
From Data Imputation to Data Cleaning – Automated Cleaning of
Tabular Data Improves Downstream Predictive Performance

Sebastian Jäger∗,1 Felix Bießmann1,2

1Berlin University of Applied Sciences and Technology (BHT), Germany
2Einstein Center Digital Future, Berlin, Germany

*Correspondence to: sebastian.jaeger@bht-berlin.de

Abstract

The translation of Machine Learning (ML)
research innovations to real-world applica-
tions and the maintenance of ML compo-
nents are hindered by reoccurring challenges,
such as reaching high predictive performance,
robustness, complying with regulatory con-
straints, or meeting ethical standards. Many
of these challenges are related to data qual-
ity and, in particular, to the lack of automa-
tion in data pipelines upstream of ML com-
ponents. Automated data cleaning remains
challenging since many approaches neglect
the dependency structure of the data errors
and require task-specific heuristics or human
input for calibration. In this study, we de-
velop and evaluate an application-agnostic
ML-based data cleaning approach using well-
established imputation techniques for auto-
mated detection and cleaning of erroneous
values. To improve the degree of automation,
we combine imputation techniques with con-
formal prediction (CP), a model-agnostic and
distribution-free method to quantify and cal-
ibrate the uncertainty of ML models. Exten-
sive empirical evaluations demonstrate that
Conformal Data Cleaning (CDC) improves
predictive performance in downstream ML
tasks in the majority of cases. Our code is
available on GitHub: https://github.com/
se-jaeger/conformal-data-cleaning.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 Introduction

Machine Learning (ML) components have become
ubiquitous in modern software applications. While re-
searchers have made significant progress in developing
better models, much of this innovation is only slowly
translated into real-world applications. Research at
the intersection of ML and database management sys-
tems has identified several potential causes, includ-
ing the difficulty of maintaining an ML system (Scul-
ley et al., 2015) and challenges related to data qual-
ity (Breck et al., 2019; Schelter et al., 2018a). While
many aspects of modern ML workflows have become
simpler thanks to standardized APIs and libraries,
data quality control remains one of the most impact-
ful and difficult-to-automate parts of ML applications
(Biessmann et al., 2021).

Here, we focus on one of the most common and rel-
evant use cases of ML applications: we assume that
an ML model was trained on clean data, and at in-
ference time, the data quality deteriorates, impacting
the predictive performance. When implementing ML
systems, it is common to measure the data quality
and remove erroneous examples using, e.g., outlier de-
tection algorithms (Zhao et al., 2019). However, in
many scenarios, low-quality data points cannot be dis-
carded, and a prediction would be desirable. For this
reason, one line of research focuses on training robust
ML algorithms that are agnostic to data quality is-
sues. For tabular data, these techniques, e.g., reg-
ularization (Kadra et al., 2021) and data augmenta-
tion (Machado et al., 2022), have been reported to be
not as useful yet as for other data modalities (Borisov
et al., 2022). On the other hand, there is a substantial
body of literature in ML and database management
communities spotlighting data quality and trying to
detect which attributes of the examples are erroneous
to enable data cleaning.

https://github.com/se-jaeger/conformal-data-cleaning
https://github.com/se-jaeger/conformal-data-cleaning


Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

Existing cleaning approaches lack automation
Database cleaning systems typically rely on user in-
put, e.g., constraints, rules (Rekatsinas et al., 2017),
or cleaning suggestions (Mahdavi and Abedjan, 2020).
Mining these is challenging, and manually specify-
ing them is, in practice, not scalable. Other clean-
ing methods use column-wise summary statistics to
learn which values are erroneous or require tuning
data-dependent thresholds (Breck et al., 2019; Schel-
ter et al., 2018b). This approach is difficult to auto-
mate and ignores input data’s dependencies between
columns for downstream ML models.

Research question and hypothesis For missing
values, it is common and efficient to use ML-based
approaches to capture statistical dependencies be-
tween columns in a table (Rubin, 1987; Stekhoven and
Buhlmann, 2012; Biessmann et al., 2019; Jäger et al.,
2021) rather than considering only marginal statis-
tics of single attributes (Breck et al., 2019), to impute
them. Another advantage of modern imputation ap-
proaches is that they require little to no manual inter-
vention. This raises the question of whether this ap-
proach generalizes to data cleaning problems. While
typical ML algorithms do not account for prediction
uncertainties or are poorly calibrated (Guo et al.,
2017), it is difficult to detect erroneous attributes.
Therefore, we hypothesize that using conformal infer-
ence (Vovk et al., 2005) to calibrate models’ uncertain-
ties allows us to test whether an attribute, i.e., cell, is
erroneous and to clean if necessary. Conformal pre-
diction (CP) is a model-agnostic and distribution-free
method to calibrate ML models that give statistical
guarantees on their performance.

Contributions We propose Conformal Data Clean-
ing (CDC) that aims at a higher degree of automa-
tion in cleaning tasks and generally ML applications
by combining established imputation techniques with
a statistically well-founded calibration method, confor-
mal inference. The calibration of imputation models
allows us to control the cleaning performance using a
generic hyperparameter independent of the datasets
and variable types, allowing fully automated appli-
cation of CDC. We experimentally evaluate CDC on
realistic scenarios, where ML models and CDC are
trained on clean training data, and at inference time,
the test data can have data errors. The benchmark
consists of 16 heterogeneous tabular datasets, which
we perturb with four realistic error types and five er-
ror fractions each. In the majority of these 320 ex-
periments, CDC outperforms the baselines and im-
proves the downstream ML task. Our code is avail-
able on GitHub: https://github.com/se-jaeger/

conformal-data-cleaning.

2 Related Work

The term data cleaning has different meanings depend-
ing on the research area. Here, we briefly describe the
differences and highlight how these relate to and influ-
ence our work. We focus on tabular data and do not
consider methods for other data types (e.g., texts or
images).

Outlier detection Outlier detection (also known as
anomaly detection) identifies data points that differ
substantially from others and is well-known in the ma-
chine learning (ML) community. Unsupervised ML ap-
proaches to predict whether or not a data point is an
outlier has been investigated in machine learning (Ra-
maswamy et al., 2000; Liu et al., 2008), in work on em-
pirical cumulative distribution function estimation (Li
et al., 2020, 2022) and neural networks (Hawkins et al.,
2002; Chen et al., 2017; Wang et al., 2020). The idea
of outlier detection is to remove outliers, entire data
points, from a dataset. In many application scenar-
ios, a complementary goal is to detect and potentially
clean anomalous attributes, meaning single dimensions
of a multivariate data point or cells in a data table. In
this study, we focus on this application use case.

Cell-based error detection and correction Cell-
based error detection and correction focuses on errors
in individual attributes of data points. This task is
less studied in the statistical learning community than
outlier detection. In contrast, the data management
community has a large body of literature investigat-
ing cell-based error detection and correction methods
for relational databases, i.e., tabular data. However,
these approaches are often specialized for detecting
specific error types, e.g., violations of rules, constraints
or functional dependencies (Dallachiesa et al., 2013;
Rekatsinas et al., 2017), inconsistencies (Ham, 2013),
or (disguised) missing values (”999999” for a phone
number) (Qahtan et al., 2018), and they often rely
on user input. Also, in the data management com-
munity, ML methods are increasingly being used for
data cleaning, employing semi-supervision (Mahdavi
et al., 2019), active learning (Neutatz et al., 2019), or
self-supervision (Peng et al., 2022; Liu et al., 2022) to
exploit user input more efficiently. Most correction ap-
proaches can tackle all error types but use user input
(e.g., Krishnan et al., 2016; Rekatsinas et al., 2017;
Mahdavi and Abedjan, 2020). Abdelaal et al. (2023)
show in an extensive benchmark that many of these
detection and correction methods can be combined,
which is similar to our approach. Since we focus on
improving the automation of cleaning tasks, we build
upon methods that do not rely on user input but in-
stead rest on the assumption of clean training data

https://github.com/se-jaeger/conformal-data-cleaning
https://github.com/se-jaeger/conformal-data-cleaning


Sebastian Jäger∗,1, Felix Bießmann1,2

and corrupted data at inference time.

Missing data and data imputation Missing val-
ues are common data quality issues (Kumar et al.,
2017). Various strategies to deal with missing val-
ues were developed in the ML community and be-
yond, which range from discarding rows or columns
over column-wise imputing (Rubin, 1976) and imput-
ing depending on other columns’ values (Rubin, 1987;
Stekhoven and Buhlmann, 2012; Biessmann et al.,
2019) to deep generative models (Yoon et al., 2018;
Camino et al., 2019; Yoon and Sull, 2020; Nazábal
et al., 2020). In this study, we build on this work and
leverage recent work in ML-based imputation for het-
erogeneous data as a central component in our cleaning
approach.

Label error In our work, we focus on errors in the
input data. Complementary approaches focus on er-
rors corrupting the label data. For instance, Northcutt
et al. (2021a) demonstrate that mislabeled examples
are common in computer vision, natural language pro-
cessing, and audio processing benchmarks. Therefore,
different methods are available that detect these label
errors (e.g., Pleiss et al., 2020; Northcutt et al., 2021b;
Zhou et al., 2023; Chen et al., 2021; Zhou et al., 2023)
or to correct for shifts in the label distribution (Lip-
ton et al., 2018). This type of cleaning is important
to obtain a trustworthy training dataset. It usually
requires manual inspection of the cleaning results to
ensure responsible usage of the models trained on the
presumably clean training data.

To summarize, our work complements existing work
on outlier removal, cleaning approaches developed in
the database management community as well as spe-
cialized cleaning approaches for, e.g., label errors in
that we focus on a high degree of automation while
accounting for the statistical dependencies in the in-
put variables as well as the errors corrupting the data.

3 Methodology

In this section, we describe the foundations of mod-
ern ML data imputation approaches and the confor-
mal framework and how we combined both into the
proposed Conformal Data Cleaning (CDC).

3.1 ML-based Data Imputation

Missing values is one of the most frequent data qual-
ity problems (Kumar et al., 2017). In recent years,
ML approaches have been increasingly used to model
the statistical dependencies between columns in a ta-
ble to impute missing values conditioned on values in
other columns of the same row. Consider a dataset

represented as a table or matrix Xn×d. The main
idea behind many ML-based imputation approaches
is to train an imputation model f̂c for each column
c ∈ {1, ..., d} that predicts the value in cell i, c given
the values in row i except for the value in column c,
i.e.,

Xi,c = f̂c(X{1,...,d}\{c}) (1)

In other words, one column of a table is considered
the label and, the remaining columns serve as in-
put data to any supervised ML model. The model
classes used for f̂c include k-nearest neighbors (k-
NN) (Batista and Monard, 2003), random forest-based
approaches (Stekhoven and Buhlmann, 2012), or dis-
criminative deep learning methods (Biessmann et al.,
2018). These imputation models can be trained along
with the ML models, consuming the matrix X as in-
put data. At inference time, when data might be cor-
rupted, the imputation models can be applied before
the downstream ML model. In practice, these mod-
els need to be well-calibrated to allow for automated
cleaning. This calibration can be challenging when
dealing with heterogeneous data. In the following, we
discuss how to adopt conformal predictors to alleviate
this problem.

3.2 Conformal Predictors

Conformal predictors are uncertainty quantification
methods that allow the calculation of statistically rig-
orous confidence intervals (regression) or sets (classi-
fication) from any point estimator for a user-defined
error rate Vovk et al. (2005). Here, we focus on in-
ductive conformal predictors, which are computation-
ally efficient and were quickly adapted for machine
learning (ML) applications (e.g., Papadopoulos, 2008;
Balasubramanian et al., 2014). For better readability,
we use confidence sets and intervals interchangeably.
Assume D := X × Y is a tabular dataset for a re-
gression or classification problem. We sample training
dataset Dtrain := {X × Y } and calibration dataset
Dcalib := {Xn×d×Yn}. The two datasets are indepen-

dent and identically distributed (i.i.d.). We define f̂
as a (arbitrary) predictor fitted on the training data

Dtrain. To conformalize f̂ , we compute calibration
nonconformity scores for the calibration data Dcalib

using a nonconformity score function S.

ŷcalib = f̂(Xcalib)

Rcalib = S(ŷcalib, ycalib)
(2)

Intuitionally, nonconformity scores represent how dif-
ferent a data point (xi, yi) is from what the fitted pre-

dictor f̂ expects it to be (xi, ŷi). Since smaller scores
are better, the calibration nonconformity scores Rcalib

will be relatively small if f̂ represents Dtrain well.



Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

Then, we compute q̂, the k-th empirical quantile of
Rcalib, as follows:

k =
⌈(n+ 1)(1− α)⌉

n
q̂ = quantile(Rcalib, k),

(3)

where α ∈ [0, 1] is the user-chosen error rate.1

Lastly, for new and unseen test data Xtest, we need
to construct the prediction set C, which depends on
the chosen nonconformity score function S. Here, for
classification tasks, we use class-conditional conformal
prediction (Angelopoulos and Bates, 2022) and con-
formalized quantile regression (Romano et al., 2019)
for regression. For more details, we refer the reader to
Appendix B.

Since q̂ is based on the calibration nonconformity
scores and the error rate α, the conformal framework
guarantees that C(Xtest) contains ytest (the true label)
with at least probability 1−α, or in other words, with
a confidence level of 1 − α. More formally conformal
predictors (CPs) ensure that:

P(ytest ∈ C(Xtest)) ≥ 1− α. (4)

If the model f̂ fits the data Dtrain well, the prediction
sets C will be small. However, if f̂ performs poorly, the
prediction sets will be larger to satisfy Statement (4).
This property is known as (marginal) coverage (Lei
and Wasserman, 2014; Lei et al., 2018).

3.3 Conformal Data Cleaning (CDC)

In the following, we demonstrate that the concepts of
conformal prediction can help to automate data clean-
ing routines. We follow an ML-based approach, in-
troduced by van Buuren and Oudshoorn (1999), al-
lowing us to exploit the columns’ dependencies and
use conformal predictors to detect which cells are er-
roneous, given the information of all other cells in
that row. Therefore, during training, we fit an ML
model for each column, where all other columns are
the model’s features, and calibrate its output. During
deployment, we (column-wise) test which values are er-
roneous, meaning which value does not belong to the
prediction sets, and replace them with the underlying
ML point prediction.

Formally, let Dtrain be a dataset and cleaner our pro-
posed method. Then, cleaner fits dmodels on a subset

1Originally, Vovk et al. (2005) calculated p-values for
each nonconformity score. However, it has been proven
that relying on the fitted residual distribution and q̂ is
equivalent (Lei et al., 2018) and commonly used in modern
ML applications (Zeni et al., 2020).

of the data, where Xtrain
c = Dtrain

{1,...,d}\{c} is the train-

ing data and ytrainc = Dtrain
c the labels to fit cleanerc

to clean column c ∈ {1, ..., d}.

Error detection For new and unseen test data
Dtest

n×d and error rate, e.g., α = 0.01, each of the

fitted ̂cleanerc predicts confidence sets Ci,c, where
∀i ∈ {1, ..., n} and ∀c ∈ {1, ..., d}, for every test ex-
ample i of the corresponding column c as follows:

Xtest
i,c = Dtest

i,{1,...,d}\{c}

Ci,c = ̂cleanerc(Xtest
i,c )

(5)

If Dtest is drawn from the same distribution as both
the training and calibration data, Statement (4) holds.

Hence, if Dtest
i,c is correct, then ̂cleanerc guarantees

that Ci,c contains Dtest
i,c with at least probability 1−α.

Otherwise, we assumeDtest
i,c as incorrect ifDtest

i,c /∈ Ci,c.
Finally, we end up with a boolean matrix Btest

n×d ⊂
{0, 1}, which represents incorrect values of Dtest as 1.

Error cleaning After detecting errors, i.e., comput-
ing matrix Btest, it is straightforward to clean them.
Having Btest representing erroneous cells of Dtest, we
can remove those and treat the situation as a missing

value problem. In fact, we use the ̂cleaner’s underlying
conformalized ML models to clean the erroneous val-
ues. Instead of using {0, 1} for Btest, we use the best

prediction of these ML models. Formally, ̂cleaner’s
CPs return not only a confidence set but also the best
prediction for Xtest

i,c :

Ci,c, ŷi,c = ̂cleanerc(Xtest
i,c )

Btest
i,c =

{
ŷi,c, if Dtest

i,c /∈ Ci,c
NAN, otherwise

,
(6)

where NAN is a placeholder representing not exist-
ing values. Replacing all values of Dtest with Btest if
Btest

i,c /∈ {NAN} is effectively cleaning Dtest.

4 Implementation and Experimental
Setup

In this section, we give implementation details of
CDC and our baselines and describe our experimen-
tal benchmark.

4.1 Conformal Data Cleaner Implementation

We use AutoGluon (Erickson et al., 2020), allowing
us to test many ML model types and optimize their
hyperparameters (HPO). Depending on the columns’
data type, we optimize the pinball loss or F1 met-
ric for boolean columns or macro F1 for more than



Sebastian Jäger∗,1, Felix Bießmann1,2

two categories, respectively. Internally, AutoGluon
finds the best model from random forests, extremely
randomized trees, and a FastAI-based neural network
(NN) (Howard and Gugger, 2020). For NNs, it further
uses 50 trials (random search) to optimize their hyper-
parameters, where we use the default search spaces.
For tree-based model types, some predefined hyperpa-
rameter settings are tested. We disable model stacking
and bagging and use the best-performing model (with-
out model ensembles) for data cleaning. For the cali-
bration, we reserve 1000 data points2 (not used during
training) as described in Section 3.2. If a CP pre-
dicts empty sets, the input data typically is very dif-
ferent from the training and calibration data, meaning
the underlying stationarity assumption was likely vi-
olated. In such a scenario, the conformal framework
is no longer valid and loses its guarantees, and State-
ment (6) would mark those values as erroneous. To
avoid this, we only apply Statement (6) if the predic-
tion sets are not empty. For consistency with the ML
baseline, we expect the single parameter a confidence
level, i.e., 1− α.

4.2 Baseline Implementations

No Conformal Inference To assess the impact of
calibration, we implemented a cleaning baseline that
uses ML imputation models without conformal infer-
ence but otherwise applied in the same way, as de-
scribed in Section 3.3. For a fair comparison, we ap-
ply alternative thresholding mechanisms often used in
practice. Categorical variables were defined as errors
if the imputation model did not reach a given precision
threshold p. For numerical columns, we also use quan-
tile regression to fitDtrain’s lower qlo = 1−p

2 and upper

qup = 1 − 1−p
2 empirical quantiles, where p ∈ [0, 1] is

a given parameter representing the (empirical) range
defined as correct. Therefore, the hyperparameter rep-
resents how certain the cleaner has to be to mark a
value as erroneous.

Garf Garf (Peng et al., 2022) uses logical data clean-
ing (functional dependencies), which is popular in the
database management community. However, in par-
ticular, it uses a sequence of generative adversarial
networks (SeqGAN) to learn dependencies between
columns and generate data repair rules. Garf applies
these learned rules iteratively to clean dirty data and,
at the same time, uses the relative confidence between
data and rules to improve both. Therefore, it does
not need any user input and directly works on dirty
datasets. For the implementation, we used default hy-

2Angelopoulos and Bates (2022) discussed the effect of
the calibration set size and show that 1000 data points
works well.

perparameters and made some minor adaptions to im-
port/export our benchmark (cf. Section 4.3) into/from
an SQLite database. Unfortunately, Garf casts the
datasets into strings, i.e., categorical data, which po-
tentially decreases its performance.

4.3 Experimental Setup

We use 16 openly available datasets from
OpenML (Vanschoren et al., 2014) for the three
most common task types: regression, binary classi-
fication, and multi-class classification that fulfill the
criteria for tabular datasets formulated by Grinsztajn
et al. (2022). Appendix A lists our datasets and gives
information about their size and columns. We split
them 80/20 into training and test sets and applied
Jenga3 (Schelter et al., 2021) to each of the test sets
multiple times to create several corrupted test sets.
We use four error types (swapping values between
columns, random scaling, Gaussian noise, and shifts
of categorical value distributions) with 1%, 5%, 10%,
30%, and 50% error fractions, which results in 20
corrupted test sets for each dataset. Since we do not
mix the error types, we end up with a wide range of
error fractions (not every error type can be applied
to each column) ranging from 0% to about 41% with
11%± 14 errors on average.

To simulate a real-world scenario, we train the clean-
ing methods and a downstream model4 on the high-
quality training datasets. For CDC and the ML
baseline, we experiments with different parameters
(confidence level of CDC and p for ML baseline).
Since Garf is designed to work on corrupted data, we
only train the downstream model on the clean train-
ing data and use Garf to clean the corrupted test sets.
All experiments are repeated three times with differ-
ent seeds – for CDC, this leads to resampling the 1000
calibration data points for each repetition.

5 Results

We evaluate the cleaning performance as the predic-
tive performance on a variety of downstream tasks af-
ter applying the cleaning procedure to a corrupted test
data set. Depending on the task, we use F1 for binary
classification, macro F1 for multi-class classification,

3”Jenga is an experimentation library that allows data
science practitioners and researchers to study the effect
of common data corruptions”. GitHub: https://github.
com/schelterlabs/jenga

4We use Jenga, which builds up on scikit-learn’s
SGDClassifier for classification or SGDRegressor for re-
gression tasks, pre-processes the columns (scaling, missing
value imputation, and one-hot encoding), and optimizes
hyperparameters (grid search).

https://github.com/schelterlabs/jenga
https://github.com/schelterlabs/jenga


Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

and root mean square error (RMSE ) for regression
datasets to report the performance of the downstream
model. To compare the overall performance of the
cleaning methods, we calculate the downstream perfor-
mance improvement (corrupted vs. cleaned) relative
to the corrupted performance. The average coefficient
of variation (σµ ) over the three experiment repetitions

for the downstream performance is 1.84% ± 2.84. If
not stated otherwise, we report the averaged results
over the three repetitions (with different seeds). For
five datasets (see Appendix A), Garf does not pro-
duce valid cleaned datasets. Either it introduces new
symbols that lead to failing downstream models, or
it removes data points from the dirty data. For this
reason, we removed those results from the following
evaluations.

5.1 Error Detection

To report the outlier detection performance, we use the
true positive rate (TPR), i.e., probability of detection,
and the false positive rate (FPR), i.e., probability of
false alarm. Figure 1 visualizes the outlier detection
performance. We binned the error fractions for better
visualization and averaged the results.

True positive rate (↑) With lower values for ML’s
and CDC’s hyperparameters, they can detect more er-
roneous values. In almost all cases, CDC has higher
TPR and is more robust against the error fraction of
the datasets. In detail, CDC detects in ∼ 43% of the
experiments more erroneous values than the ML base-
line. On the other hand, Garf is in all cases worse than
CDC and ML.

False positive rate (↓) In general, CDC’s and ML’s
hyperparameters have more influence on the FPR,
which is why their results are further apart. This is
more pronounced for ML than for CDC, and, again,
its results depend more on the error fraction. More
precisely, CDC produces in ∼ 80% of the experiments
fewer false alarms than the ML baseline. In contrast to
the TPR, Garf is among the best methods concerning
to the FPR.

An optimal error detector would detect all erroneous
values, i.e., TPR = 1, and does not produce any false
alarms, i.e., FPR = 0. Figure 1 illustrates the trade-
off between TPR and FPR.

5.2 Error Cleaning

Figure 2 shows the downstream performance improve-
ment (↑) in percent relative to the corrupted perfor-
mance. For better visualization, we show the me-
dian values of the results that belong to the same

range of error fractions. Median values give insight
into the minimal downstream performance improve-
ment we can expect in the majority of experiments5.

The more errors exist, the higher the potential im-
provement of downstream performance in contrast to
not using any cleaning method. Similarly to the error
detection performance, CDC is more robust regard-
ing the error fraction. Especially with (30 − 40]% er-
rors, where the majority of ML results degrade the
downstream performance, CDC maintains more than
15% downstream improvements. Overall, in ∼ 61% of
the experiments, CDC leads to better downstream im-
provements than ML. Garf does not lead to improve-
ments or degrade the downstream performance.

5.3 Confidence Set Size

As described in Section 3.2, conformal predictors vary
the confidence set size to express their prediction un-
certainties. Here, we normalize the set sizes to the
valid range, i.e., the cardinality of categorical or the
range of numerical columns, and compute the average
relative confidence set size (↓) for each experiment.
Figure 3 shows CDC’s downstream improvement, sim-
ilar to Figure 2, but visualizes the 20% easiest (small-
est sets), 60% moderately difficult, and the 20% most
difficult (largest sets) of the experiments separately.
To make the results comparable, we controlled for the
confidence level because it directly influences the con-
fidence set size.

The 20% most difficult experiments mostly degrade
the downstream performance, often by several tens of
percent. This is more pronounced with smaller confi-
dence levels, e.g., CDC with a confidence level of 0.999,
leads in ∼ 71% of the experiments to improvements,
with 0.8 in ∼ 18% and with 0.5 in ∼ 15%. Similarly,
for the easiest 20% of experiments, with a confidence
level of 0.999, we see better improvements. However,
in the midfield, this effect vanishes.

6 Discussion

We investigate the performance of CDC and the base-
lines on many datasets and a wide range of artificially
created but realistic errors. In the following, we high-
light some of the key findings. Evaluations of the un-
derlying model types can be found in Appendix C.

5Additional visualizations and results can be found in
Appendix D



Sebastian Jäger∗,1, Felix Bießmann1,2

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

0.0

0.2

0.4

0.6

0.8

1.0
Outlier Detection TPR

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

Outlier Detection FPR

Hyperparameter
0.5
0.8
0.999

Method
CDC (ours)
Garf
ML

Figure 1: (Left) Outlier Detection TPR (↑) vs. (Right) FPR (↓). Shows the average values for all experiments,
which fall into the binned error fractions. The lower the hyperparameter for ML and CDC, the more erroneous
values they detect – but CDC is more robust against the error fraction. On the other hand, larger hyperparam-
eters lead to smaller FPR.

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

−5

0

5

10

15

20

25

D
ow

ns
tre

am
 Im

pr
ov

em
en

t (
%

)

Hyperparameter
0.5
0.8
0.999

Method
CDC (ours)
Garf
ML

Figure 2: Downstream Improvement. Shows the me-
dian of the results that belong to the same range of
error fractions to visualize the expected improvement
in the majority of experiments. CDC with high hy-
perparameters outperforms others in most cases. Garf
does not lead to worth mentioning improvements.

6.1 CDC Outperforms Baselines in Most
Experiments

Garf Since our benchmark consists of heterogeneous
datasets, but Garf treats the data as categorical, it is
expected to perform much worse than the others (cf.
Figure 1). On the other hand, it does not introduce
too many errors (small FPR) and, therefore, does not
degrade the downstream performance (cf. Figure 2).

ML baseline Figures 1 and 2 indicate that CDC
performs in most experiments better than the ML
baseline. Comparing them one by one shows this is
true in more than 61% of the experiments. Besides
this, CDC is more robust regarding the error fraction
and its hyperparameter, as shown by less dispersed
results in Figure 2. Interestingly, for both methods,
their hyperparameter influences the detection perfor-
mance (ML more than CDC), but the amount of erro-
neous values only slightly influences the detection per-
formance. This is why the downstream improvement
increases with the amount of erroneous values.

6.2 Influence of CDC’s Hyperparameter
Confidence Level

The user-defined confidence level directly influences
the confidence prediction set sizes. High confidence
levels typically lead to larger prediction sets to satisfy
its coverage guarantee. Therefore, the higher the con-
fidence level, the fewer errors are detected (decreas-
ing TPR), but it also prevents false alarms (smaller
FPR) (cf. Figure 1). Even though detecting erro-
neous values is only the first step and does not guar-
antee downstream improvements, in many scenarios
(cf. Figure 2), higher confidence levels lead to better
downstream improvements. To be precise, on aver-
age, in more than 66% of the experiments, increasing
the confidence level improves the downstream perfor-
mance. Especially based on Figure 3, we argue that
CDC with high confidence levels mitigates the worst
cases. The higher the confidence level, the better the
downstream improvements, we can expect, which es-



Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

0

10

20

30

40

50

60

D
ow

ns
tre

am
 Im

pr
ov

em
en

t (
%

)
20% Easiest Experiments

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

0

10

20

30

40

50

60
20−80% Moderately Difficult Experiments

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

−250

−200

−150

−100

−50

0

20% Difficult Experiments

Hyperparameter
0.5
0.8
0.999

Figure 3: CDC Downstream Improvement depends on the experiment’s difficulty. We show the median results
to visualize the expected improvement in the majority of experiments. If experiments are relatively difficult
(Right), cleaning degrades the downstream performance. On the other hand, for moderately difficult (Middle)
or easy (Left) experiments, we can expect downstream improvements (cf. Figure 2).

pecially applies to the more difficult experiments.

6.3 CDC’s Relative Confidence Set Size

In contrast to the ML baseline, we can detect which
experiments (or single data points) are more difficult
than others by sorting them according to their rel-
ative confidence set size. The relative confidence set
sizes and the downstream improvements correlate neg-
atively. More precisely, about −0.61 for confidence
level 0.5 until about−0.17 for 0.999. This supports our
argument and shows that CDC mitigates bad results
with high confidence levels. Further, this allows us to
detect data points (or whole experiments) that poten-
tially lead to worse downstream performance. There-
fore, besides automated cleaning, CDC can be used for
advanced monitoring, e.g., whether the data shifts (cf.
Schelter et al., 2020). However, this aspect is not part
of this study and will be addressed in future work.

6.4 Limitations

In this study, we use tabular datasets as defined
by Grinsztajn et al. (2022) with five to 15 columns
(categorical, numerical, and mixed) and about 4, 800
to 89, 000 rows without missing values to benchmark
three common downstream tasks: regression, binary
classification, and multi-class classification. Thus, our
approach and results can not be transferred to other
data modalities, such as text- or image-based datasets.
However, since we benchmarked CDC on a wide range
of dataset sizes, we assume that it generalizes well
to larger or smaller tabular datasets. As described
in Section 4.3, we assume that high-quality training
data is available and data errors are tackled at infer-
ence time. While this assumption is often violated,
we believe that it is a sensible simplification of the

problem: First, it allows for substantial improvements
in the degree of automation, and our results demon-
strate that cleaning will improve the downstream pre-
dictive performance. Second, the curation of training
data is often a necessary part of model development
cycles and an essential step to ensure responsible us-
age of ML components. The curated training data
can usually be used for training the cleaning models
without additional curation efforts. Other approaches
focus on application scenarios where there is no high-
quality training data available to calibrate the cleaning
models. Such cleaning systems often circumvent the
assumption of high-quality training data by requiring
additional user input (e.g., Mahdavi et al., 2019; Mah-
davi and Abedjan, 2020; Neutatz et al., 2019; Krishnan
et al., 2017, 2016).

7 Conclusion and Future Work

In this study, we present how conformalized machine
learning models (CDC) can be used to detect and clean
erroneous values of heterogeneous tabular data with-
out requiring user input. We benchmark CDC on 16
datasets in a comprehensive suite of experiments with
realistic data corruptions. Our results show that in
about 61% of our experiments, CDC outperforms the
baselines, and using high confidence levels improves
the downstream performance in about 60% of the cases
without any manual effort in the data cleaning pro-
cedure. These results highlight the potential of au-
tomated imputation methods combined with modern
calibration methods.

In future work, it could be interesting to test an it-
erative cleaning approach similar to multiple imputa-
tion Rubin (1987), which has the potential to further
increase CDC’s performance, especially with many er-



Sebastian Jäger∗,1, Felix Bießmann1,2

roneous values. Further, we plan to investigate how
CDC can be applied for both performance monitoring
and data cleaning.

Acknowledgements

We thank the anonymous reviewers for their helpful
and constructive feedback and Philipp Jung for valu-
able discussions. This research was supported by the
German Federal Ministry of the Environment grant
number 67KI2022A and the German Federal Ministry
of Education and Research grant number 16SV8856.

References

Abdelaal, M., Hammacher, C., and Schoening, H.
(2023). Rein: A comprehensive benchmark frame-
work for data cleaning methods in ml pipelines. Pro-
ceedings of the VLDB Endowment (PVLDB).

Angelopoulos, A. N. and Bates, S. (2022). A
Gentle Introduction to Conformal Prediction
and Distribution-Free Uncertainty Quantification.
arXiv:2107.07511 [cs, math, stat].

Balasubramanian, V., Ho, S.-S., and Vovk, V. (2014).
Conformal Prediction for Reliable Machine Learn-
ing: Theory, Adaptations and Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition.

Batista, G. E. A. P. A. and Monard, M. C. (2003). An
analysis of four missing data treatment methods for
supervised learning. Applied Artificial Intelligence,
17(5-6):519–533.

Biessmann, F., Golebiowski, J., Rukat, T., Lange, D.,
and Schmidt, P. (2021). Automated data validation
in machine learning systems. Bulletin of the IEEE
Computer Society Technical Committee on Data En-
gineering.

Biessmann, F., Rukat, T., Schmidt, P., Naidu, P.,
Schelter, S., Taptunov, A., Lange, D., and Sali-
nas, D. (2019). DataWig: Missing Value Imputation
for Tables. Journal of Machine Learning Research,
20(175):1–6.

Biessmann, F., Salinas, D., Schelter, S., Schmidt, P.,
and Lange, D. (2018). ”Deep” Learning for Miss-
ing Value Imputationin Tables with Non-Numerical
Data. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’18, pages 2017–2025, New York, NY,
USA. Association for Computing Machinery.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawel-
czyk, M., and Kasneci, G. (2022). Deep Neural Net-
works and Tabular Data: A Survey. IEEE Trans-
actions on Neural Networks and Learning Systems,
pages 1–21. Conference Name: IEEE Transactions
on Neural Networks and Learning Systems.

Breck, E., Polyzotis, N., Roy, S., Whang, S., and
Zinkevich, M. (2019). Data Validation for Machine
Learning. Proceedings of Machine Learning and Sys-
tems, 1:334–347.

Camino, R. D., Hammerschmidt, C. A., and State, R.
(2019). Improving Missing Data Imputation with
Deep Generative Models. arXiv:1902.10666 [cs,
stat]. arXiv: 1902.10666.

Chen, D., Yu, Z., and Bowman, S. R. (2021). Clean or
Annotate: How to Spend a Limited Data Collection
Budget.

Chen, J., Sathe, S., Aggarwal, C., and Turaga, D.
(2017). Outlier Detection with Autoencoder En-
sembles. In Proceedings of the 2017 SIAM Interna-
tional Conference on Data Mining (SDM), Proceed-
ings, pages 90–98. Society for Industrial and Applied
Mathematics.

Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid,
A., Ilyas, I. F., Ouzzani, M., and Tang, N. (2013).
NADEEF: a commodity data cleaning system. In
Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIG-
MOD ’13, pages 541–552, New York, NY, USA. As-
sociation for Computing Machinery.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Lar-
roy, P., Li, M., and Smola, A. (2020). AutoGluon-
Tabular: Robust and Accurate AutoML for Struc-
tured Data. arXiv:2003.06505 [cs, stat].

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022).
Why do tree-based models still outperform deep
learning on typical tabular data? In NeurIPS
2022 Datasets and Benchmarks Track, New Orleans,
United States.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.
(2017). On Calibration of Modern Neural Net-
works. In Proceedings of the 34th International
Conference on Machine Learning, pages 1321–1330.
PMLR. ISSN: 2640-3498.

Ham, K. (2013). OpenRefine (version 2.5).
http://openrefine.org. Free, open-source tool for
cleaning and transforming data. Journal of the Med-
ical Library Association : JMLA, 101(3):233. Pub-
lisher: Medical Library Association.

Hawkins, S., He, H., Williams, G., and Baxter, R.
(2002). Outlier Detection Using Replicator Neu-
ral Networks. In Kambayashi, Y., Winiwarter,
W., and Arikawa, M., editors, Data Warehousing
and Knowledge Discovery, Lecture Notes in Com-
puter Science, pages 170–180, Berlin, Heidelberg.
Springer.

Howard, J. and Gugger, S. (2020). Fastai: A Layered
API for Deep Learning. Information, 11(2):108.



Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

Jäger, S., Allhorn, A., and Bießmann, F. (2021). A
benchmark for data imputation methods. Frontiers
in Big Data, 4.

Kadra, A., Lindauer, M., Hutter, F., and Grabocka,
J. (2021). Well-tuned Simple Nets Excel on Tab-
ular Datasets. In Advances in Neural Information
Processing Systems, volume 34, pages 23928–23941.
Curran Associates, Inc.

Krishnan, S., Franklin, M. J., Goldberg, K., and Wu,
E. (2017). BoostClean: Automated Error Detection
and Repair for Machine Learning. arXiv:1711.01299
[cs].

Krishnan, S., Wang, J., Wu, E., Franklin, M. J., and
Goldberg, K. (2016). ActiveClean: interactive data
cleaning for statistical modeling. Proceedings of the
VLDB Endowment, 9(12):948–959.

Kumar, A., Boehm, M., and Yang, J. (2017). Data
Management in Machine Learning: Challenges,
Techniques, and Systems. In Proceedings of the 2017
ACM International Conference on Management of
Data, SIGMOD ’17, pages 1717–1722, New York,
NY, USA. Association for Computing Machinery.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J.,
and Wasserman, L. (2018). Distribution-Free Pre-
dictive Inference for Regression. Journal of the
American Statistical Association, 113(523):1094–
1111. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/01621459.2017.1307116.

Lei, J. and Wasserman, L. (2014). Distribution-
free prediction bands for non-parametric regression.
Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 76(1):71–96.

Li, Z., Zhao, Y., Botta, N., Ionescu, C., and Hu, X.
(2020). COPOD: Copula-Based Outlier Detection.
In 2020 IEEE International Conference on Data
Mining (ICDM), pages 1118–1123. ISSN: 2374-8486.

Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C.,
and Chen, G. (2022). ECOD: Unsupervised Out-
lier Detection Using Empirical Cumulative Distri-
bution Functions. IEEE Transactions on Knowl-
edge and Data Engineering, pages 1–1. Conference
Name: IEEE Transactions on Knowledge and Data
Engineering.

Lipton, Z., Wang, Y.-X., and Smola, A. (2018). De-
tecting and correcting for label shift with black box
predictors. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 3122–3130. PMLR.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Iso-
lation Forest. In 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422. ISSN:
2374-8486.

Liu, Z., Zhou, Z., and Rekatsinas, T. (2022). Picket:
guarding against corrupted data in tabular data dur-
ing learning and inference. The VLDB Journal,
31(5):927–955.

Machado, P., Fernandes, B., and Novais, P. (2022).
Benchmarking Data Augmentation Techniques for
Tabular Data. In Yin, H., Camacho, D., and Tino,
P., editors, Intelligent Data Engineering and Auto-
mated Learning – IDEAL 2022, Lecture Notes in
Computer Science, pages 104–112, Cham. Springer
International Publishing.

Mahdavi, M. and Abedjan, Z. (2020). Baran: effective
error correction via a unified context representation
and transfer learning. Proceedings of the VLDB En-
dowment, 13(12):1948–1961.

Mahdavi, M., Abedjan, Z., Castro Fernandez, R.,
Madden, S., Ouzzani, M., Stonebraker, M., and
Tang, N. (2019). Raha: A Configuration-Free Er-
ror Detection System. In Proceedings of the 2019
International Conference on Management of Data,
SIGMOD ’19, pages 865–882, New York, NY, USA.
Association for Computing Machinery.

Nazábal, A., Olmos, P. M., Ghahramani, Z., and
Valera, I. (2020). Handling incomplete hetero-
geneous data using VAEs. Pattern Recognition,
107:107501.

Neutatz, F., Mahdavi, M., and Abedjan, Z. (2019).
ED2: A Case for Active Learning in Error Detec-
tion. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’19, pages 2249–2252, New York, NY,
USA. Association for Computing Machinery.

Northcutt, C., Athalye, A., and Mueller, J. (2021a).
Pervasive Label Errors in Test Sets Destabilize Ma-
chine Learning Benchmarks. Proceedings of the
Neural Information Processing Systems Track on
Datasets and Benchmarks, 1.

Northcutt, C., Jiang, L., and Chuang, I. (2021b). Con-
fident Learning: Estimating Uncertainty in Dataset
Labels. Journal of Artificial Intelligence Research,
70:1373–1411.

Papadopoulos, H. (2008). Inductive Conformal Predic-
tion: Theory and Application to Neural Networks.
IntechOpen. Publication Title: Tools in Artificial
Intelligence.

Peng, J., Shen, D., Tang, N., Liu, T., Kou, Y., Nie,
T., Cui, H., and Yu, G. (2022). Self-Supervised and
Interpretable Data Cleaning with Sequence Genera-
tive Adversarial Networks. Proceedings of the VLDB
Endowment, 16(3):433–446.

Pleiss, G., Zhang, T., Elenberg, E., and Weinberger,
K. Q. (2020). Identifying Mislabeled Data using the



Sebastian Jäger∗,1, Felix Bießmann1,2

Area Under the Margin Ranking. In Advances in
Neural Information Processing Systems, volume 33,
pages 17044–17056. Curran Associates, Inc.

Qahtan, A. A., Elmagarmid, A., Castro Fernandez,
R., Ouzzani, M., and Tang, N. (2018). FAHES: A
Robust Disguised Missing Values Detector. In Pro-
ceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, KDD ’18, pages 2100–2109, New York, NY,
USA. Association for Computing Machinery.

Ramaswamy, S., Rastogi, R., and Shim, K. (2000).
Efficient algorithms for mining outliers from large
data sets. ACM SIGMOD Record, 29(2):427–438.

Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. (2017).
HoloClean: holistic data repairs with probabilistic
inference. Proceedings of the VLDB Endowment,
10(11):1190–1201.

Romano, Y., Patterson, E., and Candes, E. (2019).
Conformalized Quantile Regression. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Rubin, D. B. (1976). Inference and missing data.
Biometrika, 63(3):581–592.

Rubin, D. B. (1987). Multiple Imputation for Nonre-
sponse in Surveys. Wiley.

Schelter, S., Biessmann, F., Januschowski, T., Salinas,
D., Seufert, S., and Szarvas, G. (2018a). On Chal-
lenges in Machine Learning Model Management.
Bull. IEEE Comput. Soc. Tech. Comm. Data Eng.,
pages 5–13.

Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biess-
mann, F., and Grafberger, A. (2018b). Automating
large-scale data quality verification. Proc. VLDB
Endow., 11(12):1781–1794.

Schelter, S., Rukat, T., and Biessmann, F. (2020).
Learning to Validate the Predictions of Black Box
Classifiers on Unseen Data. In Proceedings of the
2020 ACM SIGMOD International Conference on
Management of Data, pages 1289–1299, Portland
OR USA. ACM.

Schelter, S., Rukat, T., and Biessmann, F. (2021).
JENGA - A Framework to Study the Impact of Data
Errors on the Predictions of Machine Learning Mod-
els. In Proceedings of the 24th International Confer-
ence on Extending Database Technology, {EDBT}
2021, Nicosia, Cyprus, March 23 - 26, 2021, pages
529–534. OpenProceedings.org.

Sculley, D., Holt, G., Golovin, D., Davydov, E.,
Phillips, T., Ebner, D., Chaudhary, V., Young, M.,
Crespo, J. F., and Dennison, D. (2015). Hidden
technical debt in machine learning systems. Adv.
Neural Inf. Process. Syst., 2015-Janua:2503–2511.

Stekhoven, D. J. and Buhlmann, P. (2012).
MissForest–non-parametric missing value impu-
tation for mixed-type data. Bioinformatics,
28(1):112–118.

van Buuren, S. and Oudshoorn, K. (1999). Flex-
ible Multivariate Imputation by MICE, volume
(PG/VGZ/99.054). TNO Prevention and Health.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo,
L. (2014). OpenML: networked science in machine
learning. ACM SIGKDD Explorations Newsletter,
15(2):49–60.

Vovk, V., Gammerman, A., and Shafer, G. (2005).
Algorithmic learning in a random world. Springer,
New York.

Wang, H., Pang, G., Shen, C., and Ma, C. (2020).
Unsupervised Representation Learning by Predict-
ing Random Distances. arXiv:1912.12186 [cs, stat].

Yoon, J., Jordon, J., and van der Schaar, M.
(2018). GAIN: Missing Data Imputation using
Generative Adversarial Nets. Technical Report
arXiv:1806.02920, arXiv. arXiv:1806.02920 [cs, stat]
type: article.

Yoon, S. and Sull, S. (2020). GAMIN: Generative Ad-
versarial Multiple Imputation Network for Highly
Missing Data. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 8453–8461. ISSN: 2575-7075.

Zeni, G., Fontana, M., and Vantini, S. (2020).
Conformal Prediction: a Unified Review of The-
ory and New Challenges. Technical Report
arXiv:2005.07972, arXiv. arXiv:2005.07972 [cs,
econ, stat] type: article.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). PyOD:
A Python Toolbox for Scalable Outlier Detection.
Journal of Machine Learning Research, 20(96):1–7.

Zhou, H., Mueller, J., Kumar, M., Wang, J.-L., and
Lei, J. (2023). Detecting Errors in Numerical Data
via any Regression Model. arXiv:2305.16583 [cs,
stat].



Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
– Yes, we try to describe our setting as pre-
cise as possible.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
– Not Applicable.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. – Yes, the source code is
part of our contribution and will be publicly
available on GitHub.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. – Not Applicable.

(b) Complete proofs of all theoretical results. –
Not Applicable.

(c) Clear explanations of any assumptions. – Not
Applicable.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). – Yes, the source code is part of our
contribution and will be publicly available on
GitHub.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). –
Yes, as described in Section 4.3.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). – Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). – Yes, the source code is
part of our contribution and will be publicly
available on GitHub.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. – Yes, we use and cite these as-
sets: OpenML (Vanschoren et al., 2014), Au-
toGluon (Erickson et al., 2020), Jenga (Schel-
ter et al., 2021), and Garf (Peng et al., 2022)

(b) The license information of the assets, if ap-
plicable. – Not Applicable, regulated by li-
censes. Please see the citations above.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. – Not Appli-
cable.

(d) Information about consent from data
providers/curators. – Not Applicable,
regulated by licenses.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. – Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. – Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. – Not Appli-
cable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. – Not Applicable.



Sebastian Jäger∗,1, Felix Bießmann1,2

A Datasets

Table 1: Datasets overview. ID is the assigned OpenML id, # means the number of, Cat. and Num. stand for
categorical and numerical columns, and Obs. means observations, i.e., the number of rows of the tabular dataset.
Garf shows whether or not Garf was able to clean the dataset.

ID Task Type #Cat. #Num. #Obs. #Cells Garf
251 Binary 1 8 39, 366 354, 294 ✗
310 Binary 1 5 11, 183 67, 098 ✓
725 Binary 1 7 8, 192 65, 536 ✓
823 Binary 1 7 20, 640 165, 120 ✓
1046 Binary 1 4 15, 545 77, 725 ✗
4135 Binary 5 4 32, 769 294, 921 ✗

42493 Binary 4 3 26, 969 188, 783 ✓
30 Multi Class 1 9 5, 473 54, 730 ✓

40498 Multi Class 9 2 4, 898 53, 878 ✓
198 Regression 4 2 9, 517 57, 102 ✓
218 Regression 0 8 22, 784 182, 272 ✗

1193 Regression 7 2 31, 104 279, 936 ✓
1199 Regression 3 6 17, 496 157, 464 ✓
1200 Regression 0 9 59, 049 531, 441 ✗
23515 Regression 0 6 10, 081 60, 486 ✓
42225 Regression 6 3 53, 940 485, 460 ✓

B Conditional Conformal Prediction

B.1 Class-Conditioned Conformal Classification

For classification problems (especially with skewed label spaces), it is desirable to get guaranteed coverage for
each class, i.e., class-conditioned conformal classification6. In this approach, calibration nonconformity scores are
stratified by class, and multiple q̂(c) are calculated. The following equations represent the necessary adaptions,
where •(c) represents the subset for class c.

R
(c)
calib = S

(
ŷ(c)c

)
k(c) =

⌈(n(c) + 1)(1− α))⌉
n(c)

q̂(c) = quantile
(
R

(c)
calib, k

(c)
)

C(Xtest) =
{
c : S(ŷtestc) < q̂(c)

}
(7)

A class-conditioned conformal classifier is guaranteed to satisfy the stronger class-conditioned coverage:

P(ytest ∈ C(Xtest) | ytest = y) ≥ 1− α, ∀y ∈ Y. (8)

B.2 Conformal Quantile Regression

Conformal Quantile Regression (CQR) predicts confidence intervals that can vary depending on x and, therefore,
adapt to the aleatoric uncertainty of the data. It fits a model to Dtrain’s lower qαlo

= α/2 and upper qαup
=

1 − α/2 empirical quantiles. Using the nonconformity score function S(ŷ, y) = max(ŷαlo
− y, y − ŷαup) in the

above-described conformal framework and computing the prediction intervals as C(Xtest) = [ŷαlo
− q̂, ŷαup + q̂],

it is possible to calibrate the predicted quantiles to satisfy Statement (4). For proof or intuitions about the score
function, we refer the reader to Romano et al. (2019).

6Class-conditioned conformal predictors are also known as mondrian conformal predictors. For details and proofs, we
refer the reader to Vovk et al. (2005).



Automated Cleaning of Tabular Data Improves Downstream Predictive Performance

C Tree-Based Models Perform Best in the Majority of Cases

To clean values, CDC and the ML baseline fit one ML model for every column. As mentioned in Section 4.1, we
use AutoGluon for our experiments to find the best model-hyperparameter combination. In about 18% of these
cases, AutoGluon finds a FastAI NN as best performing, in about 46% an extremely randomized tree (XT), and
in about 37% a random forest (RF). Given the fact that for FastAI NN, we optimize 50 different hyperparameter
settings (random search) but only three for RF and XF each, it is surprising that tree-based models (83%)
outperform FastAI NN. However, for data imputation using the same approach, Jäger et al. (2021) already
showed that RFs work well, which is in line with a study by Grinsztajn et al. (2022). They provide evidence that
tree-based models still outperform neural networks on tabular data. In the future, CDC’s performance could
be increased by focusing on tree-based models and optimizing their hyperparameters, which we leave for future
research.

D Error Cleaning Results

Besides the results described and shown in Section 5.2, Figure 4 also gives insights into the results’ spread.
Increasing hyperparameter values lead typically to better downstream improvements. In most cases, not only
CDC’s median improvement is higher than the ML baseline, also its lower quartile, while the boxes are generally
shorter, meaning its results are more robust.

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

−100

−75

−50

−25

0

25

50

75

100

D
ow

ns
tre

am
 Im

pr
ov

em
en

t (
%

)

Method = CDC (ours)

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

Method = ML

Hyperparameter
0.5
0.8
0.999

Figure 4: Downstream Improvement. Box plots visualize five summary statistics (min, max, first quartile,
median, and second quartile) to give insights about the results’ spread. Because Garf does not lead to worth
mentioning improvements, its results are omitted.

The drop performance drop for the ML baseline with (30 − 40]% errors is due to the fact that here are only
seven experiments, whereas for others are more than 14. For experiments with 0% errors, CDC leads to a slight
degradation of downstream performance with a median of 0.25%, whereas the degradation for the ML baseline
is 0.93%.


	Introduction
	Related Work
	Methodology
	ML-based Data Imputation
	Conformal Predictors
	Conformal Data Cleaning (CDC)

	Implementation and Experimental Setup
	Conformal Data Cleaner Implementation
	Baseline Implementations
	Experimental Setup

	Results
	Error Detection
	Error Cleaning
	Confidence Set Size

	Discussion
	CDC Outperforms Baselines in Most Experiments
	Influence of CDC's Hyperparameter Confidence Level
	CDC's Relative Confidence Set Size
	Limitations

	Conclusion and Future Work
	Datasets
	Conditional Conformal Prediction
	Class-Conditioned Conformal Classification
	Conformal Quantile Regression

	Tree-Based Models Perform Best in the Majority of Cases
	Error Cleaning Results

