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Abstract

We propose a simple network of Hawkes pro-
cesses as a cognitive model capable of learning
to classify objects. Our learning algorithm,
named HAN for Hawkes Aggregation of Neu-
rons, is based on a local synaptic learning rule
based on spiking probabilities at each output
node. We were able to use local regret bounds
to prove mathematically that the network is
able to learn on average and even asymptoti-
cally under more restrictive assumptions.

1 INTRODUCTION

Recordings of human brain suggest that concepts are
represented through sparse set of neurons that fire
when the concept is activated (Legenstein et al., 2016).
In this sense, Spiking Neural Networks (Tavanaei et al.,
2019) are more biologically plausible than Artificial
Neural Networks if one wants to understand how
the brain encodes information at neuronal level, and
stochastic modelling is particularly relevant (Buesing
et al., 2011).

Neuroscientists have identified local learning rules to
adjust synaptic weights, regrouped in the concept
of Spike-Timing-Dependent Plasticity (STDP) pro-
cess (Tavanaei et al., 2019; Caporale and Dan, 2008;
Nessler et al., 2009). This is a form of Hebbian learning
(Hebb, 1949), where connections between neurons are
strengthened or weakened depending on their relative
spike times in a short time-window. Other biological
rules have been used, for instance to model the olfac-
tory system (Kepple et al., 2019). However, to our
knowledge there is no mathematical proof that such
local rules enable to learn. If there was, it would help
in understanding how local transformations can lead
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to global learning.

Hawkes processes (Hawkes, 1971) are point processes
that are frequently used as models in a variety of set-
tings: network analysis, financial transactions, seismic
or health data (Hall and Willett, 2016; Zuo et al., 2020).
In particular, a classic application consists in modeling
interactions between neurons (Reynaud-Bouret et al.,
2013; Lambert et al., 2018). Many works deal with
estimation in these models (Yang et al., 2017; Wang
et al., 2020), sometimes using recurrent neural networks
(Sharma et al., 2019; Zhang et al., 2020). Simulation of
large networks of these processes is also widely studied
in the literature (Bacry et al., 2017; Phi et al., 2020;
Mascart et al., 2022, 2023). Generalizations of these in-
teraction models have also been studied for estimation
purposes using deep networks (Mei and Eisner, 2017;
Zuo et al., 2020).

Our purpose in the present work is totally different from
estimation or simulation. As a first step towards prov-
ing mathematically that bio-inspired networks using
local learning rules can learn, we use Hawkes networks
as a model for a cognitive network that can provably
learn to classify objects into one of several categories
by updating synaptic weights with a local learning
rule. See an illustrative example in Figure 1. In this
network, the output nodes are post-synaptic neurons
that produce spikes as a discrete-time Hawkes process
(Ost and Reynaud-Bouret, 2020; Bremaud and Mas-
soulie, 1996), whose spiking probability is a function
of the weighted sum of the activity of the pre-synaptic
neurons at the previous time step. In the case of a lin-
ear Hawkes process, Kalikow decomposition (Ost and
Reynaud-Bouret, 2020) allows us to interpret these
synaptic weights in the previous sum as a probability
distribution. In particular, it is possible to randomly
choose the presynaptic neuron of interest instead of
doing the whole sum over all presynaptic neurons.

This interpretation of the synaptic weights leads to
the following local vision: for an output neuron, its
presynaptic neurons can be seen as so many experts and
the distribution, given by the weights, can be related
to an expert aggregation problem. This is why we use
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Figure 1: Illustrative example of the network. The pre-
sented object excites the neurons encoding its features.
Then it is classified in the class coded by the output
neuron which spiked the most, here class A.

at this stage an expert aggregation algorithm (Cesa-
Bianchi and Lugosi, 2006), or also known as mixture
of experts (MoE), to update the weights. However, the
key ingredient is that gains of presynaptic neurons are
not arbitrary, as usual in expert aggregation, but are
selected depending on their spiking probability.

The resulting algorithm is called HAN (Hawkes
Aggregation of Neurons), and is general enough for
any expert aggregation algorithm.

Contributions. We propose a Hawkes network that
learns to classify objects with a local learning rule.
More precisely, our contributions are the following:
• We interpret the optimization of synaptic weights as
small expert aggregation problems that are solved
locally by each output neuron, see Algorithm 1 (HAN).
• In the case of a linear Hawkes process, we prove
that the network learns to correctly classify objects on
average for any expert aggregation algorithm verifying
a certain regret bound (Theorem 3.3). More precisely,
we have an oracle inequality (with constant 1): the
obtained network has the same network discrepancy
in spiking probability as the best possible network up
to an additive error in O(M−1/2), where M is the
number of objects presented to the network during its
learning phase.
• In the case of a general Hawkes process, we
explicitly compute the limit of the weights when
using the specific expert aggregation algorithm EWA
(Exponentially Weighted Average) (Cesa-Bianchi and
Lugosi, 1999, 2006; Stoltz, 2010).

Related Work. The proposed network is inspired by
the Component-Cue model (Gluck and Bower, 1988).
In this cognitive model, the objects classified by the
network have several features, and the network learns
to classify them in the right category by learning com-

binations of features which predict correctly the cate-
gory. The features of the objects to classify are repre-
sented by input nodes and their categories by output
nodes. Mezzadri et al. (2022); Mezzadri (2020) com-
pared this model to the ALCOVE model (Kruschke,
2020), where objects are classified according to their
similarities with previously learned objects, and showed
that the Component-Cue model is most of the time a
better fit to human learning than the ALCOVE model.
At the difference with the present work, the original
Component-Cue model does not incorporate firing pat-
terns of neurons nor local learning rule.

Kalikow decomposition has been mainly used to
prove existence of stationary processes (Galves and
Löcherbach, 2013; Galves et al., 2013; Hodara and
Löcherbach, 2017). Recently it has been used (Phi
et al., 2020) to simulate neurons in interaction with a
potentially infinite neural network.

Online learning in a context of a Hawkes network has
been used by Hall and Willett (2016), where a dy-
namic mirror descent is performed to track how events
influence future events, and by Yang et al. (2017),
to estimate the triggering functions of the processes.
However, in these works, online learning has been used
to estimate the parameters of the Hawkes processes,
whereas in the present work, online learning is used to
update synaptic weights to make the Hawkes network
learn how to classify objects by itself.

In neuroscience, two main local synaptic rules have
been proposed to link a behavior to a corresponding
synaptic mechanism and STDP is not one of them. The
three-factors rule (Gerstner et al., 2018) assumes that a
synaptic weight update depends on (i) the presynaptic
activation, (ii) the post-synaptic activation, and (iii)
the eventual outcome of the overall behavior. The
rate-based learning rule (Kempter et al., 1999) assumes
that the weight update depends on the firing rate of
pre- and post-synaptic neurons. Our local rule is closer
to this approach than to STDP. To the best of our
knowledge, the present work mathematically proves for
the first time that such local learning rules make a very
simple network learn.

2 FRAMEWORK

2.1 First notations and set-up

All the notations are listed in Appendix 6. The objects
to be classified have different natures o ∈ O, each o
having different features, each feature being the version
of a general characteristic. For instance, a blue square
can have the feature ”blue” which characteristic is
color.
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We work in discrete time. A number M of objects
are successively presented to the network, each for N
time steps. We denote by o(m) ∈ O the nature of the
object presented to the network during the mth round.
We want the network to learn to classify the objects
in classes. For class j, M j is the number of objects
belonging to class j in the first M presented objects.

The present network is made of two layers. We denote
by I the set of input neurons, and J the set of output
neurons. Each output neuron j corresponds to a class,
also noted j, in which one wants to classify the objects
that are shown. Then the network activity is a sequence
of random variables (Xi

m,t)i∈I∪J,1≤m≤M,1≤t≤N where

Xi
m,t =

{
1 if neuron i spiked at time t for object m
0 otherwise.

2.2 The input layer

Each neuron of the input layer emits a discrete process
that is a sequence of independent random variables
following a Bernoulli distribution (note that we assume
temporal independence for one neuron but not inde-
pendence between neurons). The parameter of the
Bernoulli distribution is denoted

pim := P(Xi
m,1 = 1),

hence pim is the spiking probability of neuron i at any
time step when presented with the mth object (see
Step 4 of Algorithm 1). We assume that pim does
not depend on m per see but only on eventually the
nature o(m) ∈ O. For instance, if pim corresponds to
an input neuron i detecting the feature ”blue” then pim
will be the same for all objects with the same feature
blue. It could potentially be different for each o, but
we are interested in practise by the case where input
neurons describe objects through their features, not
their nature, as in the Component-Cue model, which
describes well human learning (Mezzadri et al., 2022).

2.3 The output layer

The output layer is made of neurons coding for the
classes in which the objects are classified, so J is used
for both the set of output neurons and classes.

The rule for classifying the objects is as follows: the
object is classified in the class coded by the output
neuron which spiked the most during its presentation,

i.e., in argmaxj∈J p̂jm where p̂jm :=
∑N

t=1 X
j
m,t/N .

Each input neuron can impact output neuron j via
an inhibitory or excitatory connection. To make the
distinction, we consider now the set of signed input
neurons I+/− := I × {+,−}. From now we denote
i+ = (i,+) ∈ I+/− an excitatory connection and i− =

(i,−) ∈ I+/− an inhibitory connection. It is possible
that a given I has two connections with j via its i+ and
i−. These two presynaptic connections will be in this
case considered as two experts for j. Let Ij+ ⊂ I+/−

be all the excitatory presynaptic neurons of j and
Ij− ⊂ I+/− be all the inhibitory presynaptic neurons of

j such that Ij := Ij+ ∪ Ij− is the set of connections and
experts of j.

We assume that input neurons start spiking K time
steps before output neurons. Then the conditional
spiking probability of neuron j at time t of object m
knowing the network past activity is given by

pj,condm,t (wj
m) :=φ

(
αj +

∑
i∈Ij

+

wi+→j
m

K∑
k=1

g+(k)X
i
m,t−k

−
∑
i∈Ij

−

wi−→j
m

K∑
k=1

g−(k)X
i
m,t−k

)
(1)

where φ : R 7→ R is a Lipschitz function, αj is the
spontaneous activity of neuron j, wi+→j

m (resp. wi−→j
m )

is the weight of the excitatory (resp. inhibitory) con-
nection from neuron i to j, wj

m := (wi•→j
m )i•∈Ij is

the weight family, and g+ and g− are functions rep-
resenting the dependency on the past. We denote
by wj

1:M := (wj
m)1≤m≤M the total family of synaptic

weights of neuron j.

Synaptic weights are updated after every time period
during which an object o(m) is presented, so they
depend on m. Moreover they represent a probability
distribution, that is: for all j ∈ J , i• ∈ Ij , 1 ≤ m ≤M ,
wi•→j

m > 0, and
∑

l∈Ij wi•→j
m = 1. Besides, for all • ∈

{+,−}, g• is such that g•(k) ≥ 0 and
∑K

k=1 g•(k) =
1. The parameters φ and αj are chosen such that
pj,condm,t (wj

m) ∈ [0, 1] a.s. for any weights wj
m.

In section 3, we consider the linear case φ = Id, αj =
0 and Ij− = ∅ (the last two criterion ensuring that

pj,condm,t (wj
m) ∈ [0, 1] a.s.). In this framework, one can

simulate Xj
m,t thanks to the Solo steps of Algorithm 1:

the simulation of the activity of only one input neuron is
needed. Hence in this case the algorithm is called HAN
Solo. The fact that this method indeed gives a process
satisfying (1) comes from the Kalikow decomposition
of the Hawkes process. For more details about the
legitimacy of this operation and the particular case
of discrete Hawkes processes, we refer the reader to
Section 4.2.3 of Ost and Reynaud-Bouret (2020) and
Appendix 11.

2.4 Learning rule

We use an expert aggregation algorithm to update the
weights. One interpretation of the expert aggregation
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problem (Cesa-Bianchi and Lugosi, 2006) is as follows:
a forecaster can choose between several experts, each
with an unknown gain, duringM rounds. In each round,
the forecaster defines a strategy, i.e., a probability
distribution over the set of experts, and receives the
corresponding aggregate sum of the gains. An expert
aggregation algorithm is a function used to update the
probability distribution in order to maximize gains.
This update depends only on past gains.

Here, each output neuron j is a forecaster, and the ex-
perts are its connections to input neurons Ij . A round
corresponds to the presentation of an object, and the
synaptic weights, that we reinterpret as a probability
distribution thanks to the intuition given by Kalikow de-
composition in the linear case, correspond to the proba-
bility distribution chosen by neuron j in the expert ag-
gregation. The gain of connection i• (the expert) w.r.t.
the output neuron j (the forecaster) at round m is de-
noted by gi

•→j
m and is defined precisely in the next sec-

tion. We denote by Gj
m :=

∑m
m′=1

∑
i•∈Ij

wi•→j
m′ gi

•→j
m′

the cumulated gain of output neuron j until round

m, and Gi•→j
m :=

∑m
m′=1 g

i•→j
m′ the cumulated gain of

connection i•.

The weights of neuron j for the next round are then
updated thanks to previously acquired knowledge about
the gains, that is, Gj

m and (Gi•→j
m )i•∈Ij :

wj
m+1 = f(Gj

m, (Gi•→j
m )i•∈Ij ) (2)

where the function f is the expert aggregation algo-
rithm. Let us give two examples of such algorithms
(see details and other algorithms in Cesa-Bianchi and
Lugosi (2006)) that we will use in sections 3.2 and 4:
• EWA (Exponentially Weighted Average)

wi•→j
m+1 =

exp
(
ηjGi•→j

m

)
∑

k∈Ij exp
(
ηjGk→j

m

) . (3)

The parameter ηj is called the learning rate.
• PWA (Polynomially Weighted Average)

wi•→j
m+1 =

(Gi•→j
m −Gj

m)β
j−1

+∑
k∈Ij

(Gk→j
m −Gj

m)β
j−1

+

(4)

where βj ≥ 2 is a parameter to choose.
Note that EWA and PWA implement two different
strategies: EWA only takes into account the cumulated
gains of the experts (i.e., connections i+ and i−) and
assigns strictly positive weights, whereas PWA com-
pares them with those of the forecaster (i.e., neuron j),
and as soon as an expert is outclassed by the forecaster,
it is assigned a weight equal to zero.

This defines Algorithm 1 (HAN, for Hawkes Aggre-
gation of neurons), which is given for any expert

aggregation algorithm f . The algorithm’s complex-
ity is determined by the number of calls made to
the pseudorandom generator for obtaining Bernoulli
variables (and potentially the cost of expert update).
With D the output nodes degree, we need to sim-
ulate O(NM(|J | + |I|) Bernoulli r.v., and perform
O(NM |J |KD) (resp. O(M(|J |D+N |I|))) elementary
operations (scalar addition, exponential) for HAN (resp.
HAN-Solo).

Algorithm 1: HAN

Initialization: Gi•→j
0 := 0, wi•→j

1 := 1/|Ij |
1 for m = 1 to M do
2 for t = 1 to K do
3 for i ∈ I do
4 Xi

m,t ∼ B(pim).

5 for t = K + 1 to N do
6 for i ∈ I do
7 Xi

m,t ∼ B(pim).

8 for j ∈ J do

9 Xj
m,t ∼ B(p

j,cond
m,t )

10 for j ∈ J do
11 for i• ∈ Ij do

12 Compute gi
•→j
m according to (5).

13 wj
m+1 ←− f(Gj

m, (Gi•→j
m )i•∈Ij )

// aggregate experts using (2)

Output: (argmaxj p̂
j
m)m

// classifications

Solo steps
î+ ∼ wj

m

k̂ ∼ g+
Xj

m,t ←− X î
m,t−k̂

2.5 Gain formula

To make the network realistic, neurons can learn only
thanks to the knowledge of the spikes emitted by the
network in the past, and do not have access to spiking
probabilities. We use the following gain, computed in
Step 12 of Algorithm 1:

gi
+→j
m =


p̂im × M

Mj if o(m) ∈ j

−p̂im× M
Mj′ × 1

|J|−1 if o(m) ∈ j′
(5)

where j′ ≠ j, p̂im :=
∑N

t=1 X
i
m,t/N and gi

−→j
m =

−gi+→j
m . Indeed, if the object belongs to class j, then

the network classifies correctly the object if neuron j
spikes more than the others, so excitatory (resp. in-
hibitory) connections get positive (resp. negative) gains
to force j to spike more. Otherwise, j should spike less
than the neuron coding for the correct class, so the
excitatory (resp. inhibitory) connections get negative
(resp. positive) gains (i.e., penalties or losses) to get
j to spike less. In the present work, the gain gi

•→j
m
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depends on the correct class of the presented object,
but not on the network own classification, i.e., the
category in which the network classified the previous
objects. Whether the network correctly classifies the
object or not does not influence the gain.

Using this gain supposes that we know in advance the
value of M j , that is the number of presented objects in
class j among the first M objects, and this, for every
j ∈ J . If it is not the case, we can replace M

Mj by m
mj

at object m, which can be seen as an estimator of the
proportion of objects belonging to class j.

2.6 Feasible weight family

In order to study HAN theoretically, we need to define
families of feasible weights, which will be ideal weights
that do not vary in time and whose performance we
want to match. As stated in section 2.2, the activity
of input neurons depends only on the nature of the
presented object, and not on time. Hence, the spiking
probability of neuron j with constant synaptic weights
qj = (qi

•→j)i•∈Ij when object with nature o ∈ O is
presented to the network does not depend on time
either and is pjo(q

j) := E[pj,condm,t (qj)].

Definition 2.1 (Feasible weight family). A feasible
weight family is a constant weight family q = (qj)j∈J

independent of m such that for all j ∈ J , o ∈ j, j′ ̸= j,

pjo(q
j) > pj

′

o (q
j′).

The constant

Discsafe(q) := min
j∈J,o∈j,j′ ̸=j

{
pjo(q

j)− pj
′

o (q
j′)

}
is called the safety discrepancy of the family q. We
denote Q the set of feasible weight families.

Hence, a feasible weight family is a weights family which
enables the network to correctly classify the objects
in general; the larger Discsafe(q), the lesser it will be
mistaken. In Appendix 8, we give examples of such a
feasible weight family in a particular case.

In section 3.1, we give theoretical results about HAN
Solo when f meets certain conditions; in section 3.2,
we study the limit behavior of HAN with the EWA
algorithm, and in section 4 we study a specific case of
network and we compare numerically HAN with EWA,
HAN with PWA and the Component-Cue model from
which HAN is inspired.

3 THEORETICAL RESULTS

3.1 Average learning

In this section, we give theoretical guarantees that our
network learns to classify objects as well as any feasible

weight family on average under certain conditions. We
consider the HAN Solo case φ = Id, αj = 0 and Ij− = ∅.
In this simplified framework the set Ij is identified with
the set Ij+ so the experts are the input neurons linked
to neuron j and we use the notation i instead of i+.

Expert aggregation algorithms are designed to achieve
low regret bounds. More precisely, when applied to our
setting, the regret of the forecaster/neuron j is

Rj
M := max

qj∈X j

∑
i∈Ij

qi→jGi→j
M −Gj

m

where X j is the set of probability distributions over Ij .
Note that the maximum is achieved for any combina-
tion of diracs on the experts with maximum cumulated
gain (there can be ties). This regret can be translated
in spiking probabilities of neuron j thanks to our par-
ticular choice of gain (see Appendix 12). However, if
we want to understand how the network learns, we
need a more global notion involving the activity of all
output neurons. Let

̂pjm(qjm) :=
∑
i∈Ij

qi→j
m p̂im

where qj1:M := (qjm)1≤m≤M is a weight family. This
an estimator of the spiking probability of neuron j
if the synaptic weights were given by qjm during the
presentation of themth object. For any weights qj1:M :=
(qjm)1≤m≤M , we then interpret

̂P j,j′

M (qj1:M ) :=
1

M j′

∑
m, o(m)∈j′

̂pjm(qjm)

as an estimator of the average spiking probability of
neuron j with weights qj1:M during the presentation of

objects in class j′. In the notation P j,j′

M , index j refers
to a neuron, whereas index j′ refers to a class.

Then the class discrepancy of class j is for a network
governed by weights q1:M := (qj1:M )j∈J is defined by

DiscjM (q1:M ) = ̂P j,j
M (qj1:M )− 1

|J | − 1

∑
j′ ̸=j

̂P j′,j
M (qj

′

1:M ).

It measures how much neuron j fires more than the
other neurons when an object of class j is shown, and
it is therefore a global information at the network level.
We give another choice of gain (with some drawbacks)
in Appendix 12, where the class discrepancy can be
expressed in terms of empirical spiking probabilities.

Finally, the average class discrepancy of output neurons
is called the network discrepancy and is defined by

DiscM (q1:M ) =
1

|J |
∑
j∈J

DiscjM (q1:M ).
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Like safety discrepancy for a feasible weight family,
the network discrepancy measures how much output
neurons fire more than the others when an object of
their class is shown. However, unlike safety discrepancy,
it gives average information rather than quantifying
the worst possible deviation.

Assumption 3.1 (Regret bound). The expert aggre-
gation algorithm f used in HAN Solo is such that for
any deterministic sequence of gains gj1:M ∈ [a, b],

Rj
M ≤ K(|I|, b− a)

√
M

where K(|I|, b− a) is a constant depending on |I| and
b− a.

Both EWA (3) and PWA (4) satisfy Assumption 3.1.
See Appendix 9.1 for details on the bounds.

Assumption 3.2. There exists a constant ξ > 0 inde-
pendent of M such that for every j ∈ J , Mj/M ≥ ξ.

Assumption 3.2 means that every class of objects is
well represented during the learning phase.

Theorem 3.3 (Oracle inequality). Suppose Assump-
tions 3.1 and 3.2 hold. Let α ∈ (0, 1]. Suppose Q is
non-empty. Then with probability greater than 1− α,

DiscM (w1:M ) ≥ max
q∈Q

Discsafe(q)− Etot(N,M,α)

where Etot(N,M,α) = Ereg(M) + E(N,M,α) with

Ereg(M) := K
(
|I|, |J |

ξ(|J | − 1)

) 1√
M

and

E(N,M,α) :=

√
ln
(2|I||J |

α

) 2

ξNM
.

In a nutshell, assuming the error Etot(N,M,α) is neg-
ligible, this result on network discrepancy means that
in average, a class neuron spikes more than the other
neurons when presented with an object in its class with
high probability. Thus, in average, the network cor-
rectly classifies the objects under the hypothesis that a
feasible weight family exists. The error is twofold: one
part, Ereg(M), comes from the regret bound and is in
O(M−1/2), whatever N . The other part, E(N,M,α),
comes from the inherent randomness of our system and
is in is in O((NM)−1/2). Hence if M is large enough,
the total error Etot(N,M,α) is negligible compared to
the constant maxq∈Q Discsafe(q). In this sense, HAN
performs as well as an oracle that would know the best
feasible weight family in advance: its network discrep-
ancy is larger than the best safety discrepancy, with
asymptotic multiplicative constant 1. However if M is
not large enough we pay a price in O(M−1/2) for hav-
ing seen only that many objects and being initialized

with a weight family that is not feasible. Finally if M
and N are not large enough, the randomness in the
system increases, and the approximation of the activity
of input neurons given by the gains may be insufficient
to find the best experts among them, or the time of
the presentation of an object could be too short to see
which output neuron significantly spikes the most.

3.2 Limit behavior

In this section, independent of the previous one, we
are going to study the limit behavior of the network.
We are no longer interested in average results: the
linearity of φ is not needed anymore and we are in the
general case (1), where inhibition is allowed. However,
we want to conduct a more precise analysis of the
network’s limit behavior and this analysis can only be
carried out on a case-by-case basis, depending on the
expert aggregation algorithm chosen. Here, we have
decided to use the EWA algorithm, for its simplicity
and universality.

Instead of assuming that a feasible weight family exists
as in the previous section, we want to build directly the
limit of the weights, hoping that this limit makes sense
from a learning point of view. But if the input neurons
encoding the features have nothing to do with the
output class (e.g. two classes ”blue” and ”red” and all
neurons having the same firing rates whatever the color)
the problem cannot be solved. This is why we introduce
the notion of feature discrepancy of connection i+ (resp.
i−) with respect to class j, defined by:

di
+→j :=

1

nj

∑
o∈j

pio −
1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

pio

(resp. di
−→j = −di+→j) where nj is the number of

natures of objects belonging to class j. For excitatory
connections (resp. inhibitory), this feature discrep-
ancy is the difference between the average firing rate
of neuron i when presented objects belonging to class
j, and the average firing rate of neuron i when pre-
sented objects belonging to other classes (resp. the
opposite). It indicates the extent to which neuron i
has higher-than-usual firing rate when presented with
objects in category j. Thus one can define the set
of connections that are the most sensible to class j:
Ĩj = argmaxi•∈Ij di

•→j , as well as the gap in discrep-
ancy if Ĩj ̸= Ij :

γj = max
i•∈Ij

di
•→j − max

i•∈Ij\Ĩj
di

•→j ,

which measures how good the most sensible connections
are with respect to the others. Note in particular that
if all the di

•→j ’s are null, Ĩj = Ij , there is no gap and
nothing can be learned from the network because the
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input neurons are in fact not sensible to important
features for the classification.

Theorem 3.4. Suppose each nature of object is pre-
sented the same amount of times: for all o ∈ O,
|{m, o(m) = o}| = M

|O| . Let ηj = 1
|O|

√
2 ln(|Ij |)

M and

w∞ := (wi•→j
∞ )j∈J,i•∈Ij where

wi•→j
∞ =

{
|Ĩj |−1 if i• ∈ Ĩj

0 otherwise.

Then with probability 1− α, for all j ∈ J :

• if Ĩj ̸= Ij, then the weights wi•→j
M+1 at the end of the

learning phase satisfy

|wi•→j
M+1 − wi•→j

∞ | ≤ Ej(N,α) + Ej
EWA(M)

where

Ej
EWA(M) := max

{
1,
|Ij |
|Ĩj |
− 1

} 1

|Ĩj |
e−

γj

|O|

√
2 ln(|Ij |)M

and

Ej(N,α) := |Ij |

√
ln
(2|I||J |

α

) ln(|Ij |)
|O|N

.

• if Ĩj = Ij, then the weights wi•→j
M+1 at the end of the

learning phase mostly did not evolve, i.e.

|wi•→j
M+1 − |I

j |−1| ≤ Ej(N,α).

This choice of ηj has good theoretical guarantees (if
the time horizon is unknown, we can use a similar
time-dependent learning rate providing similar results,
see details in Appendix 9.1). Note that this result
applies for weights wj

M+1 and not wj
m: it is true only

at the end of the learning phase. In the first case,
the synaptic weights converge to the constant family
w∞, which is uniform on input neurons with maxi-
mal feature discrepancy. The error is twofold. One
part, Ej(N,α), coming from the randomness of our
system is in O(N−1/2) and is the equivalent of the er-
ror term E(N,M,α) in the oracle inequality (Theorem
3.3). The other part, Ej

EWA(M), coming from the fact
that we have only seen M objects and very specific to
the EWA algorithm is in exp(−O(γj

√
M)) and is the

equivalent of the error term Ereg(M) which was specific
to the expert aggregation algorithm used in HAN Solo.
This points out that the larger the gap in discrepancy
the quicker the learning. The second case is the non
interesting one, where there is nothing to learn (for
large N weights are back to their initial value) either
because HAN with EWA is good since initialization or
because the features are so badly encoded by the input
neurons that nothing can be learned.

Going from the local notion of feature discrepancy
to the global notion of network discrepancy is not
straightforward, even if it seems intuitive to hope that
the weight family with the largest feature discrepancy
also achieves the largest network discrepancy. This is
why, to complete the circle, we need to assume that
w∞ is a feasible weight family in the next corollary.

Corollary 3.5. Suppose the assumptions of Theorem
3.4 hold and w∞ is a feasible weight family. Let L be
the Lipschitz constant of φ. Then at the end of the
learning phase, with probability 1 − α, for all j ∈ J ,
j′ ̸= j, t ∈ {1, . . . , N}, supposing that we present an
object o(M + 1) ∈ j to the network we have

pj,condM+1,t(w
j
M+1)− pj

′,cond
M+1,t (w

j′

M+1)

≥
(
pj,condM+1,t(w

j
∞)− pj

′,cond
M+1,t (w

j′

∞)
)
− Ej,j′

tot (N,M,α)

where

Ej,j′

tot (N,M,α) := L
∑

h∈{j,j′}
|Ih|(Eh(N,α)+Eh

EWA(M)).

Note that E[pj,condM+1,t(w
j
∞)− pj

′,cond
M+1,t (w

j′

∞)] ≥ Discsafe(q).
This means that with high probability, at the end of
the learning phase the network classifies objects as well
as it would with the feasible weight family w∞, with a
decreasing error term of the same order as in Theorem
3.4. This corollary can be seen as a non-average version
of the oracle inequality of Theorem 3.3.

4 A CONCRETE EXAMPLE

In this section, we give a specific case for which the
limit can be guessed beforehand and is a feasible weight
family under certain conditions in both HAN and HAN
Solo framework, and we compare numerically HAN
with EWA, with PWA and the Component-Cue model
(Gluck and Bower, 1988).

4.1 Framework

In this section, we assume that the processes emitted
by input neurons are mutually independent. There are
c characteristics, each declined in n features. Therefore,
a nature of object is identified with c given features,
one for each characteristic, and there are n choices for
each feature. We consider two classes, class B, con-
taining one nature of object, and class A, containing
every possible other nature of object. Class B repre-
sents an exception. The features are denoted by fk,l,
where k ∈ {1, . . . , c} and l ∈ {1, . . . , n}, and for each
feature fk,l, there is one input neuron, also denoted
fk,l, which spikes with probability p when presented
with an object having the feature fk,l. Each nature of
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Figure 2: Numerical results with M = 2502, K = 1, N = 1000, p = 0.2, q = 0.3, αA = 0.2, αB = 0, βj = 2 and

ηj = 1
|O| (2

ln(|Ij |)
M )−1/2. Parameters of Component-Cue: λw = 0.005 and ϕ = 10 (see details in Appendix 10). On

the left, evolution of the proportion of correct classifications for HAN and HAN Solo with EWA and PWA and
Component-Cue with time. A number 100 of realizations were made; for each realization, a testing set of 500
objects drawn randomly was generated. Then the network was trained for 278 epochs, an epoch being a random
sequence of the 9 nature of objects. After each epoch the weights were frozen and the network performance was
evaluated on the testing set. On the x-axis, number of epochs. On the y-axis, proportion of correctly classified
objects of the testing set with confidence interval of level 0.9. On the right, evolution of the weights of neurons A
and B with time for one realization of HAN with EWA.

object is presented the same amount of times to the
network.
• HAN: we study the case Ij+ = Ij− = I, φ = (·)+ ∧ 1,
αB = 0 and K = 1. Then under some assumptions
the limit of the weights, computed in Appendix 8.1,
is a feasible weight family and the network correctly
classify the objects asymptotically.
• HAN Solo: we study the case Ij+ = I, Ij− = ∅,
φ = Id, αj = 0. To replace inhibition, we add input
neurons to the network: for each feature fk,l, we add

a neuron f̃k,l which spikes with probability q when
presented with an object which does not have feature
fk,l. Hence, neuron fk,l detects the presence of feature

fk,l, and neuron f̃k,l detects its absence. Then under
some assumptions the limit of the weights, computed
in Appendix 8.2, is a feasible weight family and the
network correctly classify the objects on average and
asymptotically.

4.2 Numerical results

To illustrate this specific case, we use c = 2 character-
istics with n = 3 features for each: the shape, corre-
sponding to the features circle, square and triangle, and
the color, corresponding to the features blue, gray and
red. The classes are A = {□,△,⃝,□,△,⃝,□,△}
and B = {⃝}.

The evolution of the proportion of correct classifica-
tions of HAN and HAN Solo with the setting of section

4.1 for both EWA and PWA and Component-Cue are
visible on the left of Figure 2 (for a description of
Component-Cue and its parameters see Appendix 10).
For both PWA and EWA, HAN reaches perfect per-
formance faster than HAN Solo: the use of non-linear
φ and inhibition was more effective than the addition
of neurons coding for the absence of features. Besides,
for both HAN and HAN Solo, PWA learns faster than
EWA but its variance is higher and seems to grow in
time, whereas the one of EWA decays. Component-
Cue is the only one which does not achieve perfect
performance at the end of the learning phase, and its
variance does not seem to evolve.

The evolution of the weights for one realization of
HAN with EWA is visible on the left of Figure 2, which
illustrates Theorem 3.4: the weights of A converge to
uniform distribution on connections Blue− and Circle−,
and the weights of B converge to uniform distribution
on connections Blue+ and Circle+, which is a feasible
weight family. Hence A is inhibited by neurons coding
for features of⃝, which is the object of classB, whereas
B is excited by these same neurons.

In Table 1, we provide an ablation study to see how
HAN and HAN Solo perform with missing input neu-
rons. The Table gives the percentage of correct classifi-
cations for each model at the end of the learning phase
depending on the number of ablated features, with the
same parameters as in Figure 2. One ablated feature
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Table 1: Ablation study

Ablated features HAN EWA HAN PWA HAN Solo EWA HAN Solo PWA
0/6 99.9 99.5 99.4 98.6
1/6 93.0 92.1 92.8 90.1
2/6 88.6 87.1 82.2 81.6
3/6 83.4 85.2 74.8 68.6
4/6 84.5 84.2 58.7 51.9
5/6 84.9 85.1 55.8 52.5

corresponds to one ablated neuron (resp. two ablated
neurons) for HAN (resp. HAN Solo): if feature fk,l
is ablated, then neuron fk,l is ablated for HAN and

neurons fk,l and f̃k,l are ablated for HAN Solo. We
can see that the network performance is comparable
when using either EWA or PWA for both HAN and
HAN Solo. However, HAN seems to perform better
than HAN Solo with ablated features for both EWA
and PWA.

Figure 3 shows a comparison with the well-known per-
ceptron learning algorithm. The performance of the
perceptron is comparable to that of HAN with PWA.
It should be noted that the comparison is not fair since
the perceptron does not involve spikes and is designed
for performance, whereas HAN is designed to be cogni-
tively relevant.

5 CONCLUSION

In this paper, we introduced a Hawkes network that
provably learns to classify objects thanks to a local
learning rule using an expert aggregation method. The
main point of our paper is to rigorously prove why our
Hawkes network learns. Indeed, our learning rule led
to an algorithm (HAN) allowing us to prove an oracle
inequality on the network discrepancy in the case of
linear Hawkes process, and even limits and rates of
convergence in the general case for a specific expert
aggregation algorithm. A promising – but ambitious –
line of research is to understand if such local rules can
be generalized for Hawkes network with one, or more,
hidden layers. A first step in this direction could be
to add an intermediate layer with neurons detecting
correlations in the activity of feature neurons. Another
line of research could be to try to prove similar regret
bounds for STDP, three-factors or rate-based learning
rules.
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes. HAN/HAN Solo’s complexity is directly
linked to the number of rv simulation calls.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.

(b) Complete proofs of all theoretical results.
Yes.

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). Yes. Personal computer
without GPU (no timing)

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. N/A.

(b) The license information of the assets, if appli-
cable. N/A.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. N/A.

(d) Information about consent from data
providers/curators. N/A.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. N/A.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. N/A.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. N/A.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. N/A.



Provable local learning rule by expert aggregation for a Hawkes network

Appendix for “Provable local learning rule by expert aggregation for
a Hawkes network”

Appendix 6 provides a table of notations, Appendix 7 − 12 provide additional theoretical and numerical results,
and Appendix 13 provides the proofs of our results.

6 TABLE OF NOTATIONS

All the notations are listed in Table 2.

7 ADDITIONAL EXPERIMENTS

On Figure 4, the evolution of the empirical spiking probabilities (i.e.,
NA

m

N and
NB

m

N ) with time for each nature of
object is visible, for the realization of HAN Solo with EWA illustrated on the left of Figure 2.

We can see that neuron B does not spike at all when presented with objects having no feature in common with
the blue circle (i.e., the red square, red triangle, gray square and gray triangle), and spikes less than A when
presented with objects having one feature in common (i.e., the blue square, blue triangle, red circle and gray
circle). At the beginning, B spikes less than A when presented with the blue circle and after some time it starts
spiking more. This explains why on the right of Figure 2, the curve of HAN with EWA is constant at around 8/9
(8 of the 9 natures of object are well classified) and after some time rises to 1.

On Figure 5, we can see the evolution of the proportion of correct classifications for HAN and HAN Solo with
EWA and PWA and Component-Cue with the same parameters as in Figure 2, but here the objects are randomly
selected with replacement so the network is not guaranteed to see all natures of objects in a given epoch. All the
variances are increased compared to Figure 2; however, the one of HAN with EWA decreases after some time and
HAN with EWA is the only algorithm reaching almost perfect performance. Although HAN Solo with EWA has
a high variance, its performance is improving and could reach higher values with more time, but the curves of the
other algorithms do not seem to be converging towards 1.

8 DETAILS ABOUT THE LIMIT WEIGHTS OF SECTION 4.1

8.1 Study of HAN with EWA

Here Ij+ = Ij− = I, φ = (·)+ ∧ 1, αB = 0 and K = 1.

Proposition 8.1. Suppose each nature of object is presented the same amount of times, n > 2, (c−1)p < (1−p)c−1.
Then the conditions of Theorem 3.4 are verified and there exists αA > 0 such that the limit weights w∞ := (wA

∞, wB
∞)

are a feasible weight family such that wA
∞ puts the weight c−1 on every connection f−

k,1 and wB
∞ puts the weight

c−1 on every connection f+
k,1. Besides,

Discsafe(w∞) = min
{
αA(1− p)c−1 − c− 1

c
p, p− αA(1− p)c

}
.

Note that wA
∞ uniformly distributes weight on inhibitory connections to neurons active when presented with oB ,

while wB
∞ uniformly distributes weight on excitatory connections to neurons active when presented with oB , so it

is easy to see why it is a feasible weight family. Hence, under the assumptions of Proposition 8.2, the conclusion
of Corollary 3.5 holds: the network correctly classifies the objects asymptotically.

We can see an illustration of this proposition on Figure 2.
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Figure 4: Evolution of the empirical spiking probabilities of neurons A and B with time by nature of object for
the same realization of HAN with EWA as in Figure 2 (left). (Same parameters as in Figure 2.)

8.2 Study of HAN Solo with EWA

Here φ = Id, αj = 0, Ij− = ∅ and Ij = I.

Proposition 8.2. Suppose each nature of object is presented the same amount of times, n ≥ 2, p(n− 1)−1 < q <
p(n− 1) and q > (c− 1)p. Then the conditions of Theorem 3.4 are verified and the limit weights w∞ := (wA

∞, wB
∞)

are a feasible weight family such that wA
∞ puts the weight c−1 on every neurons f̃k,1 and wB

∞ puts the weight c−1

on every neurons fk,1. Besides,

Discsafe(w∞) = min
{q − p(c− 1)

c
, p
}
.

Note that w∞ is very close to the one of section 8.1: wB
∞ is the same and wA

∞ selects neurons detecting absence
of features instead of inhibitory connections. Hence, under the assumptions of Proposition 8.2, the conclusions of
Theorem 3.3 and Corollary 3.5 hold: the network correctly classifies the objects in average and asymptotically.

9 REGRET

9.1 Details about the regret bounds of EWA and PWA

1. EWA: the regret bound given in Cesa-Bianchi and Lugosi (2006) holds for losses (i.e., negative gains) taking
value in [0, 1], but a more general demonstration for only assumed to be bounded is given in Stoltz (2010),
and provides the following bound for losses taking value in the interval [a, b] for any a < b ∈ R:

Rj
M ≤

ln(|Ij |)
ηj

+ ηj
(b− a)2

8
M.

With ηj = 1
b−a

√
8 ln(|Ij |)/M , we obtain

Rj
M ≤ (b− a)

√
M

2
ln(|Ij |).

This choice of ηj supposes that we know the time horizon M in advance. If it is not the case, we can use a
time-dependent learning rate ηjm = 1

b−a

√
8 ln(|Ij |)/m, which gives the bound

Rj
M ≤

√
2M ln(|Ij |) +

√
ln(|Ij |)

8
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Figure 5: Evolution of the proportion of correct classifications for HAN and HAN Solo with EWA and PWA and
Component-Cue with time, with the same parameters as in Figure 2. What changes here is that an epoch is a
sequence of 9 objects drawn randomly with replacement: all the natures of object are not necessarily presented
during one epoch.

which has the same order of magnitude. Theorem 3.4 can also be adapted with this choice of ηj . Note that

under the assumptions of Theorem 3.4, for all j, M
Mj = |O|

nj is bounded by |O| so the gains take value in
[−|O|, |O|]. Hence a good choice of ηj is

ηj =
1

2|O|
√

8 ln(|Ij |)/M.

2. PWA: the regret bound given in Cesa-Bianchi and Lugosi (2006) holds for losses (i.e., negative gains) taking
value in [0, 1]. It gives the following inequality:

Rj
M ≤

√
(βj − 1)|Ij |2/βjM.

For losses that are only assumed to be taking value in the interval [a, b] for any a < b ∈ R, we can translate
them thanks to the function x 7→ x−a

b−a . We obtain the following bound:

Rj
M ≤ (b− a)

√
(βj − 1)|Ij |2/βjM

The bound is optimal for βj = 2 ln(|Ij |), which gives

Rj
M ≤ (b− a)

√
e(2 ln(|Ij |)− 1)M.

Then both bounds can be written in the form of Assumption 3.1 by bounding |Ij | by |I|.

9.2 Interpretation of the regret

In the HAN Solo framework, the regret can be interpreted in terms of the neurons activity. The neuronal
discrepancy of neuron j in a network governed by weights qj1:M is defined by

discjM (qj1:M ) := ̂P j,j
M (qj1:M )− 1

|J | − 1

∑
j′ ̸=j

̂P j,j′

M (qj1:M ). (6)

It is the difference between the average estimated spiking probability of neuron j over the objects belonging
to class j and the average estimated spiking probability of neuron j over objects belonging to other classes,
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normalised by the number of objects of each class. It gives information about how much neuron j spikes more
than usual when presented objects in category j and when the weights qj1:M are used. It is a local information
(because at neuron j).

Since
M∑

m=1

∑
i∈Ij

qi→j
m gi→j

m = MdiscjM (qj1:M ), we have the following interpretation of regret in terms of discrepancy:

Rj
M

M
= max

qj∈X j
discjM (qj)− discjM (wj

1:M )

where qj is identified with the constant family of weights (qj)1≤m≤M . Therefore, the regret gives information
about the proximity of the neuronal discrepancy of neuron j under HAN Solo with the maximum possible neuronal
discrepancy of neuron j with constant weights. Note that this interpretation is made possible thanks to the choice
φ = Id. This is local information because it is only about the activity of neuron j. To understand the global
behavior of the network, we need the class and network dicrepancies.

10 DETAILS ABOUT COMPONENT-CUE

The original Component-Cue algorithm (Gluck and Bower, 1988) is an artificial neural network, with three layers:
an input layer receiving the stimuli, an intermediate layer decomposing the stimuli into several features, and an
output layer made of category nodes. The intermediate and output layers are linked by weights, that the network
updates to learn to classify objects.

Let us detail the Component-Cue algorithm. Let I be the set of features (which is also the set of intermediate
neurons), J the set of classes (which is also the set of output neurons), wi→j

m the synaptic weight between neurons
i ∈ I and j ∈ J when presented with the mth object. Let

aim :=

{
1 if object o(m) has feature i
0 otherwise.

When presented with the mth object, the output neuron j is activated by the quantity

Oj
m :=

∑
i∈I

aimwi→j
m

and object o(m) is classified in class j with probability

eϕO
j
m∑

l∈J

eϕO
l
m

where ϕ is a parameter to choose. Then the weights are updated according to the formula

wi→j
m+1 = wi→j

m + λwa
i
m(τ jm −Oj

m)

where τ jm :=

{
1 if o(m) ∈ j
−1 otherwise

and λw is the learning rate. It is a gradient descent step.

Note that the choice of the parameters in Component-Cue is tricky, and that the behavior of the algorithm
(learning or not) highly depends on this choice (see details in Mezzadri (2020)).

Comparison with HAN: The structure of Component-Cue is very similar to the one of our network; however,
Component-Cue does not have a spiking neuronal network interpretation. Indeed, in HAN, spike trains replace
the quantities aim, which are real numbers. Besides, unlike HAN, Component-Cue has no theoretical guarantee to
correctly classify the objects.

11 KALIKOW DECOMPOSITION

Let us detail Kalikow decomposition in the case of a general discrete-time linear Hawkes process without inhibition
(Ost and Reynaud-Bouret, 2020). Let I the set of neurons, j ∈ I a neuron. Then the spiking probability of
neuron i at time 0 knowing the past is
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pi(X) = νi +
∑
s∈Z∗

−

hj→i(−s)Xj,s

where X = (Xj,s)j∈I,s∈Z∗
−
is the network past activity, νi ≥ 0 is the spontaneous activity of neuron i, and the

functions hj→i are such that

• hj→i(s) ≥ 0 for s ∈ N∗

•
∑

s∈N hj→j(s) + νi ≤ 1.

Then the Kalikow decomposition of pi(X) is

pi(X) = λi(∅)p∅i +
∑

v∈V,v ̸=∅
λi(v)p

v
i (X)

where V = {{(j, s)}, (j, s) ∈ I × Z∗
−} ∪ {∅} is a family of neighborhoods, λi(v) is non negative, λi(∅) =

1−
∑

s∈N hj→j(s), p
∅
i = νi

λi(∅) , λi({(j, s)}) = hj→i(−s) and p
{j,s}
i (X) = Xj,s.

Then the Kalikow decomposition of pi(X) is such that λi(v) ≥ 0 for all v ∈ V,
∑

v∈V λi(v) = 1, p∅i ≥ 0 and
pvi (X) ≥ 0 for all v. Hence, thanks to Kalikow decomposition, the activity of neuron i can be simulated the
following way.

• A neighborhood v ∈ V is drawn thanks to the probability distribution λ.

• Then neuron i spikes with probability pvi (X) (resp. p∅i if v = ∅).

In the HAN Solo case, there is no spontaneous activity. The neighborhoods are the tuples {(i, s)} where i ∈ Ij

and s ∈ {t− 1, . . . , t−K}.

12 OTHER POSSIBLE GAIN

In the HAN Solo framework, another choice of gain is possible:

gi→j
m =


Ni→j

m

Nwi→j
m
× M

Mj if o(m) ∈ j

− Ni→j
m

Nwi→j
m
× M

Mj′ × 1
|J|−1 if o(m) ∈ j′ ̸= j

if wi→j
m > 0 and

gi→j
m = 0

otherwise, where N i→j
m is the amount of times neuron j spiked after choosing input neuron i in Kalikow

decomposition when presented with the mth object. Note that
Ni→j

m

Nwi→j
m

is also an estimator of pim: indeed, knowing

the weights wj
m, the variable N i→j

m follows a binomial distribution with parameter N and pimwi→j
m . Using this

gain, the estimator that we consider for pim is

p̂im =
N i→j

m

Nwi→j
m

.

The neuronal discrepancy (6) becomes

discjM (wj
1:M ) =

1

M j

∑
m, o(m)∈j

N j
m

N
− 1

|J | − 1

∑
j′ ̸=j

1

M j′

∑
m, o(m)∈j′

N j
m

N

where Nk
m is the number of spikes emitted by neuron k during the presentation of the mth object, and the class

discrepancy becomes

DiscjM (w1:M ) =
1

M j

∑
m, o(m)∈j

N j
m

N
− 1

|J | − 1

∑
j′ ̸=j

1

M j

∑
m, o(m)∈j

N j′

m

N
.
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Therefore, with this choice of gain, the class discrepancy directly compares the number of spikes emitted by
output neurons, which gives a better indicator about the network’s classifications because the rule to classify
objects is precisely about the number of spikes, so its interpretation is easier.

However, this gain causes difficulties because of the division by wi→j
m : when wi→j

m is close to zero, the network
behaviour is difficult to study theoretically. First of all, the gains are not bounded anymore so the regret bounds

will depend on the supremum of the gains, which can be large. Besides, an error term in O
(

ln(M)

Nwi→j
m

+
√

ln(M)

Nwi→j
m

)
appears in the regret bound instead of the error term E(N,M,α), which was in O( 1

NM ). This new error is much

worse, and converges to zero only if N >> ln(M)
wm

i→j
. However, the weights of connections corresponding to experts

which does not have optimal gains tend to converge to zero, as stated in Theorem 3.4. Hence, we cannot be
assured to be in this favorable regime. Besides, this gain cannot be generalized in the HAN framework.

13 PROOFS

13.1 Proof of Theorem 3.3

We need a preliminary proposition.

Proposition 13.1 (Regret bound). Suppose Assumptions 3.1 and 3.2 hold. Then for all j ∈ J ,

discjM (wj
1:M ) ≥ max

qj∈X j
discjM (qj)− Ereg(M) a.s.

where qj is identified with the constant family of weights (qj)1≤m≤M and

Ereg(M) := K(|I|, (1 + (1 + |J |)−1)ξ−1)M−1/2.

Proof. According to Assumption 3.2, for all j′ ∈ J , M j′/M ≥ ξ. Hence the gains gi→j
m take value in [− 1

ξ(|J|−1) ,
1
ξ ]

a.s. so according to Assumption 3.1, we have

Rj
M ≤ K(|I|, (1 + (|J | − 1)−1)ξ−1)

√
M a.s.

We get the result by dividing the previous inequality by M .

Let q ∈ Q. We want to bound from below DiscM (w1:M ). We have almost surely

DiscM (w1:M ) =
1

|J |
∑
j∈J

DiscjM (w1:M )

=
1

|J |
∑
j∈J

̂P j,j
M (wj

1:M )− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

̂P j′,j
M (wj′

1:M )

Let us exchange the name of the indexes j and j′ in the second term.

DiscM (w1:M ) =
1

|J |
∑
j∈J

̂P j,j
M (wj

1:M )− 1

|J |
∑
j′∈J

1

|J | − 1

∑
j ̸=j′

̂P j,j′

M (wj
1:M )

Let us exchange the sums in the second term.
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DiscM (w1:M ) =
1

|J |
∑
j∈J

̂P j,j
M (wj

1:M )− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

̂P j,j′

M (wj
1:M )

=
1

|J |
∑
j∈J

( ̂P j,j
M (wj

1:M )− 1

|J | − 1

∑
j′ ̸=j

̂P j,j′

M (wj
1:M )

)
=

1

|J |
∑
j∈J

discjM (wj
1:M )

≥ 1

|J |
∑
j∈J

(
discjM (qj)− Ereg(M)

)
thanks to Proposition 13.1.

DiscM (w1:M ) ≥ 1

|J |
∑
j∈J

( ̂P j,j
M (qj)− 1

|J | − 1

∑
j′ ̸=j

̂P j,j′

M (qj)
)
− Ereg(M)

=
1

|J |
∑
j∈J

̂P j,j
M (qj)− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

̂P j,j′

M (qj)− Ereg(M)

Let us exchange the sums in the second term.

DiscM (w1:M ) ≥ 1

|J |
∑
j∈J

̂P j,j
M (qj)− 1

|J |
∑
j′∈J

1

|J | − 1

∑
j ̸=j′

̂P j,j′

M (qj)− Ereg(M)

Let us exchange the name of the indexes j and j′ in the second term.

DiscM (w1:M ) ≥ 1

|J |
∑
j∈J

̂P j,j
M (qj)− 1

|J |
∑
j∈J

1

|J | − 1

∑
j′ ̸=j

̂P j′,j
M (qj′)− Ereg(M)

=
1

|J |
∑
j∈J

( ̂P j,j
M (qj)− 1

|J | − 1

∑
j′ ̸=j

̂P j′,j
M (qj′)

)
− Ereg(M)

=DiscM (q)− Ereg(M)

Now we want to compare DiscM (q) and Discsafe(q). We need the following result.

Proposition 13.2. Let α > 0. Suppose Assumption 3.2 holds. Then

P
(
∀j ∈ J, ∀i ∈ I,

∣∣∣ 1

M j

∑
m,o(m)∈j

(p̂im − pim)
∣∣∣ ≤

√
ln

(2|I||J |
α

) 1

2ξNM

)
≥ 1− α.

Proof. Let j ∈ J . The variables (Xi
m,t)1≤t≤N,m s.t. o(m)∈j are independent bounded by 1, of mean pim. Hence,

according to Hoeffding’s inequality, for all β > 0

P
(∣∣∣ 1

NM j

∑
m,o(m)∈j

N∑
t=1

(Xi
m,t − pim)

∣∣∣ ≥ β
)
≤ 2e−2β2NMj

.

According to Assumption 3.2, M j ≥ ξM so

P
(∣∣∣ 1

NM j

∑
m,o(m)∈j

N∑
t=1

(Xi
m,t − pim)

∣∣∣ ≥ β
)
≤ 2e−2β2NMξ.
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Let Dc be the event {∃j ∈ J, ∃i ∈ I, | 1
NMj

∑
m,o(m)∈j

∑N
t=1(X

i
m,t − pim)| ≥ β}. Then

P(Dc) ≤
∑

j∈J,i∈I

P
( 1

NM j

∑
m,o(m)∈j

N∑
t=1

(Xi
m,t − pim) ≥ β

)
≤ 2|I||J |e−2β2NMξ.

Let us choose β such that 2|I||J |e−2β2NMξ = α, i.e., β =

√
ln
(

2|I||J|
α

)
1

2NMξ .

On D, for all j ∈ J, i ∈ I ∣∣∣ 1

M j

∑
m,o(m)∈j

(p̂im − pim)
∣∣∣ ≤

√
ln
(2|I||J |

α

) 1

2NMξ

so we can conclude.

Let α > 0. Let us work on the event D defined in the proof of Proposition 13.2. Let

pjm(qj) :=
∑
i∈Ij

qi→jpim

the spiking probability of neuron j with weights qj when presented with the mth object,

P j′,j
M (qj

′
) :=

1

M j

∑
m, o(m)∈j

pj
′

m(qj
′

m)

the average spiking probability of neuron j′ when presented with objects in class j. For all j, j′ ∈ J ,

| ̂P j′,j
M (qj′)− P j′,j

M (qj
′
)| ≤

∑
i∈Ij′

qi→j′ | 1

M j

∑
m,o(m)∈j

(p̂im − pim)|

≤

√
ln

(2|I||J |
α

) 1

2ξNM

Thanks to Proposition 13.2. Let

Disc
j

M (qj) = P j,j
M (qj)− 1

|J | − 1

∑
j′ ̸=j

P j′,j
M (qj

′
)

and

DiscM (q) =
1

|J |
∑
j∈J

Disc
j

M (qj).

For all j ∈ J we have

|Disc
j

M (qj)−DiscjM (qj)| ≤ 2

√
ln

(2|I||J |
α

) 1

2ξNM

so

|DiscM (q)−DiscM (q)| ≤ 2

√
ln

(2|I||J |
α

) 1

2ξNM
.

Besides, since q is a feasible weight family,

DiscM (q) ≥ Discsafe(q).

Finally,
DiscM (w1:M ) ≥ Discsafe(q)− Ereg(M)− E(N,M,α).

This is true for any feasible weight family q and P(D) ≥ 1− α so we can conclude.
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13.2 Proof of Theorem 3.4

Let

• gi
+→j
m :=

{
pmi × M

Mj if o(m) ∈ j
−pmi × 1

|J|−1 ×
M
Mj′ if o(m) ∈ j′ ̸= j

• gi
−→j
m = −gi

+→j
m

• G
i•→j

m =
m∑

m′=1

gi
•→j
m′

• wi•→j
m+1 =

exp(ηjC
m

i•→j)∑
k∈Ij

exp(ηjC
m

k→j)
.

We need the following proposition:

Proposition 13.3. Suppose each nature of object is presented the same amount of times. Let α > 0. Then with

EWA with ηj = 1
|O|

√
2 ln(|Ij |)

M , we get

P
(
∀j ∈ J, i• ∈ Ij , |wi•→j

M+1 − wi•→j
M+1| ≤ |I

j |

√
ln

(2|I||J |
α

) ln(|Ij |)
|O|N

)
≥ 1− α

Proof. Let j ∈ J , i• ∈ Ij , hl : R|Ij | 7→ R such that hl(x1, . . . , x|Ij |) =
exp(ηjxl)∑|Ij |

k=1 exp(ηjxk)
. Then for all (x1, . . . , x|Ij |),

||∇hl(x1, . . . , x|Ij |)|| ≤ ηj
√
|Ij |.

Besides, according to the mean value theorem, for i• ∈ Ij

|wM+1
i•→j − wM+1

i•→j | = |h
l((GM

k→j)k∈Ij )− hl((G
M

k→j)k∈Ij )|

≤ ηj
√
|Ij |||(GM

k→j)k∈Ij − (G
M

k→j)k∈Ij ||.

Besides, each nature of object is presented the same amount of times so Assumption 3.2 holds with ξ = 1
|O| .

Hence according to Proposition 13.2, with probability 1− α we have that for all j ∈ J , k ∈ Ij ,

|GM
k→j −G

M

k→j | ≤M

√
ln

(2|I||J |
α

) 1

2ξNM

=

√
ln

(2|I||J |
α

)M |O|
2N

i.e.,

|wi•→j
M+1 − wi•→j

M+1| ≤ ηj |Ij |
√

ln
(2|I||J |

α

)M |O|
2N

.

Then we find the result by replacing ηj by its value 1
|O|

√
2 ln(|Ij |)

M .

Proposition 13.4. Suppose each nature of object is presented the same amount of times: for all o ∈ O,
|{m, o(m) = o}| = M

|O| . Then for all j ∈ J :

• if Ĩj ̸= Ij, then

|wi•→j
M+1 − wi•→j

∞ | ≤ Ej
EWA(M)
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where

Ej
EWA(M) = max

{
1,
|Ij |
|Ĩj |
− 1

} 1

|Ĩj |
e−

γj

|O|

√
2 ln(|Ij |)M

• if Ĩj = Ij, then

wi•→j
M+1 = |Ij |−1.

Proof. First, let’s prove that for all m ≥ 1, for all j ∈ J and i ∈ Ij

G
i•→j

M = di
•→jM. (7)

Indeed,

G
i+→j

M =

M∑
m=1

gi
+→j
m

=
∑

m, o(m)∈j

M

M j
× pim −

∑
j′ ̸=j

∑
m, o(m)∈j′

1

|J | − 1
× M

M j′
× pim

= M
( 1

M j

∑
m, o(m)∈j

pim −
1

|J | − 1

∑
j′ ̸=j

1

M j′

∑
m, o(m)∈j′

pim

)
= M

( 1

M j

∑
o∈j

∑
m, o(m)=o

pio −
1

|J | − 1

∑
j′ ̸=j

1

M j′

∑
o∈j′

∑
m, o(m)=o

pio

)
Besides, each kind of object is presented the same amount of times, so for all j ∈ J ,

M j = nj × M

|O|

so we have

G
i+→j

M = M
( 1

nj

∑
o∈j

poi −
1

|J | − 1

∑
j′ ̸=j

1

nj′

∑
o∈j′

poi

)
= di

+→jM.

Similarly we have

G
i−→j

M = di
−→jM.

Let djmax := max
i•∈Ij

di
•→j .

Case Ĩj = Ij . Then for all i• ∈ Ij ,

wi•→j
M+1 =

exp(ηjdjmaxM)∑
k∈Ij

exp(ηjdjmaxM)
=

1

|Ij |
.

Case Ĩj ̸= Ij . Then

wi•→j
M+1 =

eη
jMdi•→j∑

k∈Ij

eηjMdk→j ≤
eη

jMdi•→j

|Ĩj |eηjMdj
max

=
1

|Ĩj |
e−ηjM(dj

max−di•→j).

Thus

0 ≤ wi•→j
M+1 ≤

1

|Ĩj |
e−ηjM(dj

max−di•→j). (8)
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Let i• ∈ Ĩj , djmax bis := max
k∈Ij\Ĩj

dk→j .

wi•→j
M+1 =

eη
jMdi•→j∑

k∈Ij

eηjMdk→j

≥ eη
jMdj

max

|Ĩj |eηjMdj
max + (|Ij | − |Ĩj |)eηjMdj

max bis

=
1

|Ĩj |
1

1 + |Ij |−|Ĩj |
|Ĩj | e−ηjγjM

≥ 1

|Ĩj |

(
1− |I

j | − |Ĩj |
|Ĩj |

e−ηjγjM
)

=
1

|Ĩj |
− |I

j | − |Ĩj |
|Ĩj |2

e−ηjγjM ,

and thanks to (8),

wi•→j
M+1 ≤

1

|Ĩj |
.

Thus

1

|Ĩj |
− |I

j | − |Ĩj |
|Ĩj |2

e−ηjγjM ≤ wi•→j
M+1 ≤

1

|Ĩj |
.

Let i ∈ Ij \ Ĩj . Then (8) tells us that

0 ≤ wi•→j
M+1 ≤

1

|Ĩj |
e−ηjMγj

.

In particular, with ηj =
1

|O|

√
2
ln(|Ij |)

M
, for all i• ∈ Ij

|wi•→j
M+1 − wi•→j

∞ | ≤ Ej
EWA(M).

We get the result by combining Proposition 13.3 and Proposition 13.4.

13.2.1 Proof of Corollary 3.5

We have

pj,condM+1,t(w
j
M+1)− pj

′,cond
M+1,t (w

j′

M+1) =pj,condM+1,t(w
j
M+1)− pj,condM+1,t(w

j
∞)

+ pj,condM+1,t(w
j
∞)− pj

′,cond
M+1,t (w

j′

∞)

+ pj
′,cond

M+1,t (w
j′

∞)− pj
′,cond

M+1,t (w
j′

M+1).
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Let h ∈ J .

|ph,condM+1,t(w
h
M+1)− ph,condM+1,t(w

h
∞)|

=
∣∣∣φ(αh +

∑
i+∈Ih

+

wi+→h
M+1

K∑
k=1

g+(k)X
i
M+1,t−k −

∑
i−∈Ih

−

wi−→h
M+1

K∑
k=1

g−(k)X
i
M+1,t−k

)

− φ
(
αh +

∑
i+∈Ih

+

wi+→h
∞

K∑
k=1

g+(k)X
i
M+1,t−k −

∑
i−∈Ih

−

wi−→h
∞

K∑
k=1

g−(k)X
i
M+1,t−k

)∣∣∣
≤ L

∣∣∣ ∑
i+∈Ih

+

(wi+→h
M+1 − wi+→h

∞ )

K∑
k=1

g+(k)X
i
M+1,t−k −

∑
i−∈Ih

−

(wi−→h
M+1 − wi−→h

∞ )

K∑
k=1

g−(k)X
i
M+1,t−k

∣∣∣
≤ L

∑
i•∈Ih

|wi•→h
M+1 − wi•→h

∞ |

because φ is L-Lipschitz and the variables Xi
M+1,t−k are bounded by 1. Hence according to Theorem 3.4, with

probability 1− α, for all h ∈ J , t ∈ {1, . . . , N} we have

|ph,condM+1,t(w
h
M+1)− ph,condM+1,t(w

h
∞)| ≤ L|Ih|(Eh(N,α) + Eh

EWA(M)).

Hence with probability 1− α, for all j ∈ J , j′ ̸= j, t ∈ {1, . . . , N}, o(M + 1) ∈ j we have

pj,condM+1,t(w
j
M+1)− pj

′,cond
M+1,t (w

j′

M+1) ≥ pj,condM+1,t(w
j
∞)− pj

′,cond
M+1,t (w

j′

∞)− L
∑

h∈{j,j′}
|Ih|(Eh(N,α) + Eh

EWA(M)).

13.3 Proofs of Proposition 8.1 and Proposition 8.2

13.3.1 Proof of Proposition 8.1

Here the assumptions of Theorem 3.4 are verified so Theorem 3.4 applies. Let us study the limit family (wA
∞, wB

∞).
Let us compute the feature discrepancies. We have |A| = nc−1 and |B| = 1. Here, |J | = 2 so for all k ∈ {1, . . . , c},
l ∈ {1, . . . , n}, df

+
k,l→A = −df

−
k,l→A = −df

+
k,l→B = df

−
k,l→B .

Let k ∈ {1, . . . , c} and l ∈ {2, . . . , n}. There are nc−1 − 1 objects in A and 1 in B with the feature fk,1, n
c−1 in

A and 0 in B with the feature fk,l. Hence,

df
+
k,1→A =

nc−1 − 1

nc − 1
p− p

df
+
k,l→A =

nc−1

nc − 1
p

df
−
k,1→A = p− nc−1 − 1

nc − 1
p

df
−
k,l→A = − nc−1

nc − 1
p

df
+
k,1→B = p− nc−1 − 1

nc − 1
p

df
+
k,l→B = − nc−1

nc − 1
p

df
−
k,1→B =

nc−1 − 1

nc − 1
p− p

df
−
k,l→B =

nc−1

nc − 1
p.

It is clear that df
+
k,1→A < df

+
k,l→A and df

−
k,l→A < df

−
k,1→A. Besides,

df
+
k,l→A < df

−
k,1→A ⇐⇒ n > 2.
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Hence under the condition n > 2, ĨA = {f−
k,1, 1 ≤ k ≤ c} and similarly ĨB = {f+

k,1, 1 ≤ k ≤ c}. So according to

Theorem 3.4, wA
∞ is the family such that wf−

k,1→A = 1/c for k ∈ {1, . . . , c} and wi•→A = 0 for other connections,

whereas wB
∞ is the family such that wf+

k,1→B = 1/c for k ∈ {1, . . . , c} and wi•→B = 0 for other connections.

Let us look at the conditions under which this is a feasible weight family. When presented with an object having
h features fk1,1,..., fkh,1 in common with object oB ,

pA,cond
m,t (wA

∞) =
(
αA − 1

c

h∑
l=1

X
fkl,1

m,t−1

)
+

so under the condition αA < 1/c,

E[pA,cond
m,t (wA

∞)] = αAP(Xfk1,1

m,t = 0, . . . , X
fkh,1

m,t = 0)

= αA(1− p)h.

Besides,

pB,cond
m,t (wB

∞) =
1

c

h∑
l=1

X
fkl,1

m,t−1

so

E[pB,cond
m,t (wB

∞)] =
h

c
p.

Hence (wA
∞, wB

∞) is a feasible weight family if and only if we have the two following conditions:

∀1 ≤ h ≤ c− 1, αA(1− p)h >
h

c
p (9)

αA(1− p)c < p (10)

where (9) says that w∞ correctly classifies objects in A and (10) says that that w∞ correctly classifies the object
in B.

Besides, (9) is equivalent to

αA(1− p)c−1 >
c− 1

c
p

so w∞ is a feasible weight family if and only if αA ∈
(

(c−1)p
c(1−p)c−1 ,

p
(1−p)c

)
and αA < 1/c. If so, the safety discrepancy

is

Discsafe(w∞) = min{αA(1− p)c−1 − c− 1

c
p, p− αA(1− p)c}.

Besides,
(c− 1)p

c(1− p)c−1
<

p

(1− p)c
⇐⇒ c− 1

c
(1− p) < 1

which is always true so the interval is non-empty, and 1
c > (c−1)p

c(1−p)c−1 if and only if (c− 1)p < (1− p)c−1.

To conclude, if n > 2 and (c− 1)p < (1− p)c−1 then there exists αA such that w∞ is a feasible weight family.

13.3.2 Proof of Proposition 8.2

Let us compute the feature discrepancies in this new framework.

Let k ∈ {1, . . . , c} and l ∈ {2, . . . , n}. There are nc − nc−1 objects in A and 0 in B without the feature fk,1 and
nc − nc−1 − 1 in A and 1 in B without the feature fk,l. Hence, similarly as in 13.3.1,

dfk,1→A =
nc−1 − 1

nc − 1
p− p
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dfk,l→A =
nc−1

nc − 1
p

df̃k,1→A =
nc − nc−1

nc − 1
q

df̃k,l→A =
nc − nc−1 − 1

nc − 1
q − q

dfk,1→B = p− nc−1 − 1

nc − 1
p

dfk,l→B = − nc−1

nc − 1
p

df̃k,1→B = −nc − nc−1

nc − 1
q

df̃k,l→B = q − nc − nc−1 − 1

nc − 1
q.

It is clear that dfk,1→A < dfk,l→A and df̃k,l→A < df̃k,1→A. Besides,

dfk,l→A < df̃k,1→A ⇐⇒ p

n− 1
< q

and
df̃k,l→B < dfk,1→B ⇐⇒ q < (n− 1)p.

Thus, under the hypothesis
p

n− 1
< q < (n− 1)p,

the neurons having maximal feature discrepancies are neurons f̃k,1 for A, and fk,1 for B. So according to Theorem

3.4, wA
∞ is the family such that wf̃k,1→A = 1/c for k ∈ {1, . . . , c} and wi→A = 0 for other connections, whereas

wB
∞ is the family such that wfk,1→B = 1/c for k ∈ {1, . . . , c} and wi→B = 0 for other connections. With constant

weights (wA
∞, wB

∞), neurons A and B have the following spiking probabilities.

o ∈ A with a l common features with oB oB
A q(c− l)/c 0
B pl/c p

Hence with q > (c− 1)p, the pair w∞ = (wA
∞, wB

∞) is indeed a feasible weight family.

Besides,

Discsafe(w∞) = min
{

min
l∈{0,c−1}

{
q
c− l

c
− p

l

c

}
, p
}

The second minimum is achieved for l = c− 1, so

Discsafe(w∞) = min
{q − p(c− 1)

c
, p
}
.
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Table 2: Notations

NOTATION DESCRIPTION

O set of objects
M total number of objects presented to the network
N number of time steps during which one object is presented
m index of the current round
o object in O
o(m) nature of the object of the mth round
J set of classes and of output neurons
I set of input neurons
j index of an output neuron and of a class
M j number of rounds with objects belonging to class j
i index of an input neuron

Ij+ set of excitatory input neurons of output neuron j

Ij− set of inhibitory input neurons of output neuron j
i• connection i• ∈ {i+, i−}
I+/− set of signed input neurons, i.e., all possible connections to output neurons
Ij set of connections to output neuron j
φ activation function of the Hawkes process
K size of the support of functions g+ and g−
αj spontaneous activity of output neuron j
Xi

m,t activity of neuron i during time step t of round m.
pim spiking probability of input neuron i during round m
Q set of feasible weight families
pio spiking probability of input neuron i when presented with object o

pj,condm,t conditional spiking probability of output neuron j knowing the past

wi•→j
m synaptic weight of connection i• of neuron j during round m given by HAN

wj
m weight family of neuron j during round m given by HAN: (wi→j

m )i∈Ij

qi
•→j constant synaptic weight of connection i• of j

qj constant weight family of neuron j: (qi
•→j)i•∈Ij

gi
•→j
m gain of connection i• w.r.t. output neuron j for round m

Gi•→j
m cumulated gain of connection i• of output neuron j until round m

Gm
j cumulated gain of output neuron j until round m:

∑m
m′=1

∑
i•∈Ij wi•→j

m gi
•→j
m′

ηj learning rate of EWA
βj parameter of PWA
A, B classes of the specific case
c number of characteristics in the specific case
n number of features for each characteristic in the specific case
oB unique object belonging to class B
fk,l feature of the specific case

fk,l, f̃k,l neurons of the specific case
p spiking probability of fk,l neurons when active

q spiking probability of f̃k,l neurons when active


