretical analysis that
takes into account approximation errors be-
cause there exist non-negligible approxima-
tion errors (e.g., finite approximation of PFs
and sampling-based approximation of bound-
ing boxes) in practice. We confirm that the
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proposed method performs as well or better
than existing methods not only in the setting
with IU but also in the setting of ordinary
MOBO through numerical experiments.

1 INTRODUCTION

In this study, we treat a multi-objective Pareto op-
timization problem under input uncertainty (IU). In
many real-world applications such as engineering, in-
dustry and computer simulations, it is often desired
to simultaneously optimize an expensive-to-evaluate
multi-objective black-box function. Because there is
typically no point at which all functions are simul-
taneously optimal, the multi-objective optimization
problem is often formulated as a Pareto optimiza-
tion problem to identify the Pareto front (PF). The
black-box functions actually handled often have IU.
Our motivating example in this study is an expensive-
to-evaluate docking simulation for real-world chemi-
cal compounds. The purpose of this simulation is to
evaluate the inhibitory performance of candidate com-
pounds on specific sites of some target protein. Be-
cause each compound has uncertain isomers, this sim-
ulation is expressed as the Pareto optimization prob-
lem under IU.

We consider a multi-objective black-box function op-
timization problem with M objective functions under
IU with m ∈ {1, 2, . . . ,M}. Let f (m)(x,w) be the m-
th objective function, where x ∈ X and w ∈ Ω are
called design variables and environmental variables,
respectively. The variable x is an input that can be
completely controlled, whereas w is a random variable
that cannot be controlled and follows some probability
distribution. When considering a Pareto optimization
problem in the presence of IU, it is necessary to con-
sider optimization by taking into account the uncer-
tainty of w that cannot be controlled. A risk measure



Bounding Box-based Multi-objective Bayesian Optimization of Risk Measures under Input Uncertainty

Table 1: Characteristics of the proposed method and the representative existing methods

Proposed SABBa BQ MVA MOBO without IU
IU setting Yes Yes Yes Yes No

General risk setting Yes Yes No No No
Theoretical guarantees Yes No No Yes Yes/No

Approximation error setting Yes No No No No

is the widely used function that is determined based on
only x while considering the uncertainty of w. Various
risk measures, for example, Bayes risk, worst-case risk
and value-at-risk, are used depending on the problem.
Given a risk measure F (m)(x) ≡ ρ(m)(f (m)(x,w)), the
problem that we treat in this study is formulated as

maximize (F (1)(x), . . . , F (M)(x)) s.t. x ∈ X . (1)

Bayesian optimization (BO) (Shahriari et al., 2015)
using Gaussian processes (GPs) (Rasmussen and
Williams, 2005) is a powerful tool for optimizing black-
box functions. Many BO methods have been proposed
for both single-objective and multi-objective black-
box functions without IU. In contrast, designing BO
methods for risk measures under the presence of IU
is challenging. This is because risk measures cannot
be observed directly and do not generally follow GPs
even if black-box functions follow GPs. The main
way to solve this problem is to design a predicted re-
gion that may contain a black-box function, then com-
pute the risk measure on the region and use the lower
and upper bounds of this to construct a predicted in-
terval for the risk measure (Nguyen et al., 2021b,a;
Kirschner et al., 2020). As an exception, special
risk measures such as Bayes risk are known to follow
GP in practice, allowing Bayesian quadrature (BQ)-
based inference (Beland and Nair, 2017). Recently,
multi-objective Bayesian optimization (MOBO) meth-
ods under IU have been proposed, which apply the
BQ-based or predicted interval-based method (Qing
et al., 2023; Iwazaki et al., 2021b; Rivier and Congedo,
2022). However, the BQ-based method proposed by
Qing et al. (2023) and Mean-variance-analysis (MVA)-
based method proposed by Iwazaki et al. (2021b) can
only be applied to specific risk measures. On the other
hand, the surrogate-assisted bounding-box approach
(SABBa) proposed by Rivier and Congedo (2022) can
be applied to general risk measures, but this method
has no theoretical guarantees for constructing credible
intervals (CIs) and is consequently a heuristic.

In this study, we propose a novel MOBOmethod based
on high-probability bounding boxes (HPBBs) for risk
measures using GP surrogate models, which solves
the above problem. The basic idea of the proposed
method is to design a high-probability credible region

(HPCR) that contains a black-box function with high
probability. We use the fact that many risk measures
can be expressed as a composite of a tractable func-
tion and some monotonic function, and construct high-
probability CIs (HPCIs) of risk measures as a transfor-
mation of the lower and upper bounds of the tractable
function. We also propose a method for computing a
sampling-based CI of risk measures on the HPCR. Fur-
thermore, we provide theoretical guarantees for these
two methods in the case with/without various approx-
imation errors that may occur in the practical compu-
tation. Through these results, we can propose a the-
oretically guaranteed MOBO methods for general risk
measures. The characteristics of the proposed method
and the representative existing methods are given in
Table 1. Our contributions can be summarized as fol-
lows:

• We develop a general method for designing HPBB
that can be applied to various risk measures.

• We propose a novel acquisition function (AF) for
MOBO under IU, which effectively incorporates
the quantified uncertainty of Pareto optimal solu-
tions using HPBB.

• We provide theoretical guarantees of accuracy and
termination based on HPBB and the proposed
AF, as well as a theoretical error analysis that ac-
counts for various types of approximation errors
that can occur in the practical computation.

Related Work In the optimization of expensive-
to-evaluate black-box functions, BO has gained pop-
ularity and has been the subject of active research.
A variety of AFs for BO and MOBO settings have
been introduced (Močkus, 1975; Srinivas et al., 2010;
Wang and Jegelka, 2017; Emmerich and Klinkenberg,
2008; Svenson and Santner, 2010; Zuluaga et al., 2016;
Knowles, 2006; Suzuki et al., 2020). Moreover, multi-
objective optimization has also been extensively stud-
ied in the evolutionary computation community (Deb
et al., 2002). However, methodologies based on evo-
lutionary computation often necessitate several thou-
sand to tens of thousands of function evaluations (Deb
and Gupta, 2005; Zhou et al., 2018), which can be pro-
hibitively costly.
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Studies on Pareto optimization under IU have also
been gradually proposed in recent years, mainly in the
development of BO methods to efficiently identify the
PF defined by risk measures. Considered risk mea-
sures are, for example, Bayes risk (Qing et al., 2023),
mean and negative standard deviation (Iwazaki et al.,
2021b), and general risk measures (Rivier and Con-
gedo, 2022). However, as mentioned earlier, these are
methods that risk-specific or without theoretical guar-
antees. A BO method for a multivariate value-at-risk
(MVaR) has also been proposed (Daulton et al., 2022).
This method is similar to other MOBO methods, but
is very different in essence. In general, in Pareto opti-
mization, the PF is defined as the boundary defined by
the points satisfying Pareto optimality, i.e., the points
define the PF. On the other hand, MVaR is itself a
PF, and the PF considered in Daulton et al. (2022) is
defined as the boundary of the union of MVaR. There-
fore, in Daulton et al. (2022), although the problem
setup is Pareto optimization, the final PF is defined
by PFs (MVaR). Thus, we only introduce it here be-
cause it differs from Pareto optimization in the essen-
tial point.

2 PRELIMINARY

Let f (m) : X × Ω → R be an expensive-to-evaluate
black-box function, where m ∈ {1, 2, . . . ,M} ≡ [M ].
Assume that the set of design variables X and set of
environmental variables Ω are compact and convex.
For each (x,w) ∈ X ×Ω, f (m)(x,w) is observed with
noise as y(m) = f (m)(x,w) + ε(m), where ε(m) fol-
lows normal distribution with mean 0 and variance
ς2m, and the sequence of noises (ε

(m)
i )i∈N,m∈[M ] is in-

dependent. In this study, w ∈ Ω follows some dis-

tribution Pw, and (ε
(m)
i )i∈N,m∈[M ] and (wi)i∈N are

mutually independent. In the BO framework in-
cluding environment variables, two different settings
for w exist called the simulator setting and the un-
controllable setting (Kirschner et al., 2020; Iwazaki
et al., 2021b; Inatsu et al., 2022). In the simula-
tor setting, w is fully controllable during optimiza-
tion, whereas in the uncontrollable setting, w is not
controllable even during optimization. In the main
body, only the simulator setting is treated, and the un-
controllable setting is discussed in Appendix A. Let
ρ(m)(f (m)(x,w)) ≡ F (m)(x) be a risk measure. For
example, the widely used Bayes and worst-case risks
are given by F (m)(x) = E[f (m)(x,w)] and F (m)(x) =
infw∈Ω f (m)(x,w), respectively, where the expecta-
tion is taken with respect to w. The purpose of
this study is to efficiently identify the PF defined
based on F (m)(x). For any x ∈ X and E ⊂ X , let
F (x) = (F (1)(x), . . . , F (M)(x)) and F (E) = {F (x) |
x ∈ E}. Then, for any B ⊂ RM , the dominated

region Dom(B) and PF Par(B) of B are defined as
Dom(B) = {s ∈ RM |∃ s′ ∈ B s.t. s ≤ s′} and
Par(B) = ∂(Dom(B)). Here, for any vector a =
(a1, . . . , aM ), b = (b1, . . . , bM ) ∈ RM and set C, a ≤ b
represents am ≤ bm for any m ∈ [M ], and ∂(C) rep-
resents the boundary of C. Let Z∗ be our target PF.
Then, Z∗ can be expressed as Z∗ = Par(F (X )). Note
that although we nominally use the term “risk mea-
sure” for F (m)(x), we are requesting only the property
that F (m)(x) is a function based on only x by remov-
ing the uncertainty of w from f (m)(x,w). That is,
it allows for both functions that should be minimized
and maximized. Since the minimization problem is
equivalent to the maximization problem by multiply-
ing minus one, it is formulated in a unified manner as
a maximization problem in this study, as in (1).

We introduce a regularity assumption for f (m). For
each m ∈ [M ], let k(m) : (X ×Ω)× (X ×Ω) → R be a
positive-definite kernel, where k(m)((x,w), (x,w)) ≤
1 for any (x,w) ∈ X ×Ω. Also let H(k(m)) be a repro-
ducing kernel Hilbert space corresponding to k(m). We
assume that f (m) is the element of H(k(m)) and has
the bounded Hilbert norm ∥f (m)∥H(k(m)) ≤ Bm < ∞.

In this study, we use a GP model for the
black-box function f (m). We assume the GP
GP(0, k(m)((x,w), (x′,w′))) as the prior of f (m). For

m ∈ [M ], given a dataset {(xi,wi, y
(m)
i )}ti=1, where

t is the number of queried instances, the posterior of

f (m) is a GP. Then, its posterior mean µ
(m)
t (x,w) and

posterior variance σ
(m)2
t (x,w) can be calculated ana-

lytically (Rasmussen and Williams, 2005).

3 PROPOSED METHOD

In this section, we propose a BO method to efficiently
identify Z∗. In Section 3.1, we provide a method
for computing the CI of F (m)(x) using the CI of
f (m)(x,w). We also give a bounding box for F (x),
which is the direct product of CIs.

3.1 Credible Interval and Bounding Box

For each input (x,w) ∈ X × Ω and t ≥ 1, the

CI of f (m)(x,w) is denoted by Q
(f(m))
t−1 (x,w) =

[l
(f(m))
t−1 (x,w), u

(f(m))
t−1 (x,w)], where l

(f(m))
t−1 (x,w) and

u
(f(m))
t−1 (x,w) are given by l

(f(m))
t−1 (x,w) = µ

(m)
t−1(x,w)−

β
1/2
m,tσ

(m)
t−1(x,w) and u

(f(m))
t−1 (x,w) = µ

(m)
t−1(x,w) +

β
1/2
m,tσ

(m)
t−1(x,w). Here, β

1/2
m,t ≥ 0 is a user-

specified tradeoff parameter. If we set β
1/2
m,t appro-

priately, Q
(f(m))
t−1 (x,w) becomes a HPCI which con-

tains f (m)(x,w) with high probability (details are de-
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scribed in Section 4). For x ∈ X , t ≥ 1 and m ∈ [M ],

we define the set of functions G
(m)
t−1(x) = {g(x,w) |∀

w ∈ Ω, g(x,w) ∈ Q
(f(m))
t−1 (x,w)}. Let Q

(F (m))
t−1 (x) =

[lcb
(m)
t−1(x),ucb

(m)
t−1(x)] be a CI of F (m)(x). Also let

Bt−1(x) = Q
(F (1))
t−1 (x)× · · · ×Q

(F (M))
t−1 (x) be a bound-

ing box of F (x). Then, when Q
(f(m))
t−1 (x,w) is HPCI

for all m ∈ [M ], t ≥ 1,x ∈ X and w ∈ Ω, a sufficient

condition for Q
(F (m))
t−1 (x) to also be HPCI is given as

follows:

∀g(x,w) ∈ G
(m)
t−1(x),

lcb
(m)
t−1(x) ≤ ρ(m)(g(x,w)) ≤ ucb

(m)
t−1(x).

(2)

If (2) holds, then Bt−1(x) is also a HPBB. Next,

we provide computation methods for lcb
(m)
t−1(x) and

ucb
(m)
t−1(x). First, we provide a generalized method for

lcb
(m)
t−1(x) and ucb

(m)
t−1(x) to satisfy (2). The lcb

(m)
t−1(x)

and ucb
(m)
t−1(x) by the generalized method are calcu-

lated with lcb
(m)
t−1(x) = inf

g(x,w)∈G
(m)
t−1(x)

ρ(m)(g(x,w))

and ucb
(m)
t−1(x) = sup

g(x,w)∈G
(m)
t−1(x)

ρ(m)(g(x,w)).

We emphasize that although the condition (2) holds
by using the generalized method, the inf and sup
calculations in the generalized method are not always
easy. Therefore, in this study, we give additional two

computation methods for lcb
(m)
t−1(x) and ucb

(m)
t−1(x), (i)

decomposition method and (ii) sampling method. In

the decomposition method, lcb
(m)
t−1(x) and ucb

(m)
t−1(x)

in (2) are calculated directly. Let ρ(·) be a risk
measure. In many cases, ρ(·) can be decomposed as
ρ(·) = ρ̃ ◦ h(·), where ρ̃(·) and h(·) are respectively
monotonic and tractable functions. The basic idea of
the decomposition method is to compute the infimum

and supremum of h(g(x,w)) on G
(m)
t−1(x), and then to

compute lcb
(m)
t−1(x) and ucb

(m)
t−1(x) by taking ρ̃(·) to

these. Calculated values for several risk measures are
given in Appendix A. Note that many widely used
risk measures such as the Bayes risk, value-at-risk
and standard deviation can be calculated by the
decomposition method. In the sampling method, we

generate S sample paths f
(m)
1 (x,w), . . . , f

(m)
S (x,w)

of f (m)(x,w) independently from the

GP posterior and compute lcb
(m)
t−1(x) =

min
j∈[S],f

(m)
j (x,w)∈G

(m)
t−1(x)

ρ(m)(f
(m)
j (x,w)) and

ucb
(m)
t−1(x) = max

j∈[S],f
(m)
j (x,w)∈G

(m)
t−1(x)

ρ(m)(f
(m)
j (x,w)).

However, in all cases of generalized, decomposition
and sampling methods, there is a case that (2) is not
satisfied due to approximation errors that may occur
in practice, e.g., approximation errors in the expected
value computation or insufficient approximation due
to a small number of sample paths. These problems

are discussed in Section 4.

3.2 Pareto Front Estimation

For any input x ∈ X and subset E ⊂ X ,

we define LCBt−1(x) = (lcb
(1)
t−1(x), . . . , lcb

(M)
t−1 (x)),

UCBt−1(x) = (ucb
(1)
t−1(x), . . . , ucb

(M)
t−1 (x)) and

LCBt−1(E) = {LCBt−1(x) | x ∈ E}. The esti-
mated Pareto solution set Π̂t−1 ⊂ X for the design
variables is then defined as follows: Π̂t−1 = {x ∈
X | LCBt−1(x) ∈ Par(LCBt−1(X ))}. Figure 1
(a) shows a conceptual diagram of LCBt−1(x) and
UCBt−1(x), and (b) shows a conceptual diagram of
Par(LCBt−1(X )) and Π̂t−1. Here, in order to actually
compute Π̂t−1, we need to compute the PF defined by
LCBt−1(x). However, if X is an infinite set, then Π̂t−1

may also be an infinite set. In this case, since the exact
calculation of Π̂t−1 is difficult, it is necessary to make
a finite approximation using an approximation solver
such as NSGA-II (Deb et al., 2002). The effects on
this finite approximation are discussed in Section 4.

3.3 Acquisition Function

We propose an AF for determining the next point
to be evaluated. First, for each point a ∈ Rm

and subset B ⊂ Rm, we denote the quasi dis-
tance between them as dist(a, B) = minb∈B d∞(a, b),
where d∞(a, b) denotes the metric function given
by d∞(a, b) = max{|a1 − b1|, . . . , |am − bm|}. Us-

ing this, we define AF a
(X )
t (x) for x ∈ X as

a
(X )
t (x) = dist(UCBt(x),Dom(LCBt(Π̂t))). Then,

the next design variable, xt+1, to be evalu-

ated is selected by xt+1 = argmaxx∈X a
(X )
t (x).

Hence, the value of a
(X )
t (xt+1) is equal to

the following maximin distance: a
(X )
t (xt+1) =

maxx∈X minb∈Dom(LCBt(Π̂t))
d∞(UCBt(x), b). Fig-

ure 1 (c) shows a conceptual diagram of the AF

a
(X )
t (x). The value of a

(X )
t (x) can be computed ana-

lytically using the following lemma when Π̂t is finite:

Lemma 3.1. Let UCBt(x) = (u1, . . . , uM ) and

LCBt(Π̂t) = {(l(i)1 , . . . , l
(i)
M ) | 1 ≤ i ≤ k}. Then,

a
(X )
t (x) can be computed by a

(X )
t (x) = max{ãt(x), 0},

where ãt(x) = min1≤i≤k max{u1 − l
(i)
1 , . . . , uM − l

(i)
M }.

The proposed AF is based on the bounding box as well
as existing bounding box-based AFs (Iwazaki et al.,
2021b; Zuluaga et al., 2016; Belakaria et al., 2020), but
differs in the following points. Most of the existing
methods focus only on reducing the size of the non-
dominated bounding box 1 (e.g., diagonal length and

1The bounding box Bt(x) with UCBt(x) /∈
Dom(LCBt(Π̂t)).
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𝒙6
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Figure 1: Conceptual diagrams of LCBt(x), UCBt(x), Par(LCBt(X )), Π̂t and AFs for seven input points
x1, . . . ,x7. At each point x in the left figure (a), LCBt(x) and UCBt(x) indicate the lower left point and the
upper right point of the dashed rectangular region, respectively. In (b), the PF (red line) computed using each
LCBt(x) is Par(LCBt(X )), and because it is constructed by LCBt(x1),LCBt(x2),LCBt(x3),LCBt(x4), Π̂t

is given by Π̂t = {x1,x2,x3,x4}. In (c), the light red region indicates Dom(LCBt(Π̂t)), the region dominated

by the red points (LCBt(Π̂t)), and a
(X )
t (x) is the closeness between the light red region and UCBt(x) (purple

point). The furthest point is represented by the purple triangle, UCBt(x7). Thus, the next design variable to
be evaluated is x7.

hypervolume), and therefore do not aim to improve
the estimated PF (size-based AFs choose x5 in Fig. 1,
but the room for improvement is small). Hence, these
AFs focus on exploration. In contrast, the proposed
AF focuses on the non-dominated bounding box with
the largest maximin distance to the estimated PF. In
this sense, the proposed AF focuses on exploration,
but also exploitation.

Next, we consider the choice of the environment vari-
able wt+1. The variable wt+1 should be determined
based on the uncertainty of the chosen bounding box
Bt(xt+1). We define the uncertainty of Bt(xt+1) by
the maximum length of each edge ∥UCBt(xt+1) −
LCBt(xt+1)∥∞. In many risk measures including
Bayes risk, the following inequality holds:

∥UCBt(xt+1)− LCBt(xt+1)∥∞ ≤ q(ζt+1), (3)

where q(·) : [0,∞) → [0,∞) is a strictly increasing
function defined by risk measures and satisfies q(0) =

0, and ζt+1 = maxw∈Ω

∑M
m=1 2β

1/2
m,t+1σ

(m)
t (xt+1,w).

Then, we choose wt+1 based on (3). The next envi-
ronmental variable, wt+1, to be evaluated is selected

by wt+1 = argmaxw∈Ω a
(Ω)
t (w), where a

(Ω)
t (w) =∑M

m=1 2β
1/2
m,t+1σ

(m)
t (xt+1,w).

3.4 Stopping Condition

We describe the stopping conditions of the proposed

algorithm. From Fig. 1 (c), AF a
(X )
t (x) represents

the closeness of the pessimistic PF and the optimistic
predictive value of F (x). That is, if this value is suf-

ficiently small, there is little room for improvement in
the PF; therefore, it is reasonable to use it as the stop-
ping condition. Let ϵ > 0 be a predetermined desired
accuracy parameter. Then the algorithm is terminated

if a
(X )
t (xt+1) ≤ ϵ is satisfied. The pseudocode of the

proposed algorithm is described in Algorithm 1.

4 THEORETICAL ANALYSIS

In this section, we give the theorems for the ac-
curacy and termination of the proposed algorithm.
The details of the proofs are presented in Ap-
pendix B. First, we quantify the goodness of
the estimated Π̂t. If Π̂t is a good estimate, the
following two indicators defined by Π̂t should be

small: I
(i)
t = maxy∈Z∗ dist(y,Par(F (Π̂t))), I

(ii)
t =

maxy∈F (Π̂t)
dist(y, Z∗). Here, I

(i)
t and I

(ii)
t have sim-

ilar meanings as recall and precision in the classifica-
tion problem, respectively. For example, if Π̂t is esti-
mated as Π̂t = X , Π̂t contains all of true Pareto opti-
mal design variables. In this case, since Par(F (Π̂t)) =

Par(F (X )) = Z∗, I
(i)
t = 0. Similarly, when Π̂t is es-

timated as Π̂t = {x∗
1}, where x∗

1 is one of true Pareto
optimal design variables, Π̂t does not have unneces-

sary points, and I
(ii)
t = 0. As with recall and preci-

sion in ordinary classification problems, over (under)-

estimation makes I
(ii)
t (I

(i)
t ) larger. For this reason, we

define the inference discrepancy It = max{I(i)t , I
(ii)
t }

for Π̂t as the goodness measure. Next, in order to
show the theoretical validity of the proposed algo-
rithm, we introduce the maximum information gain
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Algorithm 1 Bounding box-based MOBO of general
risk measures

Require: GP priors GP(0, k(m)), tradeoff parameters
{βm,t}t≥0, m ∈ [M ], accuracy parameter ϵ > 0
for t = 0, 1, 2, . . . do

Compute Q
(f(m))
t (x,w) for each (x,w) ∈ X × Ω

Compute Q
(F (m))
t (x) for each x ∈ X by the gen-

eralized, decomposition or sampling method

Compute Bt(x) = Q
(F (1))
t (x) × · · · × Q

(F (M))
t (x)

for each x ∈ X
Estimate Π̂t by Bt(x)

Select the next evaluation point xt+1 by a
(X )
t (x)

if a
(X )
t (xt+1) ≤ ϵ then

break
end if
Select the next evaluation point wt+1 by a

(Ω)
t (w)

Observe y
(m)
t+1 = f (m)(xt+1,wt+1) + ε

(m)
t+1 at the

point (xt+1,wt+1) for all m ∈ [M ]
Update GPs by adding observed points

end for
Ensure: Return Π̂t as the estimated set of design
variables

κ
(m)
t . This indicator is frequently used in theoretical

analysis in the context of GP-based BOs and can be ex-

pressed as κ
(m)
t = 2−1 max(x̃1,w̃1),...,(x̃t,w̃t) log det(It+

ς−2
m K̃

(m)
t ), where It is the t × t identity matrix, and

K̃
(m)
t is the t × t matrix whose (j, k)-th element is

k(m)((x̃j , w̃j), (x̃k, w̃k)). It is known that the order

of κ
(m)
t with respect to commonly used kernels such as

linear, Gaussian and Matérn kernels is sublinear under
mild conditions (see, e.g., Theorem 5 in Srinivas et al.
(2010)). Then, the following theorem holds:

Lemma 4.1 (Theorem 3.11 in Abbasi-Yadkori
(2013)). Suppose that the regularity assumption

holds. Let δ ∈ (0, 1), and define β
1/2
m,t = Bm+(2(κ

(m)
t +

log(M/δ)))1/2. Then, with probability at least 1 − δ,
the following inequality holds for any t ≥ 1, m ∈ [M ]

and (x,w) ∈ X × Ω: |f (m)(x,w) − µ
(m)
t−1(x,w)| ≤

β
1/2
m,tσ

(m)
t−1(x,w).

Using this, we give the following theorems for the in-
ference discrepancy, stopping condition and q(a):

Theorem 4.1. Suppose that the assumption of
Lemma 4.1 and the inequality (2) hold. Let t ≥ 0,

m ∈ [M ], δ ∈ (0, 1), and let β
1/2
m,t+1 be defined as in

Lemma 4.1. In addition, let ϵ > 0 be a predetermined
desired accuracy parameter. Then, with probability at

least 1−δ, the inequality It ≤ a
(X )
t (xt+1) holds for any

t ≥ 0 and xt+1. Therefore, if the stopping condition
satisfies at T iterations, the inference discrepancy IT

satisfies IT ≤ ϵ with probability at least 1− δ.

Theorem 4.2. Suppose that the assumption in The-
orem 4.1 holds. Let q : [0,∞) → [0,∞) be a strictly
increasing function satisfying q(0) = 0 and (3). Also

let st = (
∑M

m=1 Cmβm,t+1κ
(m)
t+1)

1/2(t + 1)−1/2, where
Cm = 8M(log(1 + ς−2

m ))−1. Then, the inequality

a
(X )

t̂
(xt̂+1) ≤ q(st) holds for any t ≥ 0 and some t̂ ≤ t.

Therefore, the algorithm terminates after at most T
iterations, where T is the smallest positive integer sat-
isfying q(sT ) ≤ ϵ.

Theorem 4.3. Suppose that the assumption in The-
orem 4.1 holds. Also assume that there exist strictly
increasing functions q(m) : [0,∞) → [0,∞) satisfy-

ing q(m)(0) = 0 and |ucb(m)
t (xt+1) − lcb

(m)
t (xt+1)| ≤

q(m)(s̃t) for any t ≥ 0, m ∈ [M ], and xt+1 ∈ X ,

where s̃t = maxw∈Ω 2β
1/2
m,t+1σ

(m)
t (xt+1,w). Then,

q(a) ≡ maxm∈[M ] q
(m)(a) is the strictly increasing

function and satisfies q(0) = 0 and (3).

Specific forms of q(m)(a) for commonly used risk mea-
sures are described in Appendix A.

4.1 Theoretical Error Analysis

In this subsection, we give an extension of Theorem
4.1 and 4.2 when approximation errors are included
in the algorithm. In practice, the algorithm includes
the following approximation errors: (i) Errors in

the computation of lcb
(m)
t−1(x),ucb

(m)
t−1(x), (ii) errors

in computing Π̂t−1 due to the finite approximation
of the estimated PF, and (iii) computational errors

in maximizing the AFs a
(X )
t−1(x) and a

(Ω)
t−1(w). Let

ϵlcb, ϵucb, ϵPF, ϵX , ϵΩ be non-negative error parameters
that represent the errors in these approximations,
respectively. We consider the case that the following
four error inequalities hold for any t ≥ 0, m ∈ [M ],

x,xt+1 ∈ X , wt+1 ∈ Ω and g(x,w) ∈ G
(m)
t (x):

lcb
(m)
t (x) − ϵlcb ≤ ρ(m)(g(x,w)) ≤ ucb

(m)
t (x) + ϵucb

; maxy∈Par(LCBt(Π̂t))
dist(y,Par(LCBt(X ))) ≤

ϵPF ; maxx∈X a
(X )
t (x) − a

(X )
t (xt+1) ≤ ϵX ;

maxw∈Ω a
(Ω)
t (w) − a

(Ω)
t (wt+1) ≤ ϵΩ. These in-

equalities imply that the difference between the
desired and actual calculated values is less than the
error parameter. In this case, a desirable property
is that these error parameters simply add to the
inequalities in Theorem 4.1 and 4.2. Here, we must
emphasize that it is not obvious whether the above is
true or not. This is because the inference discrepancy
is defined by the combination of operations such as
the computation of bounding box and the estimation
of Π̂t−1, and it is not obvious how the approximation
error affects the inequality. The next theorem shows
how these approximation errors affect the inequalities:
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Theorem 4.4. Suppose that the assumption in
Lemma 4.1 holds. Let t ≥ 0, m ∈ [M ], δ ∈ (0, 1),

and let β
1/2
m,t+1 be defined as in Lemma 4.1. In addi-

tion, let ϵ > 0 be a predetermined desired accuracy
parameter. Moreover, let ϵlcb, ϵucb, ϵPF, ϵX , ϵΩ be non-
negative error parameters satisfying the error inequali-
ties. Then, with probability at least 1−δ, the inequal-

ity It ≤ a
(X )
t (xt+1) + ϵlcb + ϵucb + ϵX holds for any

t ≥ 0 and xt+1. Therefore, if the stopping condition
satisfies at T iterations, the inference discrepancy IT
satisfies IT ≤ ϵ + ϵlcb + ϵucb + ϵX with probability at
least 1− δ.

Theorem 4.5. Suppose that the assumption in The-
orem 4.4 holds. Let q : [0,∞) → [0,∞) be a strictly
increasing function satisfying q(0) = 0 and (3). Then,

the inequality a
(X )

t̂
(xt̂+1) ≤ ϵPF + q(ϵΩ + st) holds for

any t ≥ 0 and some t̂ ≤ t, where Cm and st are given
by Theorem 4.2. Therefore, the algorithm terminates
after at most T iterations, where T is the smallest pos-
itive integer satisfying ϵPF + q(ϵΩ + sT ) ≤ ϵ.

Note that for Theorem 4.5, the integer T satisfying
the theorem’s last inequality does not always exist.
However, the left hand side in this inequality is merely

an upper bound of a
(X )

t̂
(xt̂+1). Thus, in some cases

the actual value of a
(X )

t̂
(xt̂+1) satisfies a

(X )

t̂
(xt̂+1) ≤ ϵ

and the stopping condition is satisfied.

5 NUMERICAL EXPERIMENTS

In this section, we confirm the performance of the
proposed method using synthetic functions and real-
world docking simulations. For all experiments, we
used Gaussian kernels and GP models. Experimen-
tal details and additional experiments are described in
Appendix C.

5.1 Synthetic Function

We confirm the performance of the proposed method
through synthetic functions. Although the proposed
method is constructed under the presence of IU, the al-
gorithm itself can be applied even when there is no IU.
Therefore, in the synthetic function experiments, we
compared the proposed method with existing MOBO
methods without (with) IU.

In the experiments under no IU, the input space X
was a set of grid points divided into [−5, 5] × [−5, 5]
equally spaced at 50 × 50. For black-box functions,
we used Booth, Matyas, Himmelblau’s and McCormic
benchmark functions. We performed a two-objective
optimization using the first two and a four-objective
optimization using all four. As evaluation indicators,
we used the simple Pareto hypervolume (PHV) re-

gret, which is a commonly used indicator in the con-
text of MOBOs, and inference discrepancy. As AFs,
we considered the random sampling (Random), uncer-
tainty sampling (US), EHVI (Emmerich and Klinken-
berg, 2008), EMmI (Svenson and Santner, 2010), ePAL
(Zuluaga et al., 2016), ParEGO (Knowles, 2006),
PFES (Suzuki et al., 2020) and proposed AF (Pro-
posed). We also compared the commonly used evo-
lutionary computation-based method NSGA-II (Deb
et al., 2002). Under this setup, one initial point was
taken at random and the algorithm was run until the
number of iterations reached 300. This simulation re-
peated 100 times and the average simple PHV regret
and inference discrepancy at each iteration were calcu-
lated. From the top of Fig. 2, it can be confirmed that
the performance at the end of 300 iterations is com-
parable or better than the existing methods except for
the simple PHV regret in the four-objective setting. In
particular, the proposed method significantly outper-
forms other methods for inference discrepancy in the
four-objective setting after about 180 iterations.

In the experiment under IU, the input space X × Ω
was a compact subset, and we considered infinite and
finite set settings. We set X × Ω = [0.25, 0.75]2 ×
[−0.25, 0.25]2 in the infinite set setting. In the finite
setting, X × Ω was a set of grid points divided into
[−1, 1]3 × [−1, 1]3 equally spaced at 73 × 73 = 117649.
The black-box function in the infinite setting was used
the ZDT1 benchmark function ZDT1(a) ∈ R2 with a
two-dimensional input a, and the environmental vari-
able w was used as the input noise for x. Thus,
our considered black-box function was defined by
ZDT1(x+w). We assumed w was the uniform distri-
bution on Ω and used the Bayes risk E[ZDT1(x+w)].
On the other hand, the black-box function in the finite
setting was used the six-dimensional Rosenbrock func-
tion f(w1, w2, x1, x2, x3, w3) ∈ R. We assume that w
was a discretized normal distribution on Ω. As risk
measures, we used the expectation and negative stan-
dard deviation. As comparison methods, we consid-
ered the BQ-based method (Qing et al., 2023), MVA-
based method (Iwazaki et al., 2021b) and SABBa-
based method (Rivier and Congedo, 2022). Further-
more, four naive methods, Naive-random, Naive-US,
Naive-EMmI and Naive-ePAL, were used for compari-
son. In the naive methods, w was generated five times
from the same x in one iteration t, and the sample
mean and the negative square root of the sample vari-
ance of the black-box function values were calculated.
By using x and these values, the experiments in naive
four methods were performed as a usual MOBO. The
name after “Naive-” means the name of the used AF.
We used the inference discrepancy as the evaluation in-
dicator. Under this setup, one initial point was taken
at random and the algorithm was run until the num-
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Figure 2: Comparison with MOBO methods. Solid (and dashed) lines are averages of the evaluation measures
(simple PHV regret and inference discrepancy) for each iteration in 100, 920 or 429 trials. Each error bar length
represents the six times the standard error. In the top row, the left two columns represent the two-objective
setup and the right two columns represent the four-objective setup. In the bottom row, the left two columns
respectively represent the ZDT1 and six-dimensional Rosenbrock setups in the synthetic experiment, and the
right two columns respectively represent WC and WCBR setups in the real-world docking simulation.

ber of iterations reached 150 and 500. This simulation
repeated 100 times and the average inference discrep-
ancy at each iteration were calculated. From the bot-
tom of Fig. 2, it can be confirmed that the proposed
method achieves the same or better performance as
the existing methods. In particular, the results are
comparable to those of BQ, which is a limited method
applicable only to the Bayes risk case.

5.2 Real-world Docking Simulation

In this subsection, we applied the proposed method
to docking simulations for real-world chemical com-
pounds. The purpose of this simulation is to eval-
uate the inhibitory performance of candidate com-
pounds on two specific sites of the target protein
“KAT1”, the structure of this protein is available at
https://pdbj.org/mine/summary/6v1x, and to enu-
merate the Pareto optimal compounds in the presence
of structural uncertainty (isomers). We used the soft-
ware suite Schrödinger (Schrödinger LLC, 2021) to cal-
culate docking scores and explanatory variables in the
compounds. Each compound Ci may have an isomer
Sij , and in this simulation the maximum number of
isomers was limited to 10. For each i, we computed
a 51-dimensional isomer-independent design variables
xi and a 51-dimensional environment variablewij that
can vary with isomers, using explanatory variables of

(Ci, Sij). Thus, the black-box functions, the docking
scores in two sites, can be expressed as f (1)(xi,wij)
and f (2)(xi,wij), respectively. We emphasize that the
number of isomers Ni was not same for all i. As risk
measures for Ci, we considered the worst-case (WC)
and worst-case Bayes risk (WCBR). For each com-
pound, WC is defined as the minimum docking scores,
and WCBR is defined as the minimum weighted aver-
age of docking scores in predefined candidate weights.
The total number of compounds was 429, and the total
number of data including isomers was 920. We com-
pared the SABBa, Proposed and naive four methods.
In the SABBa method, we considered two different ac-
curacy parameter settings, a high accuracy model and
a low accuracy model. In addition, in the naive four
methods, we calculated docking scores for all isomers
in the compound Ci at iteration t and determined the
exact risk values. In this experiment, the observation
noise was zero. Under this setup, one initial point was
taken from the data and the algorithm was run un-
til the number of iterations reached 500. In SABBa
and Proposed, by changing the initial point, this sim-
ulation repeated 920 times. Similarly, in naive meth-
ods, by changing the initial compound, this simulation
repeated 429 times. We calculated the average infer-
ence discrepancy at each iteration. From the bottom
in Fig.2, we can confirm that the proposed method is
superior to other methods. In addition, only the pro-
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Table 2: Computational time (second) for obtaining (xt+1,wt+1) in the proposed method
Experimental setup Average Standard deviation

Two-objective optimization without IU 0.93 0.60
Four-objective optimization without IU 2.03 1.26

ZDT1 with IU 5.60 2.25
6D-Rosenbrock with IU 0.73 0.16
Docking simulation (WC) 0.0161 0.0030

Docking simulation (WCBR) 0.0236 0.0089

posed method correctly identifies the true PF at the
end of 500 iterations for all risk measures at all 920 dif-
ferent initial points. Specifically, after 425 iterations
for WC and 465 iterations for WCBR, the true PF is
identified for all 920 different initial points. Therefore,
compared to the exhaustive search, the number of iter-
ations required to find the true PF can be reduced to
about half. Thus, the sample efficient decision making
was achieved in our motivating example.

5.3 Computational Time Experiments

Here, we measured the computational time required
to obtain (xt+1,wt+1) for each iteration t in the pro-
posed method, where the time required for modeling
GP is not included in the measurement time because
all MOBO methods, including the comparison meth-
ods, perform GP modeling. We measured the com-
putational time for each iteration in a single trial and
calculated its average and standard deviation for the
iterations in the experiments performed in Section 5.1
and 5.2. From Table 2, the computational time for AFs
in the proposed method is acceptable even in a 6D-
Rosenbrock setting with more than 100,000 candidate
points. In contrast, the reason why the computational
time in the ZDT1 setting is larger than the others is
due to the finite approximation of PF by the NSGA-II
algorithm. Therefore, the computational time can be
reduced if the population size np or number of gener-
ations ng is reduced. Nevertheless, the computational
time is acceptable even for our experimental setup,
np = ng = 50.

6 CONCLUSION

In this study, we proposed the efficient MOBO method
for identifying the PF defined by general risk mea-
sures. The proposed method can work with (and with-
out) IU and has theoretical guarantees. In various risk
measures, we proved that the algorithm can return an
arbitrary-accurate solution with high probability in a
finite number of iterations. Through numerical exper-
iments, we confirmed that the proposed method out-
performs existing methods. Moreover, from the real-

world docking simulation that is our motivating exam-
ple, we confirmed that by using the proposed method,
the number of function evaluations required to iden-
tify the true PF has been successfully reduced to about
half that of the exhaustive search.

The proposed method has two limitations. First, al-
though we have given a theoretical analysis of how
approximation errors in the proposed method affect
the final results, we have not mentioned an estimate
of the degree of approximation errors in the first place.
Thus, as a practical matter, it is difficult to estimate
the final accuracy of the proposed method consider-
ing the approximation error in advance. Second, the
proposed method does not consider constraint condi-
tions. In actual applications, Pareto optimization un-
der some constraints is often considered. We can apply
the proposed method to this setting directly by design-
ing a HPBB for the constraint function. However, it is
not obvious whether theoretical results derived in this
study can be derived in the same way in such a case.
The above problems are left for future work.
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Appendix

This appendix describes the extensions of the proposed method, proofs of all theoretical results, and details of
experiments and additional experiments. Note that the symbols used in this appendix are independent of the
main body.

A EXTENSION

In this section, we extend the proposed method. We consider the following four extensions:

• The number of black-box functions and the number of risk measures are different.

• The true noise distribution follows some heteroscedastic sub-Gaussian distribution.

• The distribution of w depends on the design variable x.

• We consider the uncontrollable setting, that is, w cannot be controlled even during optimization.

A.1 Extension of Problem Setup

Preliminary Let f (m) : X × Ω → R be an expensive-to-evaluate black-box function, where m ∈ [Mf ] and
Mf ≥ 1. Assume that the set of design variables X and set of environmental variables Ω are compact and
convex. For each design variable x ∈ X , the environmental variable w follows some probability distribution
Pw(x), which depends on x, and takes values in a compact and convex subset Ωx ⊂ Ω. For each iteration
t, input (xt,wt) ∈ X × Ω, and m ∈ [Mf ], the value of the black-box function f (m) is observed with noise as

y
(m)
t = f (m)(xt,wt) + η(m)(xt,wt), where η(m)(xt,wt) is zero-mean noise independent across different iteration
t, m ∈ [Mf ] and wt. In this section, we assume that η(m)(xt,wt) is a sub-Gaussian heteroscedastic noise that
depends on (x,w,m).

Definition A.1. Let η be a zero-mean real-valued random variable. Then, η is τ -sub-Gaussian if there exists a
positive constant τ2 such that

∀a ∈ R, E[eaη] ≤ exp

(
a2τ2

2

)
.

Commonly used distributions such as Gaussian, Bernoulli and uniform are sub-Gaussian (Vershynin, 2018). We
assume that the random variables {wt, η

(m)(xt,wt)}t≥1,m∈[Mf ] are mutually independent. For w, we consider

the both simulator and uncontrollable settings. Let ρ(m,l)(f (m)(x,w)) ≡ F (m,l)(x) be a risk measure, where
l ∈ {1, . . . , Lm} and L1 + · · ·+ LMf

≡ L ≥ 2. The purpose of this study is to efficiently identify the PF defined

based on F (m,l)(x). For any x ∈ X and E ⊂ X , let

F (x) = (F (1,1)(x), . . . , F (1,L1)(x), . . . , F (Mf ,1)(x), . . . , F (Mf ,LMf
)(x))

and F (E) = {F (x) | x ∈ E}. Then, for any B ⊂ RL, the dominated region Dom(B) and PF Par(B) of B are
defined as

Dom(B) = {s ∈ RL |∃ s′ ∈ B s.t. s ≤ s′}, Par(B) = ∂(Dom(B)).

Let Z∗ be our target PF. Then, Z∗ can be expressed as

Z∗ = Par(F (X )).

Regularity Assumption We introduce a regularity assumption for f (m). For each m ∈ [Mf ], let k(m) :
(X × Ω) × (X × Ω) → R be a positive-definite kernel, where k(m)((x,w), (x,w)) ≤ 1 for any (x,w) ∈ X × Ω.
Also let H(k(m)) be a reproducing kernel Hilbert space (RKHS) corresponding to k(m). We assume that f (m) is
the element of H(k(m)) and has the bounded Hilbert norm ∥f (m)∥H(k(m)) ≤ Bm < ∞. Moreover, we assume that

the noise η(m)(x,w) is τ(x,w,m)-sub-Gaussian, where τ(x,w,m) ≡ τx,w,m satisfies τx,w,m ∈ [τ , τ̄ ] for some
τ̄ ≥ τ > 0.
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Gaussian Process Model We use a GP model for the black-box function f (m). Let λ1, . . . , λMf
be positive

numbers. We assume the GP GP(0, k̃((x,w), (x′,w′))) as the prior of f (m), where k̃((x,w), (x′,w′)) is given by

k̃((x,w), (x′,w′)) =
1

λm
k(m)((x,w), (x′,w′)).

Furthermore, we consider the zero-mean normal distribution with variance τ2x,w,m, as the error distribution in

the GP model. For m ∈ [Mf ], given a dataset {(xi,wi, y
(m)
i )}ti=1, where t is the number of queried instances,

the posterior of f (m) is a GP. Then, its posterior mean µ̃
(m)
t (x,w) and posterior variance σ̃

(m)2
t (x,w) can be

calculated as follows:

µ̃
(m)
t (x,w) = k̃

(m)
t (x,w)⊤(K̃

(m)
t +Σ

(m)
t )−1y

(m)
t ,

σ̃
(m)2
t (x,w) = k̃(m)((x,w), (x,w))− k̃

(m)
t (x,w)⊤(K̃

(m)
t +Σ

(m)
t )−1k̃

(m)
t (x,w),

where k̃
(m)
t (x,w) is the t-dimensional vector, whose j-th element is k̃(m)((x,w), (xj ,wj)), y

(m)
t =

(y
(m)
1 , . . . , y

(m)
t )⊤, Σ

(m)
t is the t× t diagonal matrix whose (j, j)-th element is τ2xt,wt,m, K̃

(m)
t is the t× t matrix

whose (j, k)-th element is k̃(m)((xj ,wj), (xk,wk)), with a superscript ⊤ indicating the transpose of vectors or
matrices.

A.2 Extension of Proposed Method

Credible Interval and Bounding Box For each input (x,w) ∈ X × Ω and t ≥ 1, the CI of f (m)(x,w) is

denoted by Q̃
(f(m))
t−1 (x,w) = [l̃

(f(m))
t−1 (x,w), ũ

(f(m))
t−1 (x,w)], where l̃

(f(m))
t−1 (x,w) and ũ

(f(m))
t−1 (x,w) are given by

l̃
(f(m))
t−1 (x,w) = µ̃

(m)
t−1(x,w)− β̃

1/2
m,tσ̃

(m)
t−1(x,w),

ũ
(f(m))
t−1 (x,w) = µ̃

(m)
t−1(x,w) + β̃

1/2
m,tσ̃

(m)
t−1(x,w).

For x ∈ X , t ≥ 1 and m ∈ [Mf ], we define the set of functions G̃
(m)
t−1(x) as

G̃
(m)
t−1(x) = {g(x,w) |∀ w ∈ Ω, g(x,w) ∈ Q̃

(f(m))
t−1 (x,w)}.

Let Q̃
(F (m,l))
t−1 (x) = [lcb

(m,l)
t−1 (x),ucb

(m,l)
t−1 (x)] be a CI of F (m,l)(x). Also let B̃t−1(x) =

∏Mf

m=1

∏Lm

l=1 Q̃
(F (m,l))
t−1 (x)

be a bounding box of F (x). Then, when Q̃
(f(m))
t−1 (x,w) is HPCI, a sufficient condition for Q

(F (m,l))
t−1 (x) to also be

HPCI is given as follows:

∀g(x,w) ∈ G̃
(m)
t−1(x), lcb

(m,l)
t−1 (x) ≤ ρ(m,l)(g(x,w)) ≤ ucb

(m,l)
t−1 (x). (4)

If (4) holds, then B̃t−1(x) is also a HPBB. Next, we provide computation methods for lcb
(m,l)
t−1 (x) and ucb

(m,l)
t−1 (x).

First, we provide a generalized method for lcb
(m,l)
t−1 (x) and ucb

(m,l)
t−1 (x) to satisfy (4). The lcb

(m,l)
t−1 (x) and

ucb
(m,l)
t−1 (x) by the generalized method are calculated with

lcb
(m,l)
t−1 (x) = inf

g(x,w)∈G̃
(m)
t−1(x)

ρ(m,l)(g(x,w)),

ucb
(m)
t−1(x) = sup

g(x,w)∈G̃
(m)
t−1(x)

ρ(m,l)(g(x,w)).

The condition (4) holds by using the generalized method, the inf and sup calculations in the generalized method

are not always easy. Therefore, we give additional two computation methods for lcb
(m,l)
t−1 (x) and ucb

(m,l)
t−1 (x),

the decomposition method and sampling method. Let ρ(·) be a risk measure. In many cases, ρ(·) can be
decomposed as ρ(·) = ρ̃ ◦h(·), where ρ̃(·) and h(·) are respectively monotonic and tractable functions. The basic

idea of the decomposition method is to compute the infimum and supremum of h(g(x,w)) on G̃
(m)
t−1(x), and then

to compute lcb
(m,l)
t−1 (x) and ucb

(m,l)
t−1 (x) by taking ρ̃(·) to these. Calculated values for several risk measures are
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Table 3: The values of lcb
(m)
t (x) and ucb

(m)
t (x) for commonly used risk measures

Risk measure Definition lcb
(m)
t (x) ucb

(m)
t (x)

Bayes risk E[f (m)
x,w] E[l(m)

t,x,w] E[u(m)
t,x,w]

Worst-case infw∈Ω f
(m)
x,w infw∈Ω l

(m)
t,x,w infw∈Ω u

(m)
t,x,w

Best-case supw∈Ω f
(m)
x,w supw∈Ω l

(m)
t,x,w supw∈Ω u

(m)
t,x,w

α-value-at-risk inf{b ∈ R | α ≤ P(f (m)
x,w ≤ b)} inf{b ∈ R | α ≤ P(l(m)

t,x,w ≤ b)} inf{b ∈ R | α ≤ P(u(m)
t,x,w ≤ b)}

α-conditional value-at-risk E[f (m)
x,w|f (m)

x,w ≤ vf(m)(x;α)] 1
α

∫ α

0
v
l
(m)
t

(x;α′)dα′ 1
α

∫ α

0
v
u
(m)
t

(x;α′)dα′

Mean absolute deviation E[|f (m)
x,w − E[f (m)

x,w]|] E[min{|ľ(m)
t,x,w|, |ǔ(m)

t,x,w|} − STR(ľ
(m)
t,x,w, ǔ

(m)
t,x,w)] E[max{|ľ(m)

t,x,w|, |ǔ(m)
t,x,w|}]

Standard deviation

√
E[|f (m)

x,w − E[f (m)
x,w]|2]

√
E[min{|ľ(m)

t,x,w|2, |ǔ(m)
t,x,w|2} − STR2(ľ

(m)
t,x,w, ǔ

(m)
t,x,w)]

√
E[max{|ľ(m)

t,x,w|2, |ǔ(m)
t,x,w|2}]

Variance E[|f (m)
x,w − E[f (m)

x,w]|2] E[min{|ľ(m)
t,x,w|2, |ǔ(m)

t,x,w|2} − STR2(ľ
(m)
t,x,w, ǔ

(m)
t,x,w)] E[max{|ľ(m)

t,x,w|2, |ǔ(m)
t,x,w|2}]

Distributionally robust infP∈A F (m)(x;P ) infP∈A lcb
(m)
t (x;P ) infP∈A ucb

(m)
t (x;P )

Monotonic Lipschitz map M(F (m)(x)) min{M(lcb
(m)
t (x)),M(ucb

(m)
t (x))} max{M(lcb

(m)
t (x)),M(ucb

(m)
t (x))}

Weighted sum α1F
(m1)(x) + α2F

(m2)(x) α1lcb
(m1)
t (x) + α2lcb

(m2)
t (x) α1ucb

(m1)
t (x) + α2ucb

(m2)
t (x)

Probabilistic threshold P(f (m)
x,w ≥ θ) P(l(m)

t,x,w ≥ θ) P(u(m)
t,x,w ≥ θ)

f
(m)
x,w ≡ f (m)(x,w), l

(m)
t,x,w ≡ l

(f(m))
t (x,w) , u

(m)
t,x,w ≡ u

(f(m))
t (x,w), vf(m)(x;α) ≡ inf{b ∈ R | P(f (m)

x,w ≤ b) ≥ α}
v
l
(m)
t

(x;α) ≡ inf{b ∈ R | P(l(m)
t,x,w ≤ b) ≥ α}, v

u
(m)
t

(x;α) ≡ inf{b ∈ R | P(u(m)
t,x,w ≤ b) ≥ α} , α ∈ (0, 1)

ľ
(m)
t,x,w ≡ l

(m)
t,x,w − E[u(m)

t,x,w] , ǔ
(m)
t,x,w ≡ u

(m)
t,x,w − E[l(m)

t,x,w] , STR(a, b) ≡ max{min{−a, b}, 0}
F (m)(x;P ): Risk measure F (m)(x) defined based on the distribution P

lcb
(m)
t (x;P ),ucb

(m)
t (x;P ): lcb

(m)
t (x) and ucb

(m)
t (x) for F (m)(x;P )

q(m)(a;F (m)): a function q(m)(a) for F (m)(x), does not depend on P
M(·): Monotonic Lipschitz continuous map with a Lipschitz constant K

α1, α2 ≥ 0
α-value-at-risk is the same meaning as α-quantile

given in Table 3, where we omit the notation ˜and l in the table for simplicity. Note that by combining several
risk measures such as the Bayes risk, standard deviation, monotonic Lipschitz map and weighted sum, we can
obtain the result for mixed risk measures such as 0.7F (m1)(x) − 0.3F (m2)(x), where F (m1)(x) and F (m2)(x)
are the Bayes risk and standard deviation, respectively. In the sampling method, we generate S sample paths

f
(m)
1 (x,w), . . . , f

(m)
S (x,w) of f (m)(x,w) independently from the GP posterior and compute

lcb
(m,l)
t−1 (x) = min

j∈[S],f
(m)
j (x,w)∈G̃

(m)
t−1(x)

ρ(m,l)(f
(m)
j (x,w)),

ucb
(m,l)
t−1 (x) = max

j∈[S],f
(m)
j (x,w)∈G̃

(m)
t−1(x)

ρ(m,l)(f
(m)
j (x,w)).

Pareto Front Estimation For any input x ∈ X and subset E ⊂ X , we define LCBt−1(x), UCBt−1(x) and
LCBt−1(E) as

LCBt−1(x) = (lcb
(1,1)
t−1 (x), . . . , lcb

(Mf ,LMf
)

t−1 (x)),UCBt−1(x) = (ucb
(1,1)
t−1 (x), . . . , ucb

(Mf ,LMf
)

t−1 (x)),

LCBt−1(E) = {LCBt−1(x) | x ∈ E}.

The estimated Pareto solution set Π̂t−1 ⊂ X for the design variables is then defined as follows:

Π̂t−1 = {x ∈ X | LCBt−1(x) ∈ Par(LCBt−1(X ))}.

Here, in order to actually compute Π̂t−1, we need to compute the PF defined by LCBt−1(x). However, if X is
an infinite set, then Π̂t−1 may also be an infinite set. In this case, since the exact calculation of Π̂t−1 is difficult,
it is necessary to make a finite approximation using an approximation solver such as NSGA-II (Deb et al., 2002).

Acquisition Function We propose an AF for determining the next point to be evaluated. We define AF

a
(X )
t (x) for x ∈ X as

a
(X )
t (x) = dist(UCBt(x),Dom(LCBt(Π̂t)))

Then, the next design variable, xt+1, to be evaluated is selected by

xt+1 = argmax
x∈X

a
(X )
t (x).
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Hence, the value of a
(X )
t (xt+1) is equal to the following maximin distance:

a
(X )
t (xt+1) = max

x∈X
min

b∈Dom(LCBt(Π̂t))
d∞(UCBt(x), b).

The value of a
(X )
t (x) can be computed analytically using the following lemma when Π̂t is finite:

Lemma A.1. Let UCBt(x) = (u1, . . . , uL) and LCBt(Π̂t) = {(l(i)1 , . . . , l
(i)
L ) | 1 ≤ i ≤ k}. Then, a

(X )
t (x) can

be computed by

a
(X )
t (x) = max{ãt(x), 0}, ãt(x) = min

1≤i≤k
max{u1 − l

(i)
1 , . . . , uL − l

(i)
L }.

Next, we consider the simulator setting. In this case, we have to select the environment variable wt+1. Based
on the fact that many risk measures including Bayes risk satisfy

∥UCBt(xt+1)− LCBt(xt+1)∥∞ ≤ q

 max
w∈Ωxt+1

Mf∑
m=1

2β
1/2
m,t+1σ̃

(m)
t (xt+1,w)

 , (5)

where q(·) : [0,∞) → [0,∞) is a strictly increasing function defined by risk measures and satisfies q(0) = 0, we
choose wt+1 as follows:

wt+1 = argmax
w∈Ωxt+1

a
(Ωxt+1

)

t (w), a
(Ωxt+1

)

t (w) =

Mf∑
m=1

2β
1/2
m,t+1σ̃

(m)
t (xt+1,w).

On the other hand, in the uncontrollable setting, since we cannot control w, wt+1 is defined as the sample from
Ωx.

A.3 Stopping Condition

We describe the stopping conditions of the proposed algorithm. Let ϵ > 0 be a predetermined desired accuracy

parameter. Then the algorithm is terminated if a
(X )
t (xt+1) ≤ ϵ is satisfied. The pseudocode of the proposed

algorithm is described in Algorithm 2.

A.4 Theoretical Analysis

In this subsection, we give the theorems for the accuracy and termination of the proposed algorithm. First, we
quantify the goodness of the estimated Π̂t. If Π̂t is a good estimate, the following two indicators defined by Π̂t

should be small:

I
(i)
t = max

y∈Z∗
dist(y,Par(F (Π̂t))),

I
(ii)
t = max

y∈F (Π̂t)
dist(y, Z∗).

Using these, we define the inference discrepancy It = max{I(i)t , I
(ii)
t } for Π̂t as the goodness measure. Next, in

order to show the theoretical validity of the proposed algorithm, we introduce the maximum information gain

κ̃
(m)
t . The maximum information gain κ̃

(m)
T under the heteroscedastic sub-Gaussian setting can be expressed as

follows (Makarova et al., 2021):

κ̃
(m)
T = max

(x1,w1),...,(xT ,wT )

1

2

T∑
t=1

log

(
1 +

σ̃
(m)2
t−1 (xt,wt)

τ2xt,wt,m

)
.

The order of κ̃
(m)
T with respect to widely used kernels such as linear and squared exponential kernels is derived

by Makarova et al. (2021). Then, the following theorem holds:



Yu Inatsu, Shion Takeno, Hiroyuki Hanada, Kazuki Iwata, Ichiro Takeuchi

Algorithm 2 Bounding box-based MOBO of general risk measures under extended problem setup

Require: GP priors GP(0, k(m)), tradeoff parameters {βm,t}t≥0, accuracy parameter ϵ > 0, Mf ≥ 1, Lm ≥ 1,
L ≥ 2
for t = 0, 1, 2, . . . do

Compute Q̃
(f(m))
t (x,w) for each (x,w) ∈ X × Ω

Compute Q̃
(F (m,l))
t (x) for each x ∈ X by the generalized, decomposition or sampling method

Compute B̃t(x) =
∏Mf

m=1

∏Lm

l=1 Q
(F (m.l))
t (x) for each x ∈ X

Estimate Π̂t by B̃t(x)

Select the next evaluation point xt+1 by a
(X )
t (x)

if a
(X )
t (xt+1) ≤ ϵ then

break
end if
if simulator setting then

Select the next evaluation point wt+1 by a
(Ωxt+1

)

t (w)
else {uncontrollable setting}
wt+1 is generated from Pw(xt+1)

end if
Observe y

(m)
t+1 = f (m)(xt+1,wt+1) + η(m)(xt+1,wt+1) at the point (xt+1,wt+1)

Update GPs by adding observed points
end for

Ensure: Return Π̂t as the estimated set of design variables

Lemma A.2 (Lemma 7 in Kirschner and Krause (2018)). Suppose that the regularity assumption holds. Let
δ ∈ (0, 1), λ1, . . . , λMf

> 0 and define

β̃
1/2
m,t = Bm

√
λm +

√√√√2 log

(
det(λmΣ

(m)
t + K̃

(m)
t )1/2

M−1
f δdet(λmΣ

(m)
t )1/2

)
.

Then, with probability at least 1− δ, the following inequality holds for any t ≥ 1, m ∈ [Mf ] and (x,w) ∈ X ×Ω:

|f (m)(x,w)− µ̃
(m)
t−1(x,w)| ≤ β̃

1/2
m,tσ̃

(m)
t−1(x,w).

Note that from the definition of the maximum information gain, when λm = 1, Mf = M ≥ 2, Lm = 1 and

τ2x,w,m = ς2m and the true noise distribution is Gaussian, the inequality β̃
1/2
m,t ≤ β

1/2
m,t holds, where β

1/2
m,t is given

by Lemma 4.1. Using this, we give the theorems for the accuracy, termination, q(a) and approximation errors
under both the simulator and uncontrollable settings.

Theorem A.1 (Simulator and uncontrollable settings). Suppose that the assumption of Lemma A.2 and the

inequality (4) hold. Let t ≥ 0, m ∈ [Mf ], δ ∈ (0, 1), and let β̃
1/2
m,t+1 be defined as in Lemma A.2. In addition,

let ϵ > 0 be a predetermined desired accuracy parameter. Then, with probability at least 1 − δ, the inequality

It ≤ a
(X )
t (xt+1) holds for any t ≥ 0 and xt+1. Therefore, if the stopping condition satisfies at T iterations, the

inference discrepancy IT satisfies IT ≤ ϵ with probability at least 1− δ.

Theorem A.2 (Simulator setting). Suppose that the assumption in Theorem A.1 holds. Let q : [0,∞) → [0,∞)
be a strictly increasing function satisfying q(0) = 0 and (5). Also let

st =

√∑Mf

m=1 C̃mβ̃m,t+1κ̃
(m)
t+1

t+ 1
,

where C̃m =
8Mf

log(1+λ−1
m τ−2)

. Then, the inequality a
(X )

t̂
(xt̂+1) ≤ q(st) holds for any t ≥ 0 and some t̂ ≤ t.

Therefore, Algorithm 2 terminates after at most T iterations, where T is the smallest positive integer satisfying
q(sT ) ≤ ϵ.
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Theorem A.3 (Simulator and uncontrollable settings). Suppose that the assumption in Theorem A.1 holds.
Also assume that there exist strictly increasing functions q(m,l) : [0,∞) → [0,∞) satisfying q(m,l)(0) = 0 and

|ucb(m,l)
t (xt+1)− lcb

(m,l)
t (xt+1)| ≤ q(m,l)(s̃t)

for any t ≥ 0, m ∈ [Mf ], l ∈ [Lm] and xt+1 ∈ X , where

s̃t = max
w∈Ωxt+1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w).

Then, q(a) ≡ maxm∈[Mf ],l∈[Lm] q
(m,l)(a) is the strictly increasing function and satisfies q(0) = 0 and (5).

Specific forms of q(m,l)(a) for commonly used risk measures are described in Table 4. For simplicity, we omitted
l in the table. From Table 4, the probabilistic threshold measure does not satisfy the inequality in Theorem

A.3. For example, if f (m)(x,w) = θ, then with high probability ucb
(m)
t (xt+1) and lcb

(m)
t (xt+1) are respectively

close to one and zero even when s̃t is close to zero. Iwazaki et al. (2021a); Inatsu et al. (2021) proposed BO
methods for the (distributionally robust) probabilistic threshold measure and confronted the same problem.
They solved this problem by assuming the condition that the probability of a black-box function accumulating in

the neighborhood of the threshold is small, and derived ucb
(m)
t (xt+1)− lcb

(m)
t (xt+1) ≤ q̃(s̃t)+ ξ, where q̃(a) = 0

if a ≤ c and otherwise q̃(a) = 1, and c is some positive constant.

Next, we consider the approximation error setting. Let ϵlcb, ϵucb, ϵPF, ϵX , ϵΩ be non-negative error parameters
that represent the errors in these approximations, respectively. We consider the case that the following four error

inequalities hold for any t ≥ 0, m ∈ [Mf ], l ∈ [Lm], x,xt+1 ∈ X , wt+1 ∈ Ωxt+1
and g(x,w) ∈ G̃

(m)
t (x):

lcb
(m,l)
t (x)− ϵlcb ≤ ρ(m,l)(g(x,w)) ≤ ucb

(m,l)
t (x) + ϵucb, (6)

max
y∈Par(LCBt(Π̂t))

dist(y,Par(LCBt(X ))) ≤ ϵPF, (7)

max
x∈X

a
(X )
t (x)− a

(X )
t (xt+1) ≤ ϵX , (8)

max
w∈Ωxt+1

a
(Ωxt+1

)

t (w)− a
(Ωxt+1

)

t (wt+1) ≤ ϵΩ. (9)

Theorem A.4 (Simulator setting). Suppose that the assumption in Lemma A.2 holds. Let t ≥ 0, m ∈ [Mf ],

l ∈ [Lm], δ ∈ (0, 1), and let β̃
1/2
m,t+1 be defined as in Lemma A.2. In addition, let ϵ > 0 be a predetermined

desired accuracy parameter. Moreover, let ϵlcb, ϵucb, ϵPF, ϵX , ϵΩ be non-negative error parameters satisfying (6)–

(9). Then, with probability at least 1− δ, the inequality It ≤ a
(X )
t (xt+1) + ϵlcb + ϵucb + ϵX holds for any t ≥ 0

and xt+1. Therefore, if the stopping condition satisfies at T iterations, the inference discrepancy IT satisfies
IT ≤ ϵ+ ϵlcb + ϵucb + ϵX with probability at least 1− δ.

Theorem A.5 (Simulator setting). Suppose that the assumption in Theorem A.4 holds. Let q : [0,∞) → [0,∞)

be a strictly increasing function satisfying q(0) = 0 and (5). Then, the inequality a
(X )

t̂
(xt̂+1) ≤ ϵPF + q(ϵΩ + st)

holds for any t ≥ 0 and some t̂ ≤ t, where st is given by Theorem A.2. Therefore, Algorithm 2 terminates after
at most T iterations, where T is the smallest positive integer satisfying ϵPF + q(ϵΩ + sT ) ≤ ϵ.

Note that for Theorem A.5, the integer T satisfying the theorem’s last inequality does not always exist. However,

the left hand side in this inequality is merely an upper bound of a
(X )

t̂
(xt̂+1). Thus, in some cases the actual

value of a
(X )

t̂
(xt̂+1) satisfies a

(X )

t̂
(xt̂+1) ≤ ϵ and the stopping condition is satisfied.

Uncontrollable Setting We provide theoretical results for the uncontrollable setting. First, we define the
following two additional conditions:

Condition A.1. Let Nei(a; r) be an open ball with center a and radius r > 0, where the distance is taken with
respect to L1-distance. Then, for any x ∈ X , ŵ ∈ Ωx and ζ > 0, Pw(x) satisfies

PPw(x)[w ∈ Nei(ŵ; ζ)] > 0,

where PPw(x)[·] is the probability measure with respect to Pw(x).
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Condition A.2. Let Lσ be a positive number. Then, σ̃
(m)
t (x,w) is an Lσ-data-independent-Lipschitz continu-

ous, that is, the following inequality holds for any t ≥ 1, m ∈ [Mf ] and {(xi,wi)}ti=1:

∀(x,w), (x̃, w̃) ∈ X × Ω, |σ̃(m)
t (x,w)− σ̃

(m)
t (x̃, w̃)| ≤ Lσ∥(x⊤,w⊤)⊤ − (x̃⊤, w̃⊤)∥1

Condition A.1 implies that the support of Pw(x) is equal to Ωw. The assumption that the support of the
distribution of w and the the set of w are the same is also used in existing studies that conduct theoretical
analysis of BOs for risk measures under IU (Nguyen et al., 2021b; Inatsu et al., 2022). Similarly, Condition
A.2 is introduced by Kusakawa et al. (2022), and they proved that Condition A.2 holds if the linear, Gaussian
or Matérn (with parameter ν > 1) is used. Their proof is given under constant variance of the normal error
distribution for GP models, but similar arguments can be derived in the setting considered in this section. We
also define a maximal ζ-separated subset of Ωx:

Definition A.2. Let ζ be a positive number. Then, a subset S ⊂ Ωx is called the maximal ζ-separated subset
of Ωx, if the following holds:

1. For any w,w′ ∈ S, w ̸= w′ ⇒ ∥w −w′∥1 > ζ.

2. For any w ∈ Ωx, there exists w′ ∈ S such that ∥w −w′∥1 ≤ ζ.

Note that a compact set A has a maximal ζ-separated subset. Let S(Ωx; ζ) be a maximal ζ-separated subset of
Ωx. From Condition A.1 and compactness of Ωx, for any ζ > 0 and x ∈ X , the following holds:

min
ŵ∈S(Ωx;ζ)

PPw(x)[w ∈ Nei(ŵi; ζ/2)] ≡ px,ζ > 0. (10)

In contrast, (10) does not necessarily guarantee infx∈X px,ζ > 0. However, infx∈X px,ζ = 0 implies that given

ζ > 0 and for any ν > 0, there exist an open ball Nei(ŵ; ζ/2) and x̂ ∈ X such that PPw(x̂)[w ∈ Nei(ŵ; ζ/2)] < ν.
This means that the probability of w realizes to the open ball with radius ζ can be as small as desired. Thus,
to avoid this extreme case, we assume

inf
x∈X

px,ζ ≡ pζ > 0. (11)

Then, the following theorems hold:

Theorem A.6 (Uncontrollable setting). Suppose that the assumption in Theorem A.1 holds. Let q : [0,∞) →
[0,∞) be a strictly increasing function satisfying q(0) = 0 and (5). Assume that Condition A.1 and A.2 hold.

Let ζ1, . . . , ζt be positive numbers and pζ1 , . . . , pζt be numbers defined by (11). Let p̃ζi = min1≤j≤i pζj , β̃
1/2
t =

max1≤m≤Mf
β̃
1/2
m,t, κ̃t = max1≤m≤Mf

κ̃
(m)
t and define

ŝt =
2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t+ 1

t+1∑
i=1

ζi +
16J log(8J/δ)β̃

1/2
t+1p̃ζt+1

−1

t+ 1
+

√
Ĉp̃ζt+1

−2β̃t+1κ̃t+1

t+ 1
,

where J = Mf max{1, λ−1
1 , . . . , λ−1

Mf
}, Ĉ = Mf max1≤m≤Mf

Ĉm and Ĉm =
32Mf

log(1+λ−1
m τ−2)

. Then, with probability

at least 1−δ, the inequality a
(X )

t̂
(xt̂+1) ≤ q(ŝt) holds for any t ≥ 0 and some t̂ ≤ t. Therefore, with probability at

least 1− δ, Algorithm 2 terminates after at most T iterations, where T is the smallest positive integer satisfying
q(ŝT ) ≤ ϵ.

In Theorem A.6, the choice of ζ1, . . . , ζt is important and must be chosen that ŝt converges to 0. The simplest
example is the case where Ωx is a finite set and equal to Ω for all x ∈ X . In this case, noting that limζ→0 pζ > 0

and
∑∞

t=1 ζt = t−2 = π2/6, ŝt converges to 0 when β̃
1/2
t and β̃tκ̃t are sublinear. Inatsu et al. (2022) used the

finiteness assumption for set of the environmental variables in theoretical analysis for uncontrollable settings
under IU. On the other hand, Iwazaki et al. (2021b) considered the Bayes risk and standard deviation risk under
the uncontrollable setting, and they derived the similar theoretical result without the finiteness assumption.
Their approach can be used for moment-based risk measures such as Bayes risk, but not for quantile-based
methods such as the worst-case risk. As another example, when Ωx = Ω = [0, 1] and Pw follows the uniform
distribution on Ω, the orders of p̃ζt

−1 and
∑t

i=1 ζi are respectively log t and t/ log t if ζi = 1/(log i). Then, the
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Table 4: Specific forms of q(m)(a) for commonly used risk measures

Risk measure Definition q(m)(a)

Bayes risk E[f (m)
x,w] a

Worst-case infw∈Ω f
(m)
x,w a

Best-case supw∈Ω f
(m)
x,w a

α-value-at-risk inf{b ∈ R | α ≤ P(f (m)
x,w ≤ b)} a

α-conditional value-at-risk E[f (m)
x,w|f (m)

x,w ≤ vf(m)(x;α)] a

Mean absolute deviation E[|f (m)
x,w − E[f (m)

x,w]|] 2a

Standard deviation

√
E[|f (m)

x,w − E[f (m)
x,w]|2]

√
8Bma+ 5a2

Variance E[|f (m)
x,w − E[f (m)

x,w]|2] 8Bma+ 5a2

Distributionally robust infP∈A F (m)(x;P ) q(m)(a;F (m))

Monotonic Lipschitz map M(F (m)(x)) Kq(m)(a)

Weighted sum α1F
(m1)(x) + α2F

(m2)(x) α1q
(m1)(a) + α2q

(m2)(a)

Probabilistic threshold P(f (m)
x,w ≥ θ) -

f
(m)
x,w ≡ f (m)(x,w), vf(m)(x;α) ≡ inf{b ∈ R | P(f (m)

x,w ≤ b) ≥ α} , α ∈ (0, 1)

F (m)(x;P ): Risk measure F (m)(x) defined based on the distribution P
q(m)(a;F (m)): a function q(m)(a) for F (m)(x), does not depend on P

M(·): Monotonic Lipschitz continuous map with a Lipschitz constant K
α1, α2 ≥ 0

α-value-at-risk is the same meaning as α-quantile

dominant term of ŝt is the first term and its order is β̃
1/2
t . Recently, Takeno et al. (2023) has proposed a method

in which β̃t does not diverge to infinity by stochastically sampling β̃t under the assumption that the true black-
box function follows GP. Since their method is not an RKHS setting, nor is it a multi-objective optimization
setting, it is not clear whether it is applicable to our setting, but it is one direction to consider.

Theorem A.7 (Uncontrollable setting). Suppose that the assumption in Lemma A.2 holds. Let t ≥ 0, m ∈ [Mf ],

l ∈ [Lm], δ ∈ (0, 1), and let β̃
1/2
m,t+1 be defined as in Lemma A.2. In addition, let ϵ > 0 be a predetermined

desired accuracy parameter. Moreover, let ϵlcb, ϵucb, ϵPF, ϵX be non-negative error parameters satisfying (6)–(8).

Then, with probability at least 1 − δ, the inequality It ≤ a
(X )
t (xt+1) + ϵlcb + ϵucb + ϵX holds for any t ≥ 0

and xt+1. Therefore, if the stopping condition satisfies at T iterations, the inference discrepancy IT satisfies
IT ≤ ϵ+ ϵlcb + ϵucb + ϵX with probability at least 1− δ.

Theorem A.8 (Uncontrollable setting). Suppose that the assumptions in Theorem A.6 and Theorem A.7 holds.
Let q : [0,∞) → [0,∞) be a strictly increasing function satisfying q(0) = 0 and (5). Then, with probability

at least 1 − δ, the inequality a
(X )

t̂
(xt̂+1) ≤ ϵPF + q(ŝt) holds for any t ≥ 0 and some t̂ ≤ t, where ŝt is given

by Theorem A.6. Therefore, with probability at least 1− δ, Algorithm 2 terminates after at most T iterations,
where T is the smallest positive integer satisfying ϵPF + q(ŝT ) ≤ ϵ.

B PROOFS

In this section, we prove all theorems, lemmas and the results in Table 3 and 4.

B.1 Proof of Table 3 and 4

In this proof, we omit the notation ˜and (m) for simplicity. Let x ∈ X , w ∈ Ωx, t ≥ 0 and β
1/2
t+1 ≥ 0. Assume

that lt,x,w ≤ f(x,w) ≤ ut,x,w, where lt,x,w = µt(x,w)− β
1/2
t+1σt(x,w) and ut,x,w = µt(x,w) + β

1/2
t+1σt(x,w).

Bayes Risk Since w is a random variable, lt,x,w, ut,x,w and f(x,w) are also random variables. Hence, from
the monotonicity of expectation and lt,x,w ≤ f(x,w) ≤ ut,x,w, we have

lcbt(x) ≡ E[lt,x,w] ≤ E[f(x,w)] ≤ E[ut,x,w] ≡ ucbt(x).
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In addition, from the definition of lt,x,w and ut,x,w, we get

0 ≤ ucbt(x)− lcbt(x) = E[ut,x,w − lt,x,w] = E[2β1/2
t+1σt(x,w)] ≤ max

w∈Ωx

2β
1/2
t+1σt(x,w).

Worst-case From the definition of infimum, noting that lt,x,w ≤ f(x,w) ≤ ut,x,w, we obtain

lcbt(x) ≡ inf
w∈Ωx

lt,x,w ≤ inf
w∈Ωx

f(x,w) ≤ inf
w∈Ωx

ut,x,w ≡ ucbt(x).

Moreover, from the property of infimum, for any ϵ > 0, there exists ŵ ∈ Ωx such that lt,x,ŵ ≤ lcbt(x) + ϵ.
Therefore, noting that ucbt(x) ≤ ut,x,ŵ, we get

ucbt(x)− lcbt(x) ≤ ut,x,ŵ − lt,x,ŵ + ϵ = 2β
1/2
t+1σt(x, ŵ) + ϵ ≤ max

w∈Ωx

2β
1/2
t+1σt(x,w) + ϵ.

Since ϵ is an arbitrary positive number, we have

0 ≤ ucbt(x)− lcbt(x) ≤ max
w∈Ωx

2β
1/2
t+1σt(x,w).

Best-case From the definition of supremum, noting that lt,x,w ≤ f(x,w) ≤ ut,x,w, we obtain

lcbt(x) ≡ sup
w∈Ωx

lt,x,w ≤ sup
w∈Ωx

f(x,w) ≤ sup
w∈Ωx

ut,x,w ≡ ucbt(x).

Moreover, from the property of supremum, for any ϵ > 0, there exists ŵ ∈ Ωx such that ucbt(x) − ϵ ≤ ut,x,ŵ.
Therefore, noting that lcbt(x) ≥ lt,x,ŵ, we get

ucbt(x)− lcbt(x) ≤ ut,x,ŵ − lt,x,ŵ + ϵ = 2β
1/2
t+1σt(x, ŵ) + ϵ ≤ max

w∈Ωx

2β
1/2
t+1σt(x,w) + ϵ.

Since ϵ is an arbitrary positive number, we have

0 ≤ ucbt(x)− lcbt(x) ≤ max
w∈Ωx

2β
1/2
t+1σt(x,w).

α-value-at-risk Let α ∈ (0, 1). For any b ∈ R, f(x,w) ≤ ut,x,w implies that P(ut,x,w ≤ b) ≤ P(f(x,w) ≤ b).
Thus, letting ucbt(x) ≡ inf{b ∈ R | α ≤ P(ut,x,w ≤ b)}, we obtain

α ≤ P(ut,x,w ≤ ucbt(x)) ≤ P(f(x,w) ≤ ucbt(x)).

This implies that

inf{b ∈ R | α ≤ P(f(x,w) ≤ b)} ≤ ucbt(x).

By using the same argument, we get

lcbt(x) ≡ inf{b ∈ R | α ≤ P(lt,x,w ≤ b)} ≤ inf{b ∈ R | α ≤ P(f(x,w) ≤ b)}.

Furthermore, noting that the definition of lt,x,w and ut,x,w, we get

ut,x,w ≤ lt,x,w + max
w∈Ωx

2β
1/2
t+1σt(x,w).

Therefore, we have

0 ≤ ucbt(x)− lcbt(x) = inf{b ∈ R | α ≤ P(ut,x,w ≤ b)} − inf{b ∈ R | α ≤ P(lt,x,w ≤ b)}

≤ inf{b ∈ R | α ≤ P(lt,x,w + max
w∈Ωx

2β
1/2
t+1σt(x,w) ≤ b)} − inf{b ∈ R | α ≤ P(lt,x,w ≤ b)}

= lcbt(x) + max
w∈Ωx

2β
1/2
t+1σt(x,w)− lcbt(x) = max

w∈Ωx

2β
1/2
t+1σt(x,w).
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α-conditional value-at-risk Let α ∈ (0, 1). From Nguyen et al. (2021a), α-conditional value-at-risk for
f(x,w) can be written as follows:

1

α

∫ α

0

vf (x;α
′)dα′.

Thus, we have

lcbt(x) ≡
1

α

∫ α

0

vlt(x;α
′)dα′ ≤ 1

α

∫ α

0

vf (x;α
′)dα′ ≤ 1

α

∫ α

0

vut
(x;α′)dα′ ≡ ucbt(x).

In addition, noting that vut
(x;α′)− vlt(x;α

′) ≤ maxw∈Ωx 2β
1/2
t+1σt(x,w), we get

0 ≤ ucbt(x)− lcbt(x) =
1

α

∫ α

0

(vut
(x;α′)−vlt(x;α

′))dα′ ≤ 1

α

∫ α

0

max
w∈Ωx

2β
1/2
t+1σt(x,w)dα′ = max

w∈Ωx

2β
1/2
t+1σt(x,w).

Mean Absolute Deviation, Standard Deviation and Variance From lt,x,w ≤ f(x,w) ≤ ut,x,w, we get

−E[ut,x,w] ≤ −E[f(x,w)] ≤ −E[lt,x,w].

Hence, we have

ľt,x,w ≡ lt,x,w − E[ut,x,w] ≤ f(x,w)− E[f(x,w)] ≤ ut,x,w − E[lt,x,w] ≡ ǔt,x,w.

Therefore, we obtain
|f(x,w)− E[f(x,w)]| ≤ max{|ľt,x,w|, |ǔt,x,w|}.

Similarly, if ľt,x,w < 0 and ǔt,x,w > 0, then we have

|f(x,w)− E[f(x,w)]| ≥ 0.

On the other hand, if ľt,x,w ≥ 0 or ǔt,x,w ≤ 0, then we get

|f(x,w)− E[f(x,w)]| ≥ min{|ľt,x,w|, |ǔt,x,w|}.

Thus, by combining these, for any ľt,x,w and ǔt,x,w, we obtain

|f(x,w)− E[f(x,w)]| ≥ min{|ľt,x,w|, |ǔt,x,w|} −max{min{−ľt,x,w, ǔt,x,w}, 0}
≡ min{|ľt,x,w|, |ǔt,x,w|} − STR(ľt,x,w, ǔt,x,w).

Hence, we have

lcbt(x) ≡ E[min{|ľt,x,w|, |ǔt,x,w|} − STR(ľt,x,w, ǔt,x,w)] ≤ E[|f(x,w)− E[f(x,w)]|]
≤ E[max{|ľt,x,w|, |ǔt,x,w|}] ≡ ucbt(x).

Moreover, noting that

max{|ľt,x,w|, |ǔt,x,w|} − (min{|ľt,x,w|, |ǔt,x,w|} − STR(ľt,x,w, ǔt,x,w))

≤ ǔt,x,w − ľt,x,w = (ut,x,w − lt,x,w) + E[ut,x,w − lt,x,w]

= 2β
1/2
t+1σt(x,w) + E[2β1/2

t+1σt(x,w)] ≤ 2 max
w∈Ωx

2β
1/2
t+1σt(x,w),

we obtain
0 ≤ ucbt(x)− lcbt(x) ≤ E[2 max

w∈Ωx

2β
1/2
t+1σt(x,w)] = 2 max

w∈Ωx

2β
1/2
t+1σt(x,w).

Next, we prove the case of the standard deviation. By using the same argument as in the mean absolute deviation,
we get

min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w) ≤ |f(x,w)− E[f(x,w)]|2 ≤ max{|ľt,x,w|2, |ǔt,x,w|2}.
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Therefore, we have

lcbt(x) ≡
√

E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)]

≤
√
E[|f(x,w)− E[f(x,w)]|2] ≤

√
E[max{|ľt,x,w|2, |ǔt,x,w|2}] ≡ ucbt(x).

In addition, noting that
√
u−

√
v ≤

√
u− v for any u ≥ v ≥ 0, we obtain

0 ≤ ucbt(x)− lcbt(x) ≤
√
E[max{|ľt,x,w|2, |ǔt,x,w|2}]− E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)].

From Equation (17) of Appendix A.2 in Iwazaki et al. (2021b), we have

E[max{|ľt,x,w|2, |ǔt,x,w|2}]− E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)]

≤ 16Bβ
1/2
t+1E[σt(x,w)] + 20βt+1E[σ2

t (x,w)]

≤ 16Bβ
1/2
t+1 max

w∈Ωx

σt(x,w) + 20βt+1 max
w∈Ωx

σ2
t (x,w) = 8B max

w∈Ωx

2β
1/2
t+1σt(x,w) + 5

(
max
w∈Ωx

2β
1/2
t+1σt(x,w)

)2

.

Hence, we get

0 ≤ ucbt(x)− lcbt(x) ≤

√
8B max

w∈Ωx

2β
1/2
t+1σt(x,w) + 5

(
max
w∈Ωx

2β
1/2
t+1σt(x,w)

)2

.

Finally, we prove the case of the variance. By using the same argument as in the standard deviation, we get

lcbt(x) ≡ E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)]

≤ E[|f(x,w)− E[f(x,w)]|2] ≤ E[max{|ľt,x,w|2, |ǔt,x,w|2}] ≡ ucbt(x).

Furthermore, we obtain

0 ≤ ucbt(x)− lcbt(x) = E[max{|ľt,x,w|2, |ǔt,x,w|2}]− E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)]

≤ 16Bβ
1/2
t+1E[σt(x,w)] + 20βt+1E[σ2

t (x,w)]

≤ 16Bβ
1/2
t+1 max

w∈Ωx

σt(x,w) + 20βt+1 max
w∈Ωx

σ2
t (x,w)

= 8B max
w∈Ωx

2β
1/2
t+1σt(x,w) + 5

(
max
w∈Ωx

2β
1/2
t+1σt(x,w)

)2

.

Distributionally Robust Let P be a candidate distribution of Pw(x), and let A be a family of candidate
distributions. Also let F (x;P ), lcbt(x;P ) and ucbt(x;P ) be respectively risk measure, and its lower and upper
with respect to P . Define

F (x) ≡ inf
P∈A

F (x;P ), lcbt(x) ≡ inf
P∈A

lcbt(x;P ), ucbt(x) ≡ inf
P∈A

ucbt(x;P ).

From the property of infimum, for any ϵ > 0, there exists a distribution P̂ such that

ucbt(x; P̂ ) ≤ ucbt(x) + ϵ.

Hence, we get
F (x) ≤ F (x; P̂ ) ≤ ucbt(x; P̂ ) ≤ ucbt(x) + ϵ.

Since ϵ is an arbitrary positive number, we obtain

F (x) ≤ ucbt(x).

Similarly, we also get
lcbt(x) ≤ F (x).
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Furthermore, for any η > 0, there exists a distribution P̃ such that

lcbt(x; P̃ ) ≤ lcbt(x) + η.

Thus, we get

ucbt(x)− lcbt(x) ≤ ucbt(x; P̃ )− lcbt(x; P̃ ) + η ≤ q

(
max
w∈Ωx

2β
1/2
t+1σt(x,w);F

)
+ η.

Since η is an arbitrary positive number, we have

ucbt(x)− lcbt(x) ≤ q

(
max
w∈Ωx

2β
1/2
t+1σt(x,w);F

)
.

Monotone Lipschitz Map Let M be a K-Lipschitz map, and let F (x), lcbt(x) and ucbt(x) be respectively
risk measure, and its lower and upper. Then, from the monotonicity of M, we have

min{M(lcbt(x)),M(ucbt(x))} ≤ M(F (x)) ≤ max{M(lcbt(x)),M(ucbt(x))}.

In addition, using the Lipschitz continuity of M we get

0 ≤ max{M(lcbt(x)),M(ucbt(x))} −min{M(lcbt(x)),M(ucbt(x))}

≤ |M(lcbt(x))−M(ucbt(x))| ≤ K|ucbt(x)− lcbt(x)| ≤ Kq

(
max
w∈Ωx

2β
1/2
t+1σt(x,w)

)
.

Weighted Sum Let α1, α2 ≥ 0, and let Fi(x), lcbt,i(x) and ucbt,i(x) be respectively risk measure, and its
lower and upper with i = 1, 2. Then, noting that α1, α2 ≥ 0, we obtain

lcbt(x) ≡ α1lcbt,1(x) + α2lcbt,2(x) ≤ α1F1(x) + α2F2(x) ≤ α1ucbt,1(x) + α2ucbt,2(x) ≡ ucbt(x).

Moreover, we get

0 ≤ ucbt(x)− lcbt(x) = α1(ucbt,1(x)− lcbt,1(x)) + α2(ucbt,2(x)− lcbt,2(x))

≤ α1q1

(
max
w∈Ωx

2β
1/2
t+1σt(x,w)

)
+ α2q2

(
max
w∈Ωx

2β
1/2
t+1σt(x,w)

)
.

Probabilistic Threshold Let θ ∈ R be a threshold. Then, lt,x,w ≤ f(x,w) ≤ ut,x,w implies that

lcbt(x) ≡ P(lt,x,w ≥ θ) ≤ P(f(x,w) ≥ θ) ≤ P(ut,x,w ≥ θ) ≡ ucbt(x).

B.2 Extension of Theorem E.4 in Kusakawa et al. (2022)

We show the extension of Theorem E.4 in Kusakawa et al. (2022). In this subsection, we use x and X as the input
variable and set of all input variables, respectively. In Theorem E.4 in Kusakawa et al. (2022), they proved that if
linear, Gaussian or Matérn (with parameter ν > 1) kernel is used, then the posterior standard deviation satisfies
the Lσ-data-independent-Lipschitz continuity. They have assumed that the variance of an error distribution for
GP models is σ2 > 0 for any input x. We show that this assumption can be relaxed to the assumption that the
noise variance is positive and depends on x. Since the relaxation of noise variance to the heteroscedastic setting
does not affect any essential part of their proof, only the sketch of the proof is given here. Let Xt be a t × d
matrix. Then, in their proof, σ2 appears only within the formula given below:

Id −X⊤
t (XtX

⊤
t + a−2σ2It)

−1Xt,

where a is some positive constant. They considered the singular value decompositionXt = H ′ΛH and calculated

Id −X⊤
t (XtX

⊤
t + a−2σ2It)

−1Xt = HΘH⊤,
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where Θ is the diagonal matrix whose (j, j)-th element θj satisfies 0 ≤ θj ≤ 1. In their proof, only the fact that
H is an orthogonal matrix and 0 ≤ θj ≤ 1. On the other hand, when the noise variance is heteroscedastic, that
is, the variance is expressed as s2t at iteration t, we have to consider the following:

Id −X⊤
t (XtX

⊤
t + a−2St)

−1Xt,

where St is the diagonal matrix whose (j, j)-th element is s2j . Also in this case, noting that

Id −X⊤
t (XtX

⊤
t + a−2St)

−1Xt = Id −X⊤
t (S

1/2
t {S−1/2

t XtX
⊤
t S

−1/2
t + a−2It}S1/2

t )−1Xt

= Id −X⊤
t S

−1/2
t (S

−1/2
t XtX

⊤
t S

−1/2
t + a−2It)

−1S
−1/2
t Xt

= Id − X̃⊤
t (X̃tX̃

⊤
t + a−2It)

−1X̃t,

using the singular value decomposition X̃t = H̃ ′Λ̃H̃ we have

Id − X̃⊤
t (X̃tX̃

⊤
t + a−2It)

−1X̃t = H̃Θ̃H̃⊤,

where H̃ is an orthogonal matrix and the (j, j)-th element θ̃j of the diagonal matrix Θ̃ satisfies 0 ≤ θ̃j ≤ 1.
Therefore, also in the heteroscedastic setting, Lσ-data-independent-Lipschitz continuity holds.

B.3 Proof of Lemma A.1

Let UCBt(x) = (u1, . . . , uL) ≡ u and LCBt(Π̂t) = {(l(i)1 , . . . , l
(i)
L ) | 1 ≤ i ≤ k} ≡ L. Here, if u ∈ Dom(L), then

the following holds from the definition of dist(a, B):

a
(X )
t (x) = dist(u,Dom(L)) = inf

b∈Dom(L)
d∞(u, b) = d∞(u,u) = 0.

In addition, since u ∈ Dom(L), there exists (l
(i)
1 , . . . , l

(i)
L ) such that uj ≤ l

(i)
j for any j ∈ [L]. Thus, we have

max{u1 − l
(i)
1 , . . . , uL − l

(i)
L } ≤ 0. This implies that

ãt(x) = min
1≤i≤k

max{u1 − l
(i)
1 , . . . , uL − l

(i)
L } ≤ 0

and max{ãt(x), 0} = 0. Therefore, we get a
(X )
t (x) = max{ãt(x), 0}. Next, we consider the case where u /∈

Dom(L). Let a(X )
t (x) = η. Then, noting that u /∈ Dom(L), for any i ∈ {1, . . . , k}, there exists j ∈ [L] such that

uj > l
(i)
j . This implies that

ãt(x) = min
1≤i≤k

max{u1 − l
(i)
1 , . . . , uL − l

(i)
L } ≡ η̃ > 0

and max{ãt(x), 0} = ãt(x) = η̃. For this η̃, there exists i such that

uj − l
(i)
j ≤ η̃ ∀j ∈ [L].

Hence, we have ũ ≡ (u1 − η̃, . . . , uL − η̃) ∈ Dom(L) because uj − η̃ ≤ l
(i)
j for any j ∈ [L]. Thus, from the

definition of a
(X )
t (x), the following holds:

η = a
(X )
t (x) = dist(u,Dom(L)) = inf

b∈Dom(L)
d∞(u, b) ≤ d∞(u, ũ) = η̃.

Here, we assume η < η̃. Then, noting that Dom(L) is the closed set, there exists l̃ = (l̃1, . . . , l̃L) ∈ Dom(L) such
that d∞(u, l̃) = η. Therefore, l̃ can be expressed as l̃ = (u1 − s1, . . . , uL − sL), where 0 ≤ |sj | ≤ η and at least

one of s1, . . . , sL is η. Thus, since (u1 − η, . . . , uL − η) ≤ l̃, noting that (u1 − η, . . . , uL − η) ∈ Dom(L) there
exists i such that

uj − η ≤ l
(i)
j

∀j ∈ [L].

This implies that max{u1 − l
(i)
1 , . . . , uL − l

(i)
L } ≤ η. Hence, it follows that

η̃ = min
1≤i≤k

max{u1 − l
(i)
1 , . . . , uL − l

(i)
L } ≤ η.

However, this is a contradiction with η < η̃. Consequently, we obtain a
(X )
t (x) = max{ãt(x), 0}.
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B.4 Proof of Theorem A.1

From the theorem’s assumption, the bounding box B̃t(x) is HPBB. Therefore, with probability at least 1 − δ,
the following holds for any t ≥ 0:

Dom(LCBt(Π̂t)) ⊂ Dom(F (Π̂t)) ⊂ Dom(Z∗) ⊂ Dom(UCBt(X )).

Hence, using this, noting that the definition of d∞(·, ·), we get

I
(i)
t = max

y∈Z∗
min

y′∈Par(F (Π̂t))
d∞(y,y′) ≤ max

y∈Par(UCBt(X ))
min

y′∈Par(LCBt(Π̂t))
d∞(y,y′)

= max
y∈Par(UCBt(X ))

min
y′∈Dom(LCBt(Π̂t))

d∞(y,y′)

= max
x∈X

min
y′∈Dom(LCBt(Π̂t))

d∞(UCBt(x),y
′) = max

x∈X
a
(X )
t (x).

Similarly, we get

I
(ii)
t = max

y∈F (Π̂t)
min
y′∈Z∗

d∞(y,y′) ≤ max
y′∈Par(UCBt(X ))

min
y∈Dom(LCBt(Π̂t))

d∞(y′,y)

= max
x∈X

min
y∈Dom(LCBt(Π̂t))

d∞(UCBt(x),y) = max
x∈X

a
(X )
t (x).

Thus, we have It = max{I(i)t , I
(ii)
t } ≤ maxx∈X a

(X )
t (x) = a

(X )
t (xt+1). Hence, if a

(X )
T (xT+1) ≤ ϵ, then IT ≤ ϵ.

B.5 Proof of Theorem A.2

From the definition of a
(X )
t (x), xt+1 and wt+1, noting that LCBt(xt+1) ∈ Dom(LCBt(Π̂t)) we get

a
(X )
t (xt+1) ≤ ∥UCBt(xt+1)− LCBt(xt+1)∥∞ ≤ q

 max
w∈Ωxt+1

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)


= q

 Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,wt+1)

 .

Let t̂ = argmin0≤i≤t

∑Mf

m=1 2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,wt+1). Then, the following inequality holds:

Mf∑
m=1

2β̃
1/2

m,t̂+1
σ̃
(m)

t̂
(xt̂+1,wt̂+1) ≤

1

t+ 1

t+1∑
i=1

Mf∑
m=1

2β̃
1/2
m,iσ̃

(m)
i−1(xi,wi)

≤ 1

t+ 1

√√√√(t+ 1)

t+1∑
i=1

Mf∑
m=1

4Mf β̃m,iσ̃
(m)2
i−1 (xi,wi)

≤ 1

t+ 1

√√√√(t+ 1)

Mf∑
m=1

4Mf β̃m,t+1

t+1∑
i=1

σ̃
(m)2
i−1 (xi,wi)

≤ 1

t+ 1

√√√√(t+ 1)

Mf∑
m=1

4Mf β̃m,t+1
2

log(1 + λ−1
m τ−2)

κ̃
(m)
t+1 =

√∑Mf

m=1 C̃mβ̃m,t+1κ̃
(m)
t+1

t+ 1
,

where the second inequality is derived by Cauchy-Schwarz inequality and (a1+ · · ·+aMf
)2 ≤ Mf (a

2
1+ · · ·+a2Mf

),

the third inequality is derived by monotonicity of β̃m,t, and the fourth inequality is derived by the definition of

the maximum information gain, s2 ≤ (ς−2/ log(1+ ς−2)) log(1+s2) for s2 ∈ [0, ς−2], and τ−2
xi,wi,mσ̃

(m)2
i−1 (xi,wi) ≤

τ−2
xi,wi,mλ−1

m . Therefore, we obtain

max
x∈X

a
(X )

t̂
(x) = a

(X )

t̂
(xt̂+1) ≤ q

 Mf∑
m=1

2β̃
1/2

m,t̂+1
σ̃
(m)

t̂
(xt̂+1,wt̂+1)

 ≤ q

√∑Mf

m=1 C̃mβ̃m,t+1κ̃
(m)
t+1

t+ 1

 = q(st).
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Thus, for some T ≥ 0 satisfying q(sT ) ≤ ϵ, there exists T̂ ≤ T such that a
(X )

T̂
(xT̂+1) ≤ q(sT ) ≤ ϵ. Noting that

0 ≤ T̂ ≤ T , the algorithm terminates after at most T iterations.

B.6 Proof of Theorem A.3

From the definition of q(a), since q(m,l)(a) is a strictly increasing function satisfying q(m,l)(0) = 0, q(a) is a

strictly increasing function and satisfies q(0) = 0. Furthermore, noting that maxw∈Ωxt+1
2β̃

1/2
m,t+1σ̃

(m)
t (xt+1,w) ≤

maxw∈Ωxt+1

∑Mf

m=1 2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w), since q(m,l)(a) is a strictly increasing function, we get

∥UCBt(xt+1)− LCBt(xt+1)∥∞ = max
m∈[Mf ],l∈[Lm]

|ucb(m,l)
t (xt+1)− lcb

(m,l)
t (xt+1)|

≤ max
m∈[Mf ],l∈[Lm]

q(m,l)

(
max

w∈Ωxt+1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)

)

≤ max
m∈[Mf ],l∈[Lm]

q(m,l)

 max
w∈Ωxt+1

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)


= q

 max
w∈Ωxt+1

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)

 .

B.7 Proof of Theorem A.4

Let r be a number. For any vector a = (a1, . . . , as) and subset B ⊂ Rs, we define r + a ≡ (r + a1, . . . , r + as)
and r+B ≡ {r+b | b ∈ B}. Then, from the theorem’s assumption, with probability at least 1− δ, the following
holds for any t ≥ 0:

Dom(LCBt(Π̂t)− ϵlcb) ⊂ Dom(F (Π̂t)) ⊂ Dom(Z∗) ⊂ Dom(UCBt(X ) + ϵucb).

Hence, using this, noting that the definition of d∞(·, ·), we get

I
(i)
t = max

y∈Z∗
min

y′∈Par(F (Π̂t))
d∞(y,y′) ≤ max

y∈Par(UCBt(X )+ϵucb)
min

y′∈Par(LCBt(Π̂t)−ϵlcb)
d∞(y,y′)

= max
y∈Par(UCBt(X )+ϵucb)

min
y′∈Dom(LCBt(Π̂t)−ϵlcb)

d∞(y,y′)

= max
x∈X

min
y′∈Dom(LCBt(Π̂t)−ϵlcb)

d∞(UCBt(x) + ϵucb,y
′)

≤ ϵucb +max
x∈X

min
y′∈Dom(LCBt(Π̂t)−ϵlcb)

d∞(UCBt(x),y
′)

≤ ϵucb + ϵlcb +max
x∈X

min
y′∈Dom(LCBt(Π̂t))

d∞(UCBt(x),y
′)

= ϵucb + ϵlcb +max
x∈X

a
(X )
t (x)

= ϵucb + ϵlcb + a
(X )
t (xt+1) + max

x∈X
a
(X )
t (x)− a

(X )
t (xt+1)

≤ ϵucb + ϵlcb + ϵX + a
(X )
t (xt+1).

Similarly, we get

I
(ii)
t = max

y∈F (Π̂t)
min
y′∈Z∗

d∞(y,y′) ≤ max
y′∈Par(UCBt(X )+ϵucb)

min
y∈Dom(LCBt(Π̂t)−ϵlcb)

d∞(y′,y)

≤ ϵucb + ϵlcb + ϵX + a
(X )
t (xt+1).

Thus, we have It = max{I(i)t , I
(ii)
t } ≤ ϵucb + ϵlcb + ϵX + a

(X )
t (xt+1). Hence, if a

(X )
T (xT+1) ≤ ϵ, then IT ≤

ϵ+ ϵucb + ϵlcb + ϵX .
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B.8 Proof of Theorem A.5

From the definition of a
(X )
t (x), xt+1 and wt+1, noting that −ϵPF + LCBt(xt+1) ∈ Dom(LCBt(Π̂t)) we get

a
(X )
t (xt+1) ≤ ∥UCBt(xt+1)− (LCBt(xt+1)− ϵPF)∥∞ ≤ ϵPF + ∥UCBt(xt+1)− LCBt(xt+1)∥∞

≤ ϵPF + q

 max
w∈Ωxt+1

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)


≤ ϵPF + q

ϵΩ +

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,wt+1)

 .

Thus, by letting t̂ = argmin0≤i≤t

∑Mf

m=1 2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,wt+1), using the same argument as in the proof of

Theorem A.2, we have the desired result.

B.9 Proof of Theorem A.6

From the definition of a
(X )
t (x), xt+1 and wt+1, noting that LCBt(xt+1) ∈ Dom(LCBt(Π̂t)) we get

a
(X )
t (xt+1) ≤ ∥UCBt(xt+1)− LCBt(xt+1)∥∞ ≤ q

 max
w∈Ωxt+1

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)


= q

 Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w

∗
t+1)

 .

Let S(Ωxt+1
; ζt+1) be a maximal ζt+1-separated subset of Ωxt+1

. Then, from the definition of S(Ωxt+1
; ζt+1),

there exists a point w̌ ∈ S(Ωxt+1
; ζt+1) such that ∥w∗

t+1 − w̌∥1 ≤ ζt+1. Hence, from the Lσ-data-independent
Lipschitz continuity, we obtain

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w

∗
t+1) =

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1, w̌) +

Mf∑
m=1

2β̃
1/2
m,t+1{σ̃

(m)
t (xt+1,w

∗
t+1)− σ̃

(m)
t (xt+1, w̌)}

≤
Mf∑
m=1

2β̃
1/2
m,t+1Lσζt+1 +

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1, w̌)

≤ 2Mf β̃
1/2
t+1Lσζt+1 +

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1, w̌).

In addition, we get

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1, w̌) ≤

∑
w̌∈S(Ωxt+1

;ζt+1)

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1, w̌)

≤ pζt+1

−1
∑

w̌∈S(Ωxt+1
;ζt+1)

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1, w̌)PPw(xt+1)[w ∈ Nei(w̌; ζt+1/2)]

≤ 2β̃
1/2
t+1pζt+1

−1EPw(xt+1)

 ∑
w̌∈S(Ωxt+1

;ζt+1)

Mf∑
m=1

σ̃
(m)
t (xt+1, w̌)1l[w ∈ Nei(w̌; ζt+1/2)]


≡ 2β̃

1/2
t+1pζt+1

−1EPw(xt+1)[S(xt+1,w)],

where 1l[·] represents the indicator function. Thus, we have

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w

∗
t+1) ≤ 2Mf β̃

1/2
t+1Lσζt+1 + 2β̃

1/2
t+1pζt+1

−1EPw(xt+1)[S(xt+1,w)].
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Therefore, we get

t∑
i=0

Mf∑
m=1

2β̃
1/2
m,i+1σ̃

(m)
i (xi+1,w

∗
i+1) ≤

t∑
i=0

2Mf β̃
1/2
i+1Lσζi+1 +

t∑
i=0

2β̃
1/2
i+1pζi+1

−1EPw(xi+1)[S(xi+1,w)]

≤ 2MfLσβ̃
1/2
t+1

t∑
i=0

ζi+1 + 2β̃
1/2
t+1p̃ζt+1

−1
t∑

i=0

EPw(xi+1)[S(xi+1,w)].

Here, S(xi+1,w) is the non-negative random variable satisfying S(xi+1,w) ≤ Mf max{1, λ−1
1 , . . . , λ−1

m } = J .
Hence, from Lemma 3 in Kirschner and Krause (2018), with probability at least 1 − δ, the following holds for
any i ≥ 0:

t∑
i=0

EPw(xi+1)[S(xi+1,w)] ≤ 4J log
1

δ
+ 8J log(4J) + 1 + 2

t∑
i=0

S(xi+1,wi+1) ≤ 8J log
8J

δ
+ 2

t∑
i=0

S(xi+1,wi+1).

Furthermore, from the definition of S(xi+1,wi+1), we have

S(xi+1,wi+1) =

Mf∑
m=1

∑
w̌∈S(Ωxi+1

;ζi+1)

σ̃
(m)
i (xi+1, w̌)1l[wi+1 ∈ Nei(w̌; ζi+1/2)].

Noting that w̌1 ̸= w̌2 ⇒ Nei(w̌1; ζi+1/2) ∩ Nei(w̌2; ζi+1/2) = ∅, if there exists w̌ ∈ S(Ωxi+1 ; ζi+1) such that
wi+1 ∈ Nei(w̌; ζi+1/2), then we obtain

σ̃
(m)
i (xi+1, w̌) = σ̃

(m)
i (xi+1,wi+1) + σ̃

(m)
i (xi+1, w̌)− σ̃

(m)
i (xi+1,wi+1) ≤ σ̃

(m)
i (xi+1,wi+1) + Lσζi+1/2.

Similarly, if wi+1 /∈ Nei(w̌; ζi+1/2) for any w̌ ∈ S(Ωxi+1
; ζi+1), the we get

σ̃
(m)
i (xi+1, w̌) = 0 ≤ σ̃

(m)
i (xi+1,wi+1) + Lσζi+1/2.

Therefore, we have

2

t∑
i=0

S(xi+1,wi+1) ≤ MfLσ

t∑
i=0

ζi+1 + 2

t∑
i=0

Mf∑
m=1

σ̃
(m)
i (xi+1,wi+1).

By combining previous results, we obtain

t∑
i=0

Mf∑
m=1

2β̃
1/2
m,i+1σ̃

(m)
i (xi+1,w

∗
i+1)

≤ 2MfLσβ̃
1/2
t+1

t∑
i=0

ζi+1 + 2β̃
1/2
t+1p̃ζt+1

−1

(
8J log

8J

δ
+ 2

t∑
i=0

S(xi+1,wi+1)

)

≤ 2MfLσβ̃
1/2
t+1

t∑
i=0

ζi+1 + 2β̃
1/2
t+1p̃ζt+1

−1

8J log
8J

δ
+MfLσ

t∑
i=0

ζi+1 + 2

t∑
i=0

Mf∑
m=1

σ̃
(m)
i (xi+1,wi+1)


= 2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t∑
i=0

ζi+1 + 16J log
8J

δ
β̃
1/2
t+1p̃ζt+1

−1 + 2p̃ζt+1

−1
t∑

i=0

Mf∑
m=1

2β
1/2
t+1σ̃

(m)
i (xi+1,wi+1).

Finally, let t̂ = argmin0≤i≤t

∑Mf

m=1 2β̃
1/2
m,i+1σ̃

(m)
i (xi+1,w

∗
i+1). Then, the following inequality holds:

Mf∑
m=1

2β̃
1/2

m,t̂+1
σ̃
(m)

t̂
(xt̂+1,w

∗
t̂+1

)

≤
2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t+ 1

t∑
i=0

ζi+1 +
16J log 8J

δ β̃
1/2
t+1p̃ζt+1

−1

t+ 1
+

2p̃ζt+1

−1

t+ 1

t∑
i=0

Mf∑
m=1

2β̃
1/2
i+1σ̃

(m)
i (xi+1,wi+1).
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In addition, by using the same argument as in the proof of Theorem A.2, we get

Mf∑
m=1

2β̃
1/2

m,t̂+1
σ̃
(m)

t̂
(xt̂+1,w

∗
t̂+1

)

≤
2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t+ 1

t∑
i=0

ζi+1 +
16J log 8J

δ β̃
1/2
t+1p̃ζt+1

−1

t+ 1
+

√
4p̃ζt+1

−2

∑Mf

m=1 C̃mβ̃t+1κ̃t+1

t+ 1

=
2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t+ 1

t∑
i=0

ζi+1 +
16J log 8J

δ β̃
1/2
t+1p̃ζt+1

−1

t+ 1
+

√
p̃ζt+1

−2β̃t+1κ̃t+1

∑Mf

m=1 Ĉm

t+ 1

≤
2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t+ 1

t∑
i=0

ζi+1 +
16J log 8J

δ β̃
1/2
t+1p̃ζt+1

−1

t+ 1
+

√
p̃ζt+1

−2β̃t+1κ̃t+1

Mf max{Ĉ1, . . . , ĈMf
}

t+ 1

=
2MfLσβ̃

1/2
t+1(1 + p̃ζt+1

−1)

t+ 1

t∑
i=0

ζi+1 +
16J log 8J

δ β̃
1/2
t+1p̃ζt+1

−1

t+ 1
+

√
Ĉp̃ζt+1

−2β̃t+1κ̃t+1

t+ 1

≡ ŝt.

Therefore, we obtain

a
(X )

t̂
(xt̂+1) ≤ q(ŝt).

Thus, for some T ≥ 0 satisfying q(ŝT ) ≤ ϵ, there exists T̂ ≤ T such that a
(X )

T̂
(xT̂+1) ≤ q(ŝT ) ≤ ϵ. Noting that

0 ≤ T̂ ≤ T , the algorithm terminates after at most T iterations.

B.10 Proof of Theorem A.7

The proof of Theorem A.7 is same as in the proof of Theorem A.4.

B.11 Proof of Theorem A.8

From the definition of a
(X )
t (x) and xt+1, noting that −ϵPF + LCBt(xt+1) ∈ Dom(LCBt(Π̂t)) we get

a
(X )
t (xt+1) ≤ ∥UCBt(xt+1)− (LCBt(xt+1)− ϵPF)∥∞ ≤ ϵPF + ∥UCBt(xt+1)− LCBt(xt+1)∥∞

≤ ϵPF + q

 max
w∈Ωxt+1

Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w)


= ϵPF + q

 Mf∑
m=1

2β̃
1/2
m,t+1σ̃

(m)
t (xt+1,w

∗
t+1)

 .

Thus, by letting t̂ = argmin0≤i≤t

∑Mf

m=1 2β̃
1/2
m,i+1σ̃

(m)
i (xi+1,w

∗
i+1), using the same argument as in the proof of

Theorem A.6, we have the desired result.

C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we give experimental details and additional experiments. All experiments were performed using
R software version 3.6.3. For all experiments except for additional experiments, we set the tradeoff parameter

β
1/2
m,t to 3.

C.1 Details of Synthetic Function Experiments without Input Uncertainty

In the synthetic function experiments without IU, the input space X was a set of grid points divided into
[−5, 5]× [−5, 5] equally spaced at 50× 50. For black-box functions, we used Booth, Matyas, Himmelblau’s and
McCormic benchmark functions. We standardized these functions and further multiplied by minus one. The
functional forms we actually used in our experiments are given as follows:
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• Booth function:

f(x1, x2) =
−(x1 + 2x2 − 7)2 − (2x1 + x2 − 5)2 + 157.35√

28896.11
.

• Matyas function:

f(x1, x2) =
−0.26(x2

1 + x2
2) + 0.48x1x2 + 4.3342√
23.52052

.

• Himmelblau’s function:

f(x1, x2) =
−(x2

1 + x2 − 11)2 + (x1 + x2
2 − 7)2 + 136.71√

12503.63
.

• McCormic function:

f(x1, x2) =
− sin(x1 + x2)− (x1 − x2)

2 + 1.5x1 − 2.5x2 − 117.67√
460.573

.

We performed the following two cases: (i) Two-objective Pareto optimization problem using first two benchmark
functions, (ii) four-objective Pareto optimization problem using all benchmark functions. For each black-box
function, we used the independent GP model GP(0, k(x,x′)), where the kernel function k(x,x′) is given by

k(x,x′) = 2 exp

(
−∥x− x′∥22

2

)
.

We used the zero-mean independent Gaussian noise with variance 10−6 for all black-box functions. As evaluation
indicators, we used the simple Pareto hypervolume (PHV) regret, which is a commonly used indicator in the
context of MOBOs, and inference discrepancy. Let Xt = {x1, . . . ,xt} and Yt = {y1, . . . ,yt} be the set of input
variables and observed values, respectively. Also let r be a reference point of a multi-objective black-box function
f(x) = (f (1)(x), . . . , f (m)(x)). Then, the simple PHV that we used in the experiments is given by

Vol(f(X ); r)−Vol(f(Xt); r),

where f(A) ≡ {f(a) | a ∈ A} and Vol(f(A); r) is the Lebesgue measure for {b | r ≤ b and b ≤ f(a),a ∈ A}.
For a multi-objective black-box function f(x), we used rj = minx∈X f (j)(x) as the j-th reference point. As AFs,
we considered the random sampling (Random), uncertainty sampling (US), EHVI (Emmerich and Klinkenberg,
2008), EMmI (Svenson and Santner, 2010), ePAL (Zuluaga et al., 2016), ParEGO (Knowles, 2006), PFES (Suzuki
et al., 2020) and proposed AF (Proposed). The next evaluation point was selected at random in Random. We used

the AF at(x) = σ
(1)2
t (x) + · · ·+ σ

(m)2
t (x) for US. In EHVI, we calculated sampling-based expected hypervolume

improvement given by

1

S

S∑
s=1

{Vol(Yt ∪ {ys(x)}; r)−Vol(Yt; r)} ,

where ys(x) is generated from the posterior distribution of f(x) and we set S = 20. In EMmI, we calculated
sampling-based expected maximin distance improvement given by

1

S

S∑
s=1

dist(ys(x),Dom(Yt)),

where S and ys(x) are the same definition in EHVI. In ePAL, we performed the ϵ-PAL algorithm with parameter
ϵ = (ϵ1, . . . , ϵm) = (0, . . . , 0). In ParEGO, for each iteration t, we uniformly generated the vector of coefficients

λt = (λ
(1)
t , . . . , λ

(m)
t )⊤ with 0 ≤ λ

(i)
t ≤ 1 and

∑m
i=1 λ

(i)
t = 1, and calculated the scalarization ỹt,t̃ = 0.05λ⊤

t yt +

max1≤i≤m λ
(i)
t y

(i)
t for all t̃ ≤ t. We constructed the GP model for ỹt,1, . . . , ỹt,t using Xt, where the kernel

function was used the same kernel for f(x) but the noise variance was set to 10−8. We calculated the expected
improvement (EI) (Močkus, 1975) and the next point was selected by maximizing EI. In PFES, we used the
random feature map (Rahimi and Recht, 2007) to obtain posterior sample path. We generated a 500-dimensional
random feature vector before BO, and used it for all iterations. The posterior sample path was generated 10
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times for each iteration, and we calculated the PFES AF. In the four-objective Pareto optimization setting,
the maximum number of Pareto optimal input points defined based on the sample path was restricted to 50
due to the computational cost. We also compared the commonly used evolutionary computation-based method
NSGA-II (Deb et al., 2002). The NSGA-II method was performed using nsga2R version 1.1 in R. In nsga2R, we
set the tournament size, crossover probability, crossover distribution index, mutation probability and mutation
distribution index to 2, 0.9, 20, 0.1 and 3, respectively. We considered the population size p to 5, 10, 15, 20,
30, 50, 100, 150 and 300. For each p, we set the number of generations to 300/p. In NSGA-II, we used Π̂t as
the set of input variables reported by the algorithm. Under this setup, one initial point was taken at random
and the algorithm was run until the number of iterations reached 300. This simulation repeated 100 times and
the average simple PHV regret and inference discrepancy at each iteration were calculated. In NSGA-II, only
results with the highest average performance at the end of the 300 iterations are shown (p = 30, 150 in the two
and four-objective settings, respectively).

C.2 Details of Synthetic Function Experiments with Input Uncertainty

Here, the input space X ×Ω was a compact subset. For X ×Ω, we considered infinite and finite set settings. We
set X ×Ω = [0.25, 0.75]2 × [−0.25, 0.25]2 in the infinite set setting. In the finite setting, X ×Ω was a set of grid
points divided into [−1, 1]3 × [−1, 1]3 equally spaced at 73 × 73 = 117649.

ZDT1 Function The black-box function in the infinite setting was used the ZDT1 benchmark function
ZDT1(a) ∈ R2 with a two-dimensional input a, and the environmental variable w was used as the input
noise for x. We standardized the ZDT1 function and further multiplied by minus one. The functional form we
actually used is given as follows:

g(1)(a1, a2) = a1,

h(a1, a2) = 1 + 9a2,

g(2)(a1, a2) = h(a1, a2)−
√

g(1)(a1, a2)h(a1, a2),

ZDT1(a) = (f (1)(a1, a2), f
(2)(a1, a2)) =

(
−g(1)(a1, a2)− 0.5√

0.042
,−g(2)(a1, a2)− 3.9085√

2.5615

)
.

Thus, our considered black-box function was defined by ZDT1(x + w). We assumed w was the uniform
distribution on Ω and used the Bayes risk E[ZDT1(x+w)]. We used the independent zero-mean Gaussian noise
distribution with variance 10−6 for f (i)(a1, a2). We constructed the independent GP model GP(0, k(θ,θ′)) for
f (i), where θ = (x1, x2, w1, w2) and

k(θ,θ′) = exp

(
−∥θ − θ′∥22

0.2

)
.

In order to calculate the true PF Z∗, we performed nsga2R with population size 500 and the number of generations
is 100. As comparison methods, we considered the Bayesian quadrature-based method (BQ) (Qing et al., 2023)
and surrogate-assisted bounding box approach (SABBa) (Rivier and Congedo, 2022). Furthermore, four naive
methods, Naive-random, Naive-US, Naive-EMmI and Naive-ePAL, were used for comparison. In BQ, Bayes
risk E[ZDT1(x + w)] was modeled by the Bayesian quadrature, and its posterior distribution is again a GP.

In this experiment, we can compute the exact posterior mean and variance, and we used them. Let µ
(BQ)
t (x)

be a posterior mean for E[ZDT1(x + w)]. Then, we used Π̂t to the set of Pareto optimal inputs calculated

by µ
(BQ)
t (x1), . . . ,µ

(BQ)
t (xt). The AF for x, we used sampling-based approximation with sample size 20. In

Proposed, we computed the sample average for µ
(m)
t (x,w) − 3σ

(m)
t (x,w) and µ

(m)
t (x,w) + 3σ

(m)
t (x,w) by

generating only two sample w1 and w2, and used them to lcb
(m)
t (x) and ucb

(m)
t (x). In order to calculate Π̂t, we

used nsga2R with population size 50 and the number of generations is 50. In SABBa, we set the number of new
design set Xnew to be read to 10. The elements in Xnew were selected uniformly at random. We omitted the first
approximation and then set Nfirst = 0. The number of initial design set was set to 1, and for each iteration.
Similarly, the number of function evaluation was also set to 1. In the GP model for E[ZDT1(x+w)], we used

k(x,x′) = exp

(
−∥x− x′∥22

0.1

)
.
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In the AF for x, we calculated the sampling-based AF calculation with sample size 20. For the threshold s1 and
s2, we set s1 = s2 = (h1rt, h2rt), where h1 = maxx∈X F (1)(x) −minx∈X F (1)(x) and h2 = maxx∈X F (2)(x) −
minx∈X F (2)(x). Here, F (i)(x) is the i-th element of E[ZDT1(x+w)]. Furthermore, the initial value of rt was
set to 0.5 and multiplied by 0.9 each time a new Xnew was read, and if rt < 0.001, then we fixed rt = 0.001. The
Π̂t was set to the Pareto-optimal points defined based on ρSA(x) and ρ̃(x) (see, Rivier and Congedo (2022) for
details) with respect to the inputs read so far. In the naive methods, w was generated five times from the same
x in one iteration t, and the sample mean of the black-box function values were calculated. By using x and these
values, the experiments in naive four methods were performed as a usual MOBO. We used the following kernel
function:

k(x,x′) = exp

(
−∥x− x′∥22

0.1

)
.

The same calculation (approximation) method as in the without IU setting was used for calculating AFs. For
all methods, the maximization of AFs was performed using optim function with the L-BFGS-B method in R.

6D-Rosenbrock Function The black-box function in the finite setting was used the six-dimensional Rosen-
brock function f(w1, w2, x1, x2, x3, w3) ∈ R. The functional form that we used is given as follows:

f(a1, a2, a3, a4, a5, a6) =
273.45−

∑5
i=1{100(ai+1 − a2i ) + (1− ai)

2}√
28153.22

.

We assume that w was a discretized normal distribution on Ω = Ω1×Ω2×Ω3. For each w ∈ Ωi, the probability
math function of w is given by

p(w) =
ϕ(w)∑

ŵ∈Ωi
ϕ(ŵ)

,

where ϕ(x) is the probability density function of standard normal distribution. As risk measures, we used
the expectation E[f(w1, w2, x1, x2, x3, w3)] and negative standard deviation −

√
V[f(w1, w2, x1, x2, x3, w3)]. As

comparison methods, we considered the Mean-variance-based method (MVA) (Iwazaki et al., 2021b), SABBa,
Naive-random, Naive-US, Naive-EMmI and Naive-ePAL. We used the independent zero-mean Gaussian noise
distribution with variance 10−6 for f(w1, w2, x1, x2, x3, w3). We constructed the GP model GP(0, k(θ,θ′)) for f ,
where θ = (x1, x2, x3, w1, w2, w3) and

k(θ,θ′) = exp

(
−∥θ − θ′∥22

4

)
.

This experiment is the setting that the number of black-box functions and risk measures are different. Thus, in
Proposed, the algorithm was performed using Algorithm 2. In SABBa, we set the number of new design set Xnew

to be read to 10. The elements in Xnew were selected uniformly at random. We omitted the first approximation
and then set Nfirst = 0. The number of initial design set was set to 1, and for each iteration. Similarly, the
number of function evaluation was also set to 1. In the GP model for Bayes risk and negative standard deviation,
we used the following kernel:

k(x,x′) = exp

(
−∥x− x′∥22

4

)
.

In the AF for x, we calculated the sampling-based AF calculation with sample size 20. For the thresh-
old s1 and s2, we set s1 = s2 = (h1rt, h2rt), where h1 = maxx∈X F (1)(x) − minx∈X F (1)(x) and h2 =
maxx∈X F (2)(x) − minx∈X F (2)(x). Here, F (1)(x) and F (2)(x) are Bayes risk and negative standard devia-
tion, respectively. Furthermore, the initial value of rt was set to 2 and multiplied by 0.9 each time a new Xnew

was read, and if rt < 0.001, then we fixed rt = 0.001. The Π̂t was set to the Pareto-optimal points defined based
on ρSA(x) and ρ̃(x) with respect to the inputs read so far. In the naive methods, w was generated five times
from the same x in one iteration t, and the sample mean and the negative square root of the sample variance
of the black-box function values were calculated. By using x and these values, the experiments in naive four
methods were performed as a usual MOBO. We used the following kernel function:

k(x,x′) = exp

(
−∥x− x′∥22

2

)
.

The same calculation (approximation) method as in the without IU setting was used for calculating AFs.
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C.3 Details of Real-world Simulation Model

We applied the proposed method to docking simulations for real-world chemical compounds. As a dataset for
compounds, we used the software suite Schrödinger (Schrödinger LLC, 2021). Given a set of compounds, we
applied the software “QikProp” in the suite, a software to compute various chemical properties, for explana-
tory variables. We also applied the software “Glide” in the suite, a software for calculating docking scores.
We took the black-box function as the original docking score plus 5 and then multiplied by -1. When per-
forming docking simulations, it is necessary to specify both the protein of interest and the specific site on the
protein where compounds are expected to dock. We used the protein “KAT1”, whose structure is available at
https://pdbj.org/mine/summary/6v1x, and the 16th and 18th sites computed by the software “SiteMap” in
the suite. Each chemical compound Ci may have an isomer Sij , and in this experiment the maximum number of
isomers was limited to 10. For each i, we computed a 51-dimensional isomer-independent vector of explanatory
variables xi and a 51-dimensional environment variable wij that can vary with isomers, using physicochemi-
cal features of (Ci, Sij) computed using QikProp. Specifically, the 51-dimensional physicochemical features of

(Ci, Sij) calculated by QikProp were used as wij . In addition, we defined xi as xi = 1
Ni

∑Ni

j=1 wij . Thus,

the black-box functions, the docking scores in the 16th and 18th sites, can be expressed as f (1)(xi,wij) and
f (2)(xi,wij), respectively. As risk measures for Ci, we considered the following measures:

Worst-case (WC): F (m)(xi) = minj∈[Ni] f
(m)(xi,wij).

Worst-case Bayes risk (WCBR): Define the Bayes risk under the worst-case candidate distribution, that is,

F (m)(xi) = min
αi∈Ai

Ni∑
j=1

αijf
(m)(xi,wij).

The Ai is the set of αi ∈ RNi satisfying

0 ≤ αij ≤ 1,

Ni∑
j=1

αij = 1, ∥αi − α̃i∥1 ≤ 0.25,

where α̃ij = N−1
i . The total number of compounds was 429, and the total number of data including isomers

was 920. We compared Proposed, SABba and naive four methods. In this experiment, we used the independent
GP model for f (m), where the kernel function is given by

k(θ,θ′) = 25 exp

(
−∥θ − θ′∥22

l

)
.

The length scale parameter was computed using the median heuristic l = 0.5Median{∥θi − θj∥2 | 1 ≤ i < j ≤
920}. In this experiment, there was no observation noise. Nevertheless, we added 10−3It to the kernel matrix
Kt to stabilize the inverse matrix calculation. In SABBa, we set the number of new design set Xnew to be read
to 10. The elements in Xnew were selected uniformly at random. We omitted the first approximation and then
set Nfirst = 0. The number of initial design set was set to 1, and for each iteration. Similarly, the number of
function evaluation was also set to 1. In the GP model for risk measures, we used the following kernel:

k(x,x′) = 25 exp

(
−∥x− x′∥22

l

)
,

where the length scale parameter was computed using the median heuristic l = 0.5Median{∥xi − xj∥2 | 1 ≤
i < j ≤ 429}. In the AF for x, we calculated the sampling-based AF calculation with sample size 20. For
the threshold s1 and s2, we set s1 = s2 = (h1rt, h2rt), where h1 = maxx∈X F (1)(x) − minx∈X F (1)(x) and
h2 = maxx∈X F (2)(x) − minx∈X F (2)(x). Furthermore, the initial value of rt was set to 0.5 and multiplied by
0.9 each time a new Xnew was read, and if rt < 0.01, then we fixed rt = 0.01. We regarded this as a high
accurate setting. As a low accurate setting, we considered that the initial value of rt was set to 2 and multiplied
by 0.99 each time a new Xnew was read, and if rt < 0.01, then we fixed rt = 0.01. In the original SABBa
method, Rivier and Congedo (2022) does not provide the worst-case Bayes risk setting. Hence, we modified
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Figure 3: Comparison with MOBO methods. Solid (and dashed) lines are averages of the inference discrepancy
for each iteration in 100 trials. Each error bar length represents the six times the standard error. The left and
right columns respectively represent the ZDT1 and six-dimensional Rosenbrock setups under the uncontrollable
setting.

the first formula of Equation (6) in Rivier and Congedo (2022) to infξ∈A Eξ[ε̄qx(ξ)]. The Π̂t was set to the
Pareto-optimal points defined based on ρSA(x) and ρ̃(x) with respect to the inputs read so far. In the naive
four methods, we calculated docking scores for all isomers in the compound Ci at iteration t and determined the
exact risk values. By using x and these values, the experiments in naive four methods were performed as a usual
MOBO. We used the following kernel function:

k(x,x′) = 25 exp

(
−∥x− x′∥22

l

)
,

where the length scale parameter was computed using the median heuristic l = 0.5Median{∥xi − xj∥2 | 1 ≤ i <
j ≤ 429}. The same calculation (approximation) method as in the without IU setting was used for calculating
AFs.

C.4 Additional Experiments

Uncontrollable Setting for Synthetic Experiments Here, we give the results of synthetic experiments
(ZDT1 and 6D-Rosenbrock) under the uncontrollable setting. We performed the same experiments except for
the selection of w. Figure 3 shows the similar results as in the simulator setting.

Docking Simulation Experiments Using Bayes Risk In the docking simulation experiments, we also
considered Bayes risk (BR) F (m)(xi) =

1
Ni

f (m)(xi,wij). In this experiment, we also considered the BQ method.

In BQ, f (m)(xi,wij) was modeled in the same way as in Proposed. The AF for x was calculated using sampling-
based approximation with sample size 20. Figure 4 shows the similar results as in the WC and WCBR settings.
Also in the BR setting, only the proposed method correctly identifies the true PF at the end of 500 iterations
at all 920 different initial points. Specifically, after 481 iterations, the true PF is identified for all 920 different
initial points.

Hyperparameter Sensitivity In this section, we confirm the sensitivity for hyperparameters. In this ex-
periment, the input space X × Ω ⊂ R2 × R was a set of grid points divided into [−2, 2]3 equally spaced at
16 × 16 × 16 = 4096. The true black-box functions f (1)(x1, x2, w1) and f (2)(x1, x2, w1) were defined as the
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independent sample path from the GP GP(0, k∗(·, ·, )), where k∗(·, ·, ) is given by

k∗((x1, x2, w1), (x
′
1, x

′
2, w

′
1)) = exp

(
− (x1 − x′

1)
2 + (x2 − x′

2)
2 + (w1 − w′

1)
2

1

)
.

We used the zero-mean independent Gaussian noise with variance 10−6. As the distribution of w ∈ Ω, we used
the discretized normal distribution p(w) given by

p(w) =
ϕ(w)∑

w′∈Ω ϕ(w′)
.

We considered Bayes risk in this experiment. As the GP surrogate model, we used independent GP model for
f (1) and f (2), and the kernel function that we used is given by

k((x1, x2, w1), (x
′
1, x

′
2, w

′
1)) = σ2 exp

(
− (x1 − x′

1)
2 + (x2 − x′

2)
2 + (w1 − w′

1)
2

L

)
.

We considered six cases for (L, σ2),

(L, σ2) = (1, 1), (L, σ2) = (1, 2), (L, σ2) = (0.5, 1), (L, σ2) = (1, 0.5), (L, σ2) = (2, 1), (L, σ2) = (1, 0.1).

Similarly, we considered seven cases for β
1/2
t ,

β
1/2
t = 1, β

1/2
t = 2, β

1/2
t = 3, β

1/2
t = 4, β

1/2
t = 5,

β
1/2
t =

√
2 log(2× 4096/2) + rt, β

1/2
t =

√
2 log(2× 4096π2t2/(6× 0.1)),

where rt is a realized value from the exponential distribution with mean 0.5. The last two definitions of β
1/2
t

are proposed by Takeno et al. (2023) and Srinivas et al. (2010), respectively. We regarded them as Sampled and
Theoretical values, respectively. Under this setup, one initial point was taken at random and the algorithm was
run until the number of iterations reached 500. This simulation repeated 100 times and the average inference

discrepancy at each iteration was calculated. From the top of Fig. 5, it can be confirmed that β
1/2
t = 2 is

sufficient if the correct kernel is used, and β
1/2
t = 1 is sufficient for the right two columns of the top row that the

posterior variance is predicted larger. On the other hand, if the cases the posterior variance is predicted smaller,

β
1/2
t = 3 is still insufficient in the case of L = 1, σ2 = 0.1.
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Figure 4: Comparison with MOBO methods. Solid (and dashed) lines are averages of the inference discrepancy
of Bayes risk setting for each iteration in 920 or 429 trials. Each error bar length represents the six times the
standard error.
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Figure 5: Comparison with different hyperparameters. Solid lines are averages of the inference discrepancy for
each iteration in 100 trials. Each error bar length represents the six times the standard error. In the top row, the
left column represents the case that the kernel of the surrogate model is equal to the true kernel. The right two
columns represent the cases that the posterior variance is predicted larger. In the bottom row, the left, center
and right columns represent the cases that the posterior variance is predicted smaller.


