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Abstract

We analyze asynchronous-type algorithms for
distributed SGD in the heterogeneous set-
ting, where each worker has its own com-
putation and communication speeds, as well
as data distribution. In these algorithms,
workers compute possibly stale and stochas-
tic gradients associated with their local data
at some iteration back in history and then
return those gradients to the server with-
out synchronizing with other workers. We
present a unified convergence theory for
non-convex smooth functions in the het-
erogeneous regime. The proposed analysis
provides convergence for pure asynchronous
SGD and its various modifications. More-
over, our theory explains what affects the
convergence rate and what can be done to
improve the performance of asynchronous
algorithms. In particular, we introduce a
novel asynchronous method based on worker
shuffling. As a by-product of our analysis,
we also demonstrate convergence guarantees
for gradient-type algorithms such as SGD
with random reshuffling and shuffle-once, and
mini-batch SGD. The derived rates match
the best-known results for those algorithms,
highlighting the tightness of our approach.
Finally, our numerical evaluations support
theoretical findings and show the good prac-
tical performance of our method.

1 INTRODUCTION

Modern machine learning relies heavily on effective op-
timization algorithms. The stochastic gradient descent
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(SGD) method (Robbins and Monro, 1951) and its var-
ious modifications, such as Adam (Kingma and Ba,
2015) and AdaGrad (Duchi et al., 2011) are at the
core of machine learning training, due to their easy
implementation together with strong practical perfor-
mance. However, in recent times, both the size of
state-of-the-art models and the amount of data re-
quired for training have increased significantly. Due
to this growth, optimization algorithms have also been
adapted to the need for efficient training of large mod-
els, and thus distributed and parallel variants of SGD
have started playing a crucial role in modern machine
learning (Bekkerman et al., 2011). In the distributed
regime, training is performed using many computa-
tional nodes (e.g., CPUs or GPUs on a cluster) work-
ing in parallel and orchestrated by a server. Every
worker computes gradients based on available data,
and then a server aggregates those gradients to per-
form one step of an algorithm. Distributed SGD-based
algorithms are also adopted to Federated Learning ap-
plications (Konečný et al., 2016; Kairouz et al, 2021)
where local data is kept private and is not seen by
other workers.

Nevertheless, distributed variants of SGD suffer from
many practical challenges. For example, approaches
such as communication compression (Alistarh et al.,
2018; Khirirat et al., 2018; Mishchenko et al., 2019;
Gao et al., 2024), performing several local steps be-
fore communication (Mishchenko et al., 2022b; Gor-
bunov et al., 2021; Koloskova et al., 2020), decentral-
ized communication (Koloskova et al., 2019; Kovalev
et al., 2021), or their combinations (Condat et al.,
2023; Zakerinia et al., 2022) are designed to improve
the efficiency of distributed training.

Across all these approaches, workers are synchronized,
i.e., the server must wait for the slowest worker before
proceeding to the next algorithm iteration. This may
drastically slow down the performance of SGD if work-
ers have significantly different computational power.
Asynchronous communication, which breaks this lock-
step behavior, is preferable in practice, since it enables
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a more efficient use of resources. In asynchronous-type
algorithms, workers do not wait for each other, thus
a server immediately updates the current model and
assigns a new job to available workers. All of the afore-
mentioned approaches are orthogonal to asynchronic-
ity, and can be combined with it (Nguyen et al., 2022;
Zakerinia et al., 2022).

Recently, (Koloskova et al., 2022; Mishchenko et al.,
2022a) improved theoretical analysis of pure asyn-
chronous SGD in the homogeneous data setting, i.e.,
when workers have access to the same data, and make
a step towards better understanding in a heteroge-
neous regime. Here, we specifically focus on the more
challenging heterogeneous setting, and provide a uni-
fied convergence analysis of asynchronous SGD.

We start from the observation that asynchronous SGD
can be seen as an instance of SGD with arbitrary data
orderings, which include random reshuffling at each
step, shuffle once (at the beginning of training) or
some incremental order. The only difference between
these variants is in the order defined naturally accord-
ing to the computation speeds of the workers. Data
ordering might improve the performance of the algo-
rithm. For example, several works (Mishchenko et al.,
2020; Nguyen et al., 2021) show that SGD with ran-
dom reshuffling and shuffle once is always better than
vanilla SGD in the strongly convex case, and can out-
perform it for both convex and non-convex objectives if
the number of epochs if sufficiently large (Mohtashami
et al., 2022; Lu et al., 2022). Recently, (Koloskova
et al., 2022) analyzed SGD with arbitrary data or-
dering as an algorithm with linearly correlated noise
(Koloskova et al., 2023b). Here, we go further by link-
ing asynchronous SGD and SGD using various data
orderings.

1.1 Contributions

In this section, we summarize the key contributions of
our work.

• We propose a theoretical framework that allows us
to analyze various types of asynchronous SGD in a
unified manner. Besides purely-asynchronous SGD, we
analyze variants of asynchronous SGD when a server
waits for the first b fastest workers or assigns new jobs
according to some scheduling procedure. The analysis
is performed for a constant stepsize schedule, without
bringing any additional hyper-parameters except for
stepsize, as all the parameters used in the algorithm
are known during training.

• Moreover, this unified framework enables us to de-
sign and analyze new asynchronous algorithms. In
particular, we propose a new method called shuffled
asynchronous SGD and show its superiority over com-

petitive methods both theoretically and practically.

• Our framework also recovers popular synchronous
variants of SGD, such as SGD with random reshuffling,
shuffle once, and mini-batch SGD. For these methods,
we derive the best-known convergence results, without
any changes in the analysis, highlighting the tightness
of our framework.

• All of our results have a better or similar dependen-
cies on the maximum delay, compared with existing
work. With bounded gradient assumption, we remove
entirely dependencies on maximum delay used by prior
works.

2 RELATED WORKS
2.1. Asynchronous SGD. The literature on
asynchronous-type SGD algorithms is extremely rich,
starting from (Baudet, 1978), and (Bertsekas and
Tsitsiklis, 1989). The source of asynchrony might
be caused by various factors, such as different hard-
ware (Horvath et al., 2022) or failures (Nadiradze
et al., 2021).

Most existing works are devoted to the analysis of
SGD-based asynchronous algorithms, concentrating
on the homogeneous regime (Cohen et al., 2021; Aviv
et al., 2021; Stich et al., 2021) which typically holds
only for shared memory architectures. In our work,
we concentrate on the more challenging heterogeneous
setting.

The first convergence guarantees were given for con-
stant delays (Stich and Karimireddy, 2020; Arjevani
et al., 2020) which usually is not true in practice.
Follow-up studies provide an analysis depending on
the maximum delay (Stich et al., 2021; Zakerinia et al.,
2022; Nguyen et al., 2022), however, it can be much
larger than the average delay. (Alistarh et al., 2018)
improved the dependency on the maximum delay un-
der the bounded gradient assumption while (Cohen
et al., 2021; Aviv et al., 2021) completely removed
that dependency. (Cohen et al., 2021) propose a
method which sends delayed models together with
computed gradients, and additional parameter tuning
while (Aviv et al., 2021) derived rates involving the
variance of the delays. Nonetheless, in some cases, this
quantity might be proportional to the maximum de-
lay. Recently, (Tyurin and Richtarik, 2023) introduced
a new asynchronous algorithm with optimal conver-
gence guarantees; however, under the assumption that
the computational speeds of workers are fixed through-
out the execution. This assumption is too restric-
tive in many practical scenarios, where computational
speeds usually fluctuate during the training. In paral-
lel work, (Even et al., 2024) create a unified framework
to analyze asynchronous algorithms for decentralized
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networks and derive convergence guarantees in that
regime.

Several works consider asynchronous SGD in Feder-
ated Learning, where workers frequently have het-
erogeneous computational power. (Zheng et al.,
2017; Zhang et al., 2016) utilize delay-adaptive step-
sizes to mitigate the effect of asynchrony while (Yan
et al., 2020; Glasgow and Wootters, 2021; Gu et al.,
2021) proposed variance-reduction-based mechanisms
to handle different worker availability. (Nguyen et al.,
2022) proposed a method that incorporates local steps
and shows its practical superiority, but the analysis is
done under unrealistic assumptions.

Recently, (Koloskova et al., 2022; Mishchenko et al.,
2022a) introduced novel analysis based on perturbed
iterates framework (Mania et al., 2017) which improves
the convergence guarantees for asynchronous SGD for
both heterogeneous and homogeneous regimes. They
propose similar delay-adaptive stepsize schedules that
allow to derive maximum-delay-free rates for asyn-
chronous SGD. Besides, (Koloskova et al., 2022) pro-
posed an algorithm with a special random job assign-
ing procedure to balance the workers in the heteroge-
neous setting. In the same setting (Mishchenko et al.,
2022a) derived convergence guarantees for pure asyn-
chronous SGD. Inspired by (Koloskova et al., 2023a)1,
we propose a new virtual-iterates-based analysis and
cover the results of (Koloskova et al., 2022; Mishchenko
et al., 2022a) as special cases.

2.1 SGD with Arbitrary Data Ordering

The most practical training SGD schemes utilize a cer-
tain order (usually random) of data samples. Schemes
like random reshuffling or shuffle once are consid-
ered a default choice in many real-world applications.
Sampling without replacement allows to leverage of
the finite-sum structure of the problem since all data
points will contribute equally to the solution. How-
ever, the theoretical guarantees for these methods are
much less studied than for vanilla SGD (Rakhlin et al.,
2012; Nguyen et al., 2021). The main complication
comes from the fact that the gradient estimator be-
comes biased. Biased SGD-type methods are typically
considered more challenging to analyze than their un-
biased counterparts.

In the last years, particular attention was given to fed-
erated and distributed methods with random reshuf-
fling (Malinovsky et al., 2022; Sadiev et al., 2022; Yun

1We aware of the technical gap in the proofs in
(Koloskova et al., 2023a). However, a proper choice of cor-
relation period τ allows to take conditional expectations
correctly. We highlight for each special case the choice of
τ that leads to correct statements.

et al., 2021; Cho et al., 2023). Data shuffling might
provably improve the convergence in this case as well
which is important for the training of large-scale mod-
els.

Here, (Mishchenko et al., 2020) introduce novel tech-
niques to improve the convergence guarantees in the
strongly convex case, whereas (Nguyen et al., 2021;
Ahn et al., 2020) demonstrate the same rates show-
ing the superiority of SGD with random reshuffling
over vanilla SGD. However, in convex and non-convex
regimes this remains an open problem. Existing results
demonstrate better performance of SGD with random
reshuffling in some special cases (Mishchenko et al.,
2020) in convex and non-convex scenarios.

3 SETUP

We consider the classical Empirical Risk Minimization
(ERM) problem of the form

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

fi(x)
]

, (1)

which covers many optimization problems in machine
learning. Here, x ∈ Rd denotes the parameters of a
model we aim to train, n is the number of workers
participating in the distributed training, and fi(x) is
the loss associated with data Di available to worker
i ∈ [n] := {1, 2, . . . , n}. For example, the local func-
tion fi can be written as an expectation fi(x) :=
Eξ∼Di

[fi(x, ξ)] over dataset Di locally stored at worker
i. Besides, the formulation (1) also recovers the single-
node setting. In this scenario, f represents a loss over
a dataset of size n, and each fi is a loss associated
with i-th data point. We denote the minimum of the
problem (1) by f∗, and assume that it is finite.

3.1 Proposed Algorithmic Framework

To solve the problem (1), we apply general asyn-
chronous SGD (Algorithm 1). The backbone of our
algorithmic approach is to analyze updates of the form

xt+1 = xt − γgit
(xπt

), (2)

where it ∈ [n] is an index of a worker whose potentially
stale and stochastic gradient git

(xπt
) computed at an

outdated point xπt is applied at iteration t.

It is crucial to note that the order of applied gradients
git

(xπt
) is not controlled by the server. Once an ongo-

ing gradient computation is done by some worker, the
gradient is immediately communicated to the server
and is used to update the global model without syn-
chronizing with other workers. In fact, the order of
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Table 1: Asynchronous algorithms whose convergence analysis is covered by our framework. Here constants ζ2,
G2 such that ∥∇fi(x) −∇f(x)∥2 ≤ ζ2 and ∥∇fi(x)∥2 ≤ G2 for all i ∈ [n] and x ∈ Rd. τC and τmax denote the
maximum number of active jobs and the maximum delay respectively. F0 is the initial functional suboptimality,
the definitions of other constants are given in Section 4. For shuffled asynchronous SGD τC = n. BG = requires
Bounded Gradients assumption.

Method Alg # Citation BG Rate (a)

Mishchenko et al. (2022a) No LF0τC

T +
(

LF0σ2

T

)1/2
+ ζ2 (b)

Pure
Asynchronous SGD Alg 2 Ours No LF0

√
τmaxτC

T +
(

LF0σ2

T

)1/2
+ ζ2

Ours Yes LF0τC

T +
(

LF0σ2

T

)1/2
+
(

LF0GτC

T

)2/3 + ζ2

Pure
Asynchronous SGD

with waiting
Alg 3

Ours No LF0
√

τmaxτC

T
√

b
+
(

LF0σ2

T b

)1/2
+ ζ2

Ours Yes LF0τC

T b +
(

LF0σ2

T b

)1/2
+
(

LF0GτC

T b

)2/3 + ζ2

Koloskova et al. (2022) No LF0
√

τmaxτC

T +
(

LF0σ2

T

)1/2
+
(

LF0ζ2

T

)1/2
+
(

LF0τCζ
T

)2/3

Random
Asynchronous SGD Alg 4 Koloskova et al. (2022) Yes LF0τC

T +
(

LF0σ2

T

)1/2
+
(

LF0ζ2

T

)1/2
+
(

LF0τC G
T

)2/3

Ours Yes LF0τC

T +
(

LF0σ2

T

)1/2
+
(

LF0ζ2

T

)1/2
+
(

LF0τC G
T

)2/3

Random
Asynchronous SGD

with waiting (FedBuff)
Alg 5

Nguyen et al. (2022) Yes LF0
T +

(
LF0σ2

T

)1/2
+
(

LF0ζτmax
T

)2/3
+
(

LF0Gτmax
T

)2/3 (c)

Ours Yes LF0τC

T +
(

LF0ζ2

T b

)1/2
+
(

LF0σ2

T b

)1/2
+
(

LF0τC G
T b

)2/3

Shuffled
Asynchronous SGD

[NEW]
Alg 6 Ours Yes LnF0

T +
(

LF0σ2

T

)1/2
+
(

LF0
√

nζ
T

)2/3
+
(

LF0Gn
T

)2/3

(a) We present the best-known rates under the same set of assumptions as we use in the analysis.
(b) Mishchenko et al. (2022a) uses delay adaptive stepsizes to get rid of the dependency on τmax.

(c) If we set ηl = γ
b , ηg = b, Q = 1 in Theorem 1 Nguyen et al. (2022). The analysis is done under the unrealistic assumption that

{it}T −1
t=0 are distributed uniformly at random.

received gradients depends on the speeds of the work-
ers which can change during the training. We denote
by Rt the set of all received jobs2 before iteration t.
Hence, before training R0 = ∅, and once a new job
(it, πt) is completed (i.e., the gradient git(xπt) is com-
puted) we update the set Rt+1 = Rt ∪ {(it, πt)}.

After receiving a completed job (it, πt) and updating
the model parameters xt+1, the server proceeds to as-
sign a new job. This is the stage when the server
can influence the training by controlling the assigned
jobs. Specifically, the server is allowed to assign any
worker kt+1 ∈ [n] to compute a stochastic gradient
at any point xαt+1 in the history of model parame-
ters. Similar to the set of received jobs, denote by At

the set of all assigned jobs before iteration t. Thus,
before the training no job is assigned, i.e., A0 = ∅.
Then, the training starts by the initial job assignments
A1 = {(i, 0) : for some workers i ∈ [n]}. Afterward,
once a new job (kt+1, αt+1) is assigned by the server,
we update the set At+2 = At+1 ∪ {(kt+1, αt+1)}.

By definition, Rt ⊆ At since only assigned jobs might
be finished. Besides, the set At+1 \ Rt represents the

2By job we define a pair (i, j) such that worker i is
assigned to compute ∇fi(xj) for a model from iteration j.

jobs that are “in flight” at iteration t. In particular,
AT +1 \ RT consists of all jobs that are not finished
within the optimization process.

The power of our algorithmic framework is its versa-
tility to recover various variants of both asynchronous
and synchronous SGD algorithms in one method. The
strength of our approach is that the theoretical anal-
ysis for all of them is covered by unified theory, as
well as the rates obtained by our theory match the
best-known results for those cases or improve them.
We present convergence guarantees for several syn-
chronous and asynchronous methods covered by our
analysis in Table 1 and Section 4 in more details.

3.2 Special Cases

Below we list some interesting special cases covered
by our framework. Detailed description is provided
in Sections C.3 and D.3 while convergence rates are
presented in Table 1.

Pure Asynchronous SGD. In the beginning of the
training the server assigns jobs to all workers at x0.
Then, a new job (for a freshly updated model) is as-
signed back to the same worker which completed the
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Algorithm 1 General Asynchronous SGD
1: Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅, set of received jobs R0 = ∅
2: Initialization: for all jobs (i, 0) ∈ A1, the server assigns worker i to compute a stochastic gradient gi(x0)
3: for t = 0, 1, 2, . . . , T − 1 do
4: once worker it finishes a job (it, πt) ∈ At+1, it sends git

(xπt
) to the server

5: server updates the current model xt+1 = xt − γgit
(xπt

) and the set Rt+1 = Rt ∪ {(it, πt)}
6: server assigns worker kt+1 to compute a gradient gkt+1(xαt+1)
7: server updates the set At+2 = At+1 ∪ {(kt+1, αt+1)}
8: end for

previous job, i.e., (kt+1, αt+1) ≡ (it, t + 1). We derive
improved square root dependency on τmax in contrast
to previous works, and remove this dependency com-
pletely with bounded gradients assumption. Our rate
matches the best-known result (Koloskova et al., 2022)
in homogeneous regime (i.e., ζ2 = 0).

Pure Asynchronous SGD with waiting. In con-
trast to the previous case, the server waits for b ≥ 1
workers to finish their jobs, and then it assigns to them
(i.e., kt+1 = it as before) new jobs for the same up-
dated model with αt+1 = ⌊t+1/b⌋b. In comparison with
previous method, waiting for b leads to faster conver-
gence while keeping the same dependency τmax.

Random Asynchronous SGD Koloskova et al.
(2022). In this version, a new job is assigned to the
worker kt+1 ∼ Uni[1, 2, . . . , n] chosen independently
and uniformly at random among all workers for the
latest model, i.e., αt+1 = t + 1. Thus, some workers
might receive new jobs without completing the current
one. We obtain the same rates as in (Koloskova et al.,
2022) using more general theory which indicates the
sharpness of our approach.

Random Asynchronous SGD with waiting
Nguyen et al. (2022). This method is a special case
of the FedBuff algorithm Nguyen et al. (2022) with
Q = 1 local steps. Besides, it can be seen as a combi-
nation of the previous two special cases, namely asyn-
chronous SGD with waiting and random assignments.
The server waits for the first b fastest workers and then
assigns new jobs with the same model αt+1 = ⌊t+1/b⌋b
to b randomly chosen workers kt+1 ∼ Uni[1, . . . , n].
Unlike (Nguyen et al., 2022), we derive convergence
under realistic assumptions. Moreover, we derive τmax-
free rate and show the benefit from waiting for few
workers as the rate improves with b.

Shuffled Asynchronous SGD [NEW]. In this case,
we assume that all participating workers [n] are active
in the training. Similar to random asynchronous SGD
described above, new jobs are always for the latest
model, i.e., αt+1 = t + 1. However, new jobs are not
assigned to workers independently but rather based
on a random permutation of workers that can be re-

sampled after each cycle or sampled once and reused
throughout the training. More specifically, if χ is a
random permutation of indices [n], then kt+1 = χ(j),
where j − 1 = t (mod n) is the remainder of t when
divided by n. In Section D.3.3 we demonstrate that
new method outperforms its random counterpart in
highly heterogeneous regime ζ ≥

√
nε1/2 which typi-

cally holds in Federated Learning.

Mini-batch SGD. This is the standard variety of
SGD method, and a popular method for a single-node
setting. We show that the update rule of mini-batch
SGD can be modified to suit update rule (2) and derive
standard convergence rate. In particular, if we treat
each data point as a separate client then mini-batch
SGD can be viewed as random asynchronous SGD with
waiting where initial number of jobs assigned by the
server is b.

SGD with Random Reshuffling Nedic and Bert-
sekas (2001). SGD with random reshuffling is one
the most used and sometimes a default algorithm in
practice to train neural networks. At the beginning
of each epoch, the dataset is randomly shuffled, and
gradients are computed following that random order.
Similar to the analogy described for mini-batch SGD,
we can view SGD with random reshuffling as a special
case of shuffled asynchronous SGD. Our rate matches
the best known guarantees showing the tightness of
our approach.

4 CONVERGENCE THEORY

4.1 Theoretical assumptions

Below we list the assumptions we use in the theoretical
analysis. All of them are standard in the distributed
non-convex optimization literature.
Assumption 1. Local functions fi are differentiable
and L-smooth for some positive constant L, namely,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd. (3)

For some of our results, we also need a bounded vari-
ance assumption on stochastic gradients.
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Assumption 2. Stochastic gradients ∇fi(x, ξ) are
unbiased estimators of ∇fi(x), i.e.,

Eξ∼Di
[∇fi(x, ξ)] = ∇fi(x), ∀x ∈ Rd, (4)

and have bounded variance σ2 ≥ 0, namely,

Eξ∼Di

[
∥∇fi(x, ξ)−∇fi(x)∥2] ≤ σ2, ∀x ∈ Rd. (5)

This is a typical assumption in the literature, and it
holds, for example, when we have access to the gradi-
ents with Gaussian noise. We denote a realization of
∇fi(x, ξ) by gi(x) for shortness.

Next, we also assume that the bounded function het-
erogeneity assumption holds since in general case it is
not possible to derive any convergence guarantees for
asynchronous algorithms.
Assumption 3. Local gradients ∇fi(x) satisfy
bounded heterogeneity condition for some ζ2 ≥ 0, i.e.,

∥∇fi(x)−∇f(x)∥2 ≤ ζ2, ∀x ∈ Rd. (6)

Several results require the Lipschitzness of local loss
functions.
Assumption 4. Local functions fi(x) are G-
Lipschitz, i.e. for some positive constant G they satisfy

|fi(x)− fi(y)| ≤ G∥x− y∥ ∀x, y ∈ Rd. (7)

Note that, in the case of differentiable fi, this assump-
tion implies that local gradients are bounded, i.e., for
all x ∈ Rd ∥∇fi(x)∥ ≤ G Bubeck (2015). In contrast
to Mishchenko et al. (2022a), we do not assume the
boundedness of stochastic gradients. Practical imple-
mentations frequently resort to using clipping in the
presence of Byzantine workers or stragglers. The clip-
ping automatically bounds the norms of applied gra-
dient, forcing the constant G2 to be small.

4.2 Notation

Generally, we do not make any assumptions on the
delays — gradients might be received in any random
or deterministic order. We assume that the server can
receive and assign jobs with delays, namely, πt := t−τt

and αt := t − τ̃t, where τt, τ̃t ≥ 0 are corresponding
delays.3 The order might be natural as in the case of
pure asynchronous SGD or be pre-set as for mini-batch
SGD; see Sections C.3 and D.3 for more examples of
how {it}T −1

t=0 might look like. Besides, we introduce
the notion of maximum and average delays similar to
Koloskova et al. (2022).

3If τt ≡ τ̃t ≡ 0, then there is no delay.

Definition 1. Let {τt}T −1
t=0 be the delays of all ap-

plied gradients. The average and maximum delays are
defined as follows

τavg := 1
|AT +1|

(
T −1∑
t=0

τt +
∑

(i,j)∈AT +1\RT

T − j

)
,

τmax := max
{

max
0≤t<T

τt, max
(i,j)∈AT +1\RT

T − j

}
. (8)

Quantities τ̃avg and τ̃max are defined analogously with
respect to the delays {τ̃t}T −1

t=0 related to assigning pro-
cess. Moreover, in the analysis, we use the maximum
number of active jobs or concurrency τC . This quan-
tity indicates the maximum number of jobs already
assigned, but not yet completed (i.e., active jobs) dur-
ing the optimization process.
Definition 2. The maximum number of active jobs
or concurrency is defined as

τC := max
0≤t≤T

|At+1 \ Rt| . (9)

To utilize available resources in a more efficient way,
in practice, all workers are always busy, i.e., τC = n.
Nevertheless, it might happen that a fraction of all
workers can be unavailable from time to time.

The received {it} and assigned {kt} orders of func-
tions define the convergence properties of Algorithm 1.
Hence, we are interested in the correlation between
functions within a certain correlation interval τ. The
final rate depends on how much the functions within
the correlation interval differ from the averaged gradi-
ent. To mathematically describe the aforesaid, we de-
fine the sequence correlation Koloskova et al. (2023a)
below.
Definition 3. For any given correlation period τ ≥ 1,
we successively split the set of received gradient indices
{it}T −1

t=0 into
⌈

T
τ

⌉
chunks of size τ . Then, the sequence

correlation of received jobs within k-th period is de-
fined as

σ2
k,τ := max

0≤j<τ
E
[∥∥∥∑min{kτ+j,T −1}

t=kτ ∆it
(xkτ )

∥∥∥2
]

, (10)

where ∆i(x) := ∇fi(x)−∇f(x).

Next, the magnitude of delays affects the resulting con-
vergence rate. We measure the effect of the delays
by the quantity defined below. Note that it does not
involve any correlation period since it is designed to
track how πt impacts the rate.
Definition 4. For the sequence of received gradient
indices {it}T −1

t=0 the delay variance is defined as

ν2 :=
T −1∑
t=0

E
[∥∥∥∑t−1

j=πt
∆ij (xπj )

∥∥∥2
]

.
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4.3 Analysis of Gradient Receiving Process

In the first theorem, we analyze the gradient receiv-
ing process, i.e., how the order of received gradients
{it}T −1

t=0 influences the convergence. We would like to
highlight that this ordering can not be controlled by
the server; it is built naturally depending on the speeds
of the workers.

For the analysis, we additionally construct a sequence
of virtual iterates Mania et al. (2017) with restarts
following the approach created in Koloskova et al.
(2023a). The sequence is defined as x̃0 = x0 and

x̃t+1 =
{

x̃t − γ∇f(xt) if t + 1 ̸= 0 mod τ,

xt+1 if t + 1 = 0 mod τ.
(11)

In contrast to the sequence {xt}T
t=0, virtual iterates

{x̃t}T −1
t=0 are updated using full gradient always eval-

uated for the last model xt. Moreover, we restart the
virtual iterates once in τ iterations, so we can track
the progress of real iterates within one correlation pe-
riod. More particularly, we use τ = Θ( 1

Lγ ), where L
and γ are the smoothness constant and the stepsize
respectively.
Theorem 1. Let Assumptions 1 and 2 hold. Let
the stepsize γ satisfy inequalities 6Lγ ≤ 1 and
20Lγ

√
τmaxτC ≤ 1, the correlation period τ =

⌊
1

20Lγ

⌋
,

and quantities {σ2
k,τ}

⌊T/τ⌋
k=0 and ν2 are finite. Then

E
[
∥∇f(x̂T )∥2] ≤ O ( F0

γT + Lγσ2 + L2γ2Φ
)

, (12)

where F0 := f(x0) − f∗, Φ := 1
⌊T/τ⌋

⌊ T
τ ⌋∑

k=0
σ2

k,τ +
1
T ν2, and x̂T is chosen uniformly at random from
{x0, . . . , xT −1}.

We give a detailed proof of the theorem in Appendix,
Section C. We observe that the rate consists of three
terms. The first one, F0

γT , is a standard optimization
term that always appears for vanilla GD, and is shown
to be optimal. The second term, Lγσ2, appears be-
cause of the stochastic nature of the gradients. The
third term, L2γ2Φ, the most intriguing one, consists
of two parts — the first one represents the effect of
function ordering while the second part shows the im-
pact of delays on the convergence.

Since the first and second terms are standard for
gradient-based algorithms, one asynchronous algo-
rithm differs from another one with a bound on L2γ2Φ.
Intuitively, our goal is to create an algorithm for which
this term is as small as possible in order to guarantee
better convergence. This can be achieved by properly
balancing the workers’ contributions. Moreover, the

stepsize γ is decreased by τ
1/2
max to mitigate the effect

of the delays.

Note that all quantities {σ2
k,τ}

⌊ T
τ ⌋

k=0 and ν2 depend on τ ,
and consequently, on the stepsize γ as well. Hence, for
the general case, the inequality (12) is implicit. How-
ever, for some special cases, we are able to compute
all quantities and derive convergence guarantees.

4.4 Analysis of Gradient Assigning Process

Now we switch to the analysis of the order {kt}T
t=1

which the server uses to decide the order of assigning
new jobs. Recall that the server is able to control this
order. That is why we can use various randomization
procedures to balance the workers.

The analysis in this case is based on the virtual iterates
{yt}T

t=0 that follow the assigning process. Formally, we
define y0 = x0 and

yt+1 = yt − γ
∑

(i,j)∈At+1\At
gi(xj)

t>0= yt − γgkt(xαt). (13)

Here we highlight that the server may decide to send
a job at outdated point xαt with bounded by τ̃max de-
lay.4 This enables us to investigate methods where
several workers compute gradients at the same point,
e.g., mini-batch SGD. Hence, it brings even more flex-
ibility to our framework. The real and virtual iterates
can not be arbitrarily far away from each other. The
next Lemma reveals the connection between them.
Lemma 1. Let real {xt}T

t=0 and virtual {yt}T
t=0 iter-

ates be defined in (2) and (13) respectively. Then

xt − yt = γ
∑

(i,j)∈At\Rt
gi(xj).

Based on the sequence {yt}T
t=0 we construct the

restarting sequence {ỹt}T
t=0 similarly to (11)

ỹ1 = y1, (14)

ỹt+1 =
{

ỹt − γ∇f(xt) if t ̸= 0 mod τ,

yt+1 if t = 0 mod τ.

Analogously, we can define the sequence correlation
and the delay variance for the sequence of assigned gra-
dient indices {kt}T

t=1. We denote them by {σ̃2
k,τ}

⌊ T
τ ⌋

t=0
and ν̃2 respectively. Based on this, we present our
second theorem.
Theorem 2. Let Assumptions 1, 2, and 4 hold.
Let the stepsize γ satisfies inequalities 6Lγ ≤ 1 and
30Lγ max{τ̃max, τC} ≤ 1, the correlation period τ =

4In other words, αt = t − τ̃t where τ̃t ≥ 0.
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Figure 1: Comparison of pure, random, and shuffled asynchronous SGD with tuned stepsizes and full gradient
computation on w7a dataset with various delay patterns. Here n = 10, λ = 0.1, d = 300, m = 2505.⌊

1
30Lγ

⌋
, quantities {σ̃2

k,τ}
⌊T/τ⌋
k=0 and ν̃2 are finite. Then

E
[
∥∇f(x̂T )∥2] ≤ O( F1

γT + Lγσ2 + L2γ2Φ̃
+ L2γ2(τC − 1)2G2), (15)

where F1 := f(y1)−f∗, Φ̃ := 1
⌊T/τ⌋

⌊ T
τ ⌋∑

k=0
σ̃2

k,τ + 1
T ν̃2, and

x̂T is chosen uniformly at random from {x1, . . . , xT }.

The proof of Theorem 2 can be found in Section D. It
gives similar convergence behaviour as Theorem 1, but
for the assigning sequence {kt}T

t=1. The difference is
in the last L2γ2(τC − 1)2G2 term which is not present
in (12), and it appears because of the bound between
real and virtual iterates.

We emphasize that if τC = 1, i.e., there is only one
active job at each iteration, then the fourth term is
zero. For example, this holds for single-node algo-
rithms such as SGD with random reshuffling or shuffle
once. Therefore, we recover the same rates for those
methods. Besides, we highlight the fact that the rate
(15) admits the absence of the dependency on τmax
in particular special cases; the delays affect the rate
through averaged delays only.

Moreover, the term Φ̃ depends on sequences {kt} and
{αt} which are fully under the control of the server.
Therefore, the server may change its job assignment
strategy if it observes that the current one leads to
poor performance. In Section D.3 we demonstrate pre-
cisely which assignment strategies can be used.

5 EXPERIMENTS

We conduct experiments on logistic regression with
nonconvex regularization, namely, we consider the
problem (1) with local functions

fi(x) = 1
m

m∑
j=1

log
(

1 + e−bija⊤
ijx
)

+ λ
d∑

j=1

x2
j

1+x2
j
.

We test the performance of FedBuff (Nguyen et al.,
2022), pure, random, and shuffled versions of asyn-
chronous SGD methods. We use the w7a dataset from

the LibSVM library Chang and Lin (2011), and addi-
tionally construct synthetic datasets following Li et al.
(2018); Safaryan et al. (2022) with control of statisti-
cal heterogeneity through parameters α and β.5 The
detailed dataset generation and parameters setup are
given in Appendix A.6

We assume that all workers start computing gradi-
ents in the beginning, i.e. τC = n. We fine-tune the
stepsize and illustrate the performance with the fine-
tuned stepsize only choosing the best one that achieves
smaller gradient norm and fluctuations.

We conducted experiments in four different settings.
In particular, each worker has a positive parameter si.
The way these parameters are used is as follows

• Fixed: in this case, r ≡ si. Such fixed timing implies
that the delay pattern is fixed as well.

• Poisson: for each worker we sample r ∼ Po(si).

• Normal: similarly, we sample s ∼ N (si, si), and
then set r = |s|+ 1.

• Uniform: in this case, we sample r ∼ Uni(0, si).

The number r indicates how many seconds worker i
spends to compute one gradient. Such timing patterns
simulate possible workers’ behavior in practice.

First, we present the practical performance of the three
aforesaid methods with full gradient computation in
Figure 1. We observe that pure asynchronous SGD
gets stuck when the gradient norm becomes about
10−1 − 10−2. The same result holds for FedBuff. The
rest two methods achieve better stationary points with
smaller gradient norms. We also observe that FedBuff
does not benefit from performing several local steps.
Moreover, shuffled asynchronous SGD starts converg-
ing faster than its random counterpart around 10−1.5.
Further, shuffled asynchronous SGD achieves a sta-
tionary point with roughly 10 times smaller gradient
norm.

5The corresponding dataset is denoted as Syn(α, β).
6Our code is available at https://github.com/

Rustem-Islamov/AsGrad-public/.

https://github.com/Rustem-Islamov/AsGrad-public/
https://github.com/Rustem-Islamov/AsGrad-public/
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Figure 2: Comparison of pure, random, and shuffled asynchronous SGD with tuned stepsizes and stochastic
gradient computation on synthetic datasets with different levels of heterogeneity and poisson delay pattern.
Here n = 10, λ− 0.1, d = 300, m = 200, and batch size m/10.

Next, we conduct the same set of experiments with
stochastic gradients on synthetic datasets changing pa-
rameters α and β; see results in Figure 2.

We observe similar performance in stochastic setting.
Random and shuffled asynchronous SGD are superior
to pure asynchronous SGD. Our proposed method al-
ways finds the stationary point with the smallest error,
and in several cases, the convergence is faster than that
of random asynchronous SGD.

6 CONCLUSION

Our framework provides a deeper understanding of
asynchronous SGD-type algorithms. In contrast to
previous works, we derive a theoretical analysis for few
method simultaneously with improved dependency on
τmax. In addition, our theory provides the intuition of
what affects the convergence of asynchronous-type al-
gorithms, and how we can improve the convergence
by balancing the workers’ jobs. The analysis high-
lights two terms appearing in the rate due to delays
and data ordering caused by asynchronicity. We show
that different prior techniques and our new proposed
approach, in fact, make those two terms in the rate
smaller, and as a consequence, lead to better prac-
tical performance. Moreover, we do not impose any
assumption on the delay pattern.

Finally, experiments support our theoretical find-
ings. We both empirically and theoretically show that
pure asynchronous SGD converges up to heterogene-
ity level. Besides, we demonstrate that the proposed
shuffled job assigning allows to balance more carefully
the workers’ contributions.

7 Acknowledgments

The authors thank all anonymous reviewers for their
valuable comments and suggestions on how to improve
the manuscript. This work was done when Rustem
Islamov was a Master’s student at Institut Polytech-
nique de Paris (IP Paris) and an intern at Institute of

Science and Technology Austria (ISTA). The research
of Rustem Islamov was supported by ISTA internship
program. Mher Safaryan has received funding from
the European Union’s Horizon 2020 research and in-
novation program under the Marie Skłodowska-Curie
grant agreement No 101034413.

References
Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. Sgd

with shuffling: optimal rates without component
convexity and large epoch requirements. In Ad-
vances in Neural Information Processing Systems
(NeurIPS 2020), 2020. (Cited on page 3)

Dan Alistarh, Christopher De Sa, and Nikola Kon-
stantinov. The convergence of stochastic gradient
descent in asynchronous shared memory. In ACM
Symposium on Principles of Distributed Computing,
PODC 2018, 2018. (Cited on pages 1 and 2)

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A
tight convergence analysis for stochastic gradient de-
scent with delayed updates. In International Confer-
ence on Algorithmic Learning Theory (COLT 2020),
2020. (Cited on page 2)

Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and
Kfir Yehuda Levy. Learning under delayed feedback:
Implicitly adapting to gradient delays. In Inter-
national Conference on Machine Learning (ICML
2021), 2021. (Cited on page 2)

Gerard Baudet. Asynchronous iterative methods for
multiprocessors. Journal of the Association for
Computing Machinery, 1978. (Cited on page 2)

Ron Bekkerman, Mikhail Bilenko, and John Lang-
ford. Scaling up machine learning: Parallel and dis-
tributed approaches. Cambridge University Press,
2011. (Cited on page 1)

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel
and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989. (Cited on page 2)

Sébastien Bubeck. Convex optimization: Algorithms



AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms

and complexity. Foundations and Trends in Machine
Learning, 2015. (Cited on page 6)

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A li-
brary for support vector machines. ACM transac-
tions on intelligent systems and technology (TIST),
2011. (Cited on pages 8 and 15)

Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu,
Satyen Kale, and Tong Zhang. On the convergence
of federated averaging with cyclic client participa-
tion. arXiv preprint arXiv:2302.03109, 2023. (Cited
on page 3)

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren,
and Mariano Schain. Asynchronous stochastic op-
timization robust to arbitrary delays. In Advances
in Neural Information Processing Systems (NeurIPS
2021), 2021. (Cited on page 2)

Laurent Condat, Ivan Agarský, and Peter Richtárik.
Provably doubly accelerated federated learning:
The first theoretically successful combination of lo-
cal training and communication compression. arXiv
preprint arXiv: 2210.13277, 2023. (Cited on page 1)

John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. In Journal of Machine
Learning Research, 2011. (Cited on page 1)

Mathieu Even, Anastasia Koloskova, and Laurent
Massoulié. Asynchronous sgd on graphs: a uni-
fied framework for asynchronous decentralized and
federated optimization. In International Conference
on Artificial Intelligence and Statistics (AISTATS
2024), 2024. (Cited on page 2)

Yuan Gao, Rustem Islamov, and Sebastian Stich.
Econtrol: Fast distributed optimization with com-
pression and error control. In International Con-
ference on Learning Representations (ICLR 2024),
2024. (Cited on page 1)

Margalit Glasgow and Mary Wootters. Asynchronous
distributed optimization with stochastic delays.
arXiv preprint arXiv: 2009.10717, 2021. (Cited on
page 3)

Eduard Gorbunov, Filip Hanzely, and Peter Richtarik.
Local sgd: Unified theory and new efficient meth-
ods. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS 2021), 2021. (Cited
on page 1)

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and
Longbo Huang. Fast federated learning in the pres-
ence of arbitrary device unavailability. In Advances
in Neural Information Processing Systems (NeurIPS
2021), 2021. (Cited on page 3)

Samuel Horvath, Stefanos Laskaridis, Mario Almeida,
Ilias Leontiadis, Stylianos I. Venieris, and

Nicholas D. Lane. Fjord: Fair and accurate
federated learning under heterogeneous targets
with ordered dropout. In Advances in Neural
Information Processing Systems (NeurIPS 2021),
2022. (Cited on page 2)

Peter Kairouz et al. Advances and open problems in
federated learning. Foundations and Trends in Ma-
chine Learning, 2021. (Cited on page 1)

Sarit Khirirat, Hamid Reza Feyzmahdavian, and
Mikael Johansson. Distributed learning with com-
pressed gradients. arXiv preprint arXiv:1806.06573,
2018. (Cited on page 1)

Diederik P. Kingma and Jimmy Lei Ba. Adam:
A method for stochastic optimization. In Inter-
national Conference on Learning Representations
(ICLR 2015), 2015. (Cited on page 1)

Anastasia Koloskova, Sebastian U. Stich, and Mar-
tin Jaggi. Decentralized stochastic optimization and
gossip algorithms with compressed communication.
In International Conference on Machine Learning
(ICML 2019), 2019. (Cited on page 1)

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri,
Martin Jaggi, and Sebastian U. Stich. A unified
theory of decentralized sgd with changing topology
and local updates. In International Conference on
Machine Learning (ICML 2020), 2020. (Cited on
page 1)

Anastasia Koloskova, Sebastian Stich, and Martin
Jaggi. Sharper convergence guarantees for asyn-
chronous SGD for distributed and federated learn-
ing. In Advances in Neural Information Processing
Systems (NeurIPS 2022), 2022. (Cited on pages 2, 3,
4, 5, 6, 22, 32, 42, 46, and 47)

Anastasia Koloskova, Nikita Doikov, Sebastian U.
Stich, and Martin Jaggi. Shuffle sgd is always bet-
ter than sgd: Improved analysis of sgd with arbi-
trary data orders. arXiv preprint arXiv:2305.19259,
2023a. (Cited on pages 3, 6, and 7)

Anastasia Koloskova, Ryan McKenna, Zachary
Charles, Keith Rush, and Brendan McMahan. Con-
vergence of gradient descent with linearly correlated
noise and applications to differentially private learn-
ing. Advances in Neural Information Processing Sys-
tems (NeurIPS 2023), 2023b. (Cited on page 2)

Jakub Konečný, H. Brendan McMahan, Felix Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving
communication efficiency. In NIPS Private Multi-
Party Machine Learning Workshop, 2016. (Cited on
page 1)

Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov,
and Peter Richtárik. Lower bounds and optimal al-



Rustem Islamov, Mher Safaryan, Dan Alistarh

gorithms for smooth and strongly convex decentral-
ized optimization over time-varying networks. In
Advances in Neural Information Processing Systems
(NeurIPS 2021), 2021. (Cited on page 1)

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks.
arXiv preprint arXiv:1812.06127, 2018. (Cited on
page 8)

Yucheng Lu, Si Yi Meng, and Christopher De Sa.
A general analysis of example-selection for stochas-
tic gradient descent. In Iternational Conference on
Learning Representations (ICLR 2022), 2022. (Cited
on page 2)

Grigory Malinovsky, Konstantin Mishchenko, and Pe-
ter Richtárik. Server-side stepsizes and sampling
without replacement provably help in federated op-
timization. arXiv preprint arXiv:2201.11066, 2022.
(Cited on page 3)

Horia Mania, Xinghao Pan, Dimitris Papailiopou-
los, Benjamin Recht, Kannan Ramchandran, and
Michael I. Jordan. Perturbed iterate analysis for
asynchronous stochastic optimization. SIAM Jour-
nal on Optimization, 2017. (Cited on pages 3 and 7)

Konstantin Mishchenko, Eduard Gorbunov, Martin
Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint
arXiv:1901.09269, 2019. (Cited on page 1)

Konstantin Mishchenko, Ahmed Khaled, and Peter
Richtarik. Random reshuffling: Simple analysis with
vast improvements. In Advances in Neural Infor-
mation Processing Systems (NeurIPS 2022), 2020.
(Cited on pages 2 and 3)

Konstantin Mishchenko, Francis Bach, Mathieu Even,
and Blake Woodworth. Asynchronous SGD beats
minibatch SGD under arbitrary delays. In Advances
in Neural Information Processing Systems (NeurIPS
2022), 2022a. (Cited on pages 2, 3, 4, and 6)

Konstantin Mishchenko, Grigory Malinovsky, Sebas-
tian Stich, and Peter Richtárik. ProxSkip: Yes! lo-
cal gradient steps provably lead to communication
acceleration! finally! In International Conference
on Machine Learning (ICML 2022), 2022b. (Cited
on page 1)

Amirkeivan Mohtashami, Sebastian Stich, and Mar-
tin Jaggi. Characterizing and finding good data or-
derings for fast convergence of sequential gradient
methods. arXiv preprint arXiv: 2202.01838, 2022.
(Cited on page 2)

Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vy-
acheslav Kungurtsev, and Dan Alistarh. Elastic

consistency: A general consistency model for dis-
tributed stochastic gradient descent. In AAAI Con-
ference on Artificial Intelligence, 2021. (Cited on
page 2)

Angela Nedic and Dimitri Bertsekas. Convergence
rate of incremental subgradient algorithms. Stochas-
tic optimization: algorithms and applications, 2001.
(Cited on page 5)

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan
Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered
asynchronous aggregation. In International Confer-
ence on Artificial Intelligence and Statistics (AIS-
TATS 2022), 2022. (Cited on pages 2, 3, 4, 5, 8, and 44)

Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan,
Phuong Ha Nguyen, and Marten van Dijk. A uni-
fied convergence analysis for shuffling-type gradient
methods. Journal of Machine Learning Research,
2021. (Cited on pages 2 and 3)

Alexander Rakhlin, Ohad Shamir, and Karthik Srid-
haran. Making gradient descent optimal for
strongly convex stochastic optimization. Interna-
tional Coference on International Conference on
Machine Learning (ICML 2012), 2012. (Cited on
page 3)

Herbert Robbins and Sutton Monro. A stochastic ap-
proximation method. In The Annals of Mathemati-
cal Statistics, 1951. (Cited on page 1)

Abdurakhmon Sadiev, Grigory Malinovsky, Eduard
Gorbunov, Igor Sokolov, Ahmed Khaled, Kon-
stantin Burlachenko, and Peter Richtárik. Feder-
ated optimization algorithms with random reshuf-
fling and gradient compression. arXiv preprint
arXiv:2206.07021, 2022. (Cited on page 3)

Mher Safaryan, Rustem Islamov, Xun Qian, and Pe-
ter Richtarik. FedNL: Making Newton-type meth-
ods applicable to federated learning. In Inter-
national Conference on Machine Learning (ICML
2022), 2022. (Cited on page 8)

Sebastian Stich, Amirkeivan Mohtashami, and Martin
Jaggi. Critical parameters for scalable distributed
learning with large batches and asynchronous up-
dates. In International Conference on Artificial
Intelligence and Statistics (AISTATS 2021), 2021.
(Cited on page 2)

Sebastian U. Stich and Sai Praneeth Karimireddy. The
error-feedback framework: Better rates for sgd with
delayed gradients and compressed communication.
Journal of Machine Learning Research, 2020. (Cited
on page 2)

Alexander Tyurin and Peter Richtarik. Optimal
time complexities of parallel stochastic optimization



AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms

methods under a fixed computation model. arXiv
preprint arXiv: 2305.12387, 2023. (Cited on page 2)

Yikai Yan, Chaoyue Niu, Yucheng Ding, Zhenzhe
Zheng, Fan Wu, Guihai Chen, Shaojie Tang, and
Zhihua Wu. Distributed non-convex optimization
with sublinear speedup under intermittent client
availability. arXiv preprint arXiv: 2002.07399,
2020. (Cited on page 3)

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Can
single-shuffle sgd be better than reshuffling sgd and
gd? arXiv preprint arXiv:2103.07079, 2021. (Cited
on page 3)

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze,
and Dan Alistarh. Communication-efficient feder-
ated learning with data and client heterogeneity.
arXiv preprint arXiv: 2206.10032, 2022. (Cited on
pages 1 and 2)

Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu.
Staleness-aware async-sgd for distributed deep
learning. In International Joint Conference on Ar-
tificial Intelligence (IJCAI 2016), 2016. (Cited on
page 3)

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen,
Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu. Asyn-
chronous stochastic gradient descent with delay
compensation. In International Conference on Ma-
chine Learning (ICML 2017), 2017. (Cited on page 3)

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Appli-
cable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]



Rustem Islamov, Mher Safaryan, Dan Alistarh

Contents

1 INTRODUCTION 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 RELATED WORKS 2

2.1 SGD with Arbitrary Data Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 SETUP 3

3.1 Proposed Algorithmic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 CONVERGENCE THEORY 5

4.1 Theoretical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Analysis of Gradient Receiving Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.4 Analysis of Gradient Assigning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 EXPERIMENTS 8

6 CONCLUSION 9

7 Acknowledgments 9

A ADDITIONAL EXPERIMENTS 15

A.1 Synthetic Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2 Comparison on phishing Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.3 Comparison on Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B USEFUL LEMMAS 16

C PROOFS FOR ANALYSIS OF GRADIENT RECEIVING PROCESS 18

C.1 Key Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.3 Convergence Guarantees in Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.3.1 Pure Asynchronous SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.3.2 Mini-batch SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.3.3 Pure Asynchronous SGD with waiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C.3.4 SGD with Random Reshuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D PROOFS FOR ANALYSIS OF GRADIENT ASSIGNING PROCESS 32

D.1 Key Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms

D.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

D.3 Convergence Guarantees in Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D.3.1 Random Asynchronous SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D.3.2 Random asynchronous SGD with waiting . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

D.3.3 Shuffled Asynchronous SGD [NEW] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

D.3.4 Pure Asynchronous SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

D.3.5 Pure Asynchronous SGD with waiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Rustem Islamov, Mher Safaryan, Dan Alistarh

A ADDITIONAL EXPERIMENTS
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Figure 3: Comparison of pure, random, and shuffled asynchronous SGD with tuned stepsizes and full gradient
computation on phishing dataset with various delay patterns. Here d = 68, m = 1105.

In this section, we provide additional numerical results as well as the detailed experiment setup. We consider
logistic regression problem with nonconvex regularization, namely,

f(x) = 1
n

n∑
i=1

fi(x), where fi(x) = 1
m

m∑
j=1

log
(

1 + e−bija⊤
ijx
)

+ λ

d∑
j=1

x2
j

1 + x2
j

.

For synthetic dataset, we set n = 10, m = 200, d = 300, and λ = 0.1 in all experiments. The initial point x0 ∈ Rd

is sampled from standard Gaussian distribution.

We compare the practical performance of FedBuff, pure asynchronous SGD, random asynchronous SGD, and
shuffled asynchronous SGD. We assume that all workers are active from the beginning which implies that τC =
n. We perform a grid search for the stepsize over the set {0.005, 0.004, 0.003, 0.002, 0.001, 0.0005, 0.0001}, and
illustrate the performance with the fine-tuned stepsize only choosing the best one that achieves smaller gradient
norm and fluctuations. For FedBuff we perform 20 local steps and wait for one worker only. We set n = 10, m =
200, d = 300, and λ = 0.1 in all experiments. The initial point x0 ∈ Rd is sampled from standard Gaussian
distribution.

A.1 Synthetic Dataset Generation

The generation function of datasets has two parameters α and β. Below we detail the rules of dataset generation:

1. Sample n numbers Bi ∼ N (0, β).

2. Sample n vectors vi ∈ Rd such that each component [vi]j ∼ N (Bi, 1).

3. For all i ∈ [n] sample m vectors aij ∈ Rd such that aij ∼ N (vi, Σ) where Σ is a diagonal matrix with
Σjj = j−1.2. A set {aij}m

j=1 will be utilized feature vectors of i-th worker.

4. Sample n pairs of numbers ui ∼ N (0, α) and ci ∼ N (ui, 1).

5. Sample n vectors wi ∈ Rd such that each component [wi]j ∼ N (ui, 1).

6. Let pij = σ(w⊤
i aij + ci) where σ(·) is a sigmoid function.

7. For all i ∈ [n] sample m numbers bij such that bij equals to −1 with probability pij and to 1 otherwise.

The larger α and β are, the more heterogeneous local datasets are. In our experiments, we choose these parameters
from the set {0.5, 1, 1.5}.

A.2 Comparison on phishing Dataset

We consider the same as in Figure 1, but we test the performance of algorithms on phishing dataset Chang and
Lin (2011); see Figure 3. We observe that in all cases random and shuffled asynchronous SGD outperform their
pure counterpart as asynchronous SGD with randomized job assigning finds better stationary points. Besides,
shuffled asynchronous SGD finds a more accurate solution than random asynchronous which happens because of
more accurate job assigning.
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Figure 4: Comparison of pure, random, and shuffled asynchronous SGD with tuned stepsizes and full gradient
computation on synthetic datasets with different levels of heterogeneity and various delay patterns.

A.3 Comparison on Synthetic Dataset

First, we test the aforementioned algorithms in the case of full local gradient computation in order to avoid the
effect of stochasticity and illustrate the impact of delay patterns only; see Figure 4. We change the heterogeneity
level controlling parameters α and β, and delay patterns. We observe that in all cases pure asynchronous SGD
gets stuck much earlier than its counterparts regardless of the delay pattern. However, due to that, we can
choose a larger stepsize which leads to faster convergence.

Besides, we notice that the shuffled asynchronous SGD method finds a better stationary point than the random
version which happens because of the more careful job assigning. Moreover, the shuffled version sometimes can
be even faster (e.g., normal Syn(1,1) and poison Syn(1.5, 1.5)).

Next, we conduct experiments in the same setup, but with stochastic gradients where the mini-batch size is 10%
of the local dataset. Figure 5 shows the same performance as in the full gradient case: shuffled asynchronous
SGD finds a more accurate stationary point than its counterparts.

These numerical results support our theoretical findings. First, pure asynchronous SGD does not converge to the
optimum even when choosing small stepsize—it always gets stuck at the heterogeneity level. Moreover, random
job assigning allows to get rid of this issue, and converge to a better stationary point. Finally, more accurate
job assigning via worker shuffling allows for improving further the performance

B USEFUL LEMMAS

We frequently use several well-known results.
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Figure 5: Comparison of pure, random, and shuffled asynchronous SGD with tuned stepsizes and stochastic
gradient computation on synthetic datasets with different levels of heterogeneity and various delay pattern. Here
d = 300, m = 200.

Lemma B.1. Let {vi}m
i=1 be a finite set of vectors in Rd. Then we have∥∥∥∥∥

m∑
i=1

vi

∥∥∥∥∥
2

≤ m
m∑

i=1
∥vi∥2. (16)

Lemma B.2. Let a, b be any two vectors in Rd, and α be any positive number. Then we have

⟨a, b⟩ ≤ α

2 ∥a∥
2 + 1

2α
∥b∥2. (17)

The next lemma is useful when we work we double sums in the proofs. Let β(t, πt) be any non-negative function
with two iterate-dependent arguments t and πt. For example, β(t, πt) = ∥∇fit(xπt)∥2 or β(t, πt) = ∥xt − xπt∥2.
Lemma B.3. Let β(t, πt) be defined as above. If τC is defined in (2), then we have

T −1∑
t=0

t−1∑
j=πt

β(j, πj) ≤ (τC − 1)
T −1∑
t=0

β(t, πt). (18)

Proof. Each term β(t, πt) appears for all t′ such that t ∈ [πt′ , t′). We need to understand how many such t′

might exist at most. Indeed, such term might appear only for t′ before t, thus, that job should have been
started somewhere in the past but still not been applied. The number of such it is bounded by |At \ Rt| =
|At+1 \ Rt| − 1 ≤ τC − 1.
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C PROOFS FOR ANALYSIS OF GRADIENT RECEIVING PROCESS

For r(t) ≤ m < r(t) + τ , denote

ϕm
t (x) := E


∥∥∥∥∥∥

m∑
j=r(t)

(∇f(x)−∇fij
(x))

∥∥∥∥∥∥
2
 .

Moreover, for shortness we use the following notation

A :=
T −1∑
t=0

E
[
∥xt − xπt∥2] , B :=

T −1∑
t=0

E
[
∥∇f(xt)∥2] , Φ :=

T −1∑
t=0

ϕt−1
t (xr(t))

Ψ :=
T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij (xπj )−∇f(xπj )

∥∥∥∥∥∥
2
 .

The key part of the proof is bounding the distance between virtual and real iterates. Based on (2) and (11), we
have

xt = xr(t) − γ

t−1∑
j=r(t)

gij (xπj ), x̃t = xr(t) − γ

t−1∑
j=r(t)

∇f(xj).

Also, denote

∆m
t :=

m∑
j=r(t)

(∇f(xj)− gij
(xπj

)). (19)

C.1 Key Lemmas

Lemma C.1. If 20γLτ ≤ 1, then

E
[
∥∆m

t ∥2] ≤ 4E
[
ϕm

t (xr(t))
]

+ 1
6τ

m∑
j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 25
6 L2τ

m∑
j=r(t)

E
[
∥xj − xπj∥2]

+ τ

24

m∑
j=r(t)

E
[
∥∇f(xj)∥2

]
+ τ

24σ2.

Proof. Fix any m such that r(t) ≤ m < r(t) + τ , so that the iterates are within one block.

E
[
∥∆m

t ∥2] ≤ E


∥∥∥∥∥∥

m∑
j=r(t)

∇fij (xπj )−∇f(xj)

∥∥∥∥∥∥
2
+ τσ2

≤ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇fij
(xr(t))−∇f(xr(t))

∥∥∥∥∥∥
2
+ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇fij
(xr(t))−∇fij

(xj)

∥∥∥∥∥∥
2


+ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇fij
(xj)−∇fij

(xπj
)

∥∥∥∥∥∥
2
+ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇f(xr(t))−∇f(xj)

∥∥∥∥∥∥
2
+ τσ2

≤ 4E
[
ϕm

t (xr(t))
]

+ 4L2τ

m∑
j=r(t)

E
[
∥xj − xπj

∥2]+ 8L2τ

m∑
j=r(t)

E
[
∥xj − xr(t)∥2]+ τσ2. (20)
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Next, we bound the third term involving E
[
∥xj − xr(t)∥2].

m∑
j=r(t)

E
[
∥xj − xr(t)∥2] = γ2

m∑
j=r(t)

E


∥∥∥∥∥∥

j−1∑
l=r(t)

gil
(xπl

)

∥∥∥∥∥∥
2


≤ 2γ2
m∑

j=r(t)

E


∥∥∥∥∥∥

j−1∑
l=r(t)

gil
(xπl

)−∇f(xl)

∥∥∥∥∥∥
2
+ 2γ2

m∑
j=r(t)

E


∥∥∥∥∥∥

j−1∑
l=r(t)

∇f(xl)

∥∥∥∥∥∥
2


= 2γ2
m∑

j=r(t)

E
[∥∥∥∆j−1

t

∥∥∥2
]

+ 2γ2
m∑

j=r(t)

E


∥∥∥∥∥∥

j−1∑
l=r(t)

∇f(xl)

∥∥∥∥∥∥
2


(20)
≤ 8γ2

m∑
j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 16γ2L2τ

m∑
j=r(t)

j−1∑
l=r(t)

E
[
∥xl − xr(t)∥2]

+ 8γ2L2τ

m∑
j=r(t)

j−1∑
l=r(t)

E
[
∥xl − xπl

∥2]+ 2γ2τ

m∑
j=r(t)

j−1∑
l=r(t)

E
[
∥∇f(xl)∥2

]
+ 2γ2τ2σ2

≤ 8γ2
m∑

j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 16γ2L2τ2
m∑

j=r(t)

E
[
∥xj − xr(t)∥2]+ 8γ2L2τ2

m∑
j=r(t)

E
[
∥xj − xπj

∥2]
+ 2γ2τ2

m∑
j=r(t)

E
[
∥∇f(xj)∥2

]
+ 2γ2τ2σ2,

where we use the fact that τC ≥ 1. Choosing γLτ ≤ 1
20 , we cancel the term ∥xj − xr(t)∥2 from the right hand

side:
m∑

j=r(t)

E
[
∥xj − xr(t)∥2] ≤ 25

3 γ2
m∑

j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 25
3 γ2L2τ2

m∑
j=r(t)

E
[
∥xj − xπj∥2]

+ 25
12γ2τ2

m∑
j=r(t)

E
[
∥∇f(xj)∥2

]
+ 25

12γ2τ2σ2.

Plugging this inequality back to (20), we get

E
[
∥∆m

t ∥2] ≤ 4E
[
ϕm

t (xr(t))
]

+ 4L2τ

m∑
j=r(t)

E
[
∥xj − xπj∥2]+ 8L2τ

m∑
j=r(t)

E
[
∥xj − xr(t)∥2]

≤ 4E
[
ϕm

t (xr(t))
]

+ 200
3 γ2L2τ

m∑
j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 25
6 L2τ

m∑
j=r(t)

E
[
∥xj − xπj

∥2]+ 50
3 γ2L2τ3

m∑
j=r(t)

E
[
∥∇f(xj)∥2

]
+ 50

3 γ2L2τ3σ2.

Using the relation γ2L2τ2 ≤ 1
400 further, we can simplify the above bound as

E
[
∥∆m

t ∥2] ≤ 4E
[
ϕm

t (xr(t))
]

+ 1
6τ

m∑
j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 25
6 L2τ

m∑
j=r(t)

E
[
∥xj − xπj∥2]

+ τ

24

m∑
j=r(t)

E
[
∥∇f(xj)∥2

]
+ τ

24σ2.

Since 1
16 > 1

24 we conclude the proof.
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Lemma C.2. If 20γLτ ≤ 1, then

T −1∑
t=0

E
[
∥xt − x̃t∥2] ≤ 25

6 γ2
T −1∑
t=0

E
[
ϕt−1

t (xr(t))
]

︸ ︷︷ ︸
:=Φ

+ 1
96

T −1∑
t=0

E
[
∥xt − xπt

∥2]
︸ ︷︷ ︸

:=A

+ 1
9600L2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
︸ ︷︷ ︸

:=B

+γ2τ

24 σ2T. (21)

Proof. Notice that for r(t) < j ≤ t it holds r(t) = r(j). Hence, we can replace ϕj−1
t (xr(t)) by ϕj−1

j (xr(j)) in the
summation below. If j ≤ r(t), then ϕj−1

t (xr(t)) = 0.

T −1∑
t=0

E
[
∥xt − x̃t∥2] = γ2

T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=r(t)

gij
(xπj

)−∇f(xj)

∥∥∥∥∥∥
2


= γ2
T −1∑
t=0

E
[
∥∆t−1

t ∥2]
Lemma C.1
≤ 4γ2

T −1∑
t=0

E
[
ϕt−1

t (xr(t))
]

+ γ2

6τ

T −1∑
t=0

t−1∑
j=r(t)

E
[
ϕj−1

t (xr(t))
]

+ 1
96τ

T −1∑
t=0

t−1∑
j=r(t)

E
[
∥xj − xπj

∥2]+ γ2τ

24

T −1∑
t=0

t−1∑
j=r(t)

E
[
∥∇f(xj)∥2

]
+ γ2τ

24 σ2T

≤ 25
6 γ2

T −1∑
t=0

E
[
ϕt−1

t (xr(t))
]

+ 1
96

T −1∑
t=0

E
[
∥xt − xπt∥2]

+ γ2τ2

24

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ γ2τ

24 σ2T.

Using the bound on the learning rate we conclude the proof.

Lemma C.3. If 20γL
√

τmaxτC ≤ 1, then

T −1∑
t=0

E
[
∥xt − xπt∥2]

︸ ︷︷ ︸
=A

≤ 1
132L2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
︸ ︷︷ ︸

=B

+ γ

5L
Tσ2

+ 100γ2

33

T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij (xπj )−∇f(xπj )

∥∥∥∥∥∥
2


︸ ︷︷ ︸
=Ψ

.
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Proof. Recall that πt = t− τt.

E
[
∥xt − xπt∥2] = γ2E


∥∥∥∥∥∥

t−1∑
j=πt

gij (xπj )

∥∥∥∥∥∥
2


≤ γ2E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

)

∥∥∥∥∥∥
2
+ τtγ

2σ2

≤ 3γ2E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij (xπj )−∇f(xπj )

∥∥∥∥∥∥
2
+ 3γ2E


∥∥∥∥∥∥

t−1∑
j=πt

∇f(xπj )−∇f(xj)

∥∥∥∥∥∥
2


+ 3γ2E


∥∥∥∥∥∥

t−1∑
j=πt

∇f(xj)

∥∥∥∥∥∥
2
+ τtγ

2σ2

≤ 3γ2L2τt

t−1∑
j=πt

E
[
∥xπj − xj∥2]+ 3γ2E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij (xπj )−∇f(xπj )

∥∥∥∥∥∥
2


+ 3γ2τt

t−1∑
j=πt

∥∇f(xj)∥2 + τtγ
2σ2.

Then we add summation over the entire iterates and count the number of times (which is ≤ τC) each term
appears in the sum:

T −1∑
t=0

E
[
∥xπt

− xt∥2] ≤ 3γ2L2τmax

T −1∑
t=0

t−1∑
j=πt

E
[
∥xπj

− xj∥2]+ 3γ2τmax

T −1∑
t=0

t−1∑
j=πt

E
[
∥∇f(xj)∥2

]

+ 3γ2
T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

)−∇f(xπj
)

∥∥∥∥∥∥
2
+ τavgTγ2σ2

≤ 3γ2L2τmaxτC

T −1∑
t=0

E
[
∥xπt − xt∥2]+ 3γ2τmaxτC

T −1∑
t=0

E
[
∥∇f(xt)∥2

]

+ 3γ2
T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xj)−∇f(xj)

∥∥∥∥∥∥
2
+ τavgTγ2σ2

≤ 3
400

T −1∑
t=0

E
[
∥xπt − xt∥2]+ 3

400L2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]

+ 3γ2
T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

)−∇f(xπj
)

∥∥∥∥∥∥
2
+ τavgTγ2σ2,

provided that γ2L2τmaxτC ≤ 1
400 . After cancellation, we get

T −1∑
t=0

E
[
∥xt − xπt

∥2] ≤ 1
132L2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ 2τavgTγ2σ2

+ 100γ2

33

T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

)−∇f(xπj
)

∥∥∥∥∥∥
2
 .
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Since τavg ≤ τmax and τavg ≤ 2τC (the latter holds because of the Remark 5 in Koloskova et al. (2022)), then we
finally derive

T −1∑
t=0

E
[
∥xt − xπt∥2] ≤ 1

132L2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ 2τavg

20L
√

τmaxτC
Tγσ2

+ 100γ2

33

T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

)−∇f(xπj
)

∥∥∥∥∥∥
2


≤ 1
132L2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ γ

5L
Tσ2

+ 100γ2

33

T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

)−∇f(xπj
)

∥∥∥∥∥∥
2
 .

We can combine all the previous lemmas and bound E
[
∥xt − x̃t∥2] in the following lemma:

Lemma C.4. If 20γLτ ≤ 1 and 20γL
√

τmaxτC ≤ 1 hold, then

T −1∑
t=0

E
[
∥xt − x̃t∥2] ≤ 5γ2Φ + γ2Ψ + 1

5460L2 B + 1
240L

γσ2T. (22)

Proof. Summary of obtained inequalities

T −1∑
t=0

E
[
∥xt − x̃t∥2] Lemma C.2

≤ 25
6 γ2Φ + 1

96A + 1
9600L2 B + γ2τ

24 σ2T

A
Lemma C.3
≤ 1

132L2 B + 100
33 γ2Ψ + γ

5L
Tσ2.

Hence, using the restriction 20γLτ ≤ 1 we get

T −1∑
t=0

E
[
∥xt − x̃t∥2] ≤ 25

6 γ2Φ + 1
96A + 1

9600L2 B + γ

480L
σ2T

≤ 25
6 γ2Φ + 1

96 · 132L2 B + 1
9600L2 B + 1

30γ2Ψ + 11γTσ2

100L

= 5γ2Φ + 1
5460L2 B + γ2Ψ + γ

240L
Tσ2.

C.2 Proof of Theorem 1

Theorem 1. Let Assumptions 1 and 2 hold. Let the stepsize γ satisfy inequalities 6Lγ ≤ 1 and 20Lγ
√

τmaxτC ≤
1, the correlation period τ =

⌊
1

20Lγ

⌋
, and quantities {σ2

k,τ}
⌊T/τ⌋
k=0 and ν2 are finite. Then

E
[
∥∇f(x̂T )∥2] ≤ O ( F0

γT + Lγσ2 + L2γ2Φ
)

, (12)

where F0 := f(x0)− f∗, Φ := 1
⌊T/τ⌋

⌊ T
τ ⌋∑

k=0
σ2

k,τ + 1
T ν2, and x̂T is chosen uniformly at random from {x0, . . . , xT −1}.
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Proof. The analysis starts from deriving a descent inequality for the virtual iterates x̃t defined in (11). Consider
two cases for virtual iterates: depending on whether restarts happen or not.

Iterations without restart: If restarts do not happen, namely (t + 1) mod τ ̸= 0 then from the smoothness
assumption of f and (11), we have

E [f(x̃t+1)] ≤ E [f(x̃t)]− γE [⟨∇f(x̃t),∇f(xt)⟩] + Lγ2

2 E
[
∥∇f(xt)∥2]

= E [f(x̃t)]−
γ

2E
[
∥∇f(x̃t)∥2]− E

[γ

2 ∥∇f(xt)∥2
]

+ γ

2E
[
∥∇f(x̃t)−∇f(xt)∥2]

+ Lγ2

2 E
[
∥∇f(xt)∥2]

≤ E [f(x̃t)]−
γ

2E
[
∥∇f(x̃t)∥2]− γ

2E
[
∥∇f(xt)∥2]+ L2γ

2 E
[
∥x̃t − xt∥2]

+ Lγ2

2 E
[
∥∇f(xt)∥2]

≤ E [f(x̃t)]−
γ

2E
[
∥∇f(x̃t)∥2]− γ

3E
[
∥∇f(xt)∥2]+ L2γ

2 E
[
∥x̃t − xt∥2] .

Iterations with restart: If a restart happens, namely (t + 1) mod τ = 0 then

x̃t+1 = xt+1 = xt − γgit(xπt)
= x̃t + (xt − x̃t)− γ∇f(xt) + (γ∇f(xt)− γgit(xπt))

= x̃t − γ∇f(xt) + γ

t∑
j=r(t)

∇f(xj)− gij (xπj )

︸ ︷︷ ︸
=∆t

t

.

Then we use smoothness of f to get

E [f(x̃t+1)]

≤ E [f(x̃t)]− γE
[
⟨∇f(x̃t),∇f(xt)− ∆̃t

t⟩
]

+ Lγ2

2 E
[
∥∇f(xt)− ∆̃t

t∥2
]

≤ E [f(x̃t)]− γE [⟨∇f(x̃t),∇f(xt)⟩] + γE
[
⟨∇f(x̃t), ∆̃t

t⟩
]

+ Lγ2E
[
∥∇f(xt)∥2]+ Lγ2E

[
∥∆̃t

t∥2
]

≤ E [f(x̃t)]−
γ

2E
[
∥∇f(x̃t)∥2]− γ

2E
[
∥∇f(xt)∥2]+ γ

2E
[
∥∇f(x̃t)−∇f(xt)∥2]

+ 1
160L

E
[
∥∇f(x̃t)∥2]+ 40Lγ2E

[
∥∆̃t

t∥2
]

+ Lγ2E
[
∥∇f(xt)∥2]+ Lγ2E

[
∥∆̃t

t∥2
]

≤ E [f(x̃t)]−
γ

2E
[
∥∇f(x̃t)∥2]− γ

3E
[
∥∇f(xt)∥2]+ L2γ

2 E
[
∥x̃t − xt∥2]+ 1

160L
E
[
∥∇f(x̃t)∥2] ,

where in the third inequality Young’s inequality is used.

If we denote by ξt the indicator function of restart event at t + 1, namely ξkτ−1 = 1 for all k ≥ 1 and is 0
otherwise, then we can unify the descent inequality for both cases as follows:

E [f(x̃t+1)] ≤ E [f(x̃t)]−
γ

2E
[
∥∇f(x̃t)∥2]− γ

3E
[
∥∇f(xt)∥2]+ L2γ

2 E
[
∥x̃t − xt∥2]

+
(

1
160L

E
[
∥∇f(x̃t)∥2]+ 41Lγ2E

[
∥∆t

t∥2]) ξt, ∀ t ≥ 0. (23)

Next, we apply summation over the entire iterates and bound the terms that appear only in every τ iteration.
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1
L
E
[
∥∇f(x̃t)∥2] = 1

Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t)∥2]

≤ 2
Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t)−∇f(x̃t−j)∥2]+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t−j)∥2]

≤ 2L

τ

τ−1∑
j=0

E
[
∥x̃t − x̃t−j∥2]+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t−j)∥2]

≤ 2Lγ2

τ

τ−1∑
j=0

E


∥∥∥∥∥∥

t−1∑
l=t−j

∇f(xl)

∥∥∥∥∥∥
2
+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t−j)∥2]

≤ 2Lγ2
τ−1∑
j=0

t−1∑
l=t−j

E
[
∥∇f(xl)∥2

]
+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t−j)∥2]

≤ 2Lγ2τ

τ−1∑
j=0

E
[
∥∇f(xt−j)∥2

]
+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(x̃t−j)∥2]

≤ γ

10

τ−1∑
j=0

E
[
∥∇f(xt−j)∥2

]
+ 80γ

τ−1∑
j=0

E
[
∥∇f(x̃t−j)∥2]

provided that 1
40 ≤ Lγτ ≤ 1

20 (e.g., τ = ⌊ 1
20Lγ ⌋). Then we can use this bound to derive

T −1∑
t=0

1
160L

E
[
∥∇f(x̃t)∥2] ξt ≤

γ

1600

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ γ

2

T −1∑
t=0

E
[
∥∇f(x̃t)∥2] . (24)

Then we use Lemma C.1 to bound ∆t
t:

Lγ2
T −1∑
t=0

E
[
∥∆t

t∥2] ξt ≤ 4Lγ2
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

ξt + Lγ2

6τ

T −1∑
t=0

t∑
j=r(t)

E
[
ϕj−1

t (xr(t))
]

ξt

+ 25
6 L3γ2τ

T −1∑
t=0

t∑
j=r(t)

E
[
∥xj − xπj∥2] ξt

+ Lγ2τ

24

T −1∑
t=0

t∑
j=r(t)

E
[
∥∇f(xj)∥2

]
ξt + Lγ2τ

24 σ2
T −1∑
t=0

ξt.

Notice that summation over the entire iterates with weights ξt is equivalent to division by τ .
T −1∑
t=0

t∑
j=r(t)

ϕj−1
t (xr(t))ξt =

T −1∑
t=0

t−1∑
j=r(t)

ϕj
t (xr(t))ξt =

T −1∑
t=0

t−1∑
j=r(t)

ϕj
j(xr(j))ξt ≤

T −1∑
t=0

ϕt
t(xr(t)).

Hence

41Lγ2
T −1∑
t=0

E
[
∥∆̃t

t∥2
]

ξt ≤ 164Lγ2
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

ξt + 41Lγ2

6τ

T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 171L3γ2τ

T −1∑
t=0

E
[
∥xt − xπt∥2]

︸ ︷︷ ︸
=A

+ 41
24Lγ2τ

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ 41

24Lγ2σ2T.
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where A ≤ 1
132L2 B + 100

33 γ2Ψ + γT σ2

5L due to Lemma C.3. Therefore,

41Lγ2
T −1∑
t=0

E
[
∥∆t

t∥2] ξt ≤ 164Lγ2
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

ξt + 41Lγ2

6τ

T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 171
132Lγ2τB + 520L3γ4τΨ + 171

100Lγ2σ2T

+ 41
24Lγ2τ

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
+ 41

24Lγ2σ2T

≤ 164Lγ2
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

ξt + 41Lγ2

6τ

T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 171
132Lγ2τB + 26L2γ3Ψ

+ 171
100Lγ2σ2T + 41

24Lγ2τB + 41
16Lγ2σ2T

≤ 6950L2γ3
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 793
5280γB + 26L2γ3Ψ + 4Lγ2σ2T. (25)

Plugging (24) and (25) (and lemmas as well) into (23) and adding summation, we have

E [f(x̃T )− f(x̃0)] ≤ −γ

2

T −1∑
t=0

E
[
∥∇f(x̃t)∥2]− γ

3

T −1∑
t=0

E
[
∥∇f(xt)∥2]+ L2γ

2

T −1∑
t=0

E
[
∥x̃t − xt∥2]

+ 1
160L

T −1∑
t=0

ξtE
[
∥∇f(x̃t)∥2]+ 41Lγ2

T −1∑
t=0

ξtE
[
∥∆t

t∥2]
≤ −γ

2

T −1∑
t=0

E
[
∥∇f(x̃t)∥2]− γ

3 B

+ L2γ

2

(
5γ2

T −1∑
t=0

E
[
ϕt−1

t (xr(t))
]

+ γ2Ψ + 1
5460L2 B + 1

240L
γσ2T

)

+ γ

1600B + γ

2

T −1∑
t=0

E
[
∥∇f(x̃t)∥2]

+ 6950L2γ3
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 793
5280γB + 26L2γ3Ψ + 4Lγ2σ2T

≤
(
−γ

2 + γ

2

) T −1∑
t=0

E
[
∥∇f(x̃t)∥2]+

(
−γ

3 + γ

10920 + γ

1600 + 793
5280γ

)
B

+ 5
2L2γ3

T −1∑
t=0

E
[
ϕt−1

t (xr(t))
]

+ 6950L2γ3
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 27L2γ3Ψ

+ 5Lγ2σ2T

≤ −γ

5 B + 5
2L2γ3

T −1∑
t=0

E
[
ϕt−1

t (xr(t))
]

+ 6950L2γ3
T −1∑
t=0

E
[
ϕt

t(xr(t))
]

+ 27L2γ3Ψ

+ 5Lγ2σ2T

According to the statement of the theorem, we assume that

σ2
k,τ := sup

x∈Rd

max
0≤j<τ

E


∥∥∥∥∥∥

min{kτ+j,T }∑
t=kτ

(∇fit
(xkτ )−∇f(xkτ ))

∥∥∥∥∥∥
2
 ,
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Algorithm 2 Pure Asynchronous SGD
1: Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅, set of received jobs R0 = ∅
2: Initialization: for all jobs (i, 0) ∈ A1, server assigns worker i to compute a stochastic gradient gi(x0)
3: for t = 0, 1, 2, . . . , T − 1 do
4: once worker it finishes a job (it, πt) ∈ At+1, it sends git

(xπt
) to the server

5: server updates the current model xt+1 = xt − γgit
(xπt

) and the set Rt+1 = Rt ∪ {(it, πt)}
6: server assigns worker it to compute a gradient git

(xt+1)
7: server updates the set At+2 = At+1 ∪ {(it, t + 1)}
8: end for

and

ν2 :=
T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

(∇fij
(xπj

)−∇f(xπj
))

∥∥∥∥∥∥
2


are bounded. So ν2 upper bounds Ψ term in the above inequality while σ2
k,τ upper bounds ϕt−1

t and ϕt
t terms.

Then, by averaging we get

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2] ≤ 5(f(x0)− f∗)

γT
+ PL2γ2

 1
⌊T/τ⌋

⌊ T
τ ⌋−1∑
k=0

σ2
k,τ + 1

T
ν2

+ 25Lγσ2, (26)

where P := 35000, and we use the fact that x̃0 = x0 by the definition (11).

C.3 Convergence Guarantees in Special Cases

We emphasize that in the choice of stepsizes, we omit numerical constants for simplicity, and show the dependency
on the parameters of the problem only.

C.3.1 Pure Asynchronous SGD

At the beginning of the algorithm, the server assigns each worker to compute a gradient at x0, i.e. A1 =
{(i, 0) : i ∈ [n]}. As soon as one of them (denoted by it) finishes its job, the server assigns him back new job at
the updated point, i.e. kt ≡ it. We present the convergence for pure asynchronous SGD.
Proposition C.1. Let Assumptions 1, 2, and 3 hold. Let the stepsize γ satisfy inequalities 20Lγ

√
τmaxτC ≤ 1

and 6Lγ ≤ 1. Let τ = ⌊ 1
20Lγ ⌋. Then the iterates of Algorithm 2 satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F0

γT
+ Lγσ2 + ζ2

)
, (27)

where x̂t is chosen uniformly at random from {x0, . . . , xT −1} and F0 := f(x0) − f∗. Moreover, if we tune the
stepsize, then the iterates of pure asynchronous SGD satisfy

E
[
∥∇f(x̂t)∥2] ≤ O(LF0

√
τmaxτC

T
+
(

LF0σ2

T

)1/2

+ ζ2

)
, (28)

Proof. We need to bound quantities σ2
k,τ and ν2. If within interval [kτ, kτ + j] all indices from [n] appear, then

we do not have to consider them since
n∑

i=1
(∇fi(x)−∇f(x)) = 0.
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Thus, we have
kτ+j∑
t=kτ

(∇fit(x)−∇f(x)) =
∑
i∈S

(∇fi(x)−∇f(x)),

where |S| ≤ τ, and hence, we continue as follows∥∥∥∥∥
kτ+j∑
t=kτ

(∇fit
(x)−∇f(x))

∥∥∥∥∥
2

=
∥∥∥∥∥∑

i∈S
(∇fi(x)−∇f(x))

∥∥∥∥∥
2

≤ |S|
∑
i∈S
∥∇fi(x)−∇f(x)∥2

As.3
≤ |S|2ζ2 ≤ τ2ζ2.

Next, we bound the term with ν2. We have

ν2 =
T −1∑
t=0

∥∥∥∥∥∥
t−1∑

j=πt

(∇fij
(xπt

)−∇f(xπt
))

∥∥∥∥∥∥
2

Lemma B.1
≤

T −1∑
t=0

τt

t−1∑
j=πt

∥∥∇fij
(xπt

)−∇f(xπt
)
∥∥2

Lemma B.3
≤ τCτmaxζ2T.

Thus, the final rate is

E
[
∥∇f(x̂t)∥2] ≤ O

 F0

γT
+ Lγσ2 + L2γ2

 1
⌊T/τ⌋

⌊ T
τ ⌋∑

k=1
τ2ζ2 + 1

T
τCτmaxζ2T


= O

(
F0

γT
+ Lγσ2 + L2γ2τ2ζ2 + L2γ2τCτmaxζ2

)
.

Using the stepsize restriction and the value of τ , we get

E
[
∥∇f(x̂t)∥2] ≤ O

(
F0

γT
+ Lγσ2 + ζ2

)
.

Now we need to tune the stepsize. If we choose γ = Θ
(

min
{

1
L

√
τmaxτC

,
(

F0
Lσ2T

)1/2}), then we have two cases

• if γ = Θ
(

1
L

√
τmaxτC

)
, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F0

T

√
LτmaxτC + Lσ2

(
F0

Lσ2T

)1/2
+ ζ2

)

= O

(
LF0
√

τmaxτC

T
+
(

LF0σ2

T

)1/2

+ ζ2

)
.

• γ = Θ
((

F0
Lσ2T

)1/2)
, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F0

T

(
Lσ2T

F0

)1/2

+ Lσ2
(

F0

Lσ2T

)1/2
+ ζ2

)

= O

((
LF0σ2

T

)1/2

+ ζ2

)
.

It is left to choose the stepsize to be the minimum over two cases.
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C.3.2 Mini-batch SGD

First, we show that the iterates of mini-batch SGD suit the update rule (2). The standard iteration of mini-batch
SGD has the following form

zq+1 = zq −
γ

b

∑
i∈Bq

∇fi(zq).7

Let Bq = {iq,1, . . . , iq,b} be the batch at iteration q, i.e. iq,l ∈ [n] for all q and l, and Bq is sampled from [n]
uniformly at random without replacement. We initialize x0 = z0, and the stepsize γ̃ = γ

b . Then let us consider
the following chain of updates

xqb+l = xqb+l−1 − γ̃∇fiq,l
(xqb) for l = 1, . . . , b.

Then,

xqb+b = xqb+b−1 − γ̃∇fik,b−1(xqb)
...
= xqb − γ̃

∑
i∈Bq

∇fi(xqb), (29)

which is exactly the mini-batch update. Besides, we have that xqb ≡ zq.

Let us give now the values for τmax and τC . At the beginning of each step of mini-batch SGD the server selects
uniformly at random b workers and sends them current model xqb. Then, workers send one-by-one evaluated
gradients while the server does not assign new jobs until the last worker finishes its job. Observing (29) we
conclude that the maximum delay is τmax = b − 1 < b for the slowest worker while τC = b − 1 < b which is
attained at the beginning of the batch.

Now we apply Theorem 1. For that, we need τ to be a multiple of b. This is achieved by carefully choosing the
stepsize and τ restrictions.
Proposition C.2. Let Assumptions 1 and 3 hold. Let the stepsize γ satisfy 20Lγ ≤ 1. Let τ = b⌊ 1

20Lγ ⌋. Then
the iterates of mini-batch SGD with batch size b satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F0

γT
+ Lγζ2

b

)
, (30)

where x̂t is chosen uniformly at random from {x0, . . . , xT −1} and F0 := f(x0) − f∗. Moreover, if we tune the
stepsize, then the iterates of mini-batch SGD with batch size b satisfy

E
[
∥∇f(x̂t)∥2] ≤ O(LF0

T
+
√

LF0ζ2

Tb

)
. (31)

Proof. We run mini-bathc SGD from Algorithm 1 point of view with stepsize γ̃ = γ
b . Then we should choose τ

such that 20Lγ̃τ ≤ 1. So we can choose τ = b⌊ 1
20Lγ ⌋. Now we have two restricitons on γ̃

γ̃ ≤ 1
6L
⇒ γ ≤ b

6L
,

γ̃ ≤ 1
20L
√

τmaxτC
⇒ γ ≤ 1

20L
.

That is why we should assume that γ ≤ 1
20L with previously chosen τ.

With the choice τ we have, every chunk of size τ consists of several full batches (each chunk has the same number
of batches). This choice of τ is needed in order to apply conditional expectation correctly. Indeed, let us take the
conditional expectation depending on all the events before iteration (k − 1)τ. This means that x(k−1)τ is fixed
as well since it is computed using the gradients before iteration (k − 1)τ.

7Here we denote iterates by zq in order not to confuse them with the notation of the paper
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Let us assume that each period of size τ consists of m ≥ 1 batches. Then we can compute the conditional
expectation from the definition of σ2

k,τ splitting it into m independent conditional expectations for each batch.
Note that in this case, the maximum over j in (10) is always attained for j = τ − 1. Thus, we have

σ2
k,τ = E(k−1)τ

∥∥∥∥∥∥
kτ+τ−1∑

j=kτ

(∇fij
(x(k−1)τ )−∇f(x(k−1)τ )

∥∥∥∥∥∥
2

= m · b2 ζ2

b
= mbζ2 = τζ2.

where in the last step we use the variance bound of the mini-batch estimator. Note that in one node setting ζ2

plays the role of standard variance bound of stochastic gradient estimator.

Taking conditional expectations one by one we can bound each σ2
k,τ term by τζ2.

Now we switch to the ν2 term. Note that in this case, the delayed iterate for gradients within one batch is the
same, i.e. for j ∈ [qb, (q + 1)b) we have πj = qb, thus we can compute expectations correctly. We split ν2 is split
into T

b terms ν2
q of the form

ν2
q :=

(q+1)b−1∑
t=qb

Eqb


∥∥∥∥∥∥

t−1∑
j=πt

(∇fij
(xπj

)−∇f(xπj
))

∥∥∥∥∥∥
2


=
(q+1)b−1∑

t=qb

Eqb


∥∥∥∥∥∥

t−1∑
j=qb

(∇fij
(xqb)−∇f(xqb))

∥∥∥∥∥∥
2


≤
(q+1)b−1∑

t=qb

(t− qb)2 ζ2

(t− qb)

=
(q+1)b−1∑

t=qb

(t− qb)ζ2

≤ b2

2 ζ2.

Here we again need to take conditional expectation w.r.t xqb, and afterwards compute bounds for ν2
q one by one.

Saying that, we have ν2 ≤ T
b

b2

2 ζ2 ≤ Tbζ2. Now we apply Theorem 1.

E
[
∥∇f(x̂t)∥2] ≤ O

(
F0

γ̃T
+ L2γ̃2τζ2 + L2γ̃2bζ2

)
≤ O

(
F0

γ T
b

+ Lγζ2

b

)
, (32)

where we use Lγ̃τ = Θ(1), γ̃ = γ
b , and γ ≤ 1

20L . Note that T iterations of Algorithm 1 are equivalent to T
b

iterations of mini-batch SGD. That is why the right-hand side of (32) is a standard rate of mini-batch SGD.
However, we observe that the left-hand side of (32) is slightly different from what we expect; there we get
convergence for all intermediate iterates as well. In order to get the standard rate we need to modify restarting
virtual iterates in the following way

x̃t+1 =
{

x̃t − γ∇f(xπt
) if t + 1 ̸= τk for any k ≥ 1,

xt+1 if t + 1 = τk for some k ≥ 1,

then the left-hand side of (32) will be transformed to

1
T

T/b−1∑
q=0

b−1∑
l=0

E
[
∥∇f(xπqb+l)∥2] = 1

T

T/b−1∑
q=0

b−1∑
l=0

E
[
∥∇f(xqb)∥2] = 1

T/b

T/b−1∑
q=0

E
[
∥∇f(xqb)∥2] ,



AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms

Algorithm 3 Pure Asynchronous SGD with waiting
1: Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅, set of received jobs R0 = ∅, batch size b ≥ 1,

gradient estimator g = 0 and number of received gradients r = 0
2: Initialization: for all jobs (i, 0) ∈ A1, server assigns worker i to compute a stochastic gradient gi(x0)
3: for t = 0, 1, 2, . . . , T − 1 do
4: server sets gt,0 = 0 and Rt,0 = Rt

5: for j = 1, . . . , b do
6: once worker it,j finishes a job (it,j , πt,j) ∈ At+1, it sends git,j

(xπt,j
) to the server

7: server updates gt,j = gt,j−1 + git,j (xπt,j )
8: server updates the set Rt,j = Rt,j−1 ∪ {(it,j , πt,j)}
9: end for

10: server updates the current model xt+1 = xt − γ
b gt,b and set Rt+1 = Rt,b

11: server assigns worker it,j to compute a gradient git,j
(xt+1) for all j ∈ [b]

12: server updates the set At+2 = At+1 ∪ {(it,1, t + 1)} ∪ · · · ∪ {(it,b, t + 1)}
13: end for

which is exactly what we want. We only need to change T to Tb if we want to present the rate w.r.t. the number
of mini-batch SGD steps.

Now, if we choose stepsize γ = Θ
(

min
{

1
L ,
√

F0b
LT ζ2

})
, then we have two possible options

• if γ = Θ( 1
L ) we have

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2] ≤ O

(
F0
1
L T

+ Lζ2

b

√
F0b

LTζ2

)

≤ O

(
LF0

T
+
√

LF0ζ2

Tb

)
.

• if γ = Θ
(√

F0b
LT ζ2

)
we have

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2] ≤ O

F0

T

√
LTζ2

F0b
+ Lζ2

b

√
F0b

LTζ2


≤ O

(√
LF0ζ2

Tb

)
.

It is left to set the stepsize to be the minimum over two cases.

C.3.3 Pure Asynchronous SGD with waiting

This case is similar to the previous one; the only change is that the server waits for the first b fastest workers
and assigns them new jobs back. Formally, the update has the following form

zq+1 = zq − γ
∑
i∈Bq

gi(zπq,i
), (33)

where πq,i is the iteration counter where worker i evaluated its gradient (possible delayed).8. Let Bq :=
{iq,1, . . . , iq,b} be the set of b fastest workers at iteration q. Then, we can rewrite this update in the follow-
ing form with x0 = z0.

8Here we again use zt iterates notation in order not to confound with the updates of Algorithm 1
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xqb+b = xqb+b−1 − γgiq,b−1(xqb−τq,b−1)
...

= xqb − γ

b−1∑
l=0

giq,l
(xqb−τq,l

).

We extend one iteration of (33) to b intermediate iterations of Algorithm 1, i.e. the total number of iterations
increases by a factor b. We also highlight the fact that the server does not assign new jobs before all the workers
from the batch send the gradients. This means that workers always send gradients at points xqb. Note that τC

remains the same while τmax might increase b times in the worst case. We are ready to apply Theorem 1.
Proposition C.3. Let Assumptions 1, 2, and 3 hold. Let the stepsize γ satisfies 20L

√
bτmaxτCγ ≤ b and

6Lγ ≤ 1. Then the iterates of Algorithm 3 satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F0

γT
+ Lγ

σ2

b
+ ζ2

)
, (34)

where x̂t is chosen uniformly at random from {x0, . . . , xb−1, xb, . . . , x2b−1, . . . , xT b−1} and F0 = f(x0) − f∗.
Moreover, if we tune the stepsize, then the iterates of pure asynchronous SGD with waiting satisfy

E
[
∥∇f(x̂t)∥2] ≤ O(F0

√
τmaxτC

T
√

b
+
(

LF0σ2

Tb

)1/2

+ ζ2

)
. (35)

Proof. We again need to find restrictions on the stepsize. We have

6Lγ̃ ≤ 1 ⇒ γ ≤ b

6L
,

20Lγ̃
√

bτmaxτC ≤ 1 ⇒ γ ≤ b

20L
√

bτmaxτC

.

Then we choose τ = ⌊ 1
20Lγ ⌋, and similarly to the case of pure asynchronous SGD we bound σ2

k,τ ≤ τ2ζ2 while
ν2 ≤ bτCτmaxζ2T. Then the rate is

1
Tb

T −1∑
q=0

b−1∑
l=0

E
[
∥∇f(xqb+l)∥2] ≤ O( F0

γ̃T b
+ Lγ̃σ2 + L2γ̃2τ2ζ2 + L2γ̃2bτCτmaxζ2

)

≤ O
(

F0

γT
+ Lγ

σ2

b
+ ζ2

)
.

It is left to set the stepsize choice in a similar way as for pure asynchronous SGD.

C.3.4 SGD with Random Reshuffling

In the beginning of each epoch the server sample a random permutation χq of [n], and then gradients come
following that order. We initialize x0 = z0. The chain of updates in this case has the form as follows

xqn+n = xqn+n−1 − γ∇fχq(n−1)(xqn+n−1)
...

= xqn − γ

n−1∑
l=0
∇fχq(l)(xqn+l).

Note that in this case, the server receives gradients from the workers one by one without delays, i.e. τmax = 0.
This means that we have the only stepsize restriction γ ≤ 1

6L since the other one 20Lγ
√

τmaxτC ≤ 1 holds for
any choice of γ.

Moreover, since we take expectation only once at the end of the proof, we cover the case of SGD shuffle as well
without any additional changes. Now we apply Theorem 1 to derive convergence guarantees in this case.
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Proposition C.4. Let Assumptions 1, 3 hold. Let the the stepsize γ satisfy 20nLγ ≤ 1. Let τ = n⌊ 1
20Lnγ ⌋.

Then the iterates of SGD with random reshuffling satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F0

γT
+ L2nγ2ζ2

)
, (36)

where x̂t is chosen uniformly at random from {x0, . . . , xn−1, xn, . . . , x2n−1, . . . , xT −1} and F0 := f(x0)− f∗, and
T is the total number of gradient evaluations. If we tune the stepsize, then the iterates of SGD with random
reshuffling satisfy

E
[
∥∇f(x̂t)∥2] ≤ O(LF0n

T
+
(

LF0
√

nζ

T

)2/3)
. (37)

Proof. We need τ to be a multiple of n in order to be able to correctly apply conditional expectations (the same
trick as for mini-batch SGD). We force the stepsize γ ≤ 1

20Ln . Then we automatically satisfy the restriction
6Lγ ≤ 1. Now we need to choose τ . We need 20Lγτ ≤ 1, so let us choose τ = n⌊ 1

20Lnγ ⌋, then 20Lγτ ≤
20Lγn 1

20Lnγ ≤ 1.

We use the computations from Koloskova et al. (2022), Section C.2. Thus, we have σ2
k,τ ≤ min{τ, n}ζ2. The fact

that τ ≥ n implies σ2
k,τ ≤ nζ2. Since we do not have delays in this case, then ν2 = 0. This gives us the following

result applying Theorem 1.

1
T

T/n−1∑
q=0

n−1∑
l=0

E
[
∥∇f(xqn+l)∥2] ≤ O( F0

γT
+ L2nγ2ζ2

)
.

Now, if we need to tune the stepsize. Similarly to mini-batch SGD we should consider two cases.

• if γ = Θ( 1
Ln ) we have

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2] ≤ O

(
F0
1

Ln T
+ L2nζ2

(
F0

L2nTζ2

)2/3
)

≤ O

(
LF0n

T
+
(

L2F 2
0 nζ2

T 2

)1/3)
.

• if γ = Θ
((

F0
L2nT ζ2

)1/3
)

we have

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2] ≤ O

(
F0

T

(
L2nTζ2

F0

)1/3

+ L2nζ2
(

F0

L2nTζ2

)2/3
)

≤ O

((
L2F 2

0 nζ2

T 2

)1/3)
.

To get the final rate after tunning we need to set the stepsize as the minimum over two cases.

D PROOFS FOR ANALYSIS OF GRADIENT ASSIGNING PROCESS

In this section the iteration counter starts with 1, i.e. we consider y1 as an initial point. Following (13) and (14),
we have

yt = yr(t) − γ

t−1∑
j=r(t)

gkj
(xαj

), ỹt = yr(t) − γ

t−1∑
j=r(t)

∇f(xj),

where gkj
(xαj

) is an unbiased stochastic estimator of ∇fkj
(xαj

) with variance bounded by σ2.
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Analogously to the proofs of Theorem 2 we define

∆̃m
t =

m∑
j=r(t)

∇f(xj)− gkj
(xαj

), ϕ̃m
t (x) =

∥∥∥∥∥∥
m∑

j=r(t)

∇fkj
(x)−∇f(x)

∥∥∥∥∥∥
2

.

In this section we use shortcuts

Ã :=
T −1∑
t=0

E
[
∥ỹt − yαt

∥2] , B :=
T −1∑
t=0

E
[
∥∇f(xt)∥2] , Φ̃ :=

T −1∑
t=0

E
[
ϕ̃t−1

t (xr(t))
]

Ψ̃ :=
T −1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fkj
(xαj

)−∇f(xαj
)

∥∥∥∥∥∥
2
 .

D.1 Key Lemmas

Lemma D.1. Let real {xt}T
t=0 and virtual {yt}T

t=0 iterates be defined in (2) and (13) respectively. Then

xt − yt = γ
∑

(i,j)∈At\Rt

gi(xj).

Proof. We prove the statement by induction. The base is trivial x0 − y0 = 0 by definition while A0 = R0 = ∅
as well. Let the statement hold at iteration t, now we show that it is true at iteration t + 1 as well. Indeed,

xt+1 − yt+1 = (xt −∇fit
(xπt

))− (yt − γ∇fkt
(xαt

))
Base= γ

∑
(i,j)∈At\Rt

∇fi(xj) + γ(∇fkt
(xαt

)− fit
(xπt

). (38)

Now we note that the connection between sets is updating as follows

At+1 \ Rt+1 = (At ∪ {(kt, αt)}) \ (Rt ∪ {(it, πt)})
= (At \ Rt) ∪ {(kt, αt)} \ {(it, πt)}.

Plugging this into (38) we get xt+1 − yt+1 = γ
∑

(i,j)∈At+1\Rt+1
∇fi(xj).

Lemma D.2. At time step t the following inequality holds

E
[
∥yt − xt∥2] ≤ γ2(τC − 1)2G2 + (τC − 1)γ2σ2. (39)

Proof. Loaded with Lemma D.1

E
[
∥yt − xt∥2] = γ2E


∥∥∥∥∥∥

∑
(i,j)∈At\Rt

gi(xj)

∥∥∥∥∥∥
2
 ≤ γ2E


∥∥∥∥∥∥

∑
(i,j)∈At\Rt

∇fi(xj)

∥∥∥∥∥∥
2
+ γ2σ2(τC − 1)

≤ γ2(τC − 1)
∑

(i,j)∈At\Rt

E
[
∥∇fi(xj)∥2]+ γ2σ2(τC − 1)

≤ γ2(τC − 1)2G2 + γ2σ2(τC − 1),

since |At+1| = |At|+ 1.

Lemma D.3. If 30Lγτ ≤ 1, then

E
[
∥∆̃m

t ∥2
]
≤ 4E

[
ϕ̃m

t (xr(t))
]

+ 48
7 Lγ

m∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

+ 6
71(τC − 1)2G2 + 6

71(τC − 1)σ2

+ 90
7 L2τ

m∑
j=r(t)

E
[
∥yj − yαj

∥2]+ 4
71τ

m∑
j=r(t)

E
[
∥∇f(xj)∥2]+ 2

35τσ2. (40)
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Proof. Using Young’s inequality we have

E
[
∥∆̃m

t ∥2
]
≤ E


∥∥∥∥∥∥

m∑
j=r(t)

∇fkj
(xαj

)−∇f(xj)

∥∥∥∥∥∥
2
+ τσ2

= E


∥∥∥∥∥∥

m∑
j=r(t)

∇fkj
(xαj

)±∇fkj
(xj)±∇fkj

(xr(t))±∇f(xr(t))−∇f(xj)

∥∥∥∥∥∥
2
+ τσ2

≤ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇fkj
(xαj

)−∇fkj
(xj)

∥∥∥∥∥∥
2
+ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇fkj
(xj)−∇fkj

(xr(t))

∥∥∥∥∥∥
2


+ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇fkj (xr(t))−∇f(xr(t))

∥∥∥∥∥∥
2
+ 4E


∥∥∥∥∥∥

m∑
j=r(t)

∇f(xr(t))−∇f(xj)

∥∥∥∥∥∥
2
+ τσ2

We continue as follows

E
[
∥∆̃m

t ∥2
]
≤ 4E

[
ϕ̃t

t(xr(t))
]

+ 4L2τ

m∑
j=r(t)

E
[
∥xj − xαj

∥2]+ 8L2τ

m∑
j=r(t)

E
[
∥xj − xr(t)∥2]

+ τσ2

≤ 4E
[
ϕ̃m

t (xr(t))
]

+ 12L2τ

m∑
j=r(t)

E
[
∥xj − yj∥2 + ∥yj − yαj

∥2 + ∥yαj
− xαj

∥2]
+ 24L2τ

m∑
j=r(t)

E
[
∥xj − yj∥2 + ∥yj − yr(t)∥2 + ∥yr(t) − xr(t)∥2]+ τσ2.

For the terms of the form ∥xa−ya∥2 for some a we use Lemma C.1. Using the above and the stepsize restriction,
we have

E
[
∥∆̃m

t ∥2
]
≤ 4E

[
ϕ̃m

t (xr(t))
]

+ 2
25(τC − 1)2G2 + 12L2τ

m∑
j=r(t)

E
[
∥yj − yαj

∥2]+ τσ2

+ 24L2τ

m∑
j=r(t)

E
[
∥yr(t) − yj∥2]+ 2

25(τC − 1)σ2, (41)
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For the last term, we have

m∑
j=r(t)

E
[
∥yr(t) − yj∥2] =

m∑
j=r(t)

γ2E


∥∥∥∥∥∥

j−1∑
l=r(t)

gkl
(xαl

)

∥∥∥∥∥∥
2


≤ 2γ2
m∑

j=r(t)

E


∥∥∥∥∥∥

j−1∑
l=r(t)

gkl
(xαl

)−∇f(xl)

∥∥∥∥∥∥
2
+ 2γ2

m∑
j=r(t)

E


∥∥∥∥∥∥

j−1∑
l=r(t)

∇f(xl)

∥∥∥∥∥∥
2


= 2γ2
m∑

j=r(t)

E
[
∥∆̃j−1

t ∥2
]

+ 2γ2τ

m∑
j=r(t)

j−1∑
l=r(t)

E
[
∥∇f(xl)∥2]

(41)
≤ 8γ2

m∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

+ 4
25γ2(τC − 1)2G2τ + 24γ2L2τ

m∑
j=r(t)

E

 j−1∑
l=r(t)

∥yl − yαl
∥2


+ 48γ2L2τ

m∑
j=r(t)

j−1∑
l=r(t)

E
[
∥yr(t) − yl∥2]+ 2γ2τ

m∑
j=r(t)

j−1∑
l=r(t)

E
[
∥∇f(xl)∥2]+ 2γ2τ2σ2

+ 4
25γ2(τC − 1)σ2

≤ 8γ2
m∑

j=r(t)

ϕ̃j−1
t (xr(t)) + 4

25γ2(τC − 1)2G2τ + 24γ2L2τ2
m∑

j=r(t)

∥yj − yαj
∥2

+ 48γ2L2τ2
m∑

j=r(t)

∥yr(t) − yj∥2 + 2γ2τ2
m∑

j=r(t)

∥∇f(xj)∥2 + 2γ2τ2σ2 + 4
25γ2(τC − 1)σ2

≤ 8γ2
m∑

j=r(t)

ϕ̃j−1
t (xr(t)) + 4

25γ2(τC − 1)2G2τ + 2
75

m∑
j=r(t)

∥yj − yαj
∥2

+ 4
75

m∑
j=r(t)

∥yr(t) − yj∥2 + 2γ2τ2
m∑

j=r(t)

∥∇f(xj)∥2 + 2γ2τ2σ2 + 4
25γ2(τC − 1)σ2.

Hence,

m∑
j=r(t)

∥yr(t) − yj∥2 ≤ 60
7 γ2

m∑
j=r(t)

ϕ̃j−1
t (xr(t)) + 12

71γ2(τC − 1)2G2τ + 2
71

m∑
j=r(t)

∥yj − yαj∥2

+ 150
71 γ2τ2

m∑
j=r(t)

∥∇f(xj)∥2 + 150
71 γ2τ2σ2 + 12

71γ2(τC − 1)σ2. (42)
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Plugging (42) in (41) we get

E
[
∥∆̃m

t ∥2
]
≤ 4E

[
ϕ̃m

t (xr(t))
]

+ 2
25(τC − 1)2G2 + 12L2τ

m∑
j=r(t)

E
[
∥yj − yαj

∥2]

+ 24L2τ

60
7 γ2

m∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

+ 12
71γ2(τC − 1)2G2τ + 2

71

m∑
j=r(t)

E
[
∥yj − yαj

∥2]

+150
71 γ2τ2

m∑
j=r(t)

E
[
∥∇f(xj)∥2]+ 150

71 γ2τ2σ2 + 12
71γ2(τC − 1)σ2


= 4E

[
ϕ̃m

t (xr(t))
]

+ 48
7 Lγ

m∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

+ 6
71(τC − 1)2G2

+ 90
7 L2τ

m∑
j=r(t)

E
[
∥yj − yαj∥2]+ 4

71τ

m∑
j=r(t)

∥∇f(xj)∥2 + 2
35τσ2 + 6

71(τC − 1)σ2,

where we again use the fact that Lγτ ≤ 1
30 .

Lemma D.4. If 30Lγτ ≤ 1 and 30LγτC ≤ 1, then
T∑

t=1
E
[
∥yt − ỹt∥2] ≤ 44

7 γ2
T∑

t=1
E
[
ϕ̃t−1

t (xr(t))
]

+ 6
71γ2(τC − 1)2G2T + 1

70

T∑
t=1

E
[
∥yt − yαt

∥2]
+ 1

15975L2

T∑
t=1

E
[
∥∇f(xt)∥2]+ 2

35γ2τσ2T + 6
71γ2(τC − 1)σ2. (43)

Proof. Using Lγτ ≤ 1
30

T∑
t=1

E
[
∥yt − ỹt∥2] = γ2

T∑
t=1

E


∥∥∥∥∥∥

t−1∑
j=r(t)

gkj (xαj )−∇f(xj)

∥∥∥∥∥∥
2
 = γ2

T∑
t=1

E
[
∥∆̃t−1

t ∥2
]

(40)
≤ 4γ2

T∑
t=1

E
[
ϕ̃t−1

t (xr(t))
]

+ 6
71γ2(τC − 1)2G2T + 48

7 Lγ3
T∑

t=1

t−1∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

+ 90
7 L2γ2τ

T∑
t=1

m∑
j=r(t)

E
[
∥yj − yαj

∥2]+ 4γ2τ

71

T∑
t=1

t−1∑
j=r(t)

E
[
∥∇f(xj)∥2]+ 2

35γ2τσ2T

+ 6
71γ2(τC − 1)σ2

≤ 44
7 γ2

T∑
t=1

E
[
ϕ̃t−1

t (xr(t))
]

+ 6
71γ2(τC − 1)2G2T + 90

7 L2γ2τ

T∑
t=1

m∑
j=r(t)

E
[
∥yj − yαj

∥2]
+ 4γ2τ

71

T∑
t=1

t−1∑
j=r(t)

E
[
∥∇f(xj)∥2]+ 2

35γ2τσ2T + 6
71γ2(τC − 1)σ2.

We continue as follows
T∑

t=1
E
[
∥yt − ỹt∥2] ≤ 44

7 γ2
T∑

t=1
E
[
ϕ̃t−1

t (xr(t))
]

+ 6
71γ2(τC − 1)2G2T + 1

70

T∑
t=1

E
[
∥yt − yαt∥2]

+ 1
15975L2

T∑
t=1

E
[
∥∇f(xt)∥2]+ 2

35γ2τσ2T + 6
71γ2(τC − 1)σ2.
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Lemma D.5. If 30Lγτ̃max ≤ 1, then

T∑
t=1

E
[
∥yt − yαt∥2] ≤ 2

99γ2(τC − 1)2G2T + 100
33 γ2

T∑
t=1

E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt(xαj )−∇f(xαj )

∥∥∥∥∥∥
2


+ 1
297L2

T∑
t=1

E
[
∥∇f(xt)∥2]+ γ

15L
σ2T + 2

99γ2(τC − 1)σ2T. (44)

Proof. We have

E
[
∥yt − yαt∥2] = γ2E


∥∥∥∥∥∥

t−1∑
j=αt

gkj (xαj )

∥∥∥∥∥∥
2


≤ γ2E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkj
(xαj

)±∇f(xαj
)±∇f(xj)

∥∥∥∥∥∥
2
+ γ2τtσ

2

≤ 3γ2E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkj
(xαj

)−∇f(xαj
)

∥∥∥∥∥∥
2
+ 3γ2E


∥∥∥∥∥∥

t−1∑
j=αt

∇f(xαj
)−∇f(xj)

∥∥∥∥∥∥
2


+ 3γ2E


∥∥∥∥∥∥

t−1∑
j=αt

∇f(xj)

∥∥∥∥∥∥
2
+ γ2τtσ

2

≤ 3L2γ2τ̃t

t−1∑
j=αt

E
[
∥xαj

− xj∥2]+ 3γ2E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkj
(xαj

)−∇f(xαj
)

∥∥∥∥∥∥
2


+ 3γ2τ̃t

t−1∑
j=αt

E
[
∥∇f(xj)∥2]+ γ2τtσ

2.

Then we add summation over the entire iterates and count the number of times each term appears

T∑
t=1

E
[
∥yt − yαt

∥2] ≤ 3L2γ2τ̃max

T∑
t=1

t−1∑
j=αt

E
[
∥xαj

− xj∥2]+ 3γ2
T∑

t=1
E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt
(xαj

)−∇f(xαj
)

∥∥∥∥∥∥
2


+ 3γ2τ̃max

T∑
t=1

t−1∑
j=αt

E
[
∥∇f(xj)∥2]+ τ̃avgγ2σ2T

≤ 3L2γ2τ̃2
max

T∑
t=1

E
[
∥xαt − xt∥2]+ 3γ2

T∑
t=1

E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt(xαj )−∇f(xαj )

∥∥∥∥∥∥
2


+ 3γ2τ̃2
max

T∑
t=1

E
[
∥∇f(xt)∥2]+ τ̃avgγ2σ2T

≤ 1
300

T∑
t=1

E
[
∥xαt

− xt∥2]+ 3γ2
T∑

t=1
E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt
(xαj

)−∇f(xαj
)

∥∥∥∥∥∥
2


+ 1
300L2

T∑
t=1

E
[
∥∇f(xt)∥2]+ τ̃avgγ2σ2T,
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where in the second inequality each term in the double sum appears at most τ̃max times. Using Young’s inequality
we continue as follows

T∑
t=1

E
[
∥yt − yαt∥2] ≤ 1

100

T∑
t=1

E
[
∥xαt − yαt∥2 + ∥yαt − yt∥2 + ∥xt − yt∥2]+ τ̃avgγ2σ2T

+ 3γ2
T∑

t=1
E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt
(xαj

)−∇f(xαj
)

∥∥∥∥∥∥
2
+ 1

300L2

T∑
t=1

E
[
∥∇f(xt)∥2]

≤ 1
50γ2T ((τC − 1)2G2T + (τC − 1)σ2) + 1

100

T∑
t=1

E
[
∥yαt − yt∥2]+ τ̃avgγ2σ2T

+ 3γ2
T∑

t=1
E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt(xαj )−∇f(xαj )

∥∥∥∥∥∥
2
+ 1

300L2

T∑
t=1

E
[
∥∇f(xt)∥2] ,

where we again use Lemma D.2. After cancellation, we get

T∑
t=1

E
[
∥yt − yαt∥2] ≤ 2

99γ2(τC − 1)2G2T + 100
33 γ2

T∑
t=1

E


∥∥∥∥∥∥

t−1∑
j=αt

∇fkt(xαj )−∇f(xαj )

∥∥∥∥∥∥
2


+ 1
297L2

T∑
t=1

E
[
∥∇f(xt)∥2]+ γ

15L
σ2T + 2

99γ2(τC − 1)σ2T,

where we use the stepsize restriction.

We can combine all previous lemmas into one.
Lemma D.6. If 30γLτ ≤ 1 and 30γL max{τ̃max, τC} ≤ 1 hold, then

T∑
t=1

E
[
∥yt − ỹt∥2] ≤ 8γ2Φ̃ + γ2Ψ̃ + 1

10γ2(τC − 1)2G2T + 1
10γ2(τC − 1)2G2T + 1

9033L2 B

+ 1
525L

γσ2T. (45)

Proof. Summary of obtained inequalities
T∑

t=1
E
[
∥yt − ỹt∥2] Lemma D.4

≤ 44
7 γ2Φ̃ + 6

71γ2(τC − 1)2G2T + 1
70 Ã + 1

15975L2 B + 2
35γ2τσ2T

+ 6
71γ2(τC − 1)σ2T,

Ã
Lemma D.5
≤ 2

99γ2(τC − 1)2G2T + 2
99γ2(τC − 1)σ2T + 100

33 γ2Ψ̃ + 1
297L2 B

+ γ

15L
σ2T.

Hence, using the stepsize restriction 30LγLτC ≤ 1
T∑

t=1
E
[
∥yt − ỹt∥2] ≤ 44

7 γ2Φ̃ + 6
71γ2(τC − 1)2G2T + 1

15975L2 B + 1
525L

γσ2T + 6
71γ2(τC − 1)σ2T

+ 1
70

(
2
99γ2(τC − 1)2G2T + 2

99γ2(τC − 1)σ2T + 100
33 γ2Ψ̃ + 1

297L2 B + γ

15L
σ2T

)
≤ 8γ2Φ̃ + 1

10γ2(τC − 1)2G2T + 1
10γ2(τC − 1)σ2T + 1

9033L2 B + 1
525L

γσ2T + 10
231γ2Ψ̃.
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D.2 Proof of Theorem 2

Theorem 2. Let Assumptions 1, 2, and 4 hold. Let the stepsize γ satisfies inequalities 6Lγ ≤ 1 and
30Lγ max{τ̃max, τC} ≤ 1, the correlation period τ =

⌊
1

30Lγ

⌋
, quantities {σ̃2

k,τ}
⌊T/τ⌋
k=0 and ν̃2 are finite. Then

E
[
∥∇f(x̂T )∥2] ≤ O( F1

γT + Lγσ2 + L2γ2Φ̃
+ L2γ2(τC − 1)2G2), (15)

where F1 := f(y1)− f∗, Φ̃ := 1
⌊T/τ⌋

⌊ T
τ ⌋∑

k=0
σ̃2

k,τ + 1
T ν̃2, and x̂T is chosen uniformly at random from {x1, . . . , xT }.

Proof. Again, we analyze separately iterations of restarts and without.

Iterations without restart: If restarts do not happen, namely (t + 1) mod τ ̸= 0 then from the smoothness
assumption of f and ỹt update rule, we have

f(ỹt+1) ≤ f(ỹt)− γ⟨∇f(ỹt),∇f(xt)⟩+ Lγ2

2 ∥∇f(xt)∥2

= f(ỹt)−
γ

2 ∥∇f(ỹt)∥2 − γ

2 ∥∇f(xt)∥2 + γ

2 ∥∇f(ỹt)−∇f(xt)∥2 + Lγ2

2 ∥∇f(xt)∥2

≤ f(ỹt)−
γ

2 ∥∇f(ỹt)∥2 − γ

2 ∥∇f(xt)∥2 + L2γ

2 ∥ỹt − xt∥2 + Lγ2

2 ∥∇f(xt)∥2

≤ f(ỹt)−
γ

2 ∥∇f(ỹt)∥2 − γ

3 ∥∇f(xt)∥2 + L2γ∥ỹt − yt∥2 + L2γ∥xt − yt∥2.

Iterations with restart: If a restart happens, namely (t + 1) mod τ = 0 then

ỹt+1 = yt+1 = yt − γgkt
(xαt

)
= ỹt + (yt − ỹt)− γ∇f(xt) + (γ∇f(xt)− γgkt

(xαt
))

= ỹt − γ∇f(xt) + γ

t∑
j=r(t)

∇f(xj)− gkj
(xαj

)

︸ ︷︷ ︸
=∆̃t

t

.

Then we use smoothness of f to get

f(ỹt+1)

≤ f(ỹt)− γ⟨∇f(ỹt),∇f(xt)− ∆̃t
t⟩+ Lγ2

2 ∥∇f(xt)− ∆̃t
t∥2

≤ f(ỹt)− γ⟨∇f(ỹt),∇f(xt)⟩+ γ⟨∇f(ỹt), ∆̃t
t⟩+ Lγ2∥∇f(xt)∥2 + Lγ2∥∆̃t

t∥2

≤ f(ỹt)−
γ

2 ∥∇f(ỹt)∥2 − γ

2 ∥∇f(xt)∥2 + γ

2 ∥∇f(ỹt)−∇f(xt)∥2

+ 1
240L

∥∇f(ỹt)∥2 + 60Lγ2∥∆̃t
t∥2 + Lγ2∥∇f(xt)∥2 + Lγ2∥∆̃t

t∥2

≤ f(ỹt)−
γ

2 ∥∇f(ỹt)∥2 − γ

3 ∥∇f(xt)∥2 + L2γ

2 ∥ỹt − xt∥2 + 1
240L

∥∇f(ỹt)∥2 + 61Lγ2∥∆̃t
t∥2

≤ f(ỹt)−
γ

2 ∥∇f(ỹt)∥2 − γ

3 ∥∇f(xt)∥2 + L2γ∥ỹt − yt∥2 + L2γ∥xt − yt∥2 + 1
160L

∥∇f(ỹt)∥2

+61Lγ2∥∆̃t
t∥2,

where in the third and fourth inequality Young’s inequality is used.

If we denote by ξt the indicator function of restart event at t + 1, namely ξkτ−1 = 1 for all k ≥ 1 and is 0
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otherwise, then we can take expectation and unify the descent inequality for both cases as follows:

E [f(ỹt+1)] ≤ E [f(ỹt)]−
γ

2E
[
∥∇f(ỹt)∥2]− γ

3E
[
∥∇f(xt)∥2]+ L2γE

[
∥ỹt − yt∥2]

+ L2γE
[
∥yt − xt∥2]+

(
1

240L
E
[
∥∇f(ỹt)∥2]+ 61Lγ2E

[
∥∆̃t

t∥2
])

ξt (46)

for all t ≥ 0.

Next, we apply summation over the entire iterates and bound the terms that appear only in every τ iteration.

1
L
E
[
∥∇f(ỹt)∥2] = 1

Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt)∥2]

≤ 2
Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt)−∇f(ỹt−j)∥2]+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt−j)∥2]

≤ 2L

τ

τ−1∑
j=0

E
[
∥ỹt − ỹt−j∥2]+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt−j)∥2]

≤ 2Lγ2

τ

τ−1∑
j=0

E


∥∥∥∥∥∥

t−1∑
l=t−j

∇f(xl)

∥∥∥∥∥∥
2
+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt−j)∥2]

≤ 2Lγ2
τ−1∑
j=0

t−1∑
l=t−j

E
[
∥∇f(xl)∥2

]
+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt−j)∥2]

≤ 2Lγ2τ

τ−1∑
j=0

E
[
∥∇f(xt−j)∥2

]
+ 2

Lτ

τ−1∑
j=0

E
[
∥∇f(ỹt−j)∥2]

≤ γ

15

τ−1∑
j=0

E
[
∥∇f(xt−j)∥2

]
+ 120γ

τ−1∑
j=0

E
[
∥∇f(ỹt−j)∥2]

provided that 1
60 ≤ Lγτ ≤ 1

30 (e.g., τ = ⌊ 1
30Lγ ⌋). Then we can use this bound to derive

T∑
t=1

1
240L

E
[
∥∇f(ỹt)∥2] ξt ≤

γ

3600

T∑
t=1

E
[
∥∇f(xt)∥2

]
+ γ

2

T∑
t=1

E
[
∥∇f(ỹt)∥2] . (47)

Then we use (40) to bound E
[
∥∆t

t∥2]:
Lγ2

T∑
t=1

E
[
∥∆̃t

t∥2
]

ξt ≤ 4Lγ2
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

ξt +
T∑

t=1

6Lγ2

71 (τC − 1)2G2ξt

+
T∑

t=1

6Lγ2

71 (τC − 1)σ2ξt + 90
7 L3γ2τ

T∑
t=1

t∑
j=r(t)

E
[
∥yj − yαj

∥2] ξt

+ 48
7 L2γ3

T∑
t=1

t−1∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

ξt

+ 4Lγ2τ

71

T∑
t=1

t∑
j=r(t)

E
[
∥∇f(xt)∥2] ξt + 2

35Lγ2τσ2 T

τ
.
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Notice that summation over the entire iterates with weights ξt is equivalent to division by τ .

T∑
t=1

t∑
j=r(t)

E
[
ϕ̃j−1

t (xr(t))
]

ξt =
T∑

t=1

t−1∑
j=r(t)

E
[
ϕ̃j

t (xr(t))
]

ξt =
T∑

t=1

t−1∑
j=r(t)

E
[
ϕ̃j

j(xr(j))
]

ξt

≤
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

.

Hence,

61Lγ2
T∑

t=1
E
[
∥∆̃t

t∥2
]

ξt

≤ 15100L2γ3
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

+ 6Lγ2 T

τ
(τC − 1)2G2 + 6Lγ2 T

τ
(τC − 1)σ2

+ 2
35Lγ2σ2T + 183

7 L2γ

T∑
t=1

E
[
∥yt − yαt∥2]+ 244

71 Lγ2τ

T∑
t=1

E
[
∥∇f(xt)∥2

]
Lemma D.5
≤ 15100L2γ3

T∑
t=1

E
[
ϕ̃t

t(xr(t))
]

+ 360L2γ3(τC − 1)2G2T + 360L2γ3(τC − 1)σ2T

+ 2
35Lγ2σ2T + 183

7 L2γ

(
2
99γ2(τC − 1)2G2T + 2

99γ2(τC − 1)σ2T + 100
33 γ2Ψ̃

+ 1
297L2 B + γ

15L
σ2T

)
+ 122

1065γB

≤ 15100L2γ3
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

+ 361L2γ3(τC − 1)2G2T + 361L2γ3(τC − 1)σ2T

+ 9
5Lγ2σ2T + 49837

246015γB + 80L2γ3Ψ̃. (48)

Plugging (47) and (48), lemmas D.2 and D.4 into (46) and adding summation, we have

E [f(ỹT +1)− f(ỹ1)] ≤ −γ

2

T∑
t=1

E
[
∥∇f(ỹt)∥2]− γ

3

T∑
t=1

E
[
∥∇f(xt)∥2]

+ L2γ

T∑
t=1

E
[
∥ỹt − yt∥2]+ L2γ

T∑
t=1

E
[
∥xt − yt∥2]

+ 1
240L

T∑
t=1

ξtE
[
∥∇f(x̃t)∥2]+ 61Lγ2

T∑
t=1

ξtE
[
∥∆̃t

t∥2
]

≤ −γ

2

T∑
t=1

E
[
∥∇f(ỹt)∥2]− γ

3 B + γ

3600B + γ

2

T∑
t=1

E
[
∥∇f(ỹt)∥2]

+ L2γ

(
44
7 γ2Φ̃ + 6

71γ2(τC − 1)2G2T + 1
70 Ã + 1

15975L2 B + 2
35γ2τσ2T

+ 6
71γ2(τC − 1)σ2T

)
+ L2γ3(τC − 1)2G2T + L2γ3(τC − 1)σ2T

+ 15100L2γ3
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

+ 361L2γ3(τC − 1)2G2T

+ 361L2γ3(τC − 1)σ2T + 2Lγ2σ2T + 80L2γ3Ψ̃ + 49837
246015γB.
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Algorithm 4 Random Asynchronous SGD
1: Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅, set of received jobs R0 = ∅
2: Initialization: for all jobs (i, 0) ∈ A1, server assigns worker i to compute a stochastic gradient gi(x0)
3: for t = 0, 1, 2, . . . , T − 1 do
4: once worker it finishes a job (it, πt) ∈ At+1, it sends git

(xπt
) to the server

5: server updates the current model xt+1 = xt − γgit
(xπt

) and the set Rt+1 = Rt ∪ {(it, πt)}
6: server assigns worker kt+1 ∼ Uni[1, . . . , n] to compute a gradient gkt+1(xt+1) ◁ i.e., αt ≡ t
7: server updates the set At+2 = At+1 ∪ {(kt+1, t + 1)}
8: end for

Rearranging terms we have

E [f(ỹT +1)− f(ỹ1)] ≤ −γ

3 B + γ

3600B + γ

15975B + 49837γ

246015 B + 4Lγ2σ2T

+ 364L2γ3(τC − 1)2G2T + 364L2γ3(τC − 1)σ2T

+ 8L2γ3Φ̃ + 81L2γ3Ψ̃ + γ

20790B + 15100L2γ3
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

≤ −γ

7 B + 4Lγ2σ2T + 8L2γ3Φ̃ + 81L2γ3Ψ̃

+ 15100L2γ3
T∑

t=1
E
[
ϕ̃t

t(xr(t))
]

+ 364L2γ3(τC − 1)2G2T

+ 364L2γ3(τC − 1)σ2T.

Using the same argument as in the proof of Theorem 1, the above leads to

1
T

T∑
t=1

E
[
∥∇f(xt)∥2] ≤ 7(f(y1)− f∗)

γT
+ 2600L2γ2(τC − 1)2G2 + 2600Lγσ2

+ 106000L2γ2

 1
⌊T/τ⌋

⌊T/τ⌋∑
k=0

σ̃2
k,τ + 1

T
ν̃2

 .

D.3 Convergence Guarantees in Special Cases

D.3.1 Random Asynchronous SGD

The algorithm Koloskova et al. (2022) is almost identical to pure asynchronous SGD. The difference in the
assigning process; the server chooses a new worker uniformly at random from all the workers regardless it is busy
or not. Such choice allows to equalize the contribution from all workers. In this case, we always assign a new
job at the last available model, i.e. τ̃t ≡ 0.

Now we derive the convergence guarantees for this algorithm.
Proposition D.1. Let Assumptions 1, 2, 3, and 4 hold. Let the stepsize satisfy 30LτCγ ≤ 1, and τ = ⌊ 1

30Lγ ⌋.
Then the iterates of Algorithm 4 satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F1

γT
+ Lγσ2 + Lγζ2 + L2τ2

Cγ2G2
)

, (49)

where x̂t is chosen uniformly at random from {x1, . . . , xT } and F1 = f(y1) − f∗. Moreover, if we tune the
stepsize, then the iterates of random asynchronous SGD satisfy

E
[
∥∇f(x̂t)∥2] ≤ O(LF1τC

T
+
(

LF1σ2

T

)1/2

+
(

LF1ζ2

T

)1/2

+
(

F1LτCG

T

)2/3
)

. (50)
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Proof. The proof is similar to that of pure asynchronous SGD. In this case we have
kτ+j∑
t=kτ

(∇fkt
(x) =

∑
i∈S

(∇fi(x)−∇f(x)),

where |S| ≤ τ . Therefore, we can continue in the following way using the fact that kt is always sampled
independently

E

∥∥∥∥∥
kτ+j∑
t=kτ

(∇fkt
(x)−∇f(x))

∥∥∥∥∥
2 = E

∥∥∥∥∥∑
i∈S

(∇fi(x)−∇f(x))
∥∥∥∥∥

2


=
∑
i∈S

E
[
∥∇fi(x)−∇f(x)∥2]

Asm. 3
≤ |S|ζ2 ≤ τζ2.

This gives σ2
k,τ ≤ τζ2 bound. Since αt ≡ t in this case, then ν2 = 0. This means that the rate is given by

E
[
∥∇f(x̂t)∥2] ≤ O( F1

γT
+ Lγσ2 + Lγζ2 + L2τ2

Cγ2G2
)

.

Now we need to tune the stepsize. Now we have three cases to consider. Indeed,

• if γ = Θ
(

1
LτC

)
, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1
1

LτC
T

+ L(σ2 + ζ2)
(

F1

LT (σ2 + ζ2)

)1/2

+ L2τ2
CG2

(
F1

L2τ2
CTG2

)2/3
)

≤ O

(
LF1τC

T
+
(

LF1(σ2 + ζ2)
T

)1/2

+
(

F1LτCG

T

)2/3
)

.

• if γ = Θ
((

F1
LT σ2

)1/2), then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

T

(
LTσ2

F1

)1/2

+ Lσ2
(

F1

LTσ2

)1/2

+ Lζ2
(

F1

LTζ2

)1/2
+ L2τ2

CG2
(

F1

L2τ2
CTG2

)2/3
)

≤ O

((
LF1σ2

T

)1/2

+
(

LF1ζ2

T

)1/2

+
(

F1LτCG

T

)2/3
)

.

• if γ = Θ
((

F1
LT ζ2

)1/2
)

, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

T

(
LTζ2

F1

)1/2

+ Lσ2
(

F1

LTσ2

)1/2

+ Lζ2
(

F1

LTζ2

)1/2
+ L2τ2

CG2
(

F1

L2τ2
CTG2

)2/3
)

≤ O

((
LF1σ2

T

)1/2

+
(

LF1ζ2

T

)1/2

+
(

F1LτCG

T

)2/3
)

.
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Algorithm 5 Random Asynchronous SGD with waiting
1: Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅, set of received jobs R0 = ∅, batch size b ≥ 1,

gradient estimator g = 0 and number of received gradients r = 0
2: Initialization: for all jobs (i, 0) ∈ A1, server assigns worker i to compute a stochastic gradient gi(x0)
3: for t = 0, 1, 2, . . . , T − 1 do
4: server sets gt,0 = 0 and Rt,0 = Rt

5: for j = 1, . . . , b do
6: once worker it,j finishes a job (it,j , πt,j) ∈ At+1, it sends git,j

(xπt,j
) to the server

7: server updates gt,j = gt,j−1 + git,j (xπt,j )
8: server updates the set Rt,j = Rt,j−1 ∪ {(it,j , πt,j)}
9: end for

10: server updates the current model xt+1 = xt − γ
b gt,b and set Rt+1 = Rt,b

11: server samples new batch of workers {kt+1,1, . . . , kt+1,b} of size b
12: server assigns worker kt+1,j to compute a gradient gkt+1,j

(xt+1) for all j ∈ [b] ◁ i.e., αt,j = t
13: server updates the set At+2 = At+1 ∪ {(kt+1,1, t + 1)} ∪ · · · ∪ {(kt+1,b, t + 1)}
14: end for

• if γ = Θ
((

F1
L2τ2

C
T G2

)1/3
)

, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

T

(
L2τ2

CTG2

F1

)1/3

+ Lσ2
(

F1

LTσ2

)1/2

+ Lζ2
(

F1

LTζ2

)1/2
+ L2τ2

CG2
(

F1

L2τ2
CTG2

)2/3
)

≤ O

((
LF1σ2

T

)1/2

+
(

LF1ζ2

T

)1/2

+
(

F1LτCG

T

)2/3
)

.

To get the final rate after stepsize tunning we need to set the minimal stepsize over all cases.

D.3.2 Random asynchronous SGD with waiting

The algorithm we consider in this paragraph is a special case of FedBuff Nguyen et al. (2022) when we perform
only one local step (because this is out of the scope of our work). The difference with the previous algorithm is
that the server waits for the first b workers before performing one step, i.e. one step has a form

zq+1 = zq − γ̃
∑

k∈Bq

∇fi(zπq,i
), (51)

where γ̃ = γ
b . Next the server uniformly at random chooses new b workers Bq = {kq,0, . . . , kq,b−1}, and send

them new jobs. The update of {yt}T −1
t=0

yqb+b = yqb+b−1 − γ̃∇fkq,b−1(xqb)
...
= yqb − γ̃

∑
k∈Bq

∇fk(xqb),

so that now it satisfies (13). As we can see, τ̃t changes from 0 to b− 1 within one batch, i.e. τ̃max ≤ b. That is
why we choose stepsize such that 30Lγ̃ max{b, τC} ≤ 1 and 6Lγ̃ ≤ 1, then all stepsize constraints are satisfied.
Now we set τ = b⌊ 1

30Lγ ⌋, so that τ is a multiple of b which is needed to take correctly conditional expectations.
This gives the bound 30L γ

b τ ≤ 1 we need in the proofs as well.
Proposition D.2. Let Assumptions 1, 2, 3, and 4 hold. Let the stepsize satisfy 30Lγ ≤ 1, and τ = b⌊ 1

30Lγ ⌋.
Then the iterates of Algoritm 5 with waiting satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F1

γT
+ Lγ

ζ2 + σ2

b
+ L2γ2G2 τ2

C

b2

)
, (52)
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Algorithm 6 Shuffled Asynchronous SGD
1: Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅, set of received jobs R0 = ∅, random

perturbation of workers χ, worker counter r = 0
2: Initialization: for all jobs (i, 0) ∈ A1, server assigns worker i to compute a stochastic gradient gi(x0)
3: for t = 0, 1, 2, . . . , T − 1 do
4: once worker it finishes a job (it, πt) ∈ At+1, it sends git

(xπt
) to the server

5: server updates the current model xt+1 = xt − γgit
(xπt

) and the set Rt+1 = Rt ∪ {(it, πt)}
6: server assigns worker χ(r) to compute a gradient gχ(r)(xt+1) and updates r ← r + 1 ◁ i.e., αt ≡ t
7: server updates the set At+2 = At+1 ∪ {(χ(r), t + 1)}
8: if r = n then
9: server samples new perturbation of workers χ and set r = 0

10: end if
11: end for

where x̂t is chosen uniformly at random from {x1, . . . , xb, . . . , x2b, . . . , xT b} and F1 = f(y1) − f∗. Moreover, if
we tune the stepsize, then the iterates of random asynchronous SGD with waiting satisfy

E
[
∥∇f(x̂t)∥2] ≤ O(LF1τC

T
+
(

LF1σ2

bT

)1/2

+
(

LF1ζ2

bT

)1/2

+
(

F1LτCG

Tb

)2/3
)

. (53)

Proof. We again start with stepsize restriction. The effective stepsize γ̃ = γ
b should satisfy 6Lγ̃ ≤ 1 and

30Lγ̃ max{b, τC} ≤ 1. This is implied if γ satisfies 30Lγ max{b, τC} ≤ b. Next, we choose τ = b⌊ 1
30Lγ ⌋.

First, this choice allows to apply conditional expectation correctly. Second, it satisfies the restriction 30Lγ̃τ =
30L γ

b b⌊ 1
30Lγ ⌋ ≤ 1.

Now we need to compute σ̃2
k,τ and ν̃2 quantities. We start with the first one. Each chunk of size τ in this case

consists of m ≥ 1 full batches of size b. Every batch is independent of others, therefore we need to compute
sequence correlation within one batch and then sum altogether. The sequence correlation within one batch is
the same as in the case of mini-batch SGD since a batch is chosen uniformly at random, thus, σ̃2

k,τ ≤ τζ2. ν̃2

term is similarly bounded by Tbζ2 since for all delayed gradients within one batch the argument αj is the same,
and therefore we are able to take conditional expectation correctly. Thus, the rate we derive is

1
Tb

T −1∑
q=0

b−1∑
l=0

E
[
∥∇f(xqb+l)∥2] ≤ O

(
F1

γ̃T b
+ Lγ̃σ2 + L2γ̃2τζ2 + L2γ̃2bζ2 + L2τ2

C γ̃2G2
)

≤ O
(

F1

γT
+ Lγ

σ2 + ζ2

b
+ L2γ2G2 τ2

C

b2

)
.

It is left to tune the stepsize. We have three cases similar to the previous case, therefore we skip computations
for that part.

Remark. We observe that waiting for b workers improves the second and third terms. However, we pay for
that by waiting time. In practice, there is a trade-off between the number of workers we need to wait and the
convergence speed.

D.3.3 Shuffled Asynchronous SGD [NEW]

This method is inspired by the superiority of SGD with random reshuffling and shuffle once. In random asyn-
chronous SGD workers might have different amounts of work depending on the random seed. However, we want
to ensure that all workers have the same number of jobs in order to have a balance between all of them, but we
still want to do it in random order. Therefore, we sample a permutation χq of [n] at epoch q and then assign
new jobs according to χq. We can sample permutation before every epoch, or just once in the beginning. Here
we want to utilize all available resources, i.e. τC = n.
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Now we present the method formally. Before epoch q we sample a permutation χq of [n]. Then one epoch of
shuffled asynchronous SGD has the following form

xqn+l+1 = xqn+l − γ∇fiqn+l
(xπqn+l

) ∀l ∈ [0, n− 1], (54)

where πqn+l is the iteration counter of the model where the corresponding gradient has started to be computed.
The sequence of virtual iterates {yt}T

t=0 is computed as follows

yqn+l+1 = yqn+l − γ∇fχq(l)(xqn). (55)

Again, τ̃t ≡ 0, therefore, the stepsize restrictions are 30Lγn ≤ 1 and 6Lγ ≤ 1. We choose τ = n⌊ 1
30Lnγ ⌋, so

that τ is a multiple of n in order to take conditional expectations correctly. Note that we satisfy the condition
30Lγτ ≤ 30Lγn 1

30Lnγ = 1 as well. We are ready to apply Theorem 2.

Proposition D.3. Let Assumptions 1, 2, 3, and 4 hold. Let the stepsize satisfy 30Lγn ≤ 1, and τ = n⌊ 1
30Lnγ ⌋.

Then the iterates of shuffled asynchronous SGD satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F1

γT
+ Lγσ2 + L2γ2nζ2 + L2γ2G2τ2

C

)
, (56)

where x̂t is chosen uniformly at random from {x1, . . . , xn, . . . , x2n, . . . , xT n} and F1 = f(y1) − f∗. Moreover, if

the stepsize is set as γ = min
{

1
30Ln ,

(
F1

L2nζ2T

)1/3
,
(

F1
L2n2G2ζ2T

)1/3
}

, then

E
[
∥∇f(x̂t)∥2] ≤ O(LnF1

T
+
(

LF1σ2

T

)1/2

+
(

LF1
√

nζ

T

)2/3

+
(

LGnF1

T

)2/3
)

. (57)

Proof. We have already shown that the choice of stepsize γ and period τ satisfy the conditions of Theorem 2.
Now we need to bound σ̃2

k,τ and ν̃2. This is done analogously to SGD with random reshuffling. We have that
σ̃2

k,τ ≤ nζ2, and ν̃2 = 0 since we do not have delays during assigning. Thus the convergence guarantees for this
method are

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

γT
+ Lγσ2 + L2γ2nζ2 + L2γ2G2n2

)
,

since τC = n in this case. We observe that both third term depends on γ2 while the convergence of random
asynchronous SGD the term with ζ2 depends on γ only.

Similarly to the previous two cases, we can tune the stepsize. We skip this part as it is almost exactly the same.

Remark 1. Let us set τC = n in random asynchronous SGD Koloskova et al. (2022) in order to compare it with

shuffled asynchronous SGD proposed in this work. The difference in the rates comes from
(

LF1ζ2

T

)1/2
for random

asynchronous SGD and
(

LF1
√

nζ
T

)2/3
for shuffled asynchronous SGD. Both terms become dominate in highly

heterogeneous regime, i.e. when ζ2 is large. If we want to achieve E
[
∥∇f(x̂t)∥2] ≤ ε, then random asynchronous

SGD requires O
(

LF1ζ2

ε2

)
iterations while it is O

(
LF1

√
nζ

ε3/2

)
for the shuffled asynchronous SGD. This means that

shuffled asynchronous SGD needs less iterations if ζ ≥
√

nε1/2, i.e. if we consider strongly heterogeneous regime
which is typically the case in Federated Learning.

D.3.4 Pure Asynchronous SGD

We consider exactly the same algorithm that was covered in Proposition C.1 but with an additional assumption
of bounded gradients. In this case αt ≡ t, i.e. ν̃2 = 0. Similarly, we bound σ̃2

k,τ ≤ τ2ζ2. Applying Theorem 2 we
derive the following convergence guarantees.
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Proposition D.4. Let Assumption 1, 2, 3, and 4 hold. Let the stepsize γ satisfy conditions 30LγτC ≤ 1 and
6Lγ ≤ 1. Let τ = ⌊ 1

30Lγ ⌋. Then the iterates of Algorithm 2 satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F1

γT
+ L2γ2τ2

CG2 + ζ2
)

, (58)

where x̂t is chosen uniformly at random from {x1, . . . , xT }. Moreover, if we tune the stepsize, then the convergence
rate is

E
[
∥∇f(x̂t)∥2] ≤ O(LτCF1

T
+
(

LτCGF1

T

)2/3
+ ζ2

)
. (59)

Proof. Since τ̃t ≡ 0, then we have to satisfy two stepsize conditions that are indicated in the proposition state-
ment. In fact, we only need to satisfy 30LγτC ≤ 1 as then 6Lγ ≤ 1 will be automatically satisfied. Since we
have σ̃2

k,τ ≤ τ2ζ2 and ν̃2 = 0, then applying Theorem 2 we get

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

γT
+ L2γ2τ2

CG2 + L2γ2τ2ζ2
)

(60)

≤ O
(

F1

γT
+ L2γ2τ2

CG2 + ζ2
)

. (61)

Now we switch to the tunning of the stepsize. We have two cases.

• if γ = Θ
(

1
LτC

)
, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1
1

30LτC
T

+ L2τ2
CG2

(
F1

L2τ2
CG2T

)2/3
+ ζ2

)

≤ O

(
LτCF1

T
+
(

LτCGF1

T

)2/3
+ ζ2

)
.

• if γ = Θ
((

F1
L2τ2

C
G2T

)1/3
)

, then

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

T

(
L2τ2

CG2T

F1

)1/3

+ L2τ2
CG2

(
F1

L2τ2
CG2T

)2/3
+ ζ2

)

≤ O

((
LτCGF1

T

)2/3
+ ζ2

)
.

It is left to take the minimum over two cases. We highlight that the rate does not depend on the maximum
delay, it only depends on τC which is proportional to τavg (Koloskova et al., 2022).

D.3.5 Pure Asynchronous SGD with waiting

We consider the same algorithm from Proposition C.3, but with additional gradient bound assumption 4. If we
apply Theorem 2 we get the following statement.
Proposition D.5. Let Assumption 1, 2, 3, and 4 hold. Let the stepsize γ satisfy conditions 30LγτC ≤ 1 and
6Lγ ≤ 1. Let τ = ⌊ 1

30Lγ ⌋. Then the iterates of Algorithm 3 satisfy

E
[
∥∇f(x̂t)∥2] ≤ O( F1

γTb
+ L2γ2τ2

CG2 + ζ2
)

, (62)

where x̂t is chosen uniformly at random from {x1, . . . , xb, xb+1, . . . , x2b, . . . , xT b}. Moreover, if we tune the
stepsize, then the convergence rate is

E
[
∥∇f(x̂t)∥2] ≤ O(LτCF1

Tb
+
(

LτCGF1

Tb

)2/3
+ ζ2

)
. (63)



AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms

Proof. First, we start with the stepsize conditions. Note that when we rewrite the iterations of pure asynchronous
SGD with waiting so that they suit (2), then we increase τt by b at most, but τC remains unchanged. This gives
us even better improvement w.r.t. b. Indeed, we still need to satisfy 30LγτC ≤ 1 and 6Lγ ≤ 1. If the first one
holds, then the second one as well. Now we apply Theorem 2. Note that T iterations of pure asynchronous SGD
with waiting are Tb iterations of Algorithm 1. Then we have

E
[
∥∇f(x̂t)∥2] ≤ O

(
F1

γTb
+ L2γ2τ2

CG2 + L2γ2τ2ζ2
)

≤ O
(

F1

γTb
+ L2γ2τ2

CG2 + ζ2
)

.

If we choose the stepsize γ = Θ
(

min
{

1
LτC

,
(

F1
L2τ2

C
G2T b

)1/3
})

, then we get the second statement of the propo-
sition.
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