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Abstract

We analyze a paradigm for interpretable Man-
ifold Learning for scientific data analysis,
whereby one parametrizes a manifold with
d smooth functions from a scientist-provided
dictionary of meaningful, domain-related func-
tions. When such a parametrization exists, we
provide an algorithm for finding it based on
sparse regression in the manifold tangent bun-
dle, bypassing more standard, agnostic mani-
fold learning algorithms. We prove conditions
for the existence of such parameterizations in
function space, and the first end-to-end recov-
ery results from finite samples. The method
is demonstrated on both synthetic problems
and with data from a real scientific domain.

1 Introduction

Manifold Learning (ML) algorithms map high-
dimensional data into a low-dimensional space by a
learned function ϕ. Besides the computational sav-
ing, the manifold learned by ϕ can reveal the intrinsic
variables that describe the behavior of the data source.
This is why, in so many cases, scientists attempt to map
manifold coordinates, as well as Principal Component
(PC) representations, to variables known to be relevant
to their domain. In Cavalli-Sforza et al. (1996), the PC
of the genetic variation over Europe were matched to
human migrations. Closer to our times, in Molecular
Dynamic Simulations (MDS), data is produced that
are medium and high dimensional, as shown in Figure
1a for the toluene molecule; 1b displays a single scien-
tifically relevant function that models (approximately)
the state space of the toluene molecule; it is an angle of
rotation (torsion). This paper studies a semi-automatic
method to do what scientists have been doing by visu-
alization and manual inspection: find among a given
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set of functions F considered relevant by a scientist
the small set that can parametrize a data manifold.

Koelle et al. (2022) proposed a method to combine the
purely data driven approach of standard ML with “in-
terpretations” of the estimated manifold based on prior
knowledge of relevant scientific variables Specifically,
the ManifoldLasso algorithm of Koelle et al. (2022)
(which will be denoted MLasso here for brevity) will
first map samples ξi, with i = 1 : n from a manifold to
an embeddig by yi = ϕ(ξi) ∈ Rm; then each sample yi
receives new coordinates f1:d(ξi), where the functions
f1, . . . fd are selected from a predefined finite set of
smooth functions F , called a dictionary.

However, if the coordinate functions f1:d are unique in
F for the embedding ϕ(M) , then by a simple function
composition one can see that the same f1:d will be
unique coordinates for any other embedding ofM. In
other words, the coordinates are a property ofM itself,
w.r.t. the dictionary F .

Given F , let fS be the set {f1, . . . fd}. Here, we propose
to (1) provide a direct algorithm, TSLasso, standing
for Tangent Space Lasso, to recover fS from the original
high-dimensional samples ξ1:n, and (2), to analyze the
consistency of the recovery of fS from F . The output
of TSLasso, fS , will represent an embedding forM.

Problem Statement Suppose data D = {ξi, i ∈ [n]}
are sampled from a d-dimensional connected smooth1

submanifoldM embedded in the Euclidean space RD,
where typically D ≫ d. M has the Riemannian metric
(Lee, 2003) induced from RD. We are also given a
dictionary of functions F = {fj , j ∈ [p]}. All of the
functions fj are defined in the neighborhood ofM in
RD and take values in some connected subset of R. We
require that they are smooth onM (as a subset of RD),
and have analytically computable gradients in RD. Our
goal is to select d functions in the dictionary, so that
the mapping fS = (fj)j∈S⊂F is a diffeomorphism on
an open neighborhood U ⊂ M to fS(U) ⊂ R|S|. If
U covers M almost everywhere, fS is then a global
mapping with fixed number of functions. The learned

1In this paper, by smooth manifold or function we mean
of class Cl, l ≥ 1, to be defined in Section 4.
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Figure 1: Finding a scientific interpretation for toluene MDS data. a pairwise scatterplots of first six coordinates
in R50, after preprocessing (Supplementary Section 9). b: Toluene molecule. Scientists previously discovered
that the torsion (relative rotation, marked in orange) of the peripheral (methyl) group governs the state space of
the toluene molecule as a one dimensional manifold. c: Embedding of toluene data into R2 by Diffusion Maps,
colored by the torsion labeled. d: Regularization path of TSLasso (with st. devs. over 25 replicates), showing
that it selects the relevant torsion (purple path) from a dictionary of p = 30 possible torsions.

mapping fS will be a valid parametrization ofM.2

The main technique, here as in Koelle et al. (2022),
is to operate with gradient fields on M. Section 2,
introduces some background on gradient fields. In
Section 3, we present algorithm TSLasso in detail. In
Section 4, we provide sufficient conditions for selection
consistency. Section 5 shows experimental results on
synthetic and molecular dynamics data, while Section
6 discusses related work and interesting features of our
approach.

2 Preliminaries: Gradients on
Manifolds

In this section, we review gradient fields on manifolds,
which play a central role in our algorithm. The reader
is referred to Lee (2003) for the full treatment of this
and related topics. Consider a d−dimensional manifold
M. At point ξ, its tangent space TξM can be viewed
as the equivalence class of directions of infinitesimal
curves passing ξ. For a smooth function f : M 7→
R, its differential Df : TξM 7→ R is a linear map

2Note that, in differential geometry terminology, (U ⊆
M, fS) is a coordinate chart for M and f−1

S is called a
parameterization of U . In this paper, we often refer to fS as
the ’parameterization’, as fS , f

−1
S are diffeomorphisms and

are both representative. More details are in Supplement 7.

that generalizes directional derivatives in calculus in
Euclidean space, characterizing how the value of f
varies along different directions in TξM.

WhenM is Riemannian with metric g, the gradient of f
is a collection of tangent vectors {grad f(ξ), for ξ ∈M,
such that for all all v ∈ TξM, ⟨grad f(ξ), v⟩g =
Df(v)|ξ. For example, under the usual Euclidean met-
ric, a function f : RD 7→ R has a gradient vector
∇f(ξ) at each point ξ ∈ RD as defined in ordinary
multivariate calculus.

For our problem,M is a d−dimensional manifold em-
bedded in RD with inherited metric. TξM can be
identified as a d−dimensional linear subspace of TξRD,
whose basis can be represented by an orthogonal D× d
matrix Tξ. Let f be a smooth real-valued function,
defined on a open neighborhood of M. There are
two points of view for f when it is restricted on M:
(i) as a function on (a subset of) RD with gradient
∇f as usual, or, (ii), as a function onM with gradi-
ent field grad f given by the coordinate representation
grad f := T⊤

ξ ∇f (Lee, 2003). For some set S′ of in-
dices from [p], grad fS′ denotes the d×|S′| matrix with
grad fj , j ∈ S′, as columns.
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3 The TSLasso algorithm

The TSLasso algorithm is an embeddingless, direct
version of the MLasso algorithm of Koelle et al.
(2022). This section gives a self-contained description of
TSLasso, while in Section 6 we discuss its relationship
with MLasso.

The idea of the TSLasso algorithm is to replace the
orthonormal bases Tξ ∈ RD×d of the manifold tan-
gent spaces TξM with (possibly non-orthogonal) bases
formed from gradients of d select dictionary functions.
In this way, the original non-linear problem of selecting
a functional approximation fS toM from the dictio-
nary F , is transformed into a linear problem of selecting
best local approximations in the tangent bundle.

If there is a subset fS giving a valid parametrization
in a neighborhood U ⊂M of almost all points ξ, then
fS is a diffeomorphism. Hence, there is some mapping
g : fS(U) 7→ U such that fS ◦ g is identity map on
fS(U) and g ◦ fS is the identity map on U . Thus, in
coordinates, we can denote a matrix representation of
grad fS(ξ) by Xξ,S = T⊤

ξ ∇fS(ξ) ∈ Rd×d; further there

is some matrix Bξ,S ∈ Rd×d representing ∇g(fS(ξ))
such that

Id = Xξ,SBξ,S for all ξ ∈ U (1)

according to the chain rule of differentiating function
composition on manifolds.

For notation simplicity, we will write XiS ,BiS , TiM
as the corresponding quantities at point ξi when we
are discussing a finite sample. Further, we denote by
Xi ∈ Rd×p = grad f[p], and Bi ∈ Rp×d, a matrix so
that Id = XiBi. Note that Bi can be obtained from
Bi,S of (1) by completing it with zero columns. We also
define B.j ∈ Rnd as the vector formed by concatenating
Bi{j}, i ∈ [n]. Stacking B.j together forms B ∈ Rp×nd.

3.1 Loss Function

We now seek a subset S ⊂ [p] such that (1) only the
corresponding nd vectors B.j : j ∈ S have non-zero
entries and (2) each submatrix XiS forms a rank d ma-
trix. The observations immediately suggest minimizing
the Frobenius norm of Id −XiBi with joint sparsity
constraints over columns of Bi, induced over all data
points.

Jλ(B) =
1

2

n∑
i=1

||Id −XiBi||2F+
λ√
dn

p∑
j=1

||B.j ||2. (2)

This optimization problem is a variant of Group Lasso
(Yuan and Lin, 2006) that forces groups of coefficients of
size dn to be zero simultaneously in the regularization
path. It can be shown (Supplement 7.1) that this loss
function is invariant to local tangent space basis.

3.2 Tangent Space Estimation

So far we have formulated our problem assuming we
have access to the tangent space at each point ξ ∈M.
However, this is rarely true. In practicee, the tangent
spaces TξiM at the data points must be estimated; we
use a Weighted Local Principal Component Analysis
(WL-PCA) method studied by Singer and Wu (2012);
Chen et al. (2013); Aamari and Levrard (2018).

To perform WL-PCA, one must select a neighborhood
radius r and identify Ni = {i′ ∈ [n], ||ξi − ξi′ ||2≤ r} to
be all neighbor points of ξi within Euclidean (in RD)
distance r.

Each ξj in Ni is weighted by Kij = K(||ξi − ξj ||/ϵ),
where K() is a kernel function and ϵ is a tuning-
parameter proportional to r, in the sense that kernel-
values of pairs of non-neighboring points should be
close to zero. Any C2 positive monotonic decreasing
function K(u) with compact support is a valid kernel,
examples including constant kernel K(u) = 1[0,1](u),
and Gaussian K(u) = exp(−u2)1[0,1](x) etc. We choose
the Gaussian kernel in our experiments since it pro-
vides better tangent space estimation empirically, as
it weights more on points that are close to where the
tangent space is of interest.

Let ki = |Ni| be the number of neighbors of point ξi
and Ξi = [ξi′ ]i′∈Ni ∈ R|Ni|×D contain the neighbors
of ξi. Denote a column vector of ones of length k
by 1k, and define the Singular Value Decomposition
algorithm SVD(X, d) of matrix X as outputting V,Λ,
where Λ and V are the largest d eigenvalues and their
corresponding eigenvectors. With these, tangent space
estimation is performed as follows.

Algorithm 1 TangentSpaceBasis

1: Input: Local dataset Ξi, intrinsic dimension d,
kernel parameter ϵ

2: Compute local weights Ki,Ni = (Kij)j∈Ni ∈ Rki .
3: Compute weighted mean ξ̄i = K⊤

i,Ni
Ξi/(K

⊤
i,Ni

1ki
)

4: Compute weighted local difference matrix Zi =

diag(K
1
2

i,Ni
)(Ξi − 1ki

ξ̄i)

5: Compute Ti,Λ← SVD(Z⊤
i Zi, d)

6: Output: Ti

3.3 The TSLasso Algorithm

We now present the full TSLasso algorithm. As ex-
plained at the beginning of Section 3, the original
non-linear manifold parameterization recovery problem
is turned into a collection of sparse linear problems
in which the bases of individual tangent spaces are
constructed from gradients of functions from dictio-
nary F . Tangent spaces at each point are estimated
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in step 4, the gradients grad fj of dictionary functions
are obtained by projecting the RD gradient ∇fj(ξi) on
to the estimated tangent space Ti. Finally, with these
gradients we form the objective function (2), which is
minimized to obtain a sparse B, and its support S.

Algorithm 2 TSLasso

1: Input: Dataset D, dictionary F , intrinsic dimen-
sion d, regularization parameter λ, radius parame-
ter r, kernel parameter ϵ.

2: for i = 1, 2, . . . n (or subset I ⊂ [n]) do
3: Compute Ni and Ξi using D, r
4: Compute the orthonormal tangent space basis

Ti ←TangentSpaceBasis(Ξi, d, ϵ)
5: Compute ∇fj(ξi) for j ∈ [p] .
6: Project onto tangent space

Xi = T⊤
i [∇fj(ξ)]j∈[p]

7: end for
8: Solve for B by minimizing Jλ(B) in (2).
9: Output: S = {j ∈ [p] : ||B.j ||2> 0}

3.4 Other considerations

Normalization The relative scaling of functions
fj will affect the solution of the Group Lasso prob-
lem (2), since functions with larger gradient norm
will tend to have smaller ∥B.j∥2. This can affect
the support S recovered. Therefore, we compute
γ2
j = 1

n

∑n
i=1||∇fj(ξi)||22 and set fj ← fj/γj . This

approximates normalization by ||∇fj ||L2(M). Since the
normalization of fj is done prior to projection, func-
tions whose gradients are more parallel to the tangent
space ofM are favored. Gradient components perpen-
dicular to TM, will be penalized by this normalization
strategy.

Computation Note that we do not need to run
TSLasso on the whole dataset in order to take advan-
tage of all of our data, and can instead run on a subset
I ⊂ [n] such that |I| = n′. In particular, the search
for the neighbors sets Ni is O(Dnn′), significantly less
than the time to construct a full neighbor graph for an
embedding. For each i, computing the local mean is
O(kiD), and finding the tangent space is O(kiD

2+k3i ).
Gradient computation runtime is O(D). Projection is
O(dDp). For each Group Lasso iteration, the compute
time is O(n′mpd) (Meila et al., 2018).

Tuning We select the kernel bandwidth ϵ using the
method of Joncas et al. (2017). For the regulariza-
tion parameter λ, we apply binary search from λ = 0
to λmax = maxj(

∑n
i=1(∥ gradTM

i
fj(ξi))∥22)1/2 (Koelle

et al., 2022) and choose the λ value so that the cardinal-
ity of the selected support is d, the intrinsic dimension

of M. This is assumed to be given, or alternatively
can be estimated as in Levina and Bickel (2004). The
choice for n′ should be of the order d log p (Candes and
Tao, 2007).

In the next section, we introduce sufficient recovery
conditions for the success of this approach.

4 Support Recovery Guarantee

In this section, we discuss the behavior of TSLasso the-
oretically. We will provide sufficient conditions so that
TSLasso correctly selects certain group of functions
in the dictionary with high probability w.r.t. sampling
on the manifold and this probability converges to one
if sample size tends to infinity.

Assumption 4.1. (manifold and dictionary)

1. M is a d-dimensional Cℓ, ℓ ≥ 1 compact manifold
with reach τ > 0 embedded in RD.

2. Data {ξi}ni=1 are sampled from some probabil-
ity measure P onM that has a Radon-Nikodym
derivative π(ξ) with respect to the Hausdorff mea-
sure. There exist two positive constants πmin, πmax

such that 0 < πmin ≤ π(ξ) ≤ πmax for all ξ ∈M.
3. Dictionary F = {fj(ξ) : j ∈ [p]} contains C1 func-

tions defined on a neighborhood ofM in RD. Fur-
ther assume that δ := infξ∈M minj∈S ||∇fj(ξ)||2>
0 and denote Γ := supξ∈M maxj∈[p]||∇fj(ξi)||2.

4. S ⊂ [p], |S| = d is the only subset such that
rank fS = d a.e. onM w.r.t. Hausdorff measure.

Assumption 1 on manifold and 2 on sampling are com-
mon in the manifold estimation literature (e.g. Aa-
mari and Levrard (2018)). Assumption 3 restricts the
smoothness of all dictionary functions and ensures that
the functions in S do not have critical points on M
as a function on RD. Also, notice that Γ <∞ by the
compactness assumption ofM.

Besides, we also assume TSLasso is performed as
follows:

Assumption 4.2. Suppose tangent spaces are esti-
mated by WL-PCA in Section 3.2 using neighborhood
radius choice rn and Gaussian kernel with bandwidth
ϵn ∝ rn, and normalization on dictionary is performed
as in Section 3.4.

Now we are ready to prove support recovery consis-
tency under suitable conditions. Let B̂ be the solution
of problem (2) and S(B̂) be the nonzero rows of B̂. We

will show that the probability of S(B̂) = S converges
to 1 as n increases. We start by defining the matrix X̃ξ

whose j-th column is Xξ,·j/||∇fj(ξ)||2. Correspond-

ingly we can define X̃ξ,S as the submatrix of X̃ξ with
columns in S. Let Gξ,S = diag{||∇fj(ξ)||2}j∈S and
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define

µS = sup
ξ∈M,j∈S,j′ /∈S

|X̃⊤
ξ,·jX̃ξ,·j′ | , (3)

νS = sup
ξ∈M
||(X̃⊤

ξ,SX̃ξ,S)
−1 −G2

ξ,S ||2 . (4)

The parameter µS can be thought of as a renormalized
incoherence between the functions in S and those not in
S; νS is a internal colinearity parameter, which is small
when the columns of XS(ξ) are closer to orthogonality
and the gradient of functions in S are more parallel to
the tangent space. We also define

ϕS = sup
ξ∈M

max
j∈S
||∇fj(ξ)||2 , (5)

δS = inf
ξ∈M

min
j∈S
||∇fj(ξ)||2 , (6)

which provide upper and lower bounds of the Euclidean
gradient of functions in S. The following proposition
provides a sufficient condition on µS , νS , ϕS , δS such
that S can be recovered consistently by TSLasso .

Proposition 4.3. Suppose Assumptions 4.1 and 4.2
hold. If (1 + νS/δ

2
S)µSϕSΓd < 1 then there are con-

stants C,N0 depending only on M, πmin, πmax such
that when n > N0 and neighborhood radius selection
rn = C(log n/(n− 1))

1
d , it holds that

Pr(S(B̂) ⊂ S) ≥ 1− 4(
1

n
)

2
d . (7)

If it further holds that
√
dν̃S < δ2S and λ(1 + ν̃S/δ

2
S) <

1
2

√
n−

√
dnν̃S

δ2S
, the same probability bound in 7 holds

for the event S(B̂) = S

The proof is contained in the supplementary material.
The main idea is first to find a sufficient condition so
that given correct gradient of each function TSLasso
can find the correct support, assuming correct esti-
mation of the tangent space. Then we consider this
condition in the case where TξiM is estimated from
data and obtain the guarantee by the fact that tangent
spaces can be consistently estimated.

There are several remarks we would like to make on
this result.

First, this result shows that the rate only depends on
the intrinsic dimension d of the underlying manifold,
and is independent of the ambient dimension D.

Second, to achieve the exact recovery, λ can must scale
as
√
n. For a constant λ value, as sample size increases,

the penalty term will decrease and the regularization
effect will be reduced.

Third, the noise structure for this problem is not the
same as a general Group Lasso problem since the source

of noise is estimation of tangent space. Therefore the
noise is neither isotropic nor Gaussian. In fact, since
we are sampling on the manifold, there is no noise level
parameter that appears as in standard Lasso literature.
In a simulation experiment, we explore the behavior of
our method on noisy settings and our method is robust
against the case when data are sampled with certain
level of noise. The proof technique used here can be
generalized very easily to data under additive noise
or cluttered noise, as defined in Aamari and Levrard
(2018).

Fourth, there are some differences to be noted of this
recovery result compared with classical recovery guar-
antees in Group Lasso type problems in e.g. Wain-
wright (2009), Obozinski et al. (2011), Elyaderani et al.
(2017). We cannot adopt directly the usual assump-
tion in Lasso literature that each column of X has
unit norm, considering the normalization in Section
3.2. Also, the asymptotic regime we are considering
here is only n→∞. Although we are using a Group
Lasso type optimization problem, the dimension p is
fixed since we only consider the fixed dictionary. There
is no other conditions between p and n in our result,
as required in many literature.

Finally, the proof technique used here could be used to
develop the sample consistency of the MLasso algo-
rithm in (Meila et al., 2018), which seeks explanations
with physical meanings of a given embedding functions
from dictionary functions, as long as the embedding
functions to be explained is well-conditioned and the
Riemannian metric is consistently estimated.

5 Experiments

We illustrate the behavior of TSLasso on synthetic
and real data. For all of the experiments, the data
consist of n points in D dimensions. TSLasso is
applied to a uniformly random subset of size n′ using
p dictionary functions, and this process is repeated ω
number of times. Note that the entire data set is used
for tangent space estimation. The local tangent space
kernel bandwidth ϵN is estimated using the algorithm
of Joncas et al. (2017). Parameters are summarized
in Tables 1 and 2. The experiments were performed
on a 16 core Linux Debian Cluster with 768 gigabytes
of RAM. Code and data are available at github.com/
sjkoelle/montlake.

5.1 Experiments on Synthetic Data

The purpose of these experiments is to demonstrate
the performance of TSLasso and explore its empirical
limits in instances of controlled difficulty, to examine
its robustness to ambient space off-manifold noise, and

github.com/sjkoelle/montlake
github.com/sjkoelle/montlake
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(a) (b) (c)

Figure 2: a: Low dimensional representations of the functionsM1(top left),M2(bottom left),M3(right). Each
column j colors the points as a function of the manifold’s j-th coordinate. b, c: Some of the same representations
at different noise levels. The rows correspond to noise levels σ = 0.0, 0.025, 0.05. The second row(σ = 0.025) is the
highest level of noise for which the recovery of TSLasso is near-perfect, while the last row(σ = 0.05) represents
the lowest noise level at which all algorithms tested fail.

to compare these with the performance of MLasso.
In particular, since the two algorithms both perform
perfectly in our real data experiments(see Section 5.2),
our synthetic datasets consist of 10 more difficult and
noisy manifolds where we can display that TSLasso
is indeed more robust than MLasso.

To generate our synthetic datasets, we developed a stan-
dalone package symanifold3, which allows the user to
symbolically and efficiently define, invert, differenti-
ate, compose, and evaluate non-linear functions and
their gradients. We use symanifold to create complex
manifolds by symbolically defining non-linear injective
functions which embed neighborhoods of Rd into RD.
By inverting these functions, we obtain the true coordi-
nate functions f1:d which are non-linear, multivariate
combinations of the manifold coordinates. Addition-
ally, we create “fake” (non-coordinate) functions fd+1:p

which interact non-linearly with one of the true func-
tions and have varying gradients over the manifolds,
thus making recovery non-trivial. Using symanifold,
we also symbolically compute the gradients∇fi of these
functions. Finally, we sample data points on the mani-
fold(with or without Gaussian noise with σ standard
deviation), evaluate their gradients, and estimate theo-
retical condition numbers and difficulty measures such
as µS , νS . We give a comprehensive description of the
synthetic datasets in Supplement Section 8.

Experiment Setups The synthetic data consist of
three manifoldsM1,2,3 ⊆ RD, with D = 48, intrinsic

3symanifold can also be found at github.com/
sjkoelle/montlake

dimensions d = 2, 2 and 3 respectively, and dictionaries
F1,2,3 with p = d+ 36 functions. The difficulty of the
recovery problem measured by µS and νS is recorded in
Table 1. These values place us outside the theoretical
recovery conditions. Finally, noise was added to ξ1:n
until recovery failed.

Dataset n d D p n′ ω µS νS
M1 5000 2 48 38 500 25 0.99 33
M2 5000 2 48 38 500 25 0.55 46
M3 5000 3 48 39 500 25 0.97 51

Table 1: Parameters for the synthetic data experiments

Dataset n d D p n′ ω ϵN Na

Eth 50000 2 50 12 100 25 3.5 9
Mal 50000 2 50 12 100 25 3.5 9
Tol 50000 1 50 30 100 25 1.9 15

Table 2: Parameters for the real data experiments:
Eth(Ethanol), Mal(Malonaldehyde) and Tol(Toluene)

Results on synthetic data TSLasso was com-
pared with MLasso using either UMAP(McInnes et al.
(2018a) or Diffusion Maps(Coifman and Lafon (2006))
as the embedding algorithm. Figure 4 shows the recov-
ery success for the three algorithms at various noise
levels. We see that, despite the difficulty of the prob-
lem, we see that TSLasso behaves robustly. While
MLasso UMAP is mostly successful at low and moder-
ate noise (see also Section 8 in Supplement), TSLasso

github.com/sjkoelle/montlake
github.com/sjkoelle/montlake
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Figure 3: The regularization paths obtained by the
three algorithms tested on M2 and averaged over
25 trials. The x-axis represents the value of λ, the
strength of the Group Lasso regularization. An or-
ange line(”fake” function) crossing on top of a blue
line(a true coordinate function) indicates a consistent
failure to fully recover the support. Note that for
σ ≤ 0.025, the binary search for λ ends after just 1
step for TSLasso and MLasso DM, and after about
6 steps for MLasso UMAP, in failure. Complete reg-
ularization paths are in Supplement Section 8

is all around more robust, particularly on the more
difficult M3 manifold. 4 As expected, TSLasso is
about 20-50% faster than MLasso in the stable recov-
ery cases(see Supplement Section 8). Furthermore, we
expect the speedup of TSLasso relative to MLasso
to increase as n increases.

5.2 Experiments on scientific MDS data

MDS simulations dynamically generate atomic configu-
rations which, due to interatomic interactions, exhibit
non-linear, multiscale, non-i.i.d. noise, as well as non-
trivial topology and geometry. That is, they lie near a
low-dimensional manifold Das et al. (2006). Addition-
ally, the dictionaries (consisting of torsions and angles)
are often known a-priori, but not the functions therein
that parametrize the data manifold. Thus they are an
appropriately challenging testbed for TSLasso.

From the scientific point of view, MDS are a heav-
ily used tool, with Mega-hours of HPC devoted to
them. Automatically finding scientifically meaningful
parametrizations provides scientific insight about the
simulated systems. The parametrizations f1:d can be
used to further accelerate sampling. Parametrization
such as the ones sought by TSLasso allow scientists
to communicate in high level language about differ-
ent experiments. For example, many MDS for small
molecules will result on a d-torus; then, if two experi-

4We believe that the poor performance of MLasso DM
stems from the manifolds’ aspect ratio, which causes the
Diffusion Maps algorithm to create rank deficient mappings
(Chen and Meilă, 2019).

ments in different conditions both result in tori, how
do we know if they are different tori, or “the same”?

Experiment Setup In Supplement Section 9.1 we
describe the preprocessing performed on the MDS data.
This produces point clouds in D = 50 dimensions,
and dictionaries consisting of torsions (rotation angles),
such as in Figure 1b. We include in the dictionaries
all torsions implied by the bond diagram, i.e. all the
relative rotations of molecule parts connected by a seg-
ment in Figurs 1b, 5a 5c.5 This choice reflects a priori
information about molecular structure garnered from
historical work. Building a dictionary based on this
structure is akin to many other methods in the field
(Krenn et al., 2020; Xie et al., 2019). Since original
angular data featurization is an overparameterization
of the shape space, one cannot use automatically ob-
tained gradients in TSLasso. We therefore project the
gradients prior to normalization on the tangent bundle
of the shape space as it is embedded in RD.

Results on MDS Data For these MDS data, the
ground truth is known, and in each case, the torsions
that parametrize the MDS manifolds are present in the
dictionaries. The TSLasso was run on a sample of
n = 50, 000 MDS data, from which a random subsample
of size n′ was used for the optimization problem 2.
The subsampling was repeated ω = 25 times with
replacement. Figures 1d, 5b and 5d show the results of
the TSLasso algorithm on these data. For toluene and
ethanol, recovery of the relevant torsions is successful
in all runs, while for malonaldehyde is succeeds in 24
out 25 runs.

These results can be compared with the experimental
results published MLasso DM on same size data sets,
same dictionaries and similar setups in Koelle et al.
(2022) (Section 7.4.1). We see that the TSLasso and
MLasso DM have qualitatively and quantitatively al-
most identical behavior (e.g. similar shapes for the reg-
ularization paths, MLasso DM success rate is 25/25
on all data sets, etc.). This demonstrates that, in
practice as well as in theory, TSLasso can substitue
MLasso in recovering the set S of coordinates from a
dictionary.

In the Supplement Section 9 the recovered parametriza-
tions f1, f2 for ethanol and malonaldehyde are super-
imposed on a Diffusion Maps embedding. It is visible
that, for malonaldehyde, recovering the correct tor-
sions by visual inspection is far from trivial, thus the
intervention of a quantitative algorithm can make a
scientist’s task easier.

5More precisely, this dictionary consist of all equivalence
classes of 4-tuples of atoms implicitly defined along the
molecule skeletons.
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Figure 4: Successful support recoveries as proportion of 25 independent trials for TSLasso, MLasso DM, and
MLasso UMAP. The error bars represent 90% confidence intervals. Note that MLasso DM fails completely
onM3 and has overall inconsistent results, while MLasso UMAP’s performance drops on theM3 data. This
contrasts with TSLasso which achieves consistent results on all manifolds for noise levels up to σ = 0.025

We also point out that, in our experiments, the sub-
sampled size n′ = 100 is only around 0.2% of the whole
dataset and in almost all replicates this subsample
is sufficient to obtain a valid parametrization. Tan-
gent space estimation is only needed for these points.
Therefore bypassing the usual manifold embedding pro-
cedure (on the whole dataset) we are able to obtain
interpretable embeddings with fewer samples and in a
shorter time.

6 Discussion and Related Work

This paper is both about learning manifolds and about
finding interpretable low dimensional descriptors for
a scientific domain. The latter problem is very old,
however manifold learning, too, has by now a rich
history. It is worth pausing to see how these two
problems differ, and how they are similar. Generic
manifold learning is agnostic – the goal is to estimate
a manifold from data, with only standard assumptions
about the data generating process. The former problem,
however, is generally not. The descriptors must be
expressible in the language of the domain to be useful.
Thus, the TSLasso/MLasso algorithms operate in
this knowledge-rich framework. On the other hand,
once the data is well approximated by a fixed set of
smooth descriptors, we have de facto learned a manifold
(locally or globally).

In this paper, by TSLasso we have presented a simple
algorithm that is both a data interpretation and a
manifold learning algorithm. This algorithm is backed
by a end-to-end support recovery guarantees under
standard statistical assumptions. To our knowledge,
this is the first proof of Lasso consistency in function
space, on a manifold. The proof developed extends
naturally to other functional regression problems on
manifolds. We expect that this proof can be extended
to MLasso too, depending on regularity conditions on
the embedding ϕ.

From the scientific point of view, parametrizing the
data with a dictionary can be used to summarize scien-
tific data in the language of the domain and to compare
embeddings from different sources. From the point of
view of manifold learning, a functional form f is smooth,
invertible, and can be used to derive out-of-sample ex-
tensions and to interrogate mechanistic properties of
the analyzed system. Finally, from the point of view
of dictionary size, our method is flexible with respect
to a range of non-linearities.

These features of TSLasso are shared with MLasso,
but contrast with standard approaches in non-linear
dimension reduction. Parametrizing high-dimensional
data by a small subset of smooth functions has been
studied outside the context of autoencoders (Goodfel-
low et al., 2016). Early work on parametric manifold
learning includes Saul and Roweis (2003) and Teh and
Roweis (2002), who proposed a mixture of local lin-
ear models whose coordinates are aligned. In a non-
parametric setting, LTSA (Zhang and Zha, 2004) also
gives a global parametrization by aligning locally esti-
mated tangent spaces. However, both the parametric
and non-parametric methods above produce embed-
dings ϕ that are abstract in the sense that they do not
have a concise, interpretable functional form. In this
sense, we draw a parallel between our approach and
factor models (Yalcin and Amemiya, 2001).

Group Lasso type regression for gradient-based vari-
able selection was previously explored in Haufe et al.
(2009) and Ye and Xie (2012), but both have a simpler
group structure, and are not utilized in the setting of
dimension reduction. More recently, so-called symbolic
regression methods such as Brunton et al. (2016), Rudy
et al. (2019), and Champion et al. (2019) have been
used for linear, non-linear, and machine-learned sys-
tems, respectively, and these methods may regarded as
univariate relatives of our approach, since they are con-
cerned with dynamics through time, while we consider
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(a) (b) (c) (d)

Figure 5: Results for molecular dynamics data. 5a, 5c show bond diagrams for ethanol and malonaldehyde,
respectively; 5b, 5d are regularization paths for one run of TSLasso on ethanol and malonaldehyde data,
respectively. The colors correspond to the torsions in 5a and 5c.

the data manifold independently of time.

We also draw several distinctions between the
TSLasso method and the MLasso method in Meila
et al. (2018). First MLasso uses the same essential
idea of sparse linear regression in gradient space, but
in order to explain individual embedding coordinate
functions, while in TSLasso there is no consistent
matching between unit vectors in Id, and so can only
provide an overall regularization path, rather than
one corresponding to individual tangent basis vectors.
Second, TSLasso method dispenses with the entire
Embedding algorithm, Riemannian metric estimation,
and pulling back the embedding gradients steps in
MLasso , while providing almost everything a user
can get from MLasso . Apart from simplification,
TSLasso can also be more robust, since MLasso’s
success is predicated on the “success” of the embed-
ding.
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Supplementary Materials

7 Proofs

In this section we will provide proofs to the theoretical results in the main text.

7.1 Independence of Tangent Basis Selection

Proposition 7.1. Consider alternative bases T′
i = TiΓi where Γi are d× d orthonormal matrices. If {Bi}ni=1

minimizes (2), then in the new tangent bases, {BiΓi}ni=1 minimizes the corresponding loss function, which is
constructed through replacing Xi by ΓiXi in (2). Furthermore, the selected support S is independent of the basis
chosen for each tangent space.

Proof of Proposition 2. It suffices to show that the loss in (2) does not change under orthogonal transformation of
individual tangent bases. As long as this holds, BiΓi must minimize the loss since otherwise one could argue that
Jλ(B) is not a minimum value for the original tangent space bases. Note that the norm ||B.j ||2 is unitary invariant.
This is because B.j = (j − th row of Bi)

n
i=1 is constructed by stacking the j−th row of each Bi. Hence the new

norm is given by the norm of (j − th row of BiΓi)
n
i=1; therefore the Group Lasso penalty doesn’t change after

changing Bi to BiΓi for each i. Finally, it holds that ||Id−Γ⊤
i XiBiΓi||2F= ||Γ⊤

i (Id −XiBi)Γi||2F= ||Id−XiBi||2F ,
so the ℓ2-loss is not changed under orthonormal transformation of the tangent bases. These rotation invariances
guarantee the same support S.

7.2 Proof of Proposition 3

We start by stating the following lemma, which gives the sufficient and necessary condition of certain matrices Bi

to be the solution to problem (2). It also provides conditions on unique support recovery and unique solutions.
The proof is standard in convex analysis literature; we follow a procedure as in (Wainwright, 2009).

Lemma 7.2. 1. Matrix B is the optimal solution to problem (2) if and only if there exists an matrix Z =
(z⊤1 , z⊤2 , · · · , z⊤p )⊤ ∈ Rp×nd such that

zj =

{
βi

||βi|| βi ̸= 0

∈ Rnd with ||zj ||2≤ 1, otherwise
(8)

and (
X⊤

1 (Id −X1B1),X
⊤
2 (Id −X2B2), · · · ,X⊤

n (Id −XnBn)
)
=

λ√
nd

Z (9)

.

2. If under the setting of (a), further in (8), we have ||zi||< 1 whenever βi = 0, then all optimal solutions B̃ of

problem (2) will have support S(B̃) ⊂ S(B).

3. Under setting of (a) and (b). Let XiS(B) be the submatrix constructed by the S(B) columns of of Xi. If all

X⊤
iS(B)XiS(B) are invertible, then the solution of problem problem (2) is unique.

Proof. Before we further explore the result, we transform the problem (2). We stack the matrices at each point
together. We will now write

X =


X1

X2

· · ·
Xn

 ∈ Rnd×p, B =
(
B1,B2, · · · ,Bn

)
∈ Rp×nd (10)
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Then βj is the j − th row for B. Further let matrix

Ei =
(
0, · · · ,0, Id,0, · · · ,0

)⊤ ∈ Rnd×d (11)

be the block matrix with the i− th block being identity matrix and the other blocks are all zeros. Then the loss
function of TSLasso can be rewritten as

Jλ(B) =
1

2

n∑
i=1

||E⊤
i (Ind −XB)Ei||2F+

λ√
nd
||B||1,2 (12)

where ||B||1,2 is the norm defined by
∑p

j=1||βj ||2.

The proof of this lemma is standard technique in convex analysis. Define hi(B) = ||E⊤
i (Ind −XB)Ei||2F penalty

part and g is the group lasso penalty.

The first step is to compute the gradient of hi(B) with respect to B. For any H ∈ Rp×nd, compute

hi(B+H)− hi(B) (13)

= trace(E⊤
i (Ind −X(B+H))Ei)

⊤(E⊤
i (Ind −X(B+H))Ei)− trace(E⊤

i (Ind −XB)Ei)
⊤(E⊤

i (Ind −XB)Ei)
(14)

= −2 trace(H⊤X⊤EiE
⊤
i (Ind −XB)EiE

⊤
i ) +O(||H||2F ) (15)

= −2
〈
H,X⊤EiE

⊤
i (Ind −XB)EiE

⊤
i

〉
F
+O(||H||2F ) (16)

Hence we can conclude that ∇Bhi(B) = −2X⊤EiE
⊤
i (Ind −XB)EiE

⊤
i = −2X⊤Ei(Id −XiBi)E

⊤
i , and therefore

∇B
1

2

n∑
i=1

||Id −XiBi||2F =

n∑
i=1

−X⊤Ei(Id −XiBi)E
⊤
i

= −
(
X⊤

1 (Id −X1B1),X
⊤
2 (Id −X2B2), · · · ,X⊤

n (Id −XnBn)
)
. (17)

Recall that we use βi to denote the i− th row of B. We use a similar argument in proof of lemma 2 of (Obozinski
et al., 2011) and notice that the original optimization problem is convex and strictly feasible (hence strong duality
holds). The primal problem is

min
B∈Rp×nd

b∈Rp

1

2

n∑
i=1

||E⊤
i (Ind −XB)Ei||2F+

λ√
nd

p∑
j=1

bj (18)

s.t. (βj , bj) ∈ K, 1 ≤ j ≤ p (19)

where K is the second-order cone as usually defined. The dual problem is given by

max
Z∈Rp×nd

t∈Rp

min
B∈Rp×nd

b∈Rp

L(B, b,Z, t) =
1

2

n∑
i=1

||E⊤
i (Ind −XB)Ei||2F+

λ√
nd

p∑
j=1

bj +

p∑
j=1

⟨(zj , tj), (βj , bj)⟩ (20)

s.t. (zj , tj) ∈ K◦ (21)

where zj ∈ Rnd is the j−th row of Z. Note that K◦ is the polar cone of K and second order cone is self-dual.
Hence we have (zi,−Ti) ∈ K.

Since the primal problem is strictly feasible, strong duality holds. For any pair of (B∗, b∗) and (Z∗, t∗) primal
and dual solutions, they have to satisfy the KKT condtion that

||β∗
j ||2 ≤ b∗j , 1 ≤ j ≤ p , (22a)

||z∗j ||2 ≤ −t∗j , 1 ≤ j ≤ p , (22b)

z∗Tj β∗
j + t∗j b

∗
j = 0, 1 ≤ j ≤ p , (22c)

∇B

[
1

2

n∑
i=1

||Id −XiBi||2F

]
+ Z∗ = 0 , (22d)

λ√
nd

+ t∗j = 0 . (22e)
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Note that (22c)implies that t∗j = − λ√
nd

. Then by (22a) and (22b) we have ||z∗Tj β∗
j ||≤ λ√

nd
||βj ||2. Notice that the

equality holds in (22c), there fore ||z∗j ||=
√
nd
λ and b∗j = ||β∗

j ||. Renormalize z∗j =
√
nd
λ z∗j and part (a) holds. For

part b, for any j, z∗Tj βj = ||βj ||2. Then βj = 0 must hold for any ||zj ||< 1. For part (c) note that in this case the
loss function is strictly convex when the original problem is restricted to minimizing over B : βi = 0, ∀i /∈ S(B).
This strict convexity implies the uniqueness of solution.

The previous lemma provides a tool for understanding the support recovery consistency of TSLasso.

For any arbitrary S ⊂ [p] such that |S| = d, rankXiS = d holds for all i ∈ [n], we establish a sufficient condition
on XiS such that they can be discovered by the TSLasso. Suppose at each data point i, we decompose the
matrix Id by

Id = XiSB
∗
iS +WiS (23)

where B∗
iSs are p× d matrices that only has non zero entries in rows in S and minimizes the loss ||Id −XiBi||2F .

In fact, since XiS is full rank, there exists a unique B∗
iS = (XiS)

−1 for each i such that WiS = 0.

The first step in proving consistency is to show a sufficient condition on Xi (without noisy tangent space
estimation) so that the true support can be found. We first define several derived quantities of Xi. Denoting the
j−th column of matrix Xi by xij , we define

S-incoherence µ̃S = max
i=1:n,j∈S,j′ /∈S

|x⊤
ijxij′ |

||∇fj(ξi)||||∇fj′(ξi)||
(24a)

internal-colinearity ν̃S = max
ı=1:n
||(X̃⊤

iSX̃iS)
−1 −GS(ξi)

2||. (24b)

maximal gradient norm ϕ̃S = max
i=1:n

max
j∈S
||∇fj(ξi)|| (24c)

These are sampled version of µS ,νS and ϕS defined on the whole manifold from (3),(4) and (6). We start with
some lemmas in linear algebra.

Lemma 7.3. Let A,B be d× d positive definite matrices. Then ||A−1 −B−1||≤ ||B−1||2||A−B||
Lemma 7.4. Let A,B be two d× d matrices. A is positive semidefinite. Denote ||A||∞,2 be the maximum ℓ2
norm of the rows of A. Then ||AB||∞,2≤ ||A||||B||F

Proof. Write A = (aij)d×d,B = (bij)d×d, then by definition

||AB||2∞,2 = max
i=1:d

d∑
j=1

(
d∑

k=1

aikbkj

)2

≤ max
i=1:d

d∑
j=1

(
d∑

k=1

a2ik

)(
d∑

k=1

b2kj

)

≤

(
max
i=1:d

d∑
k=1

a2ik

) d∑
j=1

d∑
k=1

b2kj


= ||A||2∞,2||B||2F .

Since A is positive semidefinite, we have

||A||2∞,2 = max
i=1:d

(AA)ii ≤ ||A
2||= ||A||2 .

Hence we conclude the desired result.

Lemma 7.5. For any arbitrary S ⊂ [p] such that |S| = d, rankXiS = d holds for all i ∈ [n], recall that
δS = minξ∈M minj∈S ||∇fj(ξ)||, then ||(X⊤

iSXiS)
−1||2≤ 1 + ν̃S

δ2
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Proof. Recall that GS(ξi) = diag{||∇fj(ξi)||}j,j′∈S Note the upper bound

||(X⊤
iSXiS)

−1 − Id||2 (25)

=||G−1
S (ξi)(X̃

⊤
iSX̃iS)

−1GS(ξi)
−1 −G−1

S (ξi)GS(ξi)
2G−1

S (ξi)|| (26)

≤||(X̃⊤
iSX̃iS)

−1 −GS(ξi)
2||||G−1

S (ξi)||2 (27)

≤ ν̃S
δ2S

(28)

And the desired results come from triangle inequality.

Also ν reflects the signal strength of the true support, which can be shown as in the following lemma.

Lemma 7.6. Let S, δS be the same as in lemma 7.5. If it further holds that
√
dν̃S < δ2S then

min
i=1:n

min
j∈S
∥[(XiS)

−1]j·∥2≥

√
1−
√
dν̃S
δ2S

(29)

Proof. Similar as the proof of lemma 7.5, we first upper bound the j, j′ element of (X⊤
iSXiS)

−1 − Id by∣∣∣[(X⊤
iSXiS)

−1 − Id
]
j,j′

∣∣∣ = ||∇fj(ξi)||−1||∇fj′(ξi)||−1

∣∣∣∣[(X̃⊤
iSX̃iS)

−1 −GS(ξi)
2
]
j,j′

∣∣∣∣ ≤
√
dν̃S
δ2S

. (30)

Hence any diagonal element of (X⊤
iSXiS)

−1 is bounded by

|[(X⊤
iSXiS)

−1]j,j′ | ≥ 1−
√
dν̃S
δ2S

, (31)

leading to the desired result.

Lemma 7.7. Let {ξi}ni=1 be fixed data points on M. Let δ̃S = mini=1:n minj∈S ||∇fj(ξ)|| and Γ =

maxξ∈M maxj=1:p||∇fj(ξ)|| Let µ̃S , ν̃S , ϕ̃S defined from XiS according to (24a),(24b) and (24c) respectively.

Then Tangent Lasso problem (2) has a unique solution B̂ = [B̂1, B̂2, · · · , B̂n] ∈ Rp×nd with support S(B̂) included

in the true support S if (1 + ν̃S

δ2 )µ̃Sϕ̃SΓd < 1. Furthermore, if
√
dνS < δ2S and λ(1 + ν̃S/δ

2) < 1
2

√
n− n

√
dνS

δ2S
,

then S(B̂) = S.

Proof. We follow the procedure of Primal-Dual witness method (see e.g.Wainwright (2009), Obozinski et al.
(2011), Elyaderani et al. (2017)).

Still considering the reformulated optimization problem (12), we first find B̂ from minimizing a restricted
optimization problem

min
S(B)⊂S

Jλ(B) =
1

2

n∑
i=1

||E⊤
i (Ind −XB)Ei||2F+

λ√
nd
||B||1,2. (32)

We then construct a dual solution Ẑ and show that B̂ is the solution to the original optimization problem. We
write zj as the j−th row of Ẑ and decompose each ẑj = [ẑj,1, ẑj,2, · · · , ẑj,n]. According to lemma 7.2, we can

solve for Ẑ from those optimality conditions.

First, notice that B∗
iS = (XiS)

−1 and

B̂iS −B∗
iS = − λ√

nd
(X⊤

iSXiS)
−1ẐS,i . (33)

where ẐS is constructed by concatenating the j ∈ S row of Ẑi.

For an d× d matrix A, we write ||A||∞,2= maxdi=1||ai||2, where ai is the i−th row of A. Then it holds that from
lemma 7.4

||(X⊤
iSXiS)

−1ẐS,i||∞,2≤ ||(X⊤
iSXiS)

−1||||ẐS,i||F . (34)
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Therefore recall that ||ẐS ||∞,2= 1 we conclude that ||ẐS,i||F≤
√
d. And adopting lemma 7.5 we have

||(X⊤
iSXiS)

−1ẐS,i||∞,2≤
√
d(1 +

ν̃S
δ2

) (35)

Write b̃S =
√
1−

√
dνS

δ2S
. According to (33) and the assumption, λ

√
d(1 + ν̃S

δ2 )/
√
nd < 1

2 b̃S , then ||B̂iS,j·||≥ 1
2 b̃S

for each row j ∈ S.

On the other hand, for any j′ /∈ S,we have

ẑj′,i = x⊤
ij′XiS(X

⊤
iSXiS)

−1ẐS,i. (36)

It suffices to verify that ||ẑj ||< 1 for all j′ /∈ S. For any i, we have

||x⊤
ij′XiS(X

⊤
iSXiS)

−1||2≤ (1+
ν̃S
δ2

)||x⊤
ij′XiS ||2≤

√
d(1+

ν̃S
δ2

)µ̃S ||∇fj′(ξi)||max
j∈S
||∇fj(ξi)||≤

√
d(1+

ν̃S
δ2

)µ̃Sϕ̃SΓ (37)

Directly compute that

||ẑj′ ||2 ≤
n∑

i=1

||x⊤
ij′XiS(X

⊤
iSXiS)

−1ẐS,i||22

≤
n∑

i=1

||x⊤
ij′XiS(X

⊤
iSXiS)

−1||22||ẐS,i||2F

≤ d(1 +
ν̃S
δ2

)2µ̃2
Sϕ̃

2
SΓ

2
n∑

i=1

||ẐS,i||2F

≤ (1 +
ν̃S
δ2

)2µ̃2
Sϕ̃

2
SΓ

2d2 < 1

This lemma is the recovery result if the tangent space is estimated without any noise. Note that this conditions
also implies further results on the ’isometric’ property of TSLasso. If there are two different subsets S, S′ such
that |S| = |S′| = d and both has rank d at each data point. Then for both subsets, X⊤

iSXiS are invertible, and the
lemma also implies that µ̃S ν̃Sd < 1 cannot hold at the same time for both subsets. The one picked by TSLasso
(usually) has a lower value of ν̃S , and will be closer to isometry to some extent.

This recovery result does not involve the tuning parameter for false inclusion. Therefore, it justifies our selection
of tuning parameter that force the support has cardinality less than d. If we do observe d functions selected and
they have rank d everywhere, then under incoherence condition they must be a right parameterization. To avoid
false exclusion, the tuning parameter λ cannot be too large.

Now we connect these support recovery results inherent to our optimization approach with the tangent space
estimation algorithm. Let Ti, T̂i be the orthogonal basis in RD×d for true and estimated tangent space respectively,
and write

e =
n

max
i=1
||TiT

⊤
i − T̂iT̂

⊤
i ||2. (38)

We have the following recovery result in the setting that gradient is estimated with some noise.

Lemma 7.8. Let ξi, i = 1 : n be fixed data points on manifold M ⊂ RD. Given S a subset of functions
in dictionary F = {fj , j ∈ [p]} with |S| = d. Suppose rank grad fS = d at each data point. Fix Ti as an

orthonormal basis of tangent space at ξi, and T̂i a basis for the estimated tangent space. And further define
Xi = T⊤

i [∇fj ], X̂i = T̂⊤
i [∇fj ], j ∈ [p] where ∇ is the ambient gradient. Define B∗

iS , b̃S the same as lemma 7.7.

Define µ̃S , ν̃S from (24a) and (24b) and e from (38). Then let B̂ be the solution of TSLasso problem

Jλ(B) =
1

2

n∑
i=1

||Id − X̂iBi||2F+
λ√
nd
||B||1,2 , (39)

If (1 + ν̃S/δ
2
S)µ̃Sϕ̃SΓd < 1 and λ(1 + ν̃S/δ

2
S) <

1
2

√
n− n

√
dνS

δ2S
, there exists a positive constant c0 such that if

e < c0 then S(B̂) = S.
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Proof. The proof is direct by identifying the new µ̃′
S , ν̃

′
S parameters under noisy estimation of tangent space. The

other parameters ϕ̃S ,Γ, δS are not related with tangent spaces and thus remains unchanged.

Denote x̂ij the j−th column of X̂i. Similarly, to (24a), we first bound

x̂⊤
ij x̂ij′ = ∇fj(ξi)⊤[T̂iT̂

⊤
i −TiT

⊤
i ]∇fj(ξi) +∇fj(ξi)⊤TiT

⊤
i ∇fj(ξi)

≤ ||T̂iT̂
⊤
i −TiT

⊤
i ||2||∇fj(ξi)||||∇fj′(ξi)||+µ̃S ||∇fj(ξi)||||∇fj′(ξi)||, for all j ∈ S, j′ /∈ S, i ∈ [n]

So µ̃′
S ≤ µ̃S + e.

By definition, let

˜̂
XiS =

[
T̂⊤

i ∇fj(ξi)
||∇fj(ξi)||

]
j∈S

= X̂iSG(ξi)
−1

where G(ξi) = diag{||∇fj(ξi)||}j∈S and then we have

ν̃′S = ||( ˜̂X
⊤

iS
˜̂
XiS)

−1 −G(ξi)
−2||≤ ν̃S + ||( ˜̂X

⊤

iS
˜̂
XiS)

−1 − (X̃⊤
iSX̃iS)

−1||

It suffices to upper bound the second term. We can apply lemma 7.3, the perturbation bound of inverse of
positive definite matrices. It suffice to compute

||(X̃⊤
iSX̃iS)

−1|| ≤ ||(X̃⊤
iSX̃iS)

−1 −GS(ξi)
2 +GS(ξi)

2||≤ ϕ̃2
S + ν̃S

And since for any j, j′ ∈ S, it holds that

|( ˜̂X
⊤

iS
˜̂
XiS)jj′ − (X̃⊤

iSX̃iS)jj′ | ≤ ||TiT
⊤
i − T̂iT̂

⊤
i ||≤ e

|| ˜̂X
⊤

iS
˜̂
XiS − X̃⊤

iSX̃iS || ≤ ||
˜̂
X

⊤

iS
˜̂
XiS − X̃⊤

iSX̃iS ||F≤ de

And thus we have

||( ˜̂X
⊤

iS
˜̂
XiS)

−1 − (X̃⊤
iSX̃iS)

−1||≤ (ϕ̃2
S + ν̃S)

2de

Hence ν̃′S ≤ ν̃S + (ϕ̃2
S + ν̃S)

2de

For sufficiently small e, we will have (1 +
ν̃′
S

δ2 )
2µ̃′

Sϕ̃SΓd < 1 and λ(1 +
ν̃′
S

δ2 )
2/
√
n < 1

2
1
2

√
n− n

√
dν′

S

δ2S
as these two

inequality holds when e = 0. Then lemma 7.7 guarantees exact recovery.

Proof of Proposition 4.3. With probability one, the following comparisons between sample based quantities and
whole manifold versions holds:

µ̃S ≤ µS , ν̃S ≤ νS , ϕ̃S ≤ ϕS (40)

Then the assumptions of the proposition guarantees that there exists a c0 such that whenever e < c0, exact
recovery holds due to lemma 7.8. It suffices to notice that

P (S(B̂) = S) ≤ P (e < c0) ≥ 1− 4

(
1

n

) 2
d

(41)

given by lemma 7.9.

Lemma 7.9. For sufficiently large constant C > 0, let rN = C(log n/(n− 1))1/d, tangent spaces T̂i estimated by
WL-PCA in section 3.2 with neighborhood radius rN and Gaussian kernel bandwidth hN ∝ rN satisfy that with
probability at least 1− 4(1/n)2/d

max
i=1:n

||TiT
⊤
i − T̂iT̂

⊤
i ||= O(rN ) = O((

log n

n− 1
)

1
d ) . (42)
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Proof. The proof is omitted since it is essentially the same as the proof of Proposition 15 in (Aamari and Levrard,
2018).

Remark 7.10. Note that in this lemma, the hidden constant in big-O notation is determined by the manifold and
sampling density.

8 Experiments on synthetic data – details and additional results

We include details on the synthetic experiments, as well as some additional experimental results and information
in this section. In Section 8.1, we give an abstract description of the synthetic datasets we created. In Section
8.2, we look at the specific parameters and functions used to generate the data. In Section 8.3, we describe our
experimental procedure. In Section 8.4, we overview our results.

8.1 Description of the synthetic manifolds and dictionaries

We generated manifoldsMi, and dictionaries Fi, with i = 1, 2, 3, using smooth and injective functions as follows.
To generateMi, we create smooth injective function Gi : (−1, 1)di → RD, which we call manifold functions. Each
Gi = Ri ◦Hi where Ri ∈ RD×hi is an orthonormal matrix which embeds the mi dimensional output of Hi into RD,
and where Hi : (−1, 1)d → Rmi will consist of an affine transformation, followed by element-wise non-linear smooth
functions, and ending with various non-linear combinations. Thus, Hi = (Hi

1, · · · , Hi
mi

) will increase the dimension
of the input from di to mi, while Ri will embed the mi dimensional output of Hi into RD. For each i ∈ {1, 2, 3},
letMi = Gi((−1, 1)di). For each Gi, we symbolically compute inverses Fi = (f i

1, . . . , f
i
di
) :Mi → (−1, 1)di using

Sympy (Meurer et al., 2017). As such, eachMi is a smooth di-dimensional manifold with an atlas consisting of a
single chart,

(
Mi, Fi

)
.

We create dictionaries Fi = {f i
1, . . . , f

i
di
, f̂ i

1, . . . , f̂
i
pi

′} of size pi = di + p′i consisting of true chart functions

f i
S = {f i

1, . . . , f
i
di
} and fake chart functions f i

S̄
= {f̂ i

1, . . . , f̂
i
p′
i
}, where f i, f̂ i :M → (−1, 1) for all f i, f̂ i ∈ Fi,

and S̄ = [pi] \ S. Notably, all the “fake” functions in f i
S̄
we create have significant gradient collinearity with all

true functions.

8.2 The manifolds, dictionaries, and data used in this paper

To create our synthetic data sets, we sample n points of the form ξ = Gi(x) +N (0, σ2ID), where x is uniformly
distributed over (−1, 1)di and where σ ≥ 0 represents the standard deviation of the isotropic Gaussian noise
applied in RD. We write Dσ

i to refer to a data set sampled as such. For our experiments, we use 10 noise levels
σ ∈ {0.0, 0.001, 0.025, 0.05, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5}. From our results in Figure 4, we can see that σ = 0.025
is the highest level of noise for which the recovery of TSLasso is near-perfect. In Figures 6b and 6c, we display
how the manifolds we tested look at this noise level and at σ = 0.05, the lowest noise level where recovery fails.
We symbolically compute the gradients ∇f i,∇f̂ i for all functions in Fi and evaluate them at each point ξ ∈ Dσ

i .
The data points thus sampled and their respective gradients represent the inputs to the TSLasso and MLasso
algorithms being tested. We will refer to both the data points and gradients sampled for a manifold function Gi

and noise level σ asMσ
i . Note that the algorithms do not have access to the original coordinates x ∈ (−1, 1)di .

For our experiments, we use three manifold functions G1 : (−1, 1)d1 → RD, G2 : (−1, 1)d2 → RD, and
G3 : (−1, 1)d3 → RD with d1 = d2 = 2, d3 = 3, and D = 48. For each Gi = Ri ◦ Hi, we sample a random
orthonormal matrix Ri ∈ RD×hi , while for Hi : (−1, 1)di → Rhi we use the following functions:

H1(x) =

 S(t1)
cos(t2)

sin(2 · t2)

 H2(x) =


S(t1)
exp(t2)

(S(t1) + 0.5) cos(2 · exp(t2))
(S(t1) + 0.5) sin(2 · exp(t2))

 H3(x) =



S(t1)
exp(t2)
P (t3)

log(1 + S(t1)) · sin(exp(t2) + P (t3))
exp(t2) · cos(S(t1) + P (t3))
cos(2 · (S(t1) + P (t3)))
sin(2 · (exp(t2) + P (t3)))


with m1 = 3, m2 = 4, and m3 = 7. Here tj(x) = aTj x + bj represent affine functions tj : Rdi → R, while
S(y) = 1

1+e−y and P (y) = log(1 + ey) denote the sigmoid and softplus functions. The functions Hi are
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(a) (b) (c)

Figure 6: a: Visual representations of the functions H1(top left), H2(bottom left), H3(right) which we use to
create the manifold functions Gi = Ri ◦ Hi. Each row displays a combination of 3 coordinates of Hi, while
each column j colors the points using the manifold coordinate xj . b, c: Visual representation of the first three
coordinates of H1(b) and H2(c) at different noise levels. The rows correspond to noise levels σ = 0.0, 0.025, 0.05,
while each column j colors the points as a function of the manifold coordinate xj . The second row(σ = 0.025)
is the highest level of noise for which the recovery of TSLasso is near-perfect, while the last row(σ = 0.05)
represents the lowest noise level at which all algorithms tested fail.

depicted in Figure 6a. We randomly sample aj and bj until we obtain manifolds which are well behaved. We
consider manifolds to be well behaved when νS < 75(see equation 4), and when maxx∈(−1,1)di ∇Gi(x) < 40 and

maxξ∈Mi
∇Fi(ξ) < 40. The restriction on νS ensures that the true chart functions in f i

S don’t have collinear
gradients and that their gradients are reasonably close to the tangent bundle of Mi. The restrictions on the
Jacobians ∇Gi(x),∇Fi(ξ) ensure that the manifold is reasonably smooth and that there are no critical points of
Hi and Fi on (−1, 1)di andMi, respectively. ∇Gi(x) is estimated over a grid placed over (−1, 1)di , while ∇Fi(x)
and νS are estimated over the same grid mapped by Gi intoMi. The values of these parameters we computed
forM1,2,3 are presented in Table 3.

To create the dictionaries Fi, we use the true chart functions f i ∈ f i
S to build fake chart functions of the form:

f̂ i
q(ξ) = ξj1(q) + αq sin(π · f i

j2(q)
(ξ))

where ξj1(q) represents the j1(q)-th coordinate of ξ, f i
j2(q)

the j2(q)-th true chart function in f i
S , j1(q) and j2(q)

are randomly sampled integer indices in [D] and [di], and where αq is sampled uniformly in (−2, 2). We chose
the fake functions in such a way that they interact non-linearly with one of the true functions and have varying
gradients over the manifoldsMi, making recovery non-trivial. In Figure 7, we display these properties.

For a synthetic manifold Mi and dictionary Fi we can evaluate the difficulty of the recovery problem using
µS(see equation 3) and νS(see equation 4). The parameter µS can be thought of as a renormalized incoherence
between the functions in f i

S and those in f i
S̄
, while νS is an internal colinearity parameter. We also compute

the averages of these statistics over the whole manifold. We record these values in Table 3 and note that they
place us outside the theoretical recovery conditions. However, despite the difficulty of the problem, we show that
TSLasso behaves robustly.

8.3 Experimental procedure

We illustrate the behavior of TSLasso on the synthetic data described in the previous section and compare
its support recovery ability and run time performance against the MLasso algorithm of Koelle et al. (2022).



Samson Koelle, Hanyu Zhang, Octavian-Vlad Murad, Marina Meila

(a) (b)

Figure 7: Visual representations of the correlations between true chart functions f i and fake chart functions f̂ i.
In both Figures a and b, each column k corresponds to one true chart function f i

k for k ∈ [d], while each column

j corresponds to the fake function f̂ i
j′ ∈ f̂S̄ with the maximum average gradient correlation with ∇f i

j . The entry

j, k in the figure is colored by X̃⊤
ξ,·j′X̃ξ,·j(see Equation 3), which represents the normalized dot product of ∇f̂ i

j′

and ∇f i
j . Figure a displays the output of H1, while Figure b displays coordinates 3, 4, and 6 of H3.

Sections 3 and 6 discuss the relationship between the two algorithms in some detail. Essentially, MLasso relies
on embedding the data into a separate embedding space from which a basis of the tangent space corresponding to
the embedding functions is pulled back into coordinate space and is used as labels for GroupLasso. TSLasso
on the other hand elegantly circumvents these extra steps by using the arbitrary bases of the tangent space
returned by local PCA as regression targets. Our experiments empirically show that this simplification leads to
improved support recovery and run time performance. In our experiments, we use two well established embedding
algorithms as subrouties for MLasso: Diffusion Maps(Coifman and Lafon, 2006) and UMAP(McInnes et al.,
2018a). We use their publicly available implementations (McQueen et al., 2016) and (McInnes et al., 2018b),
respectively; the two versions of MLasso are referred to as MLasso DM and MLasso UMAP.

We perform two experiments to compare TSLasso against MLasso DM and MLasso UMAP. The first
experiment evaluates the support recovery of the three algorithms as a percentage of ω = 25 repeated trials
from different random samples I (a correct recovery occurs when the full support S is correctly identified),
while the second experiment compares their run time efficiency. Each experiment will test the algorithms
on a total of 3 × 10 synthetic data sets of the form Mσ

1 ,Mσ
2 ,Mσ

3 generated as described above, with σ ∈
{0.0, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5}. The input consists of n = 5000 data points in D = 48
dimensions and the gradients of the functions in Fi evaluated at these points, as well as the intrinsic dimension d
and subsample size n′. In all experiments and on allMσ

i , the entire data set of size n is used for tangent space
estimation. For MLasso DM and MLasso UMAP, it is further used to compute the embeddings of the data
points. After tangent space estimation(and further steps for the MLasso algorithms), GroupLasso is applied
to a uniformly random subset of size n′ of the whole dataset, with this process being independently repeated ω
times. The tangent space estimation(and additional computations for the MLasso algorithms) plus the ω repeats
of GroupLasso constitute a full run of an algorithm. For each data setMσ

i we perform ω = 25 replications for
the support recovery tests. We do this because, from preliminary experiments, we found that at the given n the
variance in the sample w.r.t. the manifold estimation is negligible and need not be repeated.

For the run time tests we perform ω = 10 runs, each from a new Dσ
i . The local tangent space kernel bandwidth ϵ

is estimated using Joncas et al. (2017). For MLasso UMAP we use 200 neighbors and a minimum distance of 0.
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Figure 8: Speedup of TSLasso relative to MLasso DM and MLasso UMAP averaged over 10 independent
trials. The error bars represent the standard deviation. We observe that TSLasso achieves around 1.25 - 1.5
speed up over the other algorithms. This is due to TSLasso not requiring an embedding algorithm or other
extra steps that the MLasso algorithms do. The results for σ ≥ 0.05 are inconsistent because at these noise
levels the search for λ takes a variable number of steps and doesn’t always terminate within the allowed number
of iterations.

(a) (b) (c)

Figure 9: The regularization paths obtained by the three algorithms onM1(a),M2(b),M3(c), averaged over
25 independent trials. An orange line(a fake chart function) crossing on top of a blue line(a true chart function)
indicates a consistent failure to fully recover the support. Note that for σ ≤ 0.025, the binary search for λ ends
after just 1 step for TSLasso and MLasso DM, and after about 6 steps for MLasso UMAP, in failure.

Parameters are summarized in Table 3.

Dataset n d D p n′ ω µS νS avg µS avg νS max∇Gi max∇Fi

M1 5000 2 48 38 500 25 or 10 0.99 33.91 0.43 6.55 12.95 5.83
M2 5000 2 48 38 500 25 or 10 0.55 46.39 0.17 8.18 20.82 19.11
M3 5000 3 48 39 500 25 or 10 0.97 51.50 0.26 12.37 14.92 9.81

Table 3: Parameters used for the three synthetic experiments.

8.4 Detailed experimental results

The results are summarized in Figures 4, 8, and 9, as well as in Tables 4a and 4b. Our experiments empirically
show that TSLasso achieves improved support recovery, especially on the Mσ

3 datasets(see Figure 4), and
around 1.25-1.5 speedup with respect to MLasso UMAP and MLasso DM (see Figure 8). While the latter is
a direct cause of removing the embedding, Riemannian metric estimation, and pull back steps of MLasso, we
posit that the former is a result of eliminating the possibility of the embedding algorithm producing imperfect
targets for the regression problem. This claim is supported by the near perfect recovery achieved by TSLasso
on all datasets with noise levels up to σ = 0.025, which contrasts with the inconsistent results of the other two
algorithms. In particular, we note the higher frequency of failure of MLasso DM on all of the manifolds. We
believe that this behavior stems from the manifolds’ aspect ratio, which causes the Diffusion Maps algorithm to
create rank deficient mappings (Chen and Meilă, 2019). Furthermore, we also note the relatively low performance
of MLasso UMAP on theMσ

3 datasets. Finally, we note that beyond σ = 0.05 all algorithms fail to recover the
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true support which is expected due to the high noise levels as shown in Figures 6b and 6c.

9 Experiments with real MDS data

We include details on the MDS data preprocessing, our experiments, as well as some additional experimental
results and information in this section. The settings on these data are shown in table 5 (same values as in the
main paper).

9.1 Preprocessing the MDS data

MDS data are generated originally in 3×Na coordinates; these require preprocessing to ensure the invariance to
translation and rotation before neighbors can be computed. For this, we follow the same procedure as Koelle
et al. (2022), using the code available at https://github.com/sjkoelle/montlake, which we briefly describe
here for completeness.

One first obtains an Euclidean group-invariant featurization of the atomic coordinates as a vector of planar angles

ai ∈ R3(Na
3 ): the planar angles formed by triplets of atoms in the molecule. One then performs an SVD on this

featurization, and project the data onto the top D = 50 singular vectors to remove linear redundancies. Note
that this represents a particular metric on the molecular shape space.

The dictionaries we considered are constructed on bond diagram, a priori information about molecular structure
garnered from historical work. Building a dictionary based on this structure is akin to many other methods in
the field (Krenn et al., 2020; Xie et al., 2019). Specifically, this dictionary consist of all equivalence classes of
4-tuples of atoms implicitly defined along the molecule skeletons.

Since original angular data featurization is an overparameterization of the shape space, one cannot use automatically
obtained gradients in TSLasso. They first must be projected on the tangent bundle of the shape space6 as it is
embedded in RD.

9.2 Additional details on the MDS experimental results

We plot the incoherence for Ethanol and Malonaldehyde as the heatmap in figure 10b and 10f, which present two
groups of highly dependent torsions, corresponding to the two bonds between heavy atoms in the molecules. For
example, the rotation angle (torsion) marked in orange around axis C(1)–C(2) can be measured w.r.t. any one of
{O(3),H(4),H(5)} atoms and any of {H(6),H(7),H(8)} atoms, for a total of 9 almost equivalent torsions.

Therefore, the success of a recovery algorithm under this high indeterminacy is to select a pair of incoherent
torsions out of these dictionaries. Figures 10h and 10d show support recovery frequencies for sets of size d = s = 2
using TSLasso on ethanol and malonaldehyde data respectively. As we desired, TSLasso selects one function
from each of the two groups of torsions in most replicates; e.g., for ethanol, always a rotation with axis C(1)–C(2),
and one with axis C(1)–O(3) are chosen. Thus, the TSLasso algorithm is robust and performs soundly even
under these conditions of high coherence.

9.2.1 Visualisation of recovered coordinates

Here we display the coordinate functions selected by TSLasso overlayed over the Diffusion maps embeddings of
Ethanol, in Figures 11a and 11b, and and Malonaldehyde, in Figures 12a and 12b.

For Ethanol, it is easy to see that the two functions selected from the TSLasso indeed parametrize the structure
of the data, as each function is varying along one of the two circles generating the torus. However, in the case of
the Malonaldehyde data, while the embedding is topologically a torus, it is much harder to select coordinate
functions from F by visual inspection alone. For illustration, we also visualize a torsion which is not a coordinate
function.

6The shape space is the manifold of equivalence classes of Na × 3 atomic coordinates w.r.t. the invariance group
considered. The manifolds that are approximated by the MDS data in these experiments are submanifolds of the shape
space.

https://github.com/sjkoelle/montlake
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Algo. TSLasso MLasso UMAP MLasso DM
Manifold σ mean std mean std mean std

M1 0.00 1.0000 0.0000 1.0000 0.0000 0.9600 0.1960
0.001 1.0000 0.0000 1.0000 0.0000 0.4400 0.4964
0.0025 1.0000 0.0000 1.0000 0.0000 0.3600 0.4800
0.005 1.0000 0.0000 1.0000 0.0000 0.2400 0.4271
0.01 1.0000 0.0000 1.0000 0.0000 0.4000 0.4899
0.025 0.8400 0.3666 1.0000 0.0000 0.5200 0.4996
0.05 0.5600 0.4964 0.5200 0.4996 0.0000 0.0000
0.1 0.3200 0.4665 0.2800 0.4490 0.1600 0.3666
0.25 0.0400 0.1960 0.0000 0.0000 0.0800 0.2713
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

M2 0.0 1.0000 0.0000 0.9200 0.2713 0.5200 0.4996
0.001 1.0000 0.0000 0.9600 0.1960 0.7200 0.4490
0.0025 1.0000 0.0000 0.8400 0.3666 0.9600 0.1960
0.005 1.0000 0.0000 1.0000 0.0000 0.9200 0.2713
0.01 1.0000 0.0000 0.9200 0.2713 0.9600 0.1960
0.025 1.0000 0.0000 0.8000 0.4000 1.0000 0.0000
0.05 0.4400 0.4964 0.4400 0.4964 0.4400 0.4964
0.1 0.1600 0.3666 0.0000 0.0000 0.0000 0.0000
0.25 0.2000 0.4000 0.1200 0.3250 0.0400 0.1960
0.5 0.3200 0.4665 0.0800 0.2713 0.0400 0.1960

M3 0.0 1.0000 0.0000 0.6000 0.4899 0.0000 0.0000
0.001 1.0000 0.0000 0.8000 0.4000 0.0000 0.0000
0.0025 1.0000 0.0000 0.5200 0.4996 0.0000 0.0000
0.005 1.0000 0.0000 0.8000 0.4000 0.0000 0.0000
0.01 1.0000 0.0000 0.9200 0.2713 0.0400 0.1960
0.025 0.9200 0.2713 0.8800 0.3250 0.2400 0.4271
0.05 0.2400 0.4271 0.3200 0.4665 0.1600 0.3666
0.1 0.0400 0.1960 0.0400 0.1960 0.0000 0.0000
0.25 0.0800 0.2713 0.0000 0.0000 0.0400 0.1960
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(a)

Algo. MLasso UMAP MLasso DM
Manifold σ mean std mean std

M1 0.00 1.5546 0.0058 1.4158 0.0053
0.001 1.4116 0.0002 1.4695 0.0053
0.0025 1.4330 0.0001 1.5155 0.0011
0.005 1.4365 0.0001 1.5169 0.0006
0.01 1.4150 0.0006 1.6916 0.0175
0.025 1.5859 0.0155 1.3873 0.0232
0.05 1.0605 0.4028 1.0936 0.5264
0.1 1.0565 0.3203 1.0649 0.2605
0.25 1.9410 0.4179 0.7376 0.1446
0.5 1.1829 0.4225 0.9984 0.5234

M2 0.00 1.4271 0.0001 1.3771 0.0027
0.001 1.5571 0.0021 1.2117 0.0024
0.0025 1.3939 0.0099 1.1849 0.0190
0.005 1.4384 0.0004 1.0933 0.0000
0.01 1.4600 0.0003 1.0858 0.0000
0.025 1.4788 0.0013 1.0898 0.0001
0.05 1.1059 0.0693 0.9300 0.1270
0.1 1.0388 0.1574 1.7726 0.3882
0.25 1.0980 0.1017 1.962 0.5087
0.5 1.1183 0.1217 1.4625 0.3013

M3 0.00 1.4769 0.0009 1.4699 0.0038
0.001 1.7949 0.0013 1.4132 0.0016
0.0025 1.4798 0.0006 1.2866 0.0017
0.005 1.5663 0.0128 1.2282 0.0096
0.01 1.6118 0.0028 1.1880 0.0012
0.025 1.6571 0.0265 1.4387 0.0215
0.05 0.8887 0.1743 0.9747 0.2632
0.1 0.9090 0.2390 0.6623 0.2017
0.25 1.5656 0.3850 1.3999 0.4443
0.5 1.1101 0.3288 1.2258 0.3945

(b)

Table 4: a: Successful support recoveries as a proportion of 25 independent trials for TSLasso, MLasso DM,
and MLasso UMAP. Our algorithm consistently achieves near perfect recovery on all manifolds for noise levels
up to σ = 0.025, while the performance of MLasso DM and MLasso UMAP drops, particularly on theM3

datasets. b: Speedup of TSLasso relative to MLasso DM and MLasso UMAP averaged over 10 independent
trials. We observe that TSLasso achieves around 1.25 - 1.5 speed up over the other algorithms due to its relative
simplicity.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Results from molecular dynamics data. 10a, 10e show bond diagrams for ethanol and malonaldehyde,
respectively. 10b and 10f show the heatmap of cosines (incoherences) of dictionary functions. The color is lighter
when there is more colinearity (note that in thise figures the collinearities are either nearly 1 or nearly 0). The
dictionaries are F = {g1,1:9, g2,1:3} for ethanol, and F = {g1,1:6, g2,1:6} for malonaldehyde. The grouping refers
to the common axis for the torsions in a group; for instance the group g1,1:6 denotes the six torsions associated
with the blue C(1)–C(2) axis in malonaldehyde. 10c, 10g are regularization paths for a single replicate of ethanol
and malonaldehyde. Note that in both figures there are a redundant trajectory of two functions that are added
together. 10d, 10h Selection of pairs of functions for ethanol and malonaldehyde over replicants using TSLasso.
The node point on the circles represents all functions in the dictionary and the number along the lines are
frequencies of each pairs selected over 25 repetitions. 10d means in all 25 repetitions, TSLasso selects g1,1 and
g2,1, which are the bond torsions around C-C bond and C-O bond respectively. 10h show that in 24 out of 25
replicates, TSLasso is able to select one function from each highly colinear function group.

(a) (b)

Figure 11: Diffusion map embedding for ethanol MDS data. Data points are colored by the two torsions found by
TSLasso, denoted here generically as g1, g2.
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Dataset n d D p n′ ω ϵ Na

Eth 50000 2 50 12 100 25 3.5 9
Mal 50000 2 50 12 100 25 3.5 9
Tol 50000 1 50 30 100 25 1.9 15

Table 5: Parameters for the Molecular Dynamics Simulation data experiments: Eth(Ethanol), Mal(Malonaldehyde)
and Tol(Toluene), Na number of atoms.

(a) (b)

Figure 12: Diffusion map embedding for Malonaldehyde data. Data points are colored by the two torsions found
by TSLasso, denoted here generically as g1, g2.

Figure 13: Diffusion Maps embedding for another molecule, Dimethilfuran, MDS data. The embedding is colored,
from left to right, by two torsions which are the correct coordinate functions for this molecule; a third torsion
which has high variation normal to the manifold (hence only small variation alongM; and a fourth function that
cannot be coordinate function because it oscillates onM.
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