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Abstract

In this paper, we propose Posterior Sampling
Reinforcement Learning for Zero-sum Stochas-
tic Games (PSRL-ZSG), the first online learning
algorithm that achieves Bayesian regret bound
of eO(HS

p
AT ) in the infinite-horizon zero-sum

stochastic games with average-reward criterion.
Here H is an upper bound on the span of the bias
function, S is the number of states, A is the num-
ber of joint actions and T is the horizon. We con-
sider the online setting where the opponent can
not be controlled and can take any arbitrary time-
adaptive history-dependent strategy. Our regret
bound improves on the best existing regret bound
of eO( 3

p
DS2AT 2) by Wei et al. (2017) under

the same assumption and matches the theoretical
lower bound in T .

1 INTRODUCTION

Recent advances in playing the game of Go (Silver et al.,
2017) and Starcraft (Vinyals et al., 2019) have proved the
capability of self-play in achieving super-human perfor-
mance in competitive reinforcement learning (competitive
RL) (Crandall and Goodrich, 2005), a special case of multi-
agent RL where each player tries to maximize its own re-
ward. These self-play algorithms are able to learn through
repeatedly playing against themselves and update their pol-
icy based on the observed trajectory in the absence of hu-
man supervision. Despite the empirical success, the the-
oretical understanding of these algorithms is limited and
is significantly more challenging than the single-agent RL
due to its multi-agent nature.

Self-play can be considered as a special case of offline com-
petitive RL where the learning algorithm controls both the
agent and the opponent during the learning process (Bai
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and Jin, 2020; Bai et al., 2020). In the more general and
sophisticated online learning case, the opponent can take
arbitrary history-dependent strategies and the agent has no
control on the opponent during the learning process (Wei
et al., 2017; Xie et al., 2020; Tian et al., 2021).

In this paper, we consider the online learning setting where
the agent learns against an arbitrary opponent who can fol-
low a time-variant history-dependent policy and can switch

its policy at any time. We consider infinite-horizon two-
player zero-sum stochastic games (SGs) with the average-
reward criterion. At each time, both players determine
their actions simultaneously upon observing the state. The
reward and the probability distribution of the next state
is then determined by the chosen actions and the current
state. The players’ payoffs sum to zero, i.e., the reward of
one player (agent) is exactly the loss of the other player
(opponent). The agent’s goal is to maximize its cumula-
tive reward while the opponent tries to minimize the total
loss. The problem of designing learning algorithms that
can learn against arbitrary opponents is a significant open
issue. There is extensive literature on designing and an-
alyzing algorithms that learn against opponents in such a
manner that they together converge to an equilibrium of
the underlying game. In such cases however, the opponent
is not free to choose any learning or non-learning strategy
that they want, a significant limitation in their practical use.

We propose Posterior Sampling Reinforcement Learning

algorithm for Zero-sum Stochastic Games (PSRL-ZSG),
a learning algorithm that achieves eO(HS

p
AT ) Bayesian

regret bound. Here H is an upper bound on the bias-span,
S is the number of states, A is the size of all possible ac-
tion pairs for both players, T is the horizon, and eO hides
logarithmic factors. The best existing result in this setting
is achieved by UCSG algorithm (Wei et al., 2017) which
obtains a regret bound of eO( 3

p
DS2AT 2) where D � H

is the diameter of the SG. As stochastic games general-
ize Markov Decision Processes (MDPs), our regret bound
is optimal (except for logarithmic factors) in T due to the
lower bound provided by Jaksch et al. (2010).
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Related Literature

SG was first formulated by Shapley (1953). A large body
of work focuses on finding the Nash equilibria in SGs with
known transition kernel (Littman, 2001; Hu and Wellman,
2003; Hansen et al., 2013), or learning with a generative
model (Jia et al., 2019; Sidford et al., 2020; Zhang et al.,
2020) to simulate the transition for an arbitrary state-action
pair. In these cases no exploration is needed.

There is a long line of research on exploration and regret
analysis in single-agent RL (see e.g. Jaksch et al. (2010);
Osband et al. (2013), Gopalan and Mannor (2015); Azar
et al. (2017); Ouyang et al. (2017); Jin et al. (2018); Zhang
and Ji (2019); Zanette and Brunskill (2019); Wei et al.
(2020, 2021); Chen et al. (2021a); Jafarnia-Jahromi et al.
(2021b,a) and references therein). Extending these results
to the SGs is non-trivial since the actions of the opponent
also affect the state transition and can not be controlled
by the agent. We review the literature on exploration in
SGs and refer the interested reader to Zhang et al. (2021);
Yang and Wang (2020) for an extensive literature review on
multi-agent RL in various settings.

Stochastic Games. A few recent works use self-play as
a method to learn stochastic games (Bai and Jin, 2020; Bai
et al., 2020; Liu et al., 2021; Chen et al., 2021b). How-
ever, self-play requires controlling both the agent and the
opponent and cannot be applied in the online setting where
the agent plays against an arbitrary opponent. All of these
works consider the setting of finite-horizon SG where the
interaction of the players and the environment terminates
after a fixed number of steps.

In the online setting where the opponent is arbitrary, Xie
et al. (2020); Jin et al. (2021) achieve a regret bound of
eO(
p
T ) in the finite-horizon SGs with linear and general

function approximation, respectively. However, in the ap-
plications where the interaction between the players and
the environment is non-stopping (e.g., stock trading), the
infinite-horizon SG is more suitable. Lack of a fixed
horizon in this setting makes the problem more challeng-
ing. This is since the backward induction, a technique
that is widely used in the finite-horizon, is not applicable
in the infinite-horizon setting. A recent paper on poste-
rior sampling-based approaches to finite-horizon stochastic
games is Zhou et al. (2020).

In the infinite-horizon setting, the primary work of Braf-
man and Tennenholtz (2002) who proposed R-max algo-
rithm does not consider regret. A special case of on-
line learning in general-sum games is studied by DiGio-
vanni and Tewari (2021) where the opponent is allowed to
switch its stationary policy a limited number of times. They
achieve a regret bound of eO(`+

p
`T ) via posterior sam-

pling, where ` is the number of switches. Their result is
not directly comparable to ours because their definition of

regret is different. Moreover, they assume the transition
kernel is known and the opponent adopts stationary poli-
cies. To the best of our knowledge, the only existing algo-
rithm that considers online learning against an arbitrary op-
ponent in the infinite-horizon average-reward SG is UCSG
(Wei et al., 2017).

Comparison with UCSG (Wei et al., 2017). Our work is
closely related to UCSG, however clear distinctions exist in
the result, the algorithm, and the technical contribution:

• UCSG achieves a regret bound of eO( 3
p
DS2AT 2) un-

der the finite-diameter assumption (i.e., for any two
states and every stationary randomized policy of the
opponent, there exists a stationary randomized policy
for the agent to move from one state to the other in
finite expected time). Under the much stronger er-
godicity assumption (i.e., for any two states and ev-

ery stationary randomized policy of the agent and the
opponent, it is possible to move from one state to
the other in finite expected time), UCSG obtains a re-
gret bound of eO(DS

p
AT ). Note that the ergodicity

assumption greatly alleviates the challenge in explo-
ration. Our algorithm significantly improves this re-
sult and achieves a regret bound of eO(HS

p
AT ) un-

der the finite-diameter assumption.

• UCSG is an optimism-based algorithm inspired by
Jaksch et al. (2010) and requires the complicated max-
imin extended value iteration. Our algorithm, how-
ever, is the first posterior sampling-based algorithm in
SGs, leveraging the ideas of Ouyang et al. (2017) in
MDPs, and is much simpler both in the algorithm and
the analysis. Note that considering randomized poli-
cies in SGs (compared to MDPs) brings some chal-
lenges in applying the concentration bounds because
of the continuous space of randomized policies. How-
ever, we handle this by simply using the tower prop-
erty of conditional expectation which allows us to
replace the continuous space of randomized policies
with the finite space of actions.

• From the analysis perspective, under the finite-
diameter assumption, UCSG uses a sequence of finite-
horizon SGs to approximate the average-reward SG
and that leads to the sub-optimal regret bound of
O(T 2/3). Our analysis avoids the finite-horizon ap-
proximation by directly using the Bellman equation in
the infinite-horizon SG and achieves near-optimal re-
gret bound.

We note that the main challenge in online learning in a
Stochastic Game (SG) is the opponent’s non-stationarity
and uncontrollability. Wei et al. (2017) developed a tech-
nique to replace the opponent’s non-stationary policy with
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a stationary one in their analysis leading to a very compli-
cated analysis and sub-optimal regret bound. We signif-
icantly simplify the analysis and improve the final regret
bound with a novel technique in which we replace the op-
ponent’s policy with arbitrary distribution over actions.

2 PRELIMINARIES

Let M = (S,A, r, ✓) be a stochastic zero-sum game where
S is the state space, A = A

1
⇥A

2 is the joint action space,
r : S ⇥A

1
⇥ A

2
! [�1, 0] is the reward function and

✓ : S ⇥ S ⇥A
1
⇥A

2 represents the transition kernel such
that ✓(s0|s, a1, a2) = P(st+1 = s

0
|st = s, a

1
t = a

1
, a

2
t =

a
2) where st 2 S, a

1
t 2 A

1
, a

2
t 2 A

2 are the state, the
agent and the opponent’s actions at time t = 1, 2, 3, · · · ,
respectively. We assume that S,A are finite sets with size
S = |S|, A = |A|.

The game starts at some initial state s1. At time t =
1, 2, 3, · · · , the players observe state st and take ac-
tions a

1
t , a

2
t . The agent (maximizer) receives reward

r(st, a1t , a
2
t ) from the opponent (minimizer). Then, the

state evolves to st+1 according to the probability distribu-
tion ✓(·|st, a1t , a

2
t ). The goal of the agent is to maximize

its cumulative reward while the opponent tries to minimize
it. For the ease of notation, we denote a := (a1, a2) and
at := (a1t , a

2
t ) and accordingly r(st, a1t , a

2
t ), ✓(·|st, a

1
t , a

2
t )

will be denoted by r(st, at) and ✓(·|st, at), respectively.

The players’ actions are assumed to depend on the history.
Namely, denote by ⇡

1
t (resp. ⇡

2
t ) the mappings from the

history ht = (s1, a1, · · · , st�1, at�1, st) to the probability
distributions over A1 (resp. A2). Let ⇡1 := (⇡1

1 ,⇡
1
2 , · · · )

(resp. ⇡
2 := (⇡2

1 ,⇡
2
2 , · · · )) be the sequence of history-

dependent randomized policies whose class is denoted by
⇧HR. In the case that ⇡1

t (resp. ⇡2
t ) is independent of time

(stationary randomized policies), we remove the subscript
t and with abuse of notation denote ⇡

1 := (⇡1
,⇡

1
, · · · )

(resp. ⇡
2 := (⇡2

,⇡
2
, · · · )). The class of stationary ran-

domized policies is denoted by ⇧SR.

For the ease of presentation, we introduce a few nota-
tions. Let A

1 = |A
1
|, A

2 = |A
2
| denote the size

of the action spaces. For an integer k � 1, denote
by �k the probability simplex of dimension k. Let
q
1
2 �A1 and q

2
2 �A2 . With abuse of nota-

tion, let r(s, q1, q2) := Ea1⇠q1,a2⇠q2 [r(s, a
1
, a

2)] and
✓(s0|s, q1, q2) := Ea1⇠q1,a2⇠q2 [✓(s

0
|s, a

1
, a

2)].

To achieve a low regret algorithm, it is necessary to assume
that all the states are accessible by the agent under some
policy. In the special case of MDPs, this is stated by the
notion of “weakly communication” (or “finite diameter”
(Jaksch et al., 2010)) and is known to be the minimal as-
sumption to achieve sub-linear regret (Bartlett and Tewari,
2009). The following assumption generalizes this notion to
the stochastic games.

Assumption 2.1. (Finite Diameter) There exists D � 0
such that for any stationary randomized policy ⇡

2
2 ⇧SR of

the opponent and any s, s
0
2 S ⇥ S , there exists a station-

ary randomized policy ⇡
1
2 ⇧SR of the agent, such that the

expected time of reaching s
0 starting from s under policy

⇡ = (⇡1
,⇡

2) does not exceed D, i.e.,

max
s,s0

max
⇡22⇧SR

min
⇡12⇧SR

T
⇡
s!s0  D,

where T
⇡
s!s0 is the expected time of reaching s

0 starting
from s under policy ⇡ = (⇡1

,⇡
2).

This assumption was first introduced by Federgruen (1978)
and is essential to achieve low regret algorithms in the ad-
versarial setting (Wei et al., 2017). To see this, suppose that
the opponent has a way to lock the agent in a “bad” state. In
the initial stages of the game when the agent has limited en-
vironment knowledge, it may not be possible to avoid such
a state and linear regret is unavoidable. This assumption
states that regardless of the strategy used by the opponent,
the agent has a way to recover from such bad states.

For a zero-sum matrix game with matrix G of size
m ⇥ n, the game value is denoted by val(G) =
maxp2�m minq2�n p

T
Gq = minq2�n maxp2�m p

T
Gq.

Moreover, the Nash equilibrium p
⇤
2 �m, q

⇤
2 �n al-

ways exists (Nash et al., 1950). For SGs, under Assump-
tion 2.1, Federgruen (1978); Wei et al. (2017) prove that
there exist unique J(✓) 2 R and unique (upto an additive
constant) function v(·, ✓) : S ! R that satisfy the Bellman
equation, i.e., for all s 2 S ,

J(✓) + v(s, ✓) = val

(
r(s, ·, ·) +

X

s0

✓(s0|s, ·, ·)v(s0, ✓)

)
.

(1)

In particular, the Nash equilibrium of the right hand side
for each s 2 S yields maximin stationary policies ⇡

⇤ =
(⇡1⇤

,⇡
2⇤) such that

J(✓) + v(s, ✓) = max
q12�A1

n
r(s, q1,⇡2⇤(·|s))

+
X

s0

✓(s0|s, q1,⇡2⇤(·|s))v(s0, ✓)
o
, (2)

J(✓) + v(s, ✓) = min
q22�A2

n
r(s,⇡1⇤(·|s), q2)

+
X

s0

✓(s0|s,⇡1⇤(·|s), q2)v(s0, ✓)
o
. (3)

Moreover, J(✓) is the maximin average reward obtained by
the agent and is independent of the initial state s1, i.e.,

J(✓) = sup
⇡12⇧HR

inf
⇡22⇧HR

lim inf
T!1

1

T
E
"

TX

t=1

r(st, at)|s1 = s

#
,
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where at = (a1t , a
2
t ) and a

1
t ⇠ ⇡

1
t (·|ht) and a

2
t ⇠ ⇡

2
t (·|ht).

Note that J(✓) 2 [�1, 0] because the range of the re-
ward function is [�1, 0]. Define the span of the stochas-
tic game with transition kernel ✓ as the span of the corre-
sponding value function v, i.e., sp(✓) := maxs v(s, ✓) �
mins v(s, ✓). We restrict our attention to stochastic games
whose transition kernel ✓ satisfies Assumption 2.1 and
sp(✓)  H where H is a known scalar. This constant
is not used explicitly in the algorithm we propose but is
implicit since all transition kernels we allow have bias-
span bounded by H . Let ⌦⇤ denote the set of all such ✓.
Moreover, observe that if v satisfies the Bellman equation,
v + c also satisfies the Bellman equation for any scalar
c. Thus, without loss of generality, we can assume that
0  v(s, ✓)  H for all s 2 S and ✓ 2 ⌦⇤.

Stationary Randomized Opponent. We first consider
the special case where the opponent follows a fixed un-
known stationary randomized policy ⇡

2. In that case, the
agent can consider the opponent as part of the environment
and define a new environment with reward and transition
kernel

r
⇡2

(s, a1) := r(s, a1,⇡2(s)),

✓
⇡2

(s0|s, a1) := ✓(s0|s, a1,⇡2(s)).

Since the new environment is stationary, the agent can use
any standard single-agent RL algorithm. For example, ap-
plying TSDE algorithm (Ouyang et al., 2017) yields a re-
gret bound of eO(DS

p
A1T ).1 The rest of the paper con-

siders the more general case where the opponent can take
any time-adaptive randomized policy.

Time-adaptive Randomized Opponent. The focus of
this paper is on the case where the agent plays a stochastic
game (S,A, r, ✓⇤) against an opponent who can take time-
adaptive policies. We assume that the opponent knows the
history of states and actions and can play time-adaptive
history-dependent policies. Recall that the state of such
policies is denoted by ⇧HR. Considering the opponent as
part of the environment in this case results in a time-varying
environment and, therefore, standard single-agent no-regret
algorithms are not applicable. S,A and r are completely
known to the agent. However, the transition kernel ✓⇤ is
unknown. In the beginning of the game, ✓⇤ is drawn from
an initial distribution µ1 and is then fixed. We assume that
the support of µ1 is a subset of ⌦⇤. The performance of the
agent is then measured with the notion of regret defined as

RT := sup
⇡22⇧HR

E
"

TX

t=1

(J(✓⇤)� r(st, at))

#
,

1The original bound in Ouyang et al. (2017) is eO(HS

p
A1T )

where H is an upper bound on the span of the relative value
function. Assumption 2.1 implies that the diameter and thus the
span of the relative value function of the induced MDP is upper
bounded by D.

where a
2
t ⇠ ⇡

2
t (·|ht). Here the expectation is with re-

spect to the prior distribution µ1, randomized algorithm and
the randomness in the state transition. Note that the regret
guarantee is against an arbitrary opponent who can change
its policy at each time step and has the perfect knowledge of
the history of the states and actions. The only hidden infor-
mation from the opponent is the realization of the agent’s
current action (which will be revealed after both players
have chosen their actions). We note that self-play and the
case when the agent and the opponent use the same learning
algorithm are two special cases of the scenario considered
here.

3 POSTERIOR SAMPLING FOR
STOCHASTIC GAMES

In this section, we propose Posterior Sampling algorithm
for Zero-sum SGs (PSRL-ZSG). The agent maintains the
posterior distribution µt on parameter ✓⇤. More precisely,
the learning algorithm receives an initial distribution µ1 as
the input and updates the posterior distribution upon ob-
serving the new state according to

µt+1(d✓) / ✓(st+1|st, at)µt(d✓). (4)

PSRL-ZSG proceeds in episodes. Let tk, Tk denote the
start time and the length of episode k, respectively. In the
beginning of each episode, the agent draws a sample of the
transition kernel from the posterior distribution µtk . The
maximin strategy is then derived for the sampled transition
kernel according to (1) and used by the agent during the
episode. Let Nt(s, a) be the number of visits to state-action
pair (s, a) = (s, a1, a2) before time t, i.e.,

Nt(s, a) =
t�1X

⌧=1

(s⌧ = s, a⌧ = a).

As described in Algorithm 1, a new episode starts if t >

tk + Tk�1 or Nt(s, a) > 2Ntk(s, a) for some (s, a). The
first criterion, t > tk + Tk�1, states that the length of the
episode grows at most by 1 if the other criterion is not trig-
gered. This ensures that Tk  Tk�1 + 1 for all k. The
second criterion is triggered if the number of visits to a
state-action pair is doubled. These stopping criteria balance
the trade-off between exploration and exploitation. In the
beginning of the game, the episodes are short to motivate
exploration since the agent is uncertain about the underly-
ing environment. As the game proceeds, the episodes grow
to exploit the information gathered about the environment.
These stopping criteria are the same as those used in MDPs
(Ouyang et al., 2017).

Algorithm 1 can achieve regret bound of eO(HS
p
AT ).

This result improves upon the previous best known result
of UCSG algorithm which achieves eO( 3

p
DS2AT 2) under

the same assumption (Wei et al., 2017).
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Algorithm 1 PSRL-ZSG
Input: µ1

Initialization: t 1, t1  0
for episodes k = 1, 2, · · · do

Tk�1  t� tk

tk  t

Generate ✓k ⇠ µtk and compute ⇡
1
k(·) using (1)

while t  tk +Tk�1 and Nt(s, a)  2Ntk(s, a) for all

(s, a) 2 S ⇥A do
Choose action a

1
t ⇠ ⇡

1
k(·|st) and observe a

2
t , st+1

Update µt+1 according to (4)
t t+ 1

Theorem 3.1. Under Assumption 2.1, Algorithm 1 can

achieve regret bound of

RT  (H + 1)
p
2SAT log T +H

+H

⇣
SA+ 2

p

SAT

⌘p
224S log(2AT ). (5)

4 ANALYSIS

In this section, we provide the proof of Theorem 3.1. A
central observation in our analysis is that in the begin-
ning of each episode, ✓⇤ and ✓k are identically distributed
conditioned on the history. This key property of pos-
terior sampling relates quantities that depend on the un-
known ✓⇤ to those of the sampled ✓k which is fully ob-
served by the agent. Posterior sampling ensures that if tk
is a stopping time, for any measurable function f and any
htk -measurable random variable X , E[f(✓⇤, X)|htk ] =
E[f(✓k, X)|htk ] (Ouyang et al., 2017; Osband et al., 2013).

The key challenge in the analysis of stochastic games is
that the opponent is also making decisions. If the oppo-
nent follows a fixed stationary policy, it can be considered
as part of the environment and thus the SG reduces to an
MDP. However, in the case that the opponent uses a dy-
namic history-dependent policy during the learning phase
of the agent, this reduction is not possible. The key lemma
in our analysis is Lemma 4.2 which overcomes this diffi-
culty through the Bellman equation for the SG.

4.1 Proof of Theorem 3.1

Let KT := max{k : tk  T} be the number of episodes
until time T and define tKT+1 = T + 1. Recall that RT =
sup⇡22⇧HR RT (⇡2) where

RT (⇡
2) = E

"
TJ(✓⇤)�

TX

t=1

r(st, at)

#
. (6)

Let ⇡2
2 ⇧HR be an arbitrary history-dependent random-

ized strategy followed by the opponent. We start by decom-

posing the regret into two terms

RT (⇡
2) = E

"
TJ(✓⇤)�

TX

t=1

r(st, at)

#

= E
"
TJ(✓⇤)�

KTX

k=1

tk+1�1X

t=tk

J(✓k)

#

+ E
"
KTX

k=1

tk+1�1X

t=tk

(J(✓k)� r(st, at))

#
. (7)

Lemma 4.1 uses the property of posterior sampling to
bound the first term. The second term is handled by
combining the Bellman equation, concentration inequali-
ties and the property of posterior sampling as detailed in
Lemma 4.2. Finally, Lemma 4.3 bounds the number of
episodes and completes the proof.

Lemma 4.1. The first term of (7) can be bounded by

E
"
TJ(✓⇤)�

KTX

k=1

tk+1�1X

t=tk

J(✓k)

#
 E[KT ]

Proof.

KTX

k=1

tk+1�1X

t=tk

J(✓k) =
KTX

k=1

TkJ(✓k) =
1X

k=1

(tk  T )TkJ(✓k)

�

1X

k=1

(tk  T )(Tk�1 + 1)J(✓k) (8)

where the last inequality is by the fact that J(✓k)  0 and
Tk  Tk�1 + 1 due to the first stopping criterion. Now,
note that tk is a stopping time and (tk  T ) and Tk�1 are
htk -measurable random variables. Thus, by the property of
posterior sampling and monotone convergence theorem,

E
" 1X

k=1

(tk  T )(Tk�1 + 1)J(✓k)

����� htk

#

=
1X

k=1

E [ (tk  T )(Tk�1 + 1)J(✓k) | htk ]

=
1X

k=1

E [ (tk  T )(Tk�1 + 1)J(✓⇤) | htk ]

= E
" 1X

k=1

(tk  T )(Tk�1 + 1)J(✓⇤)

����� htk

#

� E
"
KTX

k=1

(Tk�1 + 1)J(✓⇤)

����� htk

#
.
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Taking another expectation from both sides and using the
tower property, we have

E
" 1X

k=1

(tk  T )(Tk�1 + 1)J(✓k)

#

� E
"
KTX

k=1

(Tk�1 + 1)J(✓⇤)

#
.

Replacing this in (8) implies that

E
"
TJ(✓⇤)�

KTX

k=1

tk+1�1X

t=tk

J(✓k)

#

 E
"
(T �

KTX

k=1

Tk�1)J(✓⇤)

#
� E[KTJ(✓⇤)]  E[KT ].

The last inequality is by the fact that T �
PKT

k=1 Tk�1  0
and J(✓⇤) 2 [�1, 0].

Lemma 4.2. The second term of (7) can be bounded by

E
"
KTX

k=1

tk+1�1X

t=tk

(J(✓k)� r(st, at))

#
 HE[KT ] +H

+
p
224S log(2AT )(HSA+ 2H

p

SAT ).

Proof. The policy ⇡
1
k used by the agent at episode k is the

solution of the Nash equilibrium in (1). Thus, for tk  t 

tk+1 � 1 and any s 2 S , (3) implies that

J(✓k) + v(s, ✓k)

 r(s,⇡1
k(·|s), q

2) +
X

s0

✓k(s
0
|s,⇡

1
k(·|s), q

2)v(s0, ✓k),

for any distribution q
2
2 �A2 . Let ⇡2 = (⇡2

1 ,⇡
2
2 , · · · ) 2

⇧HR be an arbitrary history-dependent randomized strat-
egy for the opponent. Note that for any t � 1, ⇡2

t is ht-
measurable. Replacing s by st and q

2 by ⇡
2
t (·|ht) implies

that

J(✓k)� r(st,⇡
1
k(·|st),⇡

2
t (·|ht))



X

s0

✓k(s
0
|st,⇡

1
k(·|st),⇡

2
t (·|ht))v(s

0
, ✓k)� v(st, ✓k).

Adding and subtracting v(st+1, ✓k) to the right hand side
and summing over time steps within episode k implies that

tk+1�1X

t=tk

�
J(✓k)� r(st,⇡

1
k(·|st),⇡

2
t (·|ht))

�



tk+1�1X

t=tk

 
X

s0

✓k(s
0
|st,⇡

1
k(·|st),⇡

2
t (·|ht))v(s

0
, ✓k)

� v(st+1, ✓k)

!

+

tk+1�1X

t=tk

(v(st+1, ✓k)� v(st, ✓k)) . (9)

The second term on the right hand side of (9) telescopes
and can be bounded as
tk+1�1X

t=tk

(v(st+1, ✓k)� v(st, ✓k)) = v(stk+1 , ✓k)� v(stk , ✓k)

 H, (10)

where the last inequality is by the fact that ✓k is chosen
from the posterior distribution whose support is a subset of
⌦⇤. Substituting (10) in (9), summing over episodes, and
taking expectation implies that

E
"
KTX

k=1

tk+1�1X

t=tk

(J(✓k)� r(st, at))

#

= E
"
KTX

k=1

tk+1�1X

t=tk

�
J(✓k)� r(st,⇡

1
k(·|st),⇡

2
t (·|ht))

�
#

 HE[KT ] + E
"

KTX

k=1

tk+1�1X

t=tk

X

s0

✓k(s
0
|st,⇡

1
k(·|st),⇡

2
t (·|ht))v(s

0
, ✓k)� v(st+1, ✓k)

#
.

We proceed to bound the last term on the right hand side
of the above inequality. Before proceeding note that if k(t)
denotes the episode at time t, a random variable. Then, for
any t � 1 and s

0
2 S ,

E
h
✓k(t)(s

0
|st, a

1
t , a

2
t )
��ht, ✓k(t)

i
=

✓k(t)

⇣
s
0��st,⇡1

k(t)(·|st),⇡
2
t (·|ht)

⌘
, (⇤)

because a
1
t ⇠ ⇡

1
k(t)(·|st) and a

2
t ⇠ ⇡

2
t (·|ht). Now,

E
"

KTX

k=1

tk+1�1X

t=tk

X

s0

✓k(s
0
|st,⇡

1
k(·|st),⇡

2
t (·|ht))v(s

0
, ✓k)� v(st+1, ✓k)

#

= E
"

KTX

k=1

tk+1�1X

t=tk

X

s0

✓k(s
0
|st, a

1
t , a

2
t )v(s

0
, ✓k)� v(st+1, ✓k)

#
=

E
"
KTX

k=1

tk+1�1X

t=tk

X

s0

[✓k(s
0
|st, at)� ✓⇤(s

0
|st, at)] v(s

0
, ✓k)

#

 HE
"
KTX

k=1

tk+1�1X

t=tk

X

s0

����� ✓k(s
0
|st, at)� ✓⇤(s

0
|st, at)

�����

#

(11)

To bound the inner summation, similar to Ouyang et al.
(2017); Jaksch et al. (2010), we define a confidence set
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Ck around the empirical transition kernel ✓̂k(s0|s, a) :=
Ntk

(s0,s,a)

Ntk
(s,a) . Here Ntk(s

0
, s, a) :=

Ptk�1
t=1 (st = s, at =

a, st+1 = s
0) is the number of visits to state-action pair

(s, a) whose next state is s
0. The confidence set Ck is de-

fined as Ck :=

{✓ :
X

s0

|✓(s0|s, a)� ✓̂k(s
0
|s, a)|  bk(s, a) 8s, a, s

0
},

where bk(s, a) :=
q

14S log(2AtkT )
max{1,Ntk

(s,a)} . Weissman et al.
(2003) shows that the true transition kernel ✓⇤ belongs to
Ck with high probability. We use this fact to show concen-
tration of ✓̂k around ✓⇤. Concentration of ✓̂k around ✓k is
then followed by the property of posterior sampling. More
precisely, we can write

X

s0

|✓k(s
0
|st, at)� ✓⇤(s

0
|st, at)|



X

s0

|✓k(s
0
|st, at)� ✓̂k(s

0
|st, at)|

+
X

s0

|✓⇤(s
0
|st, at)� ✓̂k(s

0
|st, at)|

 2bk(st, at) + 2 ( (✓k /2 Ck) + (✓⇤ /2 Ck)) .

Substituting the inner sum of (11) with this upper bound
implies

HE
"
KTX

k=1

tk+1�1X

t=tk

X

s0

����� ✓k(s
0
|st, at)� ✓⇤(s

0
|st, at)

�����

#

 2H

(
KTX

k=1

tk+1�1X

t=tk

bk(st, at)

)

+ 2HE
"
KTX

k=1

Tk{ (✓k /2 Ck) + (✓⇤ /2 Ck)}

#
.

(12)

The first term on the right hand side of (12) can be bounded
as

KTX

k=1

tk+1�1X

t=tk

bk(st, at) =
KTX

k=1

tk+1�1X

t=tk

s
14S log(2AtkT )

max{1, Ntk(st, at)}



KTX

k=1

tk+1�1X

t=tk

s
28S log(2AT 2)

max{1, Nt(st, at)}

=
TX

t=1

s
28S log(2AT 2)

max{1, Nt(st, at)}



p
56S log(2AT )(SA+ 2

p

SAT ), (13)

where the first inequality is by the fact that tk  T and
Nt(s, a)  2Ntk(s, a) for all s, a and the second inequality

is by the following argument:
TX

t=1

s
1

max{1, Nt(st, at)}
=

TX

t=1

X

s,a

(st = s, at = a)p
max{1, Nt(s, a)}

=
X

s,a

TX

t=1

(st = s, at = a)p
max{1, Nt(s, a)}

=
X

s,a

0

@1 +

nT+1(s,a)�1X

j=1

1
p
j

1

A



X

s,a

⇣
1 + 2

p
NT+1(s, a)

⌘
= SA+ 2

X

s,a

p
NT+1(s, a)

 SA+ 2

s
SA

X

s,a

NT+1(s, a) = SA+ 2
p

SAT ,

where the last inequality is by Cauchy-Schwarz and the
last equality is by the fact that

P
s,a NT+1(s, a) = T . To

bound the second term on the right hand side of (12), we
can write

E
"
KTX

k=1

Tk{ (✓k /2 Ck) + (✓⇤ /2 Ck)}

#

 E
" 1X

k=1

T{ (✓k /2 Ck) + (✓⇤ /2 Ck)}

#

= T

1X

k=1

E [ (✓k /2 Ck) + (✓⇤ /2 Ck)]

= 2T
1X

k=1

E [ (✓⇤ /2 Ck)] = 2T
1X

k=1

P(✓⇤ /2 Ck),

where the second equality is by the property of Posterior
Sampling since Ck is Ftk -measurable. Note that P(✓⇤ /2

Ck) 
1

15Tt6k
(Lemma 17 of Jaksch et al. (2010)). Thus,

2T
1X

k=1

P(✓⇤ /2 Ck) =
2

15

1X

k=1

1

t
6
k


2

15

1X

k=1

1

k6


1

2
.

(14)

Combining (13) and (14) in (12) completes the proof.Remark 4.1. We note that the bias span of v is bounded
by H because we are using the bias span of v from the
minimax Bellman equation (not from the Bellman equation
of the player’s policies.) This key observation allows us to
handle an adversarial opponent and improve the bound of
prior work (Wei et al., 2017) with a much simpler analysis.

It remains to bound the number of episodes. The following
lemma completes the proof of Theorem 3.1.
Lemma 4.3. The number of episodes can be bounded by

KT 
p
2SAT log T .

Proof. Define macro episodes with start times tmi as
tm1 = t1 and for i � 2, tmi :=

min{tk > tmi�1 : ntk(s, a) > 2ntk�1(s, a), for some (s, a)}.
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Note that tmi is the start time of the ith macro episode and
corresponds to the ith start time that an episode triggers
with the second stopping criterion in Algorithm 1. Denote
by MT the number of macro episodes by time T and let
mMT+1 = KT + 1.

Let T̃i be the length of the ith macro episode. We can write
T̃i =

Pmi+1�1
k=mi

Tk. All the episodes except the last one
within a macro episode are started with the first criterion.
Thus, for all mi  k  mi+1 � 2, Tk = Tk�1 + 1, and

T̃i =

mi+1�1X

k=mi

Tk = Tmi+1�1 +

mi+1�mi�1X

j=1

(Tmi�1 + j)

� 1 +

mi+1�mi�1X

j=1

(1 + j)

= 0.5(mi+1 �mi)(mi+1 �mi + 1).

This implies that mi+1 � mi 

p
2T̃i for all i =

1, · · · ,MT . Consequently,

KT = mMT+1 � 1 =
MTX

i=1

(mi+1 �mi) 
MTX

i=1

q
2T̃i



vuut2MT

MTX

i=1

T̃i =
p
2MTT , (15)

where the last inequality is by Cauchy-Schwarz and the last
equality is due to

PMT

i=1 T̃i = T . Now, it suffices to prove
that MT  SA log T . To see this, let Ts,a be the episode
start times that are triggered by the second stopping crite-
rion at state-action pair (s, a). That is,

Ts,a := {tk  T : ntk(s, a) > 2ntk�1(s, a)}.

Since the number of visits to state-action pair (s, a) is
doubled at each tk 2 Ts,a, we claim that |Ts,a| 

log nT+1(s, a). To see this, assume by contradiction that
|Ts,a| > log nT+1(s, a) + 1. We can write

ntKT
(s, a) �

Y

tkT,ntk�1
(s,a)�1

ntk(s, a)

ntk�1(s, a)

�

Y

tk2Ts,a,ntk�1
(s,a)�1

ntk(s, a)

ntk�1(s, a)

>

Y

tk2Ts,a,ntk�1
(s,a)�1

2 = 2|Ts,a|�1
� nT+1(s, a),

which is a contradiction. Here, the second inequality is by
the fact that nt(s, a) is non-decreasing and the last inequal-
ity is by the definition of Ts,a. Now, we can write

MT = 1 + |Ts,a|  1 +
X

s,a

log nT+1(s, a)

 1 + SA log(
X

s,a

nT+1(s, a)/SA)

= 1 + SA log(T/SA)  SA log T.

Here, the second inequality is by the concavity of log. Re-
placing this inequality in (15) completes the proof.

5 CONCLUSIONS

We proposed PSRL-ZSG, a posterior sampling algorithm
that achieves Bayesian regret bound of eO(HS

p
AT ) in the

infinite-horizon zero-sum stochastic games with average-
reward criterion. No structure is imposed on the opponent’s
strategy. The best existing result achieves high probabil-
ity regret bound of eO(DS

p
AT ) only under the strong er-

godicity assumption. PSRL-ZSG relaxes that assumption
and improves the previous best known high probability re-
gret bound of eO( 3

p
DS2AT 2) obtained by UCSG algorithm

(Wei et al., 2017) under the same finite diameter assump-
tion. This bound is order optimal in terms of A and T .
The framework and analysis developed in this paper may
be useful for designing regret-optimal algorithms based on
the optimism in face of uncertainty principle for zero-sum
stochastic games.

Please note that in a game situation, it is very challenging to
have an experimental setup from which we can draw mean-
ingful conclusions since the opponent is free to do whatever
they want. A direction for future work would be to assess
the proposed algorithm in a systematic manner empirically.

References

M. G. Azar, I. Osband, and R. Munos. Minimax regret
bounds for reinforcement learning. In Proceedings of

the 34th International Conference on Machine Learning-

Volume 70, pages 263–272. JMLR. org, 2017.

Y. Bai and C. Jin. Provable self-play algorithms for com-
petitive reinforcement learning. In International Con-

ference on Machine Learning, pages 551–560. PMLR,
2020.

Y. Bai, C. Jin, and T. Yu. Near-optimal reinforcement learn-
ing with self-play. In Advances in Neural Information

Processing Systems, pages 2159–2170, 2020.

P. L. Bartlett and A. Tewari. Regal: A regularization based
algorithm for reinforcement learning in weakly commu-
nicating mdps. In Proceedings of the Twenty-Fifth Con-

ference on Uncertainty in Artificial Intelligence, pages
35–42. AUAI Press, 2009.

R. I. Brafman and M. Tennenholtz. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3
(Oct):213–231, 2002.

L. Chen, M. Jafarnia-Jahromi, R. Jain, and H. Luo. Im-
plicit finite-horizon approximation and efficient optimal
algorithms for stochastic shortest path. arXiv preprint

arXiv:2106.08377, 2021a.



Mehdi Jafarnia Jahromi, Rahul Jain, Ashutosh Nayyar

Z. Chen, D. Zhou, and Q. Gu. Almost optimal algorithms
for two-player markov games with linear function ap-
proximation. arXiv preprint arXiv:2102.07404, 2021b.

J. W. Crandall and M. A. Goodrich. Learning to com-
pete, compromise, and cooperate in repeated general-
sum games. In Proceedings of the 22nd international

conference on machine learning, pages 161–168, 2005.

A. DiGiovanni and A. Tewari. Thompson sampling for
markov games with piecewise stationary opponent poli-
cies. In Proceedings of the 37th Annual Conference on

Uncertainty in Artificial Intelligence, 2021.

A. Federgruen. On n-person stochastic games by denumer-
able state space. Advances in Applied Probability, 10(2):
452–471, 1978.

A. Gopalan and S. Mannor. Thompson sampling for learn-
ing parameterized markov decision processes. In Con-

ference on Learning Theory, pages 861–898, 2015.

T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy
iteration is strongly polynomial for 2-player turn-based
stochastic games with a constant discount factor. Journal

of the ACM (JACM), 60(1):1–16, 2013.

J. Hu and M. P. Wellman. Nash q-learning for general-sum
stochastic games. Journal of machine learning research,
4(Nov):1039–1069, 2003.

M. Jafarnia-Jahromi, L. Chen, R. Jain, and H. Luo. Online
learning for stochastic shortest path model via posterior
sampling. arXiv preprint arXiv:2106.05335, 2021a.

M. Jafarnia-Jahromi, R. Jain, and A. Nayyar. Online
learning for unknown partially observable mdps. arXiv

preprint arXiv:2102.12661, 2021b.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine

Learning Research, 11(Apr):1563–1600, 2010.

Z. Jia, L. F. Yang, and M. Wang. Feature-based q-
learning for two-player stochastic games. arXiv preprint

arXiv:1906.00423, 2019.

C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-
learning provably efficient? In Advances in Neural In-

formation Processing Systems, pages 4863–4873, 2018.

C. Jin, Q. Liu, and T. Yu. The power of exploiter: Prov-
able multi-agent rl in large state spaces. arXiv preprint

arXiv:2106.03352, 2021.

M. L. Littman. Friend-or-foe q-learning in general-sum
games. In ICML, volume 1, pages 322–328, 2001.

Q. Liu, T. Yu, Y. Bai, and C. Jin. A sharp analysis of
model-based reinforcement learning with self-play. In
International Conference on Machine Learning, pages
7001–7010. PMLR, 2021.

J. F. Nash et al. Equilibrium points in n-person games.
Proceedings of the national academy of sciences, 36(1):
48–49, 1950.

I. Osband, D. Russo, and B. Van Roy. (more) efficient rein-
forcement learning via posterior sampling. In Advances

in Neural Information Processing Systems, pages 3003–
3011, 2013.

Y. Ouyang, M. Gagrani, A. Nayyar, and R. Jain. Learn-
ing unknown markov decision processes: A thompson
sampling approach. In Advances in Neural Information

Processing Systems, pages 1333–1342, 2017.

L. S. Shapley. Stochastic games. Proceedings of the na-

tional academy of sciences, 39(10):1095–1100, 1953.

A. Sidford, M. Wang, L. Yang, and Y. Ye. Solving dis-
counted stochastic two-player games with near-optimal
time and sample complexity. In International Con-

ference on Artificial Intelligence and Statistics, pages
2992–3002. PMLR, 2020.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al. Mastering the game of go without hu-
man knowledge. nature, 550(7676):354–359, 2017.

Y. Tian, Y. Wang, T. Yu, and S. Sra. Online learning in
unknown markov games. In International Conference on

Machine Learning, pages 10279–10288. PMLR, 2021.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Online reinforcement
learning in stochastic games. In Advances in Neural In-

formation Processing Systems, pages 4987–4997, 2017.

C.-Y. Wei, M. Jafarnia-Jahromi, H. Luo, H. Sharma, and
R. Jain. Model-free reinforcement learning in infinite-
horizon average-reward markov decision processes. In
International conference on machine learning, pages
10170–10180. PMLR, 2020.

C.-Y. Wei, M. Jafarnia-Jahromi, H. Luo, and R. Jain.
Learning infinite-horizon average-reward mdps with lin-
ear function approximation. In International Conference

on Artificial Intelligence and Statistics, pages 3007–
3015. PMLR, 2021.

T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and
M. J. Weinberger. Inequalities for the l1 deviation of
the empirical distribution. Hewlett-Packard Labs, Tech.

Rep, 2003.

Q. Xie, Y. Chen, Z. Wang, and Z. Yang. Learning zero-sum
simultaneous-move markov games using function ap-
proximation and correlated equilibrium. In Conference

on Learning Theory, pages 3674–3682. PMLR, 2020.

Y. Yang and J. Wang. An overview of multi-agent rein-
forcement learning from game theoretical perspective.
arXiv preprint arXiv:2011.00583, 2020.



A Bayesian Learning Algorithm for Unknown Zero-sum Stochastic Games with an Arbitrary Opponent

A. Zanette and E. Brunskill. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In International

Conference on Machine Learning, 2019.
K. Zhang, S. M. Kakade, T. Başar, and L. F. Yang.
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