
Privacy-Constrained Policies via Mutual Information Regularized
Policy Gradients

Chris Cundy* Rishi Desai* Stefano Ermon
cundy@cs.stanford.edu

Stanford University
rdesai2@cs.stanford.edu

Stanford University
ermon@cs.stanford.edu

Stanford University

Abstract

As reinforcement learning techniques are in-
creasingly applied to real-world decision prob-
lems, attention has turned to how these algo-
rithms use potentially sensitive information.
We consider the task of training a policy that
maximizes reward while minimizing disclosure
of certain sensitive state variables through
the actions. We give examples of how this
setting covers real-world problems in privacy
for sequential decision-making. We solve this
problem in the policy gradients framework by
introducing a regularizer based on the mu-
tual information (MI) between the sensitive
state and the actions. We develop a model-
based stochastic gradient estimator for opti-
mization of privacy-constrained policies. We
also discuss an alternative MI regularizer that
serves as an upper bound to our main MI
regularizer and can be optimized in a model-
free setting, and a powerful direct estima-
tor that can be used in an environment with
differentiable dynamics. We contrast previ-
ous work in differentially-private RL to our
mutual-information formulation of informa-
tion disclosure. Experimental results show
that our training method results in policies
that hide the sensitive state, even in challeng-
ing high-dimensional tasks.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have shown
dramatic successes in areas such as game-playing Silver
et al. (2016) and robotics Haarnoja et al. (2018). This
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increasing adoption of RL techniques in real-world set-
tings has illustrated the need for constraints on policies
which are hard to express in the typical RL formulation,
such as fairness Nabi et al. (2019), risk-sensitivity A.
& Fu (2018), and safety under exploration Dalal et al.
(2018). We aim to learn a policy to maximize reward,
while minimizing the extent to which the policy’s ac-
tions expose information about a sensitive subset of
the state variables.

This setting is natural to consider given the increas-
ing prevalence of RL algorithms in society, many tak-
ing public actions based in part on sensitive internal
information. Examples include a personal assistant
algorithm setting appointments while not revealing
important personal information, or a hospital admin-
istration algorithm assigning rooms to patients while
avoiding disclosure of private medical details.

A naive approach to this problem is to exclude the
sensitive variables from the policy’s input. However, it
is well known Dwork et al. (2006) that this approach
will fail when correlations exist between the sensitive
and non-sensitive state variables. In the hospital ex-
ample above, the policy may give room assignments
based on non-sensitive variables such as age, which are
correlated with medical status. Furthermore, the pos-
sibility of feedback in the setting introduces additional
complications: the agent may be able to deliberately
take actions to minimize future information disclosure.
In the hospital scheduling example, this could involve
investment so that all hospital rooms are equipped to
treat any condition. Then the room assignment does
not reveal any medical information.

We formulate this privacy-constrained RL problem as
an optimization problem with an additional regular-
izer on the mutual information between a function of
the action at and a function of the protected state ut
at each timestep t, induced under the learned policy
q. Optimizing this regularizer is not straightforward
since it is distribution-dependent (unlike the reward),
and involves marginalization over the non-sensitive
state. We consider several different mutual information
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constraints and introduce gradient estimators, allow-
ing privacy-dependent policies to be trained in the
policy-gradients setting. First, we introduce a model-
based gradient estimator for Iq(at;ut), and a model-
free gradient estimator for Iq(τa, τx; τu), which serves
as an upper-bound to Iq(at;ut). Finally, we implement
a reparameterized gradient estimator for Iq(a1:t;ut)
which can be applied given access to differentiable
dynamics. Experiments show that our constrained op-
timization finds the optimal privacy-constrained policy
in an illustrative tabular environment and hides sen-
sitive state in a continuous control problem. Finally,
we show that the reparameterized estimator can find
policies which effectively hide the sensitive state in
high-dimensional (simulated) robotics tasks.

2 THE STATE-INFORMATION
CONSTRAINED SETTING

We analyse privacy-constrained sequential decision-
making as a Markov decision process Sutton & Barto
(2018) (MDP) with information-theoretic constraints.
We consider episodic MDPs with a fixed length T , with
a state space S = X × U consisting of sensitive state
variables u ∈ U and non-sensitive variables x ∈ X . In
specific problems, the sensitive variables could include
gender, location, or a sensitive health status. In each
episode, the initial state is drawn from a distribution
p(x1, u1). At each successive timestep the agent draws
an action at from its policy qφ(at|xt, ut) parameterized
by learnable parameters φ and the environment sam-
ples the successor state (xt+1, ut+1) from the dynamics
p, giving a distribution over trajectories

qφ(τ) = p(x1, u1)

T∏
t=1

qφ(at|xt, ut)p(xt+1, ut+1|at, xt, ut),

(1)

where τ = (τa, τx, τu) is the collection of the actions
and (sensitive and non-sensitive) states sampled in the
trajectory. At each timestep t ≥ 1, we obtain a reward
r(xt, ut, at) concurrently with the transition to the next
state. In the standard formulation, the goal is to learn
a policy qφ that results in a high expected reward.

As a concrete example, consider an RL algorithm act-
ing as a virtual assistant, sending emails and making
appointments at each timestep. The virtual assistant
has available a set of variables describing the assistant’s
owner, of which some may be designated sensitive (e.g.
private relationship status, trade secrets), and some
may not be (e.g. current job, education status). The as-
sistant’s goal is to take the best actions, corresponding
to the most useful emails and appointments. Further-
more, certain actions may change the state, affecting
future decisions. We are interested in learning a policy

that maximizes cumulative reward while not allowing
an adversary to infer the values of the private state
variables. In the simplest case, the adversary observes
a single action at and wishes to infer the sensitive
variables at that time, ut (not being interested in the
sensitive variables in the past or future), not observing
any of the state variables. We discuss alternative goals
for the adversary in the next section.

We want to develop a worst-case guarantee, where
the adversary cannot infer the value of ut with
full knowledge of the policy parameters φ and the
environment dynamics. In this setting, a natu-
ral quantity to bound is the mutual information
Eut,at∼qφ [log qφ(ut|at)− log qφ(ut)] = Iqφ(at;ut), i.e.
the amount of information an optimal adversary gains
about ut from observing at (Liao et al., 2017). By the
data processing inequality, no adversary can gain more
information about ut from observing at than Iqφ(at;ut),
and so it serves as an upper bound on the information
inferable by computation- or data-limited adversaries.
As a special case, if ut is independent of at, then the
mutual information is zero.

Therefore we formulate the problem of learning a
state-private policy as a constrained optimization prob-
lem Altman (1999), aiming to solve the problem

Max
φ

E
τ∼qφ

[
T∑
t=1

r(xt, u, at)

]
, s.t. I(at;ut) < εt ∀t, (2)

with εt a set of parameters that we can adjust to
trade off good performance against low privacy.
Notably, Iqφ(at;ut) does not involve the non-sensitive
state xt. In other words, we consider the mutual
information between the actions and sensitive state,
marginalized over the distribution of non-sensitive
state induced by qφ. Furthermore the mutual infor-
mation term is with respect to the distribution over
trajectories induced by the policy qφ, i.e. Iqφ(at;ut) =
DKL (qφ(at, ut)‖qφ(at)qφ(ut)), with qφ(at, ut) =∫
τx1:t ,τ(a,u)1:t−1

qφ(at|ut, xt)qφ(ut, xt|τ(a,u)1:t−1
, τx1:t−1).

This means that when choosing the action at time t,
the agent must consider the effects on the distribution
at future timesteps, such as taking a corrective action
that allows future actions to be independent of ut.

2.1 Alternative Threat Models

In the previous section we discussed the threat model
where the adversary aims to infer the sensitive state
at time t, ut, by observing the corresponding action at.
This corresponds to the case where the policy has a one-
off interaction with an adversary where the adversary
does not aim to infer the previous or future states
ut′ for t′ 6= t. We can also consider adversaries that
observe the current and previous actions a1:t and wish
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to infer the current ut, or observe the whole trajectory
of actions τa and wish to infer a single ut or the whole
sensitive trajectory τu. Finally, an adversary might
observe τx and τa and try to find τu. As incorporating
more variables always increases mutual information,

Iqφ(at;ut) ≤ Iqφ(a1:t;ut) ≤ Iqφ(τa;ut),
Iqφ(τa;ut) ≤ Iqφ(τa; τu) ≤ Iqφ(τa, τx; τu). (3)

Therefore, we can interpret Iqφ(τa, τx; τu) as the rele-
vant quantity to constrain if the adversary has access
to all actions and non-sensitive states and wishes to
infer all sensitive states, or as an upper bound to any
of the MI quantities for other threat models.

2.2 Dual Formulation

We can approach the constrained optimization prob-
lem (2) by considering the Lagrangian dual problem

min
λ≥0

max
φ

Eτ∼qφ [R(τ)]−
T∑
t=1

λt(Iqφ(at;ut)− εt), (4)

where λ is a vector of Lagrange multipliers. For a con-
strained optimization problem, the solution to the dual
problem is a lower bound on the primal problem, which
is not necessarily tight. However, for an important set
of privacy-preserving problems, the bound is tight:
Theorem 2.1. For a time-dependent policy,
qtφ(at|xt, ut) in an MDP where ut is indepen-
dent of actions, equations (4) and (2) have the same
solution, i.e. strong duality holds between the primal
and dual.

Proof. Full details are in the appendix. The proof
follows Paternain et al. (2019) which requires Slater’s
conditions and a concave perturbation function. The
perturbation function P (ξ) is the value attained in
equation (4) with constraints −ξ+ε. Concavity follows
from the convexity of the mutual information, and
Slater’s condition is satisfied by a random policy.

Although we cannot prove strong duality in the gen-
eral case, it holds empirically in our experiments for
all cases where we can compute the optimal policy
analytically. In order to solve the inner maximiza-
tion problem with gradient descent, we require estima-
tors for ∇φEτ∼qφ [R(τ)] and ∇φIqφ , where Iqφ can be
any of the mutual information quantities mentioned
above. Since even evaluating the mutual information
in high dimensions is challenging Paninski (2003), this
is not trivial. We provide three different approaches:
a method for estimating ∇φIqφ(at;ut) where a dynam-
ics model is available, a model-free gradient estimator
for Iqφ(τa, τx; τu), and a reparameterization based gra-
dient estimator for any mutual information given a
differentiable simulator.

3 RELATED WORK

3.1 Privacy In Reinforcement Learning

The specific problem of satisfying privacy concerns
while maximizing reward in a reinforcement learning
context was introduced in Sakuma et al. (2008) and
Zhang & Makedon (2005). Since then, several works
have tackled the privacy-preserving RL problem in vari-
ous special cases, such as linear contextual bandits Neel
& Roth (2018); Shariff & Sheffet (2018), multi-armed
bandits Sajed & Sheffet (2019); Tossou & Dimitrakakis
(2016), and online learning with bandit feedback Agar-
wal & Singh (2017); Smith & Thakurta (2013). In
non-bandit settings (i.e. the ‘general RL’ setting) there
is less work, most recently Wang & Hegde (2019) and
Vietri et al. (2020), discussed below.

These works all use the differential privacy (DP) pri-
vacy metric. As summarized in Basu et al. (2019), a
bandit algorithm is (globally) ε-DP if log qφ(τa|τx) −
log qφ(τa|τ ′x) ≤ ε for all τa and τx, τ

′
x where τ ′x is a

trajectory that differs from τx at only one timestep.
In general the relationship between DP and mutual
information privacy constraints is not straightforward,
although characterisations have been made in several
settings Wang et al. (2016); Mir (2012); du Pin Calmon
& Fawaz (2012). To our knowledge, a standard defi-
nition of DP privacy in the general RL setting is not
agreed upon. Comparing to the DP constraint in the
bandit setting, a key difference is that our constraint
penalizes predictability of ut given at, in expectation
over the distribution of ut, at, while a DP constraint
penalizes predictability between neighbouring trajecto-
ries, with no notion of the relative likelihood of these
trajectories. This is a particularly important difference
in the general RL setting, where the ability of a policy
to change the distribution of states is a key feature.

In Wang & Hegde (2019), the DP constraint is applied
on the Q-learning algorithm itself, viewed as a function
A : R → Q mapping a reward function to a Q-function.
The DP requirement is that for any reward functions
r, r′ with ‖r− r′‖∞ < 1, log p(A(r))− log p(A(r′)) < ε,
with an RHKS measure over Q. We compare policies
learned under this constraint to policies satisfying our
MI constraint in section 5. In the offline RL setting of
Qiao & Wang (2023), the DP constraint is applied be-
tween the individual trajectories in the training dataset
and the resulting policy.

Finally, a DP constraint for general RL is described in
Vietri et al. (2020). There, T episodes of length H are
experienced, each with arbitrary dynamics and rewards.
The constraint is that log qφ(τa\t) − log q̃φ(τa\t) ≤ ε,
for all τa\t (denoting the set of H(T − 1) actions not
including the actions in episode t) and all q, q̃ (an
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MDP q and an MDP q̃, differing from q only in the tth
episode). This is significantly more adversarial than
our approach, which assumes a fixed MDP.

3.2 Mutual Information Constraints in RL

MI constraints have been used for reinforcement learn-
ing in the context of goal-directed RL. In the goal-
directed setting, the agent has a goal gt which af-
fects the agent’s choice of action, but not the dynam-
ics. Previous work regularizes the MI between goals
and other quantities. First, van Dijk & Polani (2011)
explored this in the options framework, regularizing
I(at; gt|τa1:t−1

, τx1:t−1
).

More recently, both Goyal et al. (2019) and Strouse
et al. (2018) studied the behaviour of policies regu-
larized with the term I(at; gt|st). Both explore a re-
arrangement of this regularizer as the KL-divergence
between the learned policy and a ‘default’ policy. In the
case of Goyal et al. (2019) this is used to learn policies
with diverse goals, similarly to the information bottle-
neck learning framework. In the case of Strouse et al.
(2018) the motivation is explicitly to learn agents that
either share or hide action-goal information (depending
on the sign of the regularizer’s coefficient). Although
a similar motivation, the threat model considered is
different: in Strouse et al. (2018), the adversary knows
the state at time t and aims to infer the goal from the
actions, while in our approach the state is unobserved
and the adversary wants to infer a subset of the state
from the actions. Perhaps closest to our work is the
case discussed where actions are unobserved–controlling
I(st; gt). Our approach solves the corresponding prob-
lem for unobserved states–controlling I(at; gt), with
the additional aspect that our ‘goal’ may influence the
dynamics of the environment.

Finally, Grau-Moya et al. (2018) apply a penalty of
I(at; st) to the reward to encourage adaptive explo-
ration. We compare to this method in section 5. In
contrast, our penalty is with respect to a private subset
of the state variables. This increased selectivity means
we can achieve higher reward by allowing disclosure of
non-private state variables.

3.3 Demographic Parity

In fair machine learning, the demographic parity objec-
tive (Zemel et al., 2013) for binary prediction requires
that the class predicted, ŷ, is statistically independent
of protected variables such as race or gender. Previous
work (Song et al., 2019) has formulated this as requiring
I(ŷ;u) = 0 for protected variables u, marginalizing over
the unprotected variables x. Our approach is equivalent
to the demographic parity objective for one-timestep
episodes (see section A.11). It is unclear whether ex-

tending demographic parity from the bandit setting
makes sense as a notion of fairness: different formu-
lations of fairness for sequential decision-making have
been proposed, such as meritocratic fairness (Jabbari
et al., 2017) or path-specific fairness (Nabi et al., 2019).

4 OPTIMIZATION OF PRIVACY
CONSTRAINTS

It is well known that in general it is intractable to
compute the MI between two random variables Panin-
ski (2003). The reinforcement learning setting pro-
vides us with an additional challenge, as to perform
efficient gradient-based optimization we must form ex-
plicit Monte-Carlo estimators of the gradient in terms
of distributions that we are able to sample from. Two
common tricks in working with mutual information are
to approximate posterior distributions with adversar-
ial training Nowozin et al. (2016), and to form upper
bounds by introducing auxiliary variables. We use each
trick to obtain two different gradient estimators for our
objective. Finally, we introduce an estimator for the
case where a differentiable simulator is available.

4.1 Estimation of the MI constraint

Our simplest mutual information constraint is
Iqφ(at;ut) ≤ εt, for all 1 ≤ t ≤ T . By defini-
tion, Iqφ(at;ut) = Eat,ut∼qφ [log qφ(ut|at)− log qφ(ut)].
In general, there is no way to obtain these proba-
bilities in closed-form in terms of φ, since we only
know qφ(at|xt, ut). However, we can replace qφ(ut|at)
and qφ(ut) with approximating distributions pψ(ut|at)
and pψ(ut). We learn the parameters ψ of pψ by
maximum likelihood on samples from qφ(τ). Given
a sufficiently powerful model pψ and enough sam-
ples, pψ(ut|at) ≈ qφ(ut|at) and pψ(ut) ≈ qφ(ut), so
Iqφ(at;ut) ≈ Eat,ut∼qφ [log pψ(ut|at)− log pψ(ut)]. If
pψ recovers qφ exactly we achieve the equality. By
training a predictor pψ we can check if a policy is
fulfilling the MI constraint in equation (2). For an
alternative MI such as Iqφ(a1:t;ut), we can similarly
train a predictive model for ut given a1:t.

4.2 Model Based Estimation of the MI
Constraint Gradient

In order to perform gradient-based constrained
optimization to solve the problem in equation (2) we
need a tractable gradient estimator. If our policy is
parameterized with φ, applying the policy gradient
theorem to Eat,ut∼qφ [log pψ(ut|at)− log pψ(ut)]
gives us a gradient estimator
Eat,ut∼qφ [(log pψ(ut|at)− log pψ(ut))∇φ log qφ(at, ut)].
However, ∇φ log qφ(at, ut) is difficult to compute, as
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qφ(at, ut) involves a marginalization over all previous
states and actions in the trajectory. In Section A.1 we
show that

∇φ E
at,ut∼qφ

[log pψ(ut|at)− log pψ(ut)] (5)

= E
at,ut∼qφ

[
Rψ(ut, at) E

xt∼qφ(·|ut,at)
[∇φ log qφ(at|xt, ut)

+ E
τ(x,u,a)1:t−1

∼qφ(·,·|xt,ut)

t′=t−1∑
t′=1

p(xt′+1, ut′+1|at′ , xt′ , ut′)
qφ(xt′+1, ut′+1|xt′ , ut′)

×∇φ log qφ(at′ |xt′ , ut′)

]]]
,

where Rψ(ut, at) = log pψ(ut|at) − log pψ(ut). To
compute this estimate we need to know the transition
dynamics of the MDP, p(xt, ut|at−1, xt−1, ut−1).
Although the model-based requirement may seem
stringent, it is plausible that a model will be avail-
able in higher-stakes settings where privacy is a
consideration. Furthermore, model-based techniques
are increasingly popular due to empirical Kaiser
et al. (2019) and theoretical Du et al. (2019)
sample-efficiency improvements over model-free tech-
niques. Since we can compute qφ(xt, ut|xt−1, ut−1) as∫
at−1

p(xt, ut|at−1, xt−1, ut−1)qφ(at−1|xt−1, ut−1)dat−1,
a separate qφ(xt, ut|xt−1, ut−1) is not needed. A simi-
lar estimator can be constructed for Iqφ(τa; τu) (details
in the appendix, section A.2).

4.3 Action-Trajectory Mutual Information
Constraint Gradient

We can avoid the model-based marginalization in the
previous section by explicitly including the trajectory
of actions and states in our mutual information term,
and so considering the constraint Iqφ(τx, τa; τu) ≤ ε.
As discussed in section 2.1, this constraint is an upper
bound for the constraint in equation (2), as well as an
interesting constraint itself.

Similarly to above, we approximate qφ with
a learned predictor pψ, so Iqφ(τa, τx; τu) ≈
Eτ∼qφ [log pψ(τu|τx, τa)− log pψ(τu)], for a sufficiently
accurate predictor pψ. This has a tractable gradient:

∇φ E
τ∼qφ

[Rψ(τ)] = E
τ∼qφ

[Rψ(τ)∇φ log qφ(τ)] , (6)

where Rψ(τ) = log
pψ(τu|τx,τa)
pψ(τu)

. We can use this estima-
tor to learn policies solving the constrained optimiza-
tion problem in equation (2). We can optimize this
quantity without any knowledge of the dynamics. If
we aim to use this as an upper bound, the tradeoff is
that the upper bound may be loose. In the appendix
(section A.10) we examine the looseness of the bound

in the setting where ut influences the transitions and
rewards only through the initial state.

4.4 Estimation of MI Constraint Gradient
with Differentiable Simulator

With differentiable simulation environments (Freeman
et al., 2021; Hu et al., 2019) it is possible to form
path-based (reparameterization) gradient estimators.
Provided the policy and dynamics can be written as
differentiable functions of random variables ζ (written
τ(ζ, φ)), we have, for any differentiable functions f, g,

∇φ E
a1:t,ut∼qφ

[
Ipψ (f(τa, τx); g(τu))

]
= E
ζ∼p(ζ)

[
∇φIpψ (f(τa(ζ, φ), τx(ζ, φ)); g(τu(ζ, φ)))

]
,

where ∇φIpψ(f(τa(ζ, φ), τx(ζ, φ)); g(τu(ζ, φ))) can be
computed directly with automatic differentiation. In
particular, we investigate the statistic I(a1:t;ut), i.e.
how well an adversary can guess the hidden state at
time t after seeing all the actions up to that time. The
main concern with this method is the variance of the
gradient estimator if the dynamics of the simulator are
stiff. In the case of rigid body simulations, the gradient
estimator can even have much higher variance than
the corresponding score function estimator Suh et al.
(2022), and the variance can increase rapidly with t.
We explore this in our experiments, and show that a
simple truncation in backpropogation can control the
variance sufficiently to produce complex state-hiding
policies in high-dimensional simulated robotics tasks.

5 EXPERIMENTS

In this section we use our constrained optimization
procedure to solve privacy-constrained tasks in several
different environments. Using the model-based score
function estimator, we first consider a tabular task to
illustrate that we can learn policies that intelligently
plan ahead, changing the distribution over future states
in order to reduce the information leaked in subsequent
timesteps. We compare the behaviour of a differentially-
private Q-learning policy to our mutual information-
constrained policy. Additionally, we compare to a
previous MI-constrained method, MIRL (Grau-Moya
et al., 2018).

Going beyond tabular environments, we evaluate the
model-based method on a two-dimensional control task.
Finally, we deploy the reparameterized method on two
simulated robotics tasks with a differentiable simula-
tor and PPO, a state-of-the-art RL policy-gradient
approach, and show we can learn high-reward policies
which effectively hide the hidden state. In the appendix,
additional experiments compare the behaviour of the
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I(τu; τx, τa; ) constraint to the I(ut; at) constraint on a
toy example and investigate a welfare-allocation task.

5.1 Privacy in Internet Connections

As a first goal, we want to illustrate that the learned
policies exploit the structure of the problem in order
to achieve the privacy constraints, such as taking early
corrective actions which remove future u-dependence
from actions. To show this, we construct a tabular
example representing connection to various web sites.
The agent has one of n IP addresses, which are con-
sidered private. At each of T timesteps, the agent has
a choice of connecting to the websites via n mirrors.
The mirror corresponding to the current IP address
will connect quickest, resulting in highest reward r∗.
Connecting via the other mirrors results in a slower or
intermittent connection, with lower reward r− � r∗.
The agent can also purchase a VPN, which gives no
immediate reward but allows reasonably good connec-
tion to all mirrors at future timesteps, with reward
r− � rVPN < r∗ for connecting to any mirror. The bi-
nary non-sensitive state x ∈ {0, 1} represents whether
the VPN has been purchased or not.

The unconstrained optimal policy is simply to always
choose the mirror corresponding to the owner’s IP
address, resulting in a total reward of Tr∗. The optimal
policy1 under a strict privacy constraint on the IP
address is to choose to activate the VPN on the first
timestep, then choose any of the mirrors under the
subsequent timesteps, resulting in a total reward of (T−
1)rVPN. In our experiments we used n = 4. We solve
problem (4) with εt = ∞ (non-privacy constrained)
and εt = 0 (privacy-constrained), using the model-
based score-function estimator in equation (5). In
this simple setting, we use empirical frequencies of
ut, at over a minibatch to compute the joint probability
distribution p(ut, at). For the dynamics model, we use
the ground-truth dynamics. We use a two-layer multi-
layer perceptron for the policy and a learned baseline.
We used JAX Bradbury et al. (2020) for all experiments.
Additional hyperparameters are in section A.8.

Results: The policy learned under the privacy con-
straint does indeed exactly recover the globally opti-
mal privacy-constrained policy described in the section
above. This policy activates the VPN on the first
timestep and then always connects to the same mirror,
regardless of ut, so that the actions are independent
of ut. The non-constrained policy always chooses the
mirror which corresponds to the user’s IP address, re-
sulting in a (ut, at)-distribution where ut is disclosed
by at. The average value of I(at;ut) over the episode is

1Providing that T−1
T

> r−

rVPN , which is the case for our
setup with T = 10, rVPN = 0.9, r− = 0.5

Figure 1: Action distribution in four states in the VPN
MDP with four mirrors. Top to bottom: our approach
with λ = 0, λ = 1, DPQL with σ = 0.1, σ = 5.0.

1.38 (i.e. log 1/4 ≈ 1.39) for the non-constrained policy
and 0.0047 for the constrained policy. Full trajectory
samples are shown in figure 5. This experiment illus-
trates that the learned constrained policies do indeed
reduce I(at;ut), taking pre-emptive actions in order to
maximize reward under the constraint.

5.2 Comparison to Differentially Private
Policies

We compare the policies learned with our mutual in-
formation constraint to an (ε, δ)−differentially private
Q-learning policy obtained via the DPQL algorithm
described in Wang & Hegde (2019)using their imple-
mentation2. The provided implementation only sup-
ports a one-dimensional continuous state, so we repa-
rameterize the VPN environment described in section
5.1 with n = 4 mirrors, mapping the eight possible
states (u = {0, 1, 2, 3}, VPN={0, 1}) to eight equal
sub-regions of the interval [0, 1]. The inputs to DPQL
are a differential privacy budget ε and a noise level σ.
As long as σ ≥ θ, the mechanism is then (ε, δ)-DP (in

2Found at https://github.com/wangbx66/
differentially-private-q-learning

https://github.com/wangbx66/differentially-private-q-learning
https://github.com/wangbx66/differentially-private-q-learning
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the sense described in section 3) where θ, δ depend on
the batch size, learning rate, Lipschitz constant of the
value approximator and other parameters. We compare
several values of σ with ε = 0.05 against our method.

Results A plot of the frequency of actions chosen in
each state for the DPQL policy and our policy is given
in figure 1. Higher values of σ for DPQL lead to more
noise injected into the Q-value and so a more random
distribution of actions. The higher values of σ for
DPQL do lead to lower values of mutual information
I(at;ut), as the policy is more random. However, the
MI is not reduced exactly to zero. For the highest
amount of noise, σ = 5.0, the MI was 0.11 with reward
7.5 ± 0.3, while our policy achieves a MI of 0.004
with reward 8.10± 0.01 (the optimal reward under
the mutual information constraint). This is expected,
since the DPQL approach is not aimed at satisfying
a MI constraint. However, this does illustrate that
the existing DP formulation is not especially suited
to the problem of minimizing probabilistic disclosure
of sensitive state variables. Our approach is able to
take the feedback of the system into account and take
preventative action to preserve privacy, while the DPQL
approach simply adds noise to the policy.

5.3 Comparison to MIRL

We additionally compare to the MIRL approach in-
troduced in Grau-Moya et al. (2018). MIRL finds a
policy π maximizing Eπ[r] − I(st; at)/β, i.e. regular-
izing the MI between all states and actions. In the
original work the regularization is reduced to zero dur-
ing training, which results in the optimal non-private
policy being found. However, by fixing β, we can find
an MI-regularized policy. We fix β = 0.1 and use a
publicly-available re-implementation 3.

Results The converged policy has a reward of 6.3±0.2
and a mutual information I(at; st) of 0.00049± 0.0001.
As expected, the policy has a very low mutual infor-
mation. However, it obtains a lower reward than our
method. By inspection of trajectories, we observe that
the final policy always selects a particular mirror (e.g.
mirror 0), independently of the state. Analytically, this
policy has a reward of 6.25 and an MI of 0, very close to
that observed experimentally. This is lower than that
obtained by our method, which first activates the VPN
and then chooses arbitrarily, with total reward 8.1. Be-
cause MIRL constrains the mutual information between
all states and actions, our method’s optimal policy is
not chosen, as it has mutual information between the
actions and the part of the state which denotes whether
the VPN is active. This is acceptable for our approach

3https://github.com/lcalem/
reproduction-soft-qlearning-mutual-information

since we have designated that part to be nonprivate.

5.4 Private Control in a Continuous Domain

The second experiment is on a two-dimensional contin-
uous control domain, illustrating the use of a learned
discriminator pψ(ut|at), and an environment where ut
changes over the episode. The agent controls a particle
under Newtonian dynamics. The state is the coordi-
nate positions x and u, and velocities, (x, ẋ, u, u̇), the
agent’s actions impose a unit impulse in one of the
four cardinal directions, and the reward is equal to
−(x2 + u2). We consider the state variable u to be sen-
sitive. At each timestep a random isotropic Gaussian
force is applied. For this experiment we use a learned
model to predict ut given at, an MLP parameterizing a
Gaussian, conditional on the action at timestep t. Pa-
rameters of the predictor are updated on each iteration.
The prediction p(ut) is a Gaussian at each timestep
with the empirical moments of the sampled minibatch’s
trajectories. The policy and critic architecture is the
same as the previous experiment. Hyperparameters
are in the appendix, section A.8.
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Figure 2: Trajectories for the 2d control task, u-
unconstrained (left) and -constrained (right). The
policy induces more variance in the u-direction in the
constrained case, with less mutual information between
at and ut. Our policy reduces the MI to zero when
computed with a Gaussian discriminator, but this di-
verges from the MI as estimated by a nonparametric
KDE at later timesteps as u is less Gaussian.

Results: The results are shown in figure 2. Trajecto-
ries from the u-constrained policy have a much higher
variance in the u-direction, with correspondingly lower
mutual information. Trajectories from the policy with-
out the u-constraint have approximately equal variance

https://github.com/lcalem/reproduction-soft-qlearning-mutual-information
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Figure 3: Simulated robotics policies trained with mutual information constraints. In multi-pusher (upper row),
the goal is red; movable balls are cyan and orange. The unconstrained policy moves the active ball to the goal,
while the constrained policy moves both balls to the goal. For turning-ant (lower row), the private policy moves
diagonally while the unconstrained policy moves exactly in the direction of highest reward.

in both directions. The policy clearly trades off re-
ward in order to satisfy the privacy constraint, as the
constrained trajectories are on average further away
from the center. We also plot I(at;ut), first assuming a
Gaussian distribution (as is used for the discriminator
in training), and then using a kernel density estimator,
with no Gaussianity assumption. We see that our pol-
icy learns to reduce the mutual information under a
Gaussian assumption to zero, but the true MI as mea-
sured by the KDE starts to increase at later timesteps,
as the distribution of u becomes more non-Gaussian.

5.5 Control in a Differentiable Rigid-Body
Simulator

Here we show that our reparameterized method can
be combined with modern RL algorithms such as PPO
(Schulman et al., 2017) on simulated robotics tasks
with the Brax differentiable simulator Freeman et al.
(2021) to train complex policies which can hide sen-
sitive states. For the predictor pψ(a1:t;ut) we use a
transformer Vaswani et al. (2017). We find that the
gradient norm grows with larger t; to reduce it we use a
surrogate predictor pψ(at−k:t;ut) during training, pre-
dicting ut given the k previous actions. The predictor
is a single model with t-specific positional embeddings
and is trained alongside the policy. Architectural de-
tails and hyperparameters are given in section A.8. In
this setting, instead of adjusting the Lagrange multi-
plier λ by coordinate descent, we use a PID controller,
due to its success in constrained RL (Stooke et al.,
2020). The PID controller adjusts λ during training
to satisfy the constraint 1

T

∑T
t=1 I(at−k:t;ut) < ε. It is

updated after each gradient step.

When computing the PPO loss, we subsample from

the current batch of trajectories to obtain initial states,
and then roll out k environment steps with the policy,
adding the approximate MI multiplied by λ to the PPO
loss. Gradients are computed via automatic differen-
tiation, using Brax to allow automatic differentiation
through the environment dynamics.
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Figure 4: Left: Multi-Pusher, Right: Turning-ant.
Full-trajectory MI and reward for different levels of
truncated MI constraint. In both MDPs, we find poli-
cies that reduce the disclosure of sensitive variables. In
multi-pusher, we can reduce disclosure significantly
with a minor drop in reward. In turning-ant, there
is a trade-off between disclosure and reward.

We explore two classic environments, augmented with
a new hidden state. First, the multi-pusher environ-
ment is similar to the pusher environment (Todorov
et al., 2012), where a robot arm must move a ball to
a goal. We add an additional ball and an additional
binary observation which is randomly sampled at the
start of the episode. This observation indicates which
ball is ‘active’. The reward is calculated with respect
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only to the active ball. Therefore, a naive policy would
likely reveal which ball is the active ball, whereas hid-
ing which ball is active requires a more sophisticated
policy.

The turning-ant is an adaptation of the ant environ-
ment, where at the start of the episode we choose to
reward progress in either the x or y direction, with a
corresponding binary observation. The unconstrained
policy will reveal which direction is active, while a con-
strained policy must avoid disclosing this information.

Results: Numerical results are shown in figure 4, for
several different MI budgets ε. The constrained policies
are able to effectively hide the sensitive state while
retaining high reward. Furthermore, the truncated
predictor is able to serve as an effective surrogate for
the predictor trained on the whole trajectory.

Qualitative behavior of the policies is shown in figure
3. In multi-pusher, the unconstrained policy pushes
the active ball to the goal, revealing that this ball is
active. In contrast, the constrained policy moves both
balls to the goal. Figure 4 shows this behavior can be
achieved with a relatively small reduction in achieved
reward. However, under the strictest truncated MI con-
straint, we do not achieve a full-trajectory MI of zero,
illustrating potential limits of the truncated approach.

For turning-ant, we see that the unconstrained policy
moves solely in the ‘active’ direction, thereby revealing
the identity of the sensitive parameter. In this case, we
can conjecture that the optimal policy which does not
reveal the sensitive parameter is to move in a diagonal
direction. As shown in figure 3, this is the policy
which is found by our method. We observe that the
trajectory actually arcs slightly towards the ‘active’
direction as the episode progresses. This is due to the
use of non-zero ε constraint, and the difference between
the truncated mutual information from pψ(at−k:t;ut)
compared to the evaluation on pψ(a1:t;ut). Since the
policy is allowed ε mutual information over a period
of k steps as opposed to over t steps, the arc increases
over the course of an episode for higher values of ε. In
figure 4 we show that the ant is able to achieve high
reward while obscuring the hidden state. The ‘optimal’
private reward is the theoretical reward if the ant were
to move precisely diagonally at the same speed as in
the unconstrained case.

In section A.9 we show that the truncated predictor
dramatically reduces the gradient norm when compared
with the full-trajectory predictor, indicating that the
truncated predictor is necessary for stable training.

6 CONCLUSION

By minimizing the mutual information between sensi-
tive state variables and actions, we can learn policies
whose actions do not reveal the value of sensitive state
variables, even in high dimensions and complex envi-
ronments. Further development of this work could lead
to increased trust between RL systems and users.
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1. For all models and algorithms presented, check if
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(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[No]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Yes]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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A Appendix/Supplemental

A.1 Model-Based Gradient Estimation

If we have a model-based setup, we can estimate the gradient of the mutual information constraint Iqφ(at;ut)
directly as follows, without introducing any x terms. We define the approximate mutual information objective
R(ψ).

R(ψ) = Eat,ut∼qφ [log pψ(ut|at)− log pψ(ut)] . (7)

Now the derivative can be computed as

∇φR(ψ) = Eat,ut∼qφ [(log pψ(ut|at)− log pψ(ut))∇φ log qφ(at, ut)] , (8)

but we now have an issue where it’s not clear how to obtain ∇φ log qφ(at, ut), as we only typically have access
to qφ(at|xt, ut) while qφ(at, ut) =

∫
xt
qφ(at, xt, ut)dxt =

∫
xt
qφ(at|xt, ut)qφ(xt, ut)dxt. Differentiating through the

logarithm, we get

∇φ log qφ(at, ut) = ∇φ log
∫
xt

qφ(at, xt, ut)dxt. (9)

=
∇φ
∫
xt
qφ(at, xt, ut)dxt

qφ(at, ut)
. (10)

Now, we evaluate the numerator and get

∇φ
∫
xt

qφ(at, xt, ut)dxt =

∫
xt

∇φqφ(at, xt, ut)dxt (11)

=

∫
xt

qφ(at, xt, ut)∇φ log qφ(at, xt, ut)dxt (12)

= Ext∼qφ(·|ut,at) [qφ(ut, at)(∇φ log qφ(at|xt, ut) +∇φ log qφ(xt, ut))] , (13)

and we observe that the qφ(at, ut) term cancels with the denominator in equation 10, so we have

∇φR(ψ) = Eat,ut∼qφ
[
Rψ(ut, at)Ext∼qφ(·|ut,at) [∇φ log qφ(at|xt, ut) +∇φ log qφ(xt, ut)]

]
(14)

Then, we want to find

∇φ log qφ(xt, ut) =
∇φqφ(xt, ut)
qφ(xt, ut)

(15)

with

qφ(xt, ut) =

∫
a′t,xt−1,ut−1

qφ(a
′
t, xt, xt−1, ut, ut−1)da

′
tdxt−1dut−1 (16)

=

∫
a′t,xt−1,ut−1

qφ(a
′
t|xt, ut, ut−1)qφ(xt, ut|xt−1, ut−1)qφ(xt−1, ut−1)da′tdxt−1dut−1. (17)

where we use the Markov property qφ(at|xt, xt−1, ut, ut−1) = qφ(at|xt, ut). So

∇qφ(xt, ut) =∇φ
∫
a′t,xt−1,ut−1

qφ(a
′
t, xt, xt−1, ut, ut−1)da

′
tdxt−1dut−1 (18)

=

∫
a′t,xt−1,ut−1

qφ(a
′
t, xt, xt−1, ut, ut−1)∇φ log qφ(a′t, xt, xt−1, ut, ut−1)da′tdxt−1dut−1 (19)

=qφ(xt, ut)

∫
a′t,xt−1,ut−1

qφ(a
′
t, xt−1, ut−1|xt, ut) [∇φ log qφ(a′t|xt, ut) (20)

+∇φ log qφ(xt, ut−1|xt−1, ut) +∇φ log qφ(xt−1, ut−1)] da′tdxt−1dut−1. (21)
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So

∇φ log qφ(xt, ut) =
∫
a′t,xt−1,ut−1

qφ(a
′
t, xt−1, ut−1|xt, ut) [∇φ log qφ(a′t|xt, ut) (22)

+∇φ log qφ(xt, ut|xt−1, ut−1) +∇φ log qφ(xt−1, ut−1)] da′tdxt−1ut−1 (23)
=Ea′t,xt−1,ut−1∼qφ(·,·|xt,ut) [∇φ log qφ(xt, ut|xt−1, ut−1) +∇φ log qφ(xt−1, ut−1)] , (24)

=Ext−1,ut−1∼qφ(·|xt,ut) [∇φ log qφ(xt, ut|xt−1, ut−1) +∇φ log qφ(xt−1, ut−1)] , (25)

(26)

where the first term on line 22 is zero by the fact that Ea∼qφ [∇φ log qφ(a)] = 0. Now we have

qφ(xt, ut|xt−1, ut−1) =
∫
a′t−1

p(xt, ut|a′t−1, xt−1, ut−1)qφ(a′t−1|xt−1, ut−1)da′t−1. (27)

So

∇φ log qφ(xt|xt−1, ut−1) =
1

qφ(xt, ut|xt−1, ut−1)

∫
a′t−1

p(xt, ut|a′t−1, xt−1, ut−1) (28)

· qφ(a′t−1|xt−1, ut−1)∇φ log qφ(a′t−1|xt−1, ut−1)da′t−1 (29)

=
1

qφ(xt, ut|xt−1, ut−1)
Ea′t−1∼qφ(·|xt−1,ut−1)

[
p(xt, u

′
t|a′t−1, xt−1, ut−1) (30)

·∇φ log qφ(a′t−1|xt−1, ut−1)
]
. (31)

So our expression for the gradient is

∇φR(ψ) = (32)

Eat,ut∼qφ
[
Rψ(ut, at)Ext∼qφ(·|u,at) [∇φ log qφ(at|xt, ut) (33)

+Ext−1,at−1,ut−1∼qφ(·,·|xt,ut)

[
p(xt, ut|at−1, xt−1, ut−1)
qφ(xt, ut|xt−1, ut−1)

∇φ log qφ(at−1|xt−1, ut−1) +∇φ log qφ(xt−1, ut−1)
]]]

.

(34)

By repeating the decomposition we have

∇φEat,utt∼qφ [log pψ(ut|at)− log p(ut)] = (35)

Eat,ut∼qφ
[
Rψ(ut, at)Ext∼qφ(·|ut,at) [∇φ log qφ(at|xt, ut) (36)

+Eτx1:t−1
,τu1:t−1

,τa1:t−1
∼qφ(·,·|xt,ut) [ (37)

t′=t−1∑
t′=1

p(xt′+1, ut′+1|at′ , xt′ , ut′)
qφ(xt′+1, ut′+1|xt′ , ut′)

∇φ log qφ(at′ |xt′ , ut′)

 , (38)

What do we need to compute this gradient estimator?

• We need to be able to sample from τx1:t−1
, τa1:t−1

, τu1:t−1
, which we can get from trajectory samples.

• We need to be able to compute qφ(xt, ut|xt−1, ut−1), and p(xt, ut|at−1, xt−1, ut−1). In practice
we can use p(xt, ut|at−1, xt−1, ut−1) to compute qφ(xt, ut|xt−1, ut−1) because qφ(xt, ut|xt−1, ut−1) =
Eat−1∼qφ(·|xt−1,ut−1) [p(xt, ut|xt−1, at−1, ut−1)]

Of course a special case is t = 1, where we have ∇φp(x1, u1) = 0, so

∇φR1(φ) = (39)

Ea1,u1∼qφ
[
Rψ(u1, a1)Ex1,∼qφ(·|u1,a1) [∇φ log qφ(a1|x1, u1)]

]
. (40)

with Rψ(u1, a1) = [(log qψ(u1|a1)− log p(u1))].
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A.2 I(τa; τu) Regularizer

As discussed in the main body, another possible threat model is an adversary aiming to infer the whole trajectory
of sensitive states τu from the whole trajectory of actions τa. We sketch out a basis for forming an estimator for
∇φIqφ(τa; τu). We want to compute

∇φEτa,τu∼qφ
[
Iqφ(τa; τu)

]
(41)

=

∫
τa,τu

[log pψ(τu|τa)− log pψ(τu)]∇φqφ(τa, τu)dτadτu (42)

= Eτa,τu∼qφ [(log pψ(τu|τa)− log pψ(τu))∇φ log qφ(τa, τu)] . (43)

As before, the difficulty arises in computing ∇φqφ(τa, τu) which involves a marginalization over the non-sensitive
state τx. Now

qφ(τa, τu) =

∫
τx

qφ(τa, τx, τu)dτx. (44)

For conciseness, we write p(xt+1, ut+1|xt, ut, at)qφ(at+1|xt+1, ut+1) = qφ(xt+1, ut+1, at+1|xt, ut, at). Also note
that

∇φqφ(xt+1, ut+1, at+1|xt, ut, at) = p(xt+1, ut+1|at, xt, ut)∇φqφ(at+1|xt+1, ut+1) (45)
= qφ(xt+1, ut+1, at+1|xt, ut, at)∇φ log qφ(at+1|xt+1, ut+1). (46)

We then have

qφ(τa, τu) =

∫
τx

qφ(xT , uT , aT |xT−1, uT−1, aT−1)qφ(τa1:T−1
, τx1:T−1

, τu1:T−1
)dτx, (47)

so

∇φqφ(τa, τu) =
∫
τx

qφ(τa1:T−1
, τx1:T−1

, τu1:T−1
)∇φqφ(xT , uT , aT |xT−1, uT−1, aT−1) (48)

+ qφ(xT , uT , aT |xT−1, uT−1, aT−1)∇φqφ(τa1:T−1
, τx1:T−1

, τu1:T−1
)dτx (49)

=

∫
τx

qφ(τa1:T , τx1:T
, τu1:T

)∇φ log qφ(aT |xT , uT ) (50)

+ qφ(xT , uT , aT |xT−1, uT−1, aT−1)∇φqφ(τa1:T−1
, τx1:T−1

, τu1:T−1
)dτx (51)

= qφ(τa, τu)Eτx∼qφ(·|τa,τu) [∇φ log qφ(aT |xT , uT ) (52)

+ ∇φ log qφ(τa1:T−1
, τx1:T−1

, τu1:T−1
)
]

(53)
(54)

Now

Eτx∼qφ(·|τa,τu)
[
∇φ log qφ(τa1:T−1

, τx1:T−1
, τu1:T−1

)
]

(55)

= Eτx∼qφ(·|τa,τu)
[
∇φ log qφ(τx1:T−1

|τa1:T−1
, τu1:T−1

) + log qφ(τa1:T−1
, τu1:T−1

)
]

(56)

= Eτx∼qφ(·|τa,τu)
[
∇φ log qφ(τa1:T−1

, τu1:T−1
)
]
, (57)

by the fact that Ea∼qφ [∇φ log qφ(a)] = 0. And so we have a reduction from ∇φqφ(τa, τu) to ∇φqφ(τa1:T−1
, τu1:T−1

),
similarly to q(at, ut) case in the section above. We can repeat this to form an estimator of ∇φIqφ(τa; τu).
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A.3 Proof for theorem 2.1

We consider an MDP where ut is independent of the actions. This could be because the hidden state changes
randomly at each timestep, or (more practically relevant) because the hidden state is randomly chosen at the
start of the episode and the agent must avoid leaking the information about the fixed u. For the purposes of this
proof, we assume that the constraint εt is strictly nonzero, as otherwise Slater’s condition does not hold. This is
consistent with our description in e.g. equation (2), where we use a strict inequality.

As a preliminary, we note the convexity of the mutual information over the conditional distribution: if we have
three distributions p1(x, y) = p(x)p1(y|x), p2(x, y) = p(x)p2(y|x), p3(x, y) = p(x)(λp1(y|x)+ (1−λ)p2(y|x)), then
I3 ≤ λI1 + (1− λ)I2 for the corresponding mutual informations. For proof, see e.g. Cover & Thomas (1991).

We will follow the proof approach from Paternain et al. (2019). First, the perturbation function P is defined as
follows:

P (ξ) = Max
φ

E
τ∼qφ

[
T∑
t=1

r(xt, u, at)

]
, s.t. I(at;ut) < εt − ξt ∀t.

From Paternain et al. (2019), theorem 1, an optimization problem satisfying Slater’s condition and a concave
perturbation function has zero duality gap. Slater’s condition is clearly satisfied, as there is a set of policies which
have exactly zero mutual information (all random policies). To show the concavity of the perturbation function,
we must show that

P (µξ1 + (1− µ)ξ2) ≥ µP (ξ1) + (1− µ)P (ξ2).

In other words, for a policy π1 that attains reward R1, the maximum for ξ1, and a policy π2 that attains reward
R2, the maximum for ξ2, the reward-maximizing policy for constraint µξ1 + (1− µ)ξ2 must have reward at least
µR1 + (1 − µ)R2. We will do this by finding a policy πmix which satisfies the mutual information constraint
for µξ1 + (1− µ)ξ2 and has reward equal to µR1 + (1− µ)R2. Note that in cases where ξ1 or ξ2 results in an
infeasible constraint, P (ξ1) or P (ξ2) is −∞ and we satisfy the constraint.

We now introduce the discounted occupancy measure ρt(xt, ut, at) = γtπt(at|xt, ut)pt(xt, ut). This gives the
probability that at time t, the agent is in state (xt, ut), and chooses action at. We can write the reward as
an expectation: R = E(xt,ut,at)∼ρt(xt,ut,at) [r(xt, ut, at)]. Now, the space of occupancy measures is convex, so
for two policies π1, π2, with occupancy measures ρ1, ρ2, there exists a policy πmix with occupancy measure
ρmix = µρ1 + (1− µ)ρ2. This policy, which we denote πmix, achieves reward Rmix = µR1 + (1− µ)R2, due to the
linearity of expectation with the expression for the reward above. To prove convexity of P , all that remains is to
show that Iqmix(at;ut) ≤ εt − (µξ1t + (1− µ)ξ2t ).

Observe that

Pmix(at, ut) =

∫
X
Pmix(at, xt, ut)dx =

∫
X
µP1(at, xt, ut) + (1− µ)P2(at, xt, ut)dx = µP1(at, ut) + (1− µ)P2(at, ut).

Now,

Iqmix(at;ut) = Eat,ut∼qmix [log qmix(at|ut)− log q(ut)] ,

where we have written log q(ut) with no additional quantifiers since we are assuming that q(ut) doesn’t depend
on the policy. As described above, the mutual information is convex in the conditional distribution, so we have

Iqmix(at;ut) ≤ µI1 + (1− µ)I2 ≤ εt − (µξ1t + (1− µ)ξ2t ).

Therefore, the policy pmix is a feasible policy for the constraint µξ1t + (1− µ)ξ2t and achieves a reward of at least
µR1 + (1− µ)R2. Therefore, the perturbation function is concave and via the result of Paternain et al. (2019),
the problem exhibits strong duality.
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A.4 Additional Experiments

A.4.1 Figures for Internet Connectivity Example

Trajectories for the internet connectivity example are shown in figure 5.

Figure 5: Trajectories from the internet connectivity environment. One the left we have a Lagrange multiplier
λ = 0, while on the right we have λ = 1. We see that the trajectories in the constrained case are able to
completely remove the mutual information between the action and the sensitive state by choosing a policy of
always activating the VPN and then choosing mirror 0.
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A.4.2 Controlling Individual Timesteps’ Mutual Information

In this experiment we compare the model-based estimator and the model-free estimator, in addition to demon-
strating the control over individual timesteps’ mutual information. We consider an idealized customer-service
problem. In this problem, our agent controls a personalized goods distribution system, delivering goods to a
specific person. The person has a location x ∈ R, obeying a random walk where xt+1 = xt + ε, for ε ∼ N (0, σ2),
and the agent has a ‘service center’ which is on a lattice w ∈ Z of possible locations from which deliveries are
sent out. At each timestep, the agent is told the location of the person, and updates the location of its service
center, either increasing it by 1 or decreasing it by 1. The agent then receives reward r(xt, at, wt) = −|xt − wt|,
being penalized for how far the service center is from the person. To make this a privacy-constrained problem,
we suppose that there is an underlying sensitive binary variable u ∈ {0, 1}, which heavily influences the initial
position of the client. The sensitive variable u is constant over the episode. In particular, we choose p(x1, u) as
p(u)p(x1|u) with u ∼ Uniform {0, 1}, x ∼ N (2u, σ2

0). For our experiments we used σ2 = 1/4 and σ2
0 = 0.5. Since

this environment is u-shielded per our definition in the appendix A.10, where u also impacts the dynamics, with
the update xt+1 = xt + uα+ ε. We used α = 0.3 in cases where we use this variant.

A.4.3 Results

Customer Service The results of the customer service experiments are shown in figures 6, 7. The experiments
using the model-based estimator in equation 5 in figure 6 show that the model-based method is indeed able to
selectively constrain the value of I(u; at) by choosing the right lagrange multipliers in equation 4. The trajectories
match the intuitive expectations of the constraints: the unconstrained agent draws the trajectories as close to
zero as quickly as possible to maximize reward. However the constrained agent is not able to do this, as it would
reveal the protected variable. The agent that is heavily constrained on the first timestep moves both groups down,
even though this results in less reward for the blue group: once at a timestep where it isn’t constrained, it moves
both groups back towards zero.

We also present the model-free approach in figure 7, evaluating on the non-u-shielded version of the customer
service example. Although harder to interpret the behaviour due to the global nature of the constraint over
the whole sequence of actions, we see that the constrained agent takes a similar approach in choosing similar
distributions of actions for both groups, while drawing the two groups gradually closer to the origin. Again, the
unconstrained agent simply draws both groups to the origin immediately. Examining the trajectory-level mutual
information, we see that the constrained agent has I(u; τa, τx) ≈ 0.35, while for the unconstrained agent it is
approximately 0.45.

Figure 6: Trajectories and values of I(at;u) generated from different choices of Lagrange multipliers in equation 4
on the customer service problem, for the two different protected groups. The left shows λ = 0, the middle shows
λ = (10, 0, . . . , 0), and the right shows λ = (0, 10, . . . , 10). We get precise control over I(at;u) with the choices of
λ. For example, in the middle trajectory we see that a large Lagrange multiplier on the first timestep’s constraint
forces the agent to treat both groups exactly the same, even at the expense of reward by moving away from zero.
Once the constraint is removed, the agent exposes a large amount of information about the protected groups with
its subsequent action.
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Figure 7: Trajectories induced by an agent trained against the model-free upper bound constraint. The trajectories
are harder to interpret than when trained against the model-based constraint.

Figure 8: Final income distributions from privacy-constrained (right) and unconstrained (left) policies on the
SNAP setting. The constrained policy removes all action-protected-variable mutual information.

A.5 SNAP Allocation

To investigate the possibility of applications in algorithmic fairness, we implement a more realistic experiment
using the supplemental nutrition assistance program (SNAP) data from the American Community Survey (ACS)
microdata. For simplicity, we restrict our attention to households from Washington D.C., and to people who
recorded their race under the ‘RAC1P’ code as ‘1’ or ‘2’, corresponding to White alone and Black or African
American Alone. This resulted in 5,304 records, of which 2,933 were white and 2,371 black. Using these data,
we then form a kernel density estimator of the income distribution of both race codes. The agent has a binary
action, to either give SNAP or not. The next timestep is imagined to happen a year later. The person’s income is
xt = xt−1 + ε in the case where SNAP isn’t given (where ε ∼ N (0, σ2)), and in the case where SNAP is given the
income is xt = xt−1 + ε+ γ, with γ ∼ Uniform(1512, 7200). This γ represents the increase in income due to the
SNAP program, where the minimum and maximum limits correspond to the upper and lower bounds of SNAP
contribution Fang et al. (2019). We chose σ = $1000. We treat the race variable as protected, and the income
variable as unprotected. The reward at each timestep is −min{0, L− xt}2, where L is the federal poverty level of
$24,900.

Results: As we can see in figure 8, we are able to reduce the mutual information exposed by the policy’s actions
while not changing the final income distribution unduly. In the unconstrained case there is a noticeable peak
around the poverty level as the policy strictly gives assistance to those below and not above. The constrained
case shows a gentler increase corresponding to a stochastic policy that is limited in the extent to which it can use
the sensitive race variable (which is correlated to income). As discussed in section 3, careful consideration of the
societal impacts of using this independence measure as a fairness benchmark is required.
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Figure 9: Distribution of actions in four states in the VPN example with four mirrors. From top to bottom, we
have our approach with λ = 0, our approach with λ = 1, DPQL with σ = 0.1, and σ = 5.0

A.6 Comparison to Differentially-Private Q-Learning

Figure 9 shows the action distribution for our approach, compared to the DPQL approach. We show the four
states corresponding to u ∈ {0, 1} in the VPN example with four mirrors. The states with u ∈ {2, 3} are similar
and omitted to make the plot clearer. We see that the DPQL approach works through adding noise to the
Q-values, while our approach takes into account the feedback in the MDP, choosing the VPN at the first timestep.
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A.7 Full Algorithm

For completeness we give the full algorithmic details in algorithms 1, 2 and 3. This pseudocode is very close to
the actual implementation.

Input: Vector εt ∈ RT≥0, number of ψ gradient steps n, number of φ gradient steps m, gradient-based
optimization method step, batch size B, model p.
Initialize Lagrange multipliers λ ∈ RT≥0, initial policy, discriminator and baseline parameters φ, ψ1:T , θ
while min over λ not converged do
Change λ by coordinate descent
while inner max-min over ψ, φ not converged do
for i = 1, . . . , n do
Draw batch τ1:B ∼ qφ(τ)
for t = 1, . . . , T do
gψ,t = ∇ψ 1

B

∑B
j=1 log qψ(τu,j |τa,j,t)

ψt = step(ψt, gψ,t)
end for

end for
for i = 1, . . . , m do
Draw batch τ1:B ∼ qφ(τ)
w, r, g, g′ = zeros(T ), g1, g′2, gθ = 0
for τ ∈ τ1:B do
for t = 1, . . . , T do
xt = τx,t, at = τa,t, ut = τu,t
v =

∫
a′t
q(a′t|xt, ut)p(xt+1|a′t, xt, ut)

gt = ∇φ [log qφ(at|xt, u)]
wt = gtp(xt+1|at, xt, ut)/v
rt = log qψ(ut|at)− log p(ut)

At =
[∑T

t′=t r(xt′ , at′ , ut′)
]
− θ(xt, ut)

g′2 = g′2 + gtAt
g′θ = g′θ +∇θ

[
(θ(xt, ut)−At)2

]
end for
g′1 = g′1 + rt

(
gt +

∑t−1
t′=1 wt′

)
end for
g1 = 1

B

∑T
t=1 g

′
1, g2 = 1

BT

∑T
t=1 g

′
2

φ = step(φ, g1 + g2), θ = step(θ, 1
BT g

′
θ)

end for
end while

end while
Algorithm 1: Model-Based MI-Constrained Policy Gradients
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Input: Constraint ε ≥ 0, number of ψ gradient steps n, number of φ gradient steps m, gradient-based
optimization update step, batch size B
Initialize Lagrange multipliers λ ∈ RT≥0, initial policy, discriminator and baseline parameters φ, ψ, θ
while min over λ not converged do
Change λ by coordinate descent
while inner max-min over ψ, φ not converged do
for i = 1, . . . , n do
Draw batch τ1:B ∼ qφ(τ)
for j = 1, . . . , B do
gψ = gψ,t +∇ψ log qψ(τu,j |τa,j , τx,j)

end for
ψ = step(ψ, 1

B gψ)
end for
for i = 1, . . . , m do
Draw batch τ1:B ∼ qφ(τ)
w, r, g, g′ = zeros(T ), g1, g′2, g′θ = 0.
for τ ∈ τ1:B do
for t = 1, . . . , T do
xt = τx,t, at = τa,t, ut = τu,t
gt = ∇φ [log qφ(at|xt, ut, )]
At =

[∑T
t′=t r(xt′ , at′ , ut′)

]
− θ(xt, ut)

g′2 = g′2 + gtAt
g′θ = g′θ +∇θ

[
(θ(xt, ut)−At)2

]
end for
g1 = g1 +

log qψ(τu|τa,τx)
log p(τu)

∑T
t=1 gt

end for
g1 = 1

B

∑T
t=1 g

′
1, g2 = 1

BT

∑T
t=1 g

′
2

φ = step(φ, g1 + g2), θ = step(θ, 1
BT g

′
θ)

end for
end while

end while
Algorithm 2: Model-Free MI-Constrained Policy Gradients
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Input: Constraint εt > 0, gradient-based optimization update step, batch size B, number of epochs n,
number of minibatches m, surrogate horizon k, number of truncated rollouts r
Initialize Lagrange multipliers λ ∈ RT≥0, initial policy, discriminator φ, ψ, PID state P
for i = 1, . . . , n do
Draw batch τ1:mB ∼ qφ(τ)
for j = 1, . . . , m do
`PPO = PPO(τjB:(1+j)B , φ)
Subsample r states, actions (x, u, a) from τjB:(1+j)B .
Lψ = −

∑B
l=1

∑r
c=1 log qψ(ul,c|al,max{0,c−k}:c)

I = 0
for l = 1, . . . , r do
Roll out τ ′, the trajectory with initial state (xl, ul) and lasting for k steps with policy φ
I = I +

∑r
c=1 log(qψ(u

′
c|a′1:c))− log q(u′c)

end for
I = stop-grad(I, ψ)
L = LPPO + Lψ + Iλ
P, λ = PID-Update(P, I, εt)
ψ, φ = step((ψ, φ),∇ψ,φL)

end for
end for

Algorithm 3: Reparameterised MI-Constrained PPO

Input: MI constraint ε, PID parameters kp, ki, kd, integrated error σ, MI at previous iterate Iprev, MI I.
δ = I − ε
∂ = max {0, I − Iprev}
σ = max {0, σ + δ}
λ = max {0, kpδ + kiσ + kd∂}
Iprev = I
Output: λ, Iprev, σ

Algorithm 4: PID Controller Update
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Hyperparameter Value

r∗ 1.
r− 0.5
rVPN 0.9
T 10
Batch Size 32
Number of Epochs 5000
Learning Rate 3·10−3

Table 1: Internet Connectivity Hyperparameters

Hyperparameter Value

Environment Force Noise σ 0.5
Initial Position σ 1.
T 10
Batch Size 128
Number of Epochs 4000
Learning Rate 3·10−3

Table 2: 2d Control Hyperparameters

A.8 Additional Experimental Details

Score-Based and Model-Free Estimator Experiments on the score-based and model-free estimator were
run on a dual-core 3.5GHz Intel i7 CPU, with the runs taking around one minute to complete. We selected the
hyperparameters by hand, observing which ones resulting in convergence. In the case of the Lagrange multipliers
λ, we tried a few different settings to see which was best for equation (4). We used the Adam optimizer Kingma
& Ba (2015) for gradient-based optimization.

Reparameterised Estimator For experiments with the reparameterised estimator, we used an A4000 GPU
and CUDA-based JAX (Bradbury et al., 2020) and BRAX (Freeman et al., 2021). The predictor was a
causally-masked transformer with learned position embeddings. The embeddings were learned for positions 1
to T . The predictor was trained using sequences of length k, from time indices t to t + k. The BRAX PPO
implementation was modified to add the predictor parameters to the training state. At each PPO minibatch step,
n-truncated-rollouts states were sampled from the states fed into the loss. Then, these states were used as
initial states to roll out k further steps using the current policy. The approximate mutual information I was
calculated using the current predictor parameters and Iλ was added to the loss, where λ was the current Lagrange
multiplier. Additionally, the cross-entropy loss from the predictor between the prediction of u and the ground-truth
u was added to the loss, training the predictor by maximum-likelihood. We used the same AdamW (Loshchilov &
Hutter, 2018) optimizer for both the policy and the predictor, and used gradient clipping to stabilise training.
We found that the same learning rate could be used for the policy and the predictor. For the plots in figure 4, we
used a horizon of 10 and ε of 0.001, 0.01, 0.1, 0.3 respectively. The networks for the policy and value function
were left as the BRAX defaults: the policy as an MLP with four layers of 32 hidden nodes, and the value network
as an MLP with five layers of 256 hidden nodes. Both networks had swish nonlinearities (Ramachandran et al.,
2017). Due to a configuration error, the policy network for the ant-constrained case presented in the main paper
was given by three layers of 64 hidden nodes, and four hidden layers of 256 nodes. However, the results were very
similar over different network sizes.

For the determination of the Lagrange multiplier λ, we used a PID controller, following Stooke et al. (2020). In
particular, we use the standard PID update procedure, reproduced in algorithm 4.
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Hyperparameter Value

Episode Length 100
Learning Rate 3× 10−4

Entropy Cost 1× 10−2

Batch Size 512
Environment Steps 5× 109

Normalize Observations True
Num Minibatches 16
Discount Rate 0.95
Reward Scaling 5
Number of Truncated Rollouts 128
PID kp, ki, kd 1, 0.1, 0.001
Gradient Clip Level 10
Weight Decay 1× 10−6

ψ Layers 6
ψ Embedding Size 256
ψ Num Heads 4
ψ Dropout 0.1
Misc. BRAX PPO Example Default

Table 3: Reparameterized (PPO) Hyperparameters

Hyperparameter Value

Income KDE Bandwidth $10,000
T 4
Batch Size 128
Number of Epochs 1000
Learning Rate 1·10−3

Table 4: SNAP Hyperparameters

Hyperparameter Value

Initial Separation 2
Dynamics Noise σ 0.25
Initial Distribution σ 0.5
T 6
Batch Size 12
Number of Epochs 5000
Learning Rate 1·10−4

Table 5: Customer Service Hyperparameters
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Figure 10: Gradient norm for different horizon lengths k during training. Note the logarithmic scale. As k
increases, the gradient norm increases dramatically.

A.9 Control of Variance with Truncated Predictor

In this section we show that in the reparameterization case, the gradient norm increases with increased predictor
horizon k. Figure 10 shows that as the predictor is trained on increasingly truncated sequences (i.e. k decreases),
the gradient norm generally decreases. Training on the full horizon, with k = 100, is generally unfeasible for this
reason. We found that above k = 20, the training was unstable and would frequently diverge.
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A.10 Upper Bound Loosesness with Shielded u.

If we are completely unable to form a dynamics estimator we may use Iq(τa, τx; τu) to constrain Iq(at;ut). However,
there is a significant class of problems for which the upper bound is loose, which we call u-shielded MDPs.

Figure 11:

u x1 a1 x2 a2

Figure 12: A u-shielded MDP

They have the property where the protected variable u influences the initial distribution, but subsequently u
doesn’t directly influence the dynamics or the rewards of the MDP. An idealised example would be a banking
system where minority status influences initial income distribution, but (conditioned on income) the default
rate doesn’t depend on minority status, and the banking system’s performance is evaluated without reference
to minority status. In that case the policy q(a|x, u) doesn’t need to depend on u at all, in the sense that for
any policy q(a|x, u) there is another policy q(a|x, u) = q(a|x)p(u) with the same reward. Hence without loss of
generality we assume that all policies in the u-shielded setting are in this u-independent form.

In that case, we have that

Lemma A.1. In a u-shielded MDP, and a greedy policy qgreedy which is reward-maximizing under no mutual
information constraint, Iq(τx, τa;u) ≥ Iqgreedy(at;u) for any policy q.

Proof. We have Iq(τx, τa;u) =
∑T
t=1 Iq(xt, at;u|τa1:t , τx1:t

) = Iq(x1;u), by the decomposition of mutual in-
formation and the fact that xt and at are conditionally independent from u given x1. The data process-
ing inequality on the Markov chain u → x1 → at gives us Igreedy(at;u) ≤ Ip(x1;u). Therefore, we have
Igreedy(at;u) ≤ Iq(τx, τa;u).

In particular, this result tells us that if we constrain our upper bound in the hope of reducing I(at;u), if our
problems have the u-shielded property then our constraint will never exclude the greedy policy.
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A.11 Equivalence to Demographic Parity in Single-Timestep Case

By writing the binary classification problem with a demographic parity constraint as an RL problem, we can
show its equivalence to our privacy constraint in the single-timestep case. Since classification has no concept of
feedback, we can describe the demographic parity constrained classification problem as an episodic MDP with
only one timestep. We define the MDP-classification setting as the MDP with T = 1, action space A = {0, 1}
corresponding to the two possible labels, state space X ×U , and a reward distribution r(x1, u1, a1) = −1 [a1 = y]
for random variable y ∼ p(y|x1, u1) (for Y = {0, 1}) corresponding to 0-1 loss.

Lemma A.2. Problem (2) with the MDP-classification setting is equivalent to the fair classification problem
with the 1-0 loss and the generalised demographic parity (DP) fairness constraint (I(ŷ;u) < ε) for all p(x, u, y).
Furthermore, the mutual information constraint in equation (2) is the only choice of constraint with this equivalence.

Proof. To solve problem (2) with the specified dynamics requires finding a policy q(a1|x1, u1) that maximizes
Ea1,x1,u1,y∼q(a1,x1,u1,y) [1 [a1 = y]], subject to I(u1; a1) < ε. Solving the fair classification problem with demo-

graphic parity requires learning a model that emits a classification Ŷ maximizing Ex,u,Y∼p(x,u,Y )

[
1
[
Ŷ = Y

]]
subject to I(Ŷ ;u) < ε. Hence we have the same objective, and so the problems are the same if and only if they
have the same constraints, i.e. we have the constraint I(a1;u1).
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