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Abstract

Fairness is a growing concern in machine learn-
ing as state-of-the-art models may amplify social
prejudice by making biased predictions against
specific demographics such as race and gender.
Such discrimination raises issues in various fields
such as employment, criminal justice, and trust
score evaluation. To address the concerns, we
propose learning fair representation through a
straightforward yet effective approach to project
intrinsic information while filtering sensitive in-
formation for downstream tasks. Our model con-
sists of two goals: one is to ensure that the latent
data from different demographic groups is non-
separable (i.e., make the latent data distribution
independent of the sensitive feature to improve
fairness); the other is to maximize the separa-
bility of latent data from different classes (i.e.,
maintain the discriminative power of data for the
sake of the downstream tasks like classification).
Our method adopts a non-zero-sum adversarial
game to minimize the distance between data from
different demographic groups while maximizing
the margin between data from different classes.
Moreover, the proposed objective function can be
easily generalized to multiple sensitive attributes
and multi-class scenarios as it upper bounds pop-
ular fairness metrics in these cases. We provide
theoretical analysis of the fairness of our model
and validate w.r.t. both fairness and predictive
performance on benchmark datasets.

1 Introduction

Machine learning has made tremendous progress in au-
tonomous driving, natural language processing, and many
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other fields. Although recent models excel in various ap-
plications and even outperform humans in some fields, we
should be cautious when leveraging the power as models
can make biased predictions across different demographic
groups.

The biased prediction in machine learning is a rising con-
cern due to the potential societal and legal impacts. Recent
research found that various types of discrimination pervade
artificial intelligence. For example, the future risk assess-
ment software COMPAS has been found to be biased to
different population groups (Angwin et al., 2016; Dressel
and Farid, 2018). In particular, African Americans who
do not commit future crimes are more likely to be mis-
taken as high-risk than Caucasians with similar profiles,
i.e., higher false positive rate in the unprivileged group.
Moreover, machine learning based job hiring platforms as-
sign higher qualification scores for unqualified men than
qualified women (Lahoti et al., 2019).

One major reason behind discrimination in model predic-
tion is data bias (Barocas and Selbst, 2016). Since data
is collected based on human decisions, data bias occurs
in various forms (Mehrabi et al., 2019). Models trained
on such data can replicate or even amplify the bias exist-
ing in the data and make biased predictions. However, ad-
dressing the biased prediction is not a trivial problem. One
straightforward solution, fairness through blindness, sim-
ply removes sensitive features (e.g., race or gender) from
the data. However, due to the feature redundancy, it re-
mains sensitive-relevant features that are indicative of the
sensitive features (Pedreshi et al., 2008). For example, race
is excluded from the data, the model can learn from the
sensitive-relevant features (e.g., ZIP code) and make the
biased prediction.

Recent works aim to improve fairness by optimizing dual
objectives: utility (e.g., accuracy) and fairness (e.g., equal
opportunity (Hardt et al., 2016)). These methods often fo-
cus on specific fairness metrics and target certain down-
stream tasks such as classification (Rezaei et al., 2020),
clustering (Huang et al., 2019)), and image generation
(Sarhan et al., 2020). Particularly, LAFTR (Madras et al.,
2018) employs respective loss functions for demographic
parity and equalized odds to learn transferably fair repre-
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sentation for classification in an adversarial learning ap-
proach. In information theory literature, some works pro-
posed to obfuscate sensitive information from the varia-
tional posterior distribution. For instance, Creager et al.
(2019) aimed at minimizing total correlation (Chen et al.,
2018), while Song et al. (2019); Cui et al. (2023) proposed
to minimize mutual information between latent represen-
tation and sensitive information. However, these methods
usually require approximations in the objective functions
since the underlying distributions are intractable.

In contrast, this paper introduces fair representation learn-
ing by regularizing the data distribution from a new per-
spective. The proposed method learns a latent distribu-
tion where data from different sensitive groups — charac-
terized by sensitive features — are non-separable, while
data from different classes — characterized by the target
label — are maximally separable. We achieve the non-
separability on latent distribution w.r.t. sensitive features
by minimizing the upper bound of the separability and in-
creasing the separability w.r.t. target label by maximizing
the marginal distance of decision boundaries among differ-
ent classes. Specifically, we learn such representation by
enforcing the latent distribution w.r.t. sensitive features to
be non-separable even with a very powerful classifier, and
meanwhile, the latent distribution w.r.t. target label to be
easily classified with a simple linear classifier. The classi-
fier proposed in our model is used to regularize the latent
distribution but is not tied up with any specific fairness met-
ric or downstream task. The proposed method is simple but
effective and also can be generalized to multi-class classi-
fications with multiple sensitive attributes. In addition, our
unified objective is capable of improving various fairness
metrics, supported by rigorous theoretical analysis. We
provide theoretical proof that popular fairness metrics, e.g.,
demographic parity, equal opportunity, and equalized odds,
are upper bounded by the proposed objective function. Fur-
ther, we present experimental results on three datasets to
validate our model in utility, fairness, and quality of the la-
tent data distribution. We summarize our contribution as
follows:

• We propose a novel fair representation learning
method by enforcing the non-separability w.r.t. sen-
sitive features while retaining the maximal discrimi-
native power w.r.t. target label.

• Our approach offers a unified objective that improves
various fairness metrics and enhances robustness.

• The proposed method is straightforward yet powerful
and applicable to multi-label and multi-sensitive at-
tribute scenarios.

• We provide comprehensive theoretical analysis, estab-
lishing the upper bound of the major fairness metrics
including demographic parity, equal opportunity, and
equalized odds.

2 Related Work

To mitigate the challenge of prediction outcome discrim-
ination and prediction quality disparity (Du et al., 2019),
a variety of approaches have been proposed. For instance,
pre-processing methods explore feature transformation to
remove the dependence on sensitive features (Louizos
et al., 2015). Other methods conduct re-sampling (Jiang
and Nachum, 2019) and re-weighting (Chai and Wang,
2022a) based on the sensitive characteristics to mitigate
bias from data. This approach is further expanded to ad-
dress the cases when sensitive features are unavailable (Liu
et al., 2021; Lahoti et al., 2020; Jang and Wang, 2023;
Chai and Wang, 2022b). However, it has been found that
merely transforming or perturbing data can harm perfor-
mance (Corbett-Davies et al., 2017). To address this, Jang
et al. (2021) augment the dataset with synthetic counter-
parts to perfectly balance the distribution.

Another approach to alleviating discrimination involves
constraining the posteriors to satisfy specific fairness met-
rics. Hardt et al. (2016) introduced equalized odds, which
balances the true positive and true negative rate from differ-
ent demographic groups. Additionally, they learn a thresh-
old to yield a fairer outcome from an unfair (black-box)
model in a post-processing manner. Subsequent works
(Kim et al., 2020; Jang et al., 2022) extend to various fair-
ness notions and explore contextualized optimal trade-off,
i.e., Pareto frontiers.

To learn fair representation in the latent space, zero-sum ad-
versarial learning is often employed (Beutel et al., 2017).
This typically involves two players engaging in the same
loss function, where one tries to maximize and the other ad-
versarially minimizes the fairness violations. For instance,
Madras et al. (2018) propose to adopt different group fair-
ness metrics as the adversarial objectives and analyze the
balance between utility and fairness. However, Roy and
Boddeti (2019) argue that likelihood-based adversary may
result in sub-optimal performance in sensitive information
leakage. To address this, they introduce a non-zero-sum
game framework for fair representation learning, investi-
gating its equilibrium and convergence of optimization. In
addition, Jovanović et al. (2023) study fairness certificate,
which provides a fairness guarantee of arbitrary classifiers
trained on top of learned representation. Normalizing flow
is also explored for learning fair representation (Balunovic
et al., 2022). (Cotter et al., 2019) studied general non-zero-
sum optimization in non-convex or non-differentiable set-
tings. However, few work has studied comprehensive theo-
retical analysis regarding the relationship between fairness
metrics and non-zero-sum objectives.

Variational inference (Kingma and Welling, 2013) is also
employed to learn representation oblivious to sensitive in-
formation. Specifically, Creager et al. (2019) suggest min-
imizing total correlation (Chen et al., 2018) to ensure that



Taeuk Jang, Hongchang Gao, Pengyi Shi, Xiaoqian Wang

the learned representation is independent of sensitive infor-
mation. Similarly, Song et al. (2019) proposed to minimize
mutual information between latent representation and sen-
sitive information, while Liu et al. (2022) adopt distance
covariance. However, these methods usually require ap-
proximations in the objective functions since the underly-
ing distributions are intractable.

Since the aforementioned methods adopted adversarial
learning, which has a potential risk of unstable optimiza-
tion process and empirically poor trade-off between fair-
ness and utility Sarhan et al. (2020), alternative approaches
have been proposed to learn fair representation. For in-
stance, disentanglement learning method (Sarhan et al.,
2020) redirects the sensitive information to latent subspace
by orthogonal prior regularization. Contrastive learning
(Oh et al., 2022) offers another non-adversarial approach
that enforces non-sensitive latents to be closer while sen-
sitive latents to be apart. However, these methods of-
ten have complicated training procedures, e.g., orthogonal
prior sampling, and contrastive sampling, compared to ad-
versarial learning. Additionally, these methods do not pro-
vide a clear theoretical understanding, which can make it
difficult to interpret the mechanism.

Our work also falls into fair representation learning, how-
ever, our method is distinguished from the existing works
in the following points. First, in contrast to the methods,
which learn a representation to adversarially maximize the
prediction loss of sensitive features (Madras et al., 2018;
Adel et al., 2019), our approach aims at learning distribu-
tion non-separable in different sensitive groups by maxi-
mizing the entropy for fair representation. The maximiza-
tion of prediction loss on sensitive features may not ensure
the independence between the latent representation and the
sensitive feature in a general case (e.g., sensitive feature
with multiple values), while our method remains effective
as we directly optimize the feature extractor over a uniform
distribution w.r.t. sensitive feature. Second, the proposed
representation ensures maximizing the mean and minimiz-
ing the variance of margin among multiple classes, which
is adaptive to multi-class classification and is robust to out-
liers in the classification tasks. Lastly, our work is differ-
entiated from other non-adversarial learning methods (Oh
et al., 2022; Sarhan et al., 2020), which primarily rely on
empirical evidence. Conversely, our approach to learning
the optimal fair margin of the representation is more effi-
cient and provides a theoretical guarantee on various fair-
ness metrics with multiple sensitive attributes involved.

3 FSNS: Fair Representation - Sensitive
Non-Separable & Label Separable

3.1 Problem Definition

As discussed in the previous section, the biased prediction
in traditional machine learning models originates from bias
in the data. In order to address the discrimination in predic-
tion, it is important to alleviate data bias, i.e., mitigating the
disparity in the distribution of data from different sensitive
groups. However, due to the existence of sensitive-relevant
features, it is hard to directly filter the sensitive information
in the original data space.

Here we propose to learn fair representation in the latent
data space while maintaining the non-sensitive information
to fulfill downstream tasks. Take the downstream task of
classification as an example, with the input data x, the sen-
sitive feature a, and the target label y. Our goal is to learn
a data representation z that is both fair (i.e., independent to
the sensitive feature) and discriminative (i.e., maintaining
the maximal discriminative power w.r.t. y).

To achieve this goal, we propose our model FSNS (Fair
representation that Separable on target label and Non-
Separable on sensitive features) with the following two
strategies: 1) we minimize the distance between distribu-
tions from different sensitive groups such that a powerful
classifier cannot predict which sensitive group does the data
belong to; 2) we maximize the margin between the distribu-
tions from different classes such that a simple classifier can
easily classify data w.r.t. target label in the latent space.
This allows the model to project the data to a fair space
where demographic discrimination is minimized, and the
predictive power is maximally maintained.

3.2 Illustration of the FSNS Model

As illustrated in Fig. 1, the FSNS model consists of three
modules: a feature extractor (Hθ) to learn the fair repre-
sentation, a simple classifier (W ), such as SVM, to pre-
dict the target label, and a sensitive feature predictor (Cϕ).
The goal is to learn fair latent representation such that the
distribution w.r.t. the sensitive features is non-separable
(data from different sensitive groups cannot be discrimi-
nated even with a powerful predictor Cϕ), while the distri-
bution w.r.t. the target label is maximally separable (data
from different classes can be easily discriminated with a
simple classifier W ).

3.2.1 Notations

Given a data sample x ∈ Rd, we use one-hot encoding to
represent the sensitive feature a ∈ {0, 1}k and target label
y ∈ {0, 1}c, where k is the number of possible values of
the sensitive feature and c is the number of classes. Take
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Figure 1: Illustration of FSNS model. In the original feature space, distributions from different sensitive groups are easily
distinguishable, i.e., privileged (purple) v.s. unprivileged (gold), since a is correlated with x, thereby causing bias in data.
In contrast, the distributions from different classes, i.e., positive (cyan) v.s. negative (brown), are not well separable. To
learn fair representation while maintaining the predictive performance, the feature extractor Hθ projects the original space
into latent space that is non-separable w.r.t. the sensitive features while maximally separable w.r.t. the target label.

race as an example for the sensitive feature,1 then the goal
of fair prediction is to eliminate bias among the race groups
(k = 4): Asian, White, Black, and Hispanic.

For a given data sample x, the feature extractor provides
representation Hθ(x) which are used as input for the sen-
sitive feature predictor Cϕ and the classifier W . We de-
note the predicted sensitive feature as Cϕ(Hθ(x)) = â =
[â1, â2, . . . , âk]⊤ ∈ [0, 1]k, and the predicted label as
W (Hθ(x)) = ŷ = [ŷ1, ŷ2, . . . , ŷc]⊤ ∈ [0, 1]c. The pre-
dicted outcomes can be interpreted as a probability distri-
bution on all the possible values, e.g., ŷj is the predicted
probability of outcome being in the j-th class. Hence, we
also have

∑k
j=1 âj = 1 and

∑c
j=1 ŷj = 1.

We denote the feature distribution for data samples x as X ,
and the distribution for sensitive feature a as A. We define
the loss function that measures the difference between the
sensitive feature a and the predicted outcome as

L
(
a, Cϕ(Hθ(x))

)
=

k∑
j=1

L(aj , âj) . (1)

Examples of L includes cross-entropy loss, ℓ1-norm loss,
etc. For example, if k = 3 for the sensitive feature, a takes
value [1, 0, 0]⊤, and considers the ℓ1-norm loss, or say, the
mean absolute error (MAE), then Eqn. (1) equals

L
(
a, Cϕ(Hθ(x))

)
= |1 − â1| + |â2| + |â3|

with âj being the j-th coordinate from the predicted out-
come vector Cϕ(Hθ(x)).

1It is notable that our model can be easily adapted to multi-
ple sensitive features by enumerating the combination of possible
values in multiple features.

3.2.2 Loss function and training

For the two predictors, we train Cϕ to minimize the follow-
ing sensitive loss La such that Cϕ is a complex predictor,
e.g., MLP, to predict the sensitive feature a:

La = E(x,a)∼X ×A
[
L

(
a, Cϕ(Hθ(x))

)]
, (2)

where L is defined in Eqn. (1). On the contrary, we build
W as a simple linear support vector machine (SVM) to pre-
dict the target label y.

For the feature extractor Hθ(x), we train it to achieve the
following two goals.

The first goal is to learn fair representation such that the
latent distribution from different sensitive groups is non-
separable. To accomplish this, we propose to minimize
the following fair loss Lfair, inspired by Roy and Boddeti
(2019):

Lfair = 1
|A|

∑
a∈A

Ex∼Xa

[
L

(
ā, Cϕ(Hθ(x))

)]
, (3)

where ā = [1/k, . . . , 1/k]⊤ denotes the non-informative,
uniform prediction that assigns equal distribution over each
of the k classes in the sensitive feature. We denote Xa
to represent the feature distribution with sensitive feature
a ∈ A. By updating Hθ to minimize Lfair, Hθ learns
to generate fair representation as it maximizes the entropy
(uncertainty) in inferring sensitive information such that
even a powerful predictor Cϕ cannot differentiate among
the sensitive groups. Moreover, such non-zero-sum ad-
versarial approach offers superior equilibrium and con-
vergence properties than traditional zero-sum adversarial
game (Roy and Boddeti, 2019). In Theorem 2 below, we
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provide rigorous proof that minimizing this loss function
leads to primary fairness metrics, including demographic
parity, equal opportunity, and equalized odds.

The second goal of Hθ(x) is to learn a representation with
discriminative power for classification such that the latent
distribution from different classes is maximally separable.
It turns out that simply maximizing the minimum margin of
SVM has poor generalization (Zhang and Zhou, 2019), and
instead, the margin distribution should be considered (Gao
and Zhou, 2013). Following (Zhang and Zhou, 2017), we
optimize Hθ to maximize the average margin and minimize
the margin variance, which characterizes the margin dis-
tribution in SVM to maintain the maximal discriminative
power w.r.t. the target label with stable performance.

Given a sample data x ∈ Rd, denote t to be the true class
for the target label, i.e., y ∈ {0, 1}c takes the value with
the t-th component being 1 and all others being 0. With the
linear classifier W = [w1, w2, . . . , wc] ∈ Rd×c, denote
the mean margin of classifier as

M = 1
n

n∑
i=1

[w⊤
t Hθ(xi) − max

l ̸=t
w⊤

l Hθ(xi)]

and the variances of the margin of a sample xi as:

ξi = max
(
M −

(
w⊤

t Hθ(xi) − max
l ̸=t

w⊤
l Hθ(xi)

)
− γ, 0

)
,

ϵi = max
((

w⊤
t Hθ(xi) − max

l ̸=t
w⊤

l Hθ(xi)
)

− M − γ, 0
)
,

where ξi and ϵi are two types of deviations (less or greater
than margin mean), and γ ≥ 0 is the soft margin.

We optimize Hθ to minimize the max-margin loss function
Lmm defined as:

Lmm = Ω(w) + E
(x,y)∼X ×Y

[
−M + λ

ξ2 + µϵ2

(1 − γ)2

]
, (4)

where Ω(·) is ℓ2-norm regularizer, λ and µ are trading-off
parameters introduced in (Zhang and Zhou, 2017). Note
that we can scale the weight w in SVM to fix margin mean
M to be 1, in turn, we have (1−γ)2 instead of (M −γ)2 in
Eqn. (4). Therefore, our goal is to optimize three modules
to minimize the following objectives:

arg min
Hθ,W

Lmm(y, W (Hθ(x))) + λfairLfair

(
ā, Cϕ(Hθ(x))

)
,

arg min
Cϕ

La

(
a, Cϕ(Hθ(x))

)
.

Note that FSNS has min-max property but all modules are
optimized to minimize their objectives, which yields non-
zero-sum game. We summarize the optimization steps of
our algorithm in Algorithm 1, where L̃ indicates the em-
pirical loss. As a reminder, SVM is only used to learn fair
representations in pre-processing. We have the flexibility
of choosing any classifier for downstream tasks after learn-
ing the representation.

Algorithm 1 Optimization Algorithm of FSNS Model

Input Dataset {(xi, ai, yi)}n
i=1, number of mini-batches

nb, learning rate αθ, αw and αϕ. SVM hyper-parameters
γ, λ, µ.
Output Fair representation learning model Hθ.
Initialize W, Cϕ randomly.
Initialize Hθ with the latent representation by pre-
training our model to just classify w.r.t. y.
while not converge do

for t = 1, 2, . . . , nb do
1. Update Cϕ using gradient descent w.r.t. L̃a.
2. Update Hθ using gradient descent w.r.t. both
L̃fair and L̃mm.
3. Update W using gradient descent w.r.t. L̃mm.

end for
end while

3.3 Theoretical Property

In this section, we study the theoretical property of FSNS
regarding minimizing Lfair, i.e., maximizing the entropy
on sensitive attribute prediction.

Theorem 1. Consider the optimal classifier C∗
ϕ : Rh →

[0, 1]k for the sensitive feature prediction. Denote

Lfair(C∗
ϕ) = Ex∼X

[
L

(
ā, C∗

ϕ(Hθ(x))
)]

, i.e., the fair loss
using C∗

ϕ and the representation learned by Hθ in FSNS.
Under the ℓ1-norm loss or the cross-entropy loss for L,
the following fairness metrics for multi-class classification
with multiple sensitive groups are bounded by Lfair for
some classifier W : Rh → [0, 1]c for the target label pre-
diction:

• the demographic disparity:

Lfair(C∗
ϕ) ≥ ∆DP

= max
a,b∈A

∥∥∥E[
W (Hθ(x))|A = a

]
− E

[
W (Hθ(x))|A = b

]∥∥∥
1

,

• the equalized odds:

Lfair(C∗
ϕ)

≥ ∆EO

= C max
a,b∈A

c∑
j=1

(∥∥∥E[
W (Hθ(x))|A = a, Y = j

]
− E

[
W (Hθ(x))|A = b, Y = j

]∥∥∥
1

)
,

where C = minj∈{1,··· ,c}
(
P (y ∼ Yj)

)
.

Proof of Theorem 2 can be found in the supplementary ma-
terials. Since encoder Hθ minimizes w.r.t. Lfair, Theorem
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2 indicates that the fairness metrics are bounded by Lfair

of the optimal sensitive attribute predictor C∗
ϕ for any clas-

sifier takes learned representation Hθ(x) as input. More-
over, when Lfair(C∗

ϕ) ≈ 0, all these fairness metrics are
also close to 0.

In the supplementary materials, we explain the role of us-
ing C∗

ϕ from a min-max perspective. At a high level, when
we use C∗

ϕ in the fairness loss to train Hθ, we maximize
a lower bound for Lfair, where this lower bound relates
to the separability of the classifier, i.e., the ability that this
classifier can tell apart the sensitive feature predicted from
data drawn from different groups. Thus, when minimiz-
ing Lfair to be close to 0, we make sure that the maximal
separability (produced when using C∗

ϕ) will be controlled
to be close to 0. The min-max interaction enables us to
minimize the distance between distributions from different
sensitive groups such that even the most powerful classi-
fier cannot predict which sensitive group the data belongs
to. This intuitively motivates the theoretical analysis of
the proposed learning fair representation. When compar-
ing our method with the related min-max methods (Adel
et al., 2019; Madras et al., 2018), our FSNS model im-
proves various fairness metrics in a unified objective and
preserves higher accuracy in classification (validated in re-
sults in Section 4) by our max-margin objective in Eqn. (4).

4 Experiments

We conduct experiments to evaluate how our model FSNS
affects the utility (accuracy in classification tasks) and fair-
ness by comparing with the state-of-the-art models.

4.1 Experimental Setup

We compare our model with the following recent fair repre-
sentation learning methods. LAFTR (Madras et al., 2018)
is a fair representation learning model that adopts fairness
metrics as the zero-sum adversarial objectives. ODVAE
(Sarhan et al., 2020) learns fair disentanglement in the la-
tent space by regularizing the posterior with orthogonal pri-
ors. CFair (Zhao et al., 2020) proposed to minimize the bal-
anced error rate (BER) (Feldman et al., 2015) along with
the conditional alignment of latent representation. Farcon
(Oh et al., 2022) adopted a contrastive learning approach
to learn fair representation by randomly swapping latent
codes in the observation set. FairDisCo (Liu et al., 2022)
is a variational method that employs distance covariance
for latent independence without adversarial learning. Base-
line is a network with the same structure as our feature ex-
tractor Hθ and classifier W . The difference between our
model and the baseline is that we include the fairness mod-
ule Cϕ in the objective to validate the necessity of the fair-
ness module of FSNS.

Our FSNS model consists of the feature extractor (Hθ) to

learn fair representation, a classifier (W ) to predict the tar-
get label, and a sensitive feature predictor (Cϕ). Feature
extractor and sensitive feature predictor are 4-layer fully
connected neural networks with leaky ReLU as the activa-
tion function. All components in FSNS model is updated
via ADAM optimizer (Kingma and Ba, 2014). For hyper-
parameter tuning, we used grid search on λfair ∈ [0, 10]
for balancing the fairness and accuracy of FSNS. We use
Pytorch and Scikit-learn toolbox to implement our code
and run the algorithm on a machine with four Quadro RTX
6000 GPUs and Intel I9-9960X.

We evaluate the performance of the methods on several
fairness benchmark datasets. Specifically, we evaluate bi-
nary classification on the Adult Census Income Data (Ko-
havi, 1996), COMPAS, German credit data considering
both a binary sensitive attribute and multiple sensitive at-
tributes, i.e., intersectional bias (Ghosh et al., 2021), sce-
narios. We evaluate multi-class classification on ACSIn-
come, ACSTravelTime dataset (Ding et al., 2021). Since
the original label is continuous value (dollars for AC-
SIncome and commuting time in minutes for ACSTravel-
Time), we categorize the label into three classes, i.e., c = 3,
using equidistant quantiles (Denis et al., 2021). Detailed
description of the dataset is as below:

• Adult: data from the UCI repository Kohavi (1996):
The data contains 48,842 instances described by 14
features (workclass, age, education, sex, race, etc.)
and the goal is to predict whether the income exceeds
50K USD per year. The feature sex is used as the sen-
sitive feature.

• Compas2: The dataset includes 6,167 samples de-
scribed by 401 features with the outcome showing if
each person gets rearrested within two years. The fea-
ture sex is used as the sensitive feature in this dataset.

• German credit data from the UCI repository Dua and
Graff (2019): The dataset contains 1,000 samples de-
scribed by 20 features and the goal is to predict the
credit risks. The feature sex is used as the sensitive
feature.

• ACSIncome Ding et al. (2021): data from Ameri-
can Community Survey (ACS) Public Use Microdata
Sample (PUMS). It is to predict an individual’s in-
come in dollars. It contains various information in-
cluding COW (class of worker), educational level, etc
of 1,664,500 samples from all states in the US.

• ACSTravelTime Ding et al. (2021): data from ACS
PUMS. It is to predict an individual’s commute time
in minutes. It contains features including educational
level, marital status, occupation, etc of 1,466,648 sam-
ples from all states in the US.

2https://github.com/propublica/compas-analysis
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(a) Adult Dataset (b) COMPAS Dataset (c) German Dataset

Figure 2: Comparison of accuracy-fairness trade-off on three datasets. Overall, FSNS achieves the best trade-off, i.e., best
accuracy at the same level of fairness violations.

All features in each dataset are normalized to the range of
[0, 1]. For each dataset, we randomly split it into training
(70%), validation (15%), and test (15%) sets, and report the
average results on the test set in 5 repetitions.

To measure fairness, we adopt famous equalized odds
(EOd, the absolute difference of false positive rate and
true positive rate between different sensitive groups) (Hardt
et al., 2016).

(a) Label

(b) Sensitive attributes

Figure 3: t-SNE visualization of learned representation
of FSNS on Adult dataset with intersectional sensitive at-
tributes (gender and race).

4.2 Evaluation on Utility and Fairness

Fig. 2 presents the comparison of the utility and fairness
trade-off by varying weights on the fairness constraints by
each method. GSTAR Pareto frontier (Jang et al., 2022)
provides the best achievable accuracy-fairness trade-offs in

a model-specific manner. Note that the x-axis of the plot is
inverted, meaning that the upper-right side corresponds to
a better trade-off between fairness and accuracy.

Among the comparing methods, FSNS consistently ex-
hibits a superior or competitive trade-off between accuracy
and fairness compared with baselines. Notably, FSNS of-
ten yields results that closely align with the top-right corner
of the Pareto frontier, which is desired. Specifically, FSNS
achieves the highest or comparable accuracy at the same
fairness violation level. Moreover, in COMPAS and ger-
man datasets, FSNS achieves the least fairness violation at
a similar accuracy level. The results validate that FSNS
effectively balances accuracy and fairness, which achieves
either the best or comparable fairness with a marginal sac-
rifice of accuracy even with its simple structure.

4.3 Qualitative Analysis of the Learned
Representation

We visualize the learned representation using t-SNE visu-
alization (Maaten and Hinton, 2008) for Adult dataset in
Fig 4. The ideal fair representation should preserve the
predictiveness of the target label while remaining agnostic
to sensitive information. Compared to other fair represen-
tation learning methods, FSNS (last column) shows better
separation w.r.t. the target label (first row), while it is hard
to distinguish the distribution between different sensitive
groups in FSNS (second row). Whereas, the sensitive in-
formation can be easily distinguished in other distributions
(LAFTR and ODVAE). Notably, FSNS delivers promising
results with the simple structure without additional tech-
niques such as adversarial learning (LAFTR) or variational
inference (ODVAE). More results on other datasets and
methods are included in the Supplementary.

4.4 Multiple Sensitive Attribute Scenarios

To validate the effectiveness of FSNS on multiple sensi-
tive attributes, we here consider the combination of the two
binary sensitive attributes. For adult dataset, we consider
{gender, race} as sensitive attributes, {gender, race} for
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Table 1: The result on the multiple sensitive attribute scenario on benchmark datasets. FSNS consistently achieves better
or comparable fairness compared to baselines while preserving accuracy.

(a) Adult dataset. Gender and race as sensitive attributes.

Baseline FSNS ODVAE CFAIR Farcon FairDisCo
Gender Race TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
Female Black 0.444 0.049 0.389 0.0 0.5 0.027 0.5 0.063 0.428 0.063 0.895 0.552
Female White 0.622 0.126 0.417 0.028 0.566 0.038 0.613 0.065 0.519 0.078 0.922 0.559
Male Black 0.484 0.071 0.385 0.015 0.452 0.03 0.703 0.066 0.511 0.063 0.934 0.569
Male White 0.580 0.135 0.462 0.047 0.535 0.088 0.660 0.126 0.548 0.128 0.942 0.674

ACC ↑ 0.810 0.836 0.836 0.842 0.812 0.798
EOD ↓ 0.255 0.119 0.141 0.223 0.185 0.170

(b) COMPAS dataset. Gender and race as sensitive attributes.

Baseline FSNS ODVAE CFAIR Farcon FairDisCo
Race Gender TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
Black Female 0.592 0.261 0.374 0.079 0.648 0.298 0.315 0.03 0.687 0.308 0.661 0.270
Black Male 0.413 0.123 0.25 0.055 0.457 0.151 0.5 0.274 0.446 0.205 0.476 0.269
White Female 0.422 0.149 0.222 0.015 0.467 0.164 0.556 0.209 0.422 0.119 0.439 0.212
White Male 0.261 0.058 0.131 0.0 0.435 0.076 0.528 0.135 0.522 0.079 0.516 0.262

ACC ↑ 0.689 0.666 0.684 0.680 0.682 0.626
EOD ↓ 0.535 0.328 0.435 0.429 0.454 0.280

(c) German dataset. Gender and age as sensitive attributes.

Baseline FSNS ODVAE CFAIR Farcon FairDisCo
Gender Age TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
Female Young 0.75 0.0 0.5 0.0 0.427 0.333 0.429 0.666 0.571 0.333 0.125 0.0
Female Old 0.0 0.154 0.333 0.231 0.333 0.375 0.333 0.5 0.333 0.375 0.364 0.222
Male Young 0.5 0.058 0.5 0.118 0.4 0.074 1.0 0.259 0.6 0.148 0.263 0.083
Male Old 0.458 0.069 0.583 0.205 0.353 0.1 0.648 0.317 0.383 0.083 0.158 0.061

ACC ↑ 0.787 0.733 0.707 0.680 0.720 0.725
EOD ↓ 0.904 0.398 0.368 0.978 0.494 0.461

Table 2: Multi-class classification results. FSNS shows the best fairness improvement while preserving accuracy.

Baseline FSNS ODVAE CFAIR Farcon FairDisCo

ACSIncome
ACC ↑ 0.692 0.683 0.618 0.678 0.690 0.619
DP ↓ 0.113 0.056 0.156 0.070 0.105 0.025

EOD ↓ 0.246 0.104 0.186 0.126 0.232 0.130

ACSTravelTime
ACC ↑ 0.483 0.465 0.482 0.448 0.469 0.416
DP ↓ 0.062 0.025 0.068 0.021 0.015 0.025

EOD ↓ 0.159 0.027 0.107 0.057 0.061 0.076

COMPAS, and {gender, age} for german dataset.

To measure fairness considering intersectionality (multi-
ple sensitive attributes) Kearns et al. (2017), we formulate
EOD by following the maximum difference of performance
measures between two groups Wang et al. (2022); Ghosh
et al. (2021) as:

EOD = max
a,b∈A

|TPRa − TPRb| + |FPRa − FPRb|

In Table 1, we summarize the results on intersectional fair-
ness on the three datasets. Note that LAFTR (Madras
et al., 2018) is omitted since it is specifically designed to
address fairness violations for a single binary sensitive at-
tribute. The results demonstrate that FSNS effectively gen-
eralizes to a multiple sensitive attribute scenario. Specif-

ically, FSNS significantly improved EOD violation and
even improved accuracy compared to the baseline. Fig 3
presents a t-SNE visualization of the learned representa-
tion by FSNS. The distribution qualitatively reveals that the
proposed approach, which aims at learning separability on
target label and non-separability on sensitive attributes, is
effective in achieving intersectional fairness scenarios.

4.5 Multi-class Classification Scenarios

To evaluate multi-class classification, we conduct experi-
ments on two fairness benchmark datasets: ACSIncome,
ACSTravelTime (Ding et al., 2021). ACSIncome aims to
predict the annual income of a person, with race as the bi-
nary sensitive attribute (white vs black). The ACSTrav-
elTime dataset aims to predict the commuting time of the



Taeuk Jang, Hongchang Gao, Pengyi Shi, Xiaoqian Wang

(a) LAFTR (Madras et al., 2018) (label) (b) ODVAE (Sarhan et al., 2020) (label) (c) FSNS (label)

(d) LAFTR (Madras et al., 2018) (sens) (e) ODVAE (Sarhan et al., 2020) (sens) (f) FSNS (sens)

Figure 4: t-SNE visualization of the learned representation from different methods. The first row shows the distribution
w.r.t. the target label in classification, with a black line showing a linear SVM trained on the corresponding data represen-
tation. The second row depicts the same distribution with the sensitive feature-based coloring scheme. Ideal representation
is separated by target label while less separable by sensitive feature.

working population over the age of 16, with race as the bi-
nary sensitive attribute (white vs black). For both datasets,
the original label is a continuous value (dollars for AC-
SIncome and commuting time in minutes for ACSTravel-
Time). We divide the label into three classes using equidis-
tant quantiles (Denis et al., 2021).

In Table 2, we summarize the results of multi-class classifi-
cation tasks. In general, FSNS achieves the best fairness
violations while maintaining comparable accuracy. This
validates our claim that the proposed framework is the-
oretically and empirically effective for mitigating bias in
multi-class and multi-group fairness problems in classifi-
cation tasks.

5 Conclusion

In this paper, we introduce FSNS, a novel fair represen-
tation learning model to mitigate bias in the original data
and maintain predictive power for downstream tasks. Un-
like previous methods, our approach does not rely on tech-
niques that can complicate the training process, including
zero-sum adversarial game, variational inference, or con-
trastive learning. Instead, we learn fair representation by
maximizing the entropy of sensitive information to im-
prove fairness. To that end, we minimize the upper bound
of the separability of latent data from different sensitive

groups while maximizing the margin of data from dif-
ferent classes. The proposed method is simple in struc-
ture and comprises a unified objective, which empirically
yields minimum performance sacrifice alongside a theo-
retical guarantee of upper bound on various fairness met-
rics. We present both theoretical analysis and empirical
evidence to validate our model in multi-class classifica-
tion with multiple sensitive attributes. The extensive re-
sults suggest that FSNS achieves a better trade-off between
utility and fairness and results robust to data poisoning.

As most real-world fairness problems are related to sen-
sitive social problems including rights and privacy, there
exist some limitations to our FSNS model. FSNS requires
sensitive attribute information to learn fair representation.
However, this information may not be available due to cer-
tain laws and regulations or security reasons. Besides, there
can be intentional or unintentional mistakes in the collected
sensitive information. Our model would be difficult to ap-
ply to such data uncertainty. Also, the balance w.r.t. both
the protected attribute and the target label can affect the
outcome. For some datasets, we found that upsampling by
duplicating some samples to balance the dataset improves
the result in fairness. Therefore, potential future research
topics to improve fairness include: 1) how to balance or
generate synthetic data that has better quality than sim-
ply duplicating, 2) how to learn fair representation robustly
with omitted or mislabeled data.
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Checklist

The checklist follows the references. For each question,
choose your answer from the three possible options: Yes,
No, Not Applicable. You are encouraged to include a justi-
fication to your answer, either by referencing the appropri-
ate section of your paper or providing a brief inline descrip-
tion (1-2 sentences). Please do not modify the questions.
Note that the Checklist section does not count towards the
page limit. Not including the checklist in the first submis-
sion won’t result in desk rejection, although in such case
we will ask you to upload it during the author response pe-
riod and include it in camera ready (if accepted).

In your paper, please delete this instructions block and
only keep the Checklist section heading above along
with the questions/answers below.

1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to the
random seed after running experiments multiple
times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applica-
ble. [Not Applicable]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Not Applicable]
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6 Proof of Theorem 1

Here, we prove Theorem 1 in the multi-class classification setting with multiple sensitive groups, i.e., a ∈ {1, · · · , k}. In
the multiclass setting, the output Cϕ : Rh → [0, 1]k. Denote the feature distributions as Xa = P (·|A = a).

6.1 Lemmas

We first prove the following two lemmas, one for L1-norm loss (MAE) and the other for cross-entropy loss.

Lemma 1. Under the L1-norm loss, for any given sensitive feature predictor Cϕ, we have

Lfair ≥ max
a,b∈A

Exa∼Xa,xb∼Xb

[∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1

]
. (5)

Proof. For a given sensitive feature predictor Cϕ, the fair loss function is formulated as:

Lfair =
∑
a∈A

Ex∼Xa

[
L

(
ā, Cϕ(Hθ(x))

)]
, (6)

where ā = 1
k · ∈ [0, 1]k puts equal distribution on each of the predicted outcomes. Note that Lfair as defined in Eqn. (6)

is the sum of multiple expectations from different sensitive groups. Specifically, Ex∼Xa means the expectation conditional
on event x ∼ Xa, i.e., when features are generated from Xa with sensitive feature a. Summing over the different sensitive
groups as in Lfair is to isolate the bias of the fairness loss toward any particular group a, and equally weight each group
to prevent from weighing by the statistics i.e., P (x ∼ Xa).

When using the L1-norm loss (MAE), we can simplify L within the expectation in Eqn. (6) above as LMAE =
∥Cϕ(Hθ(x)) − ā∥1. Then, we have

Lfair =
∑
a∈A

Exa∼Xa

[∥∥∥Cϕ(Hθ(xa)) − ā
∥∥∥

1

]
≥ max

a,b∈A

(
Exa∼Xa

[∥∥∥Cϕ(Hθ(xa)) − ā
∥∥∥

1

]
+ Exb∼Xb

[∥∥∥Cϕ(Hθ(xb)) − ā
∥∥∥

1

])
≥ max

a,b∈A
Exa∼Xa,xb∼Xb

[∥∥∥Cϕ(Hθ(xa)) − ā − Cϕ(Hθ(xb)) + ā
∥∥∥

1

]
= max

a,b∈A
Exa∼Xa,xb∼Xb

[∥∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥∥

1

]
.

Here, the first inequality comes from the fact that L1 norm is non-negative – thus, only selecting two sensitive groups
would be smaller than summing over all a ∈ A. The equality is achieved when there are only two sensitive groups. The
second inequality follows the triangular inequality ||X|| + ||Y || ≥ ||X − Y ||.



Achieving Fairness through Separability: A Unified Framework for Fair Representation Learning

Lemma 2. Under the categorical cross-entropy (CE) distance, for any given sensitive feature predictor Cϕ : Rh → [0, 1]k,
we have

Lfair ≥ 1
k

max
a,b∈A

Exa∼Xa,xb∼Xb

[
LCE

(
ea, Cϕ(Hθ(xa))

)
+ LCE

(
eb, Cϕ(Hθ(xb))

)]
, (7)

where ea ∈ {0, 1}k is one-hot encoding of the sensitive attribute a.

Here, the CE distance LCE is defined as

LCE

(
ea, Cϕ(Hθ(xa))

)
= −

k∑
i=1

[i = a] log(Cϕ(Hθ(xb))i), (8)

where Cϕ(·)i denotes i-th index of the output and is indicator function.

Proof. For a given sensitive feature predictor Cϕ, the fair loss function follows (6). For the cross-entropy loss with multiple
sensitive groups a ∈ {1, · · · , k}, we have

Lfair =
∑
a∈A

Ex∼Xa

[
LCE

(
ā, Cϕ(Hθ(x))

)]

= 1
k

∑
a∈A

Exa∼Xa

[
−

k∑
i=1

log Cϕ(Hθ(xa))i

]

≥ 1
k

max
a,b∈A

Exa∼Xa,xb∼Xb

[
−

k∑
i=1

(
log Cϕ(Hθ(xa))i + log Cϕ(Hθ(xb))i

)]

≥ 1
k

max
a,b∈A

Exa∼Xa,xb∼Xb

[
−

k∑
i=1

(
[i = a] log Cϕ(Hθ(xa))i + [i = b] log(Cϕ(Hθ(xb))i)

)]
= 1

k
max
a,b∈A

Exa∼Xa,xb∼Xb

[
LCE

(
ea, Cϕ(Hθ(xa))

)
+ LCE

(
eb, Cϕ(Hθ(xb))

)]
.

(9)

Lemma 3. Consider a given classifier Cϕ : Rh → [0, 1]k for the sensitive feature prediction. Denote Lfair =
Ex∼X

[
L

(
ā, Cϕ(Hθ(x))

)]
, i.e., the fair loss using Cϕ and the representation learned by Hθ in FSNS. Under the ℓ1-norm

loss or the cross-entropy loss for L, the following fairness metrics for multi-class with multiple sensitive groups, |A| ≥ 2,
are bounded by Lfair:

• Condition on the group:

Lfair ≥ max
a,b∈A

∥∥∥E[
Cϕ(Hθ(x))|A = a

]
− E

[
Cϕ(Hθ(x))|A = b

]∥∥∥
1

,

• Condition on the group and label:

Lfair ≥ C max
a,b∈A

c∑
j=1

(∥∥∥E[
Cϕ(Hθ(x))|A = a, Y = j

]
− E

[
Cϕ(Hθ(x))|A = b, Y = j

]∥∥∥
1

)
,

We prove Lemma 3 for the L1-norm loss first and then for the CE loss.

Proof for Lemma 3: L1-norm loss. First, for the demographic parity, the result follows straightforwardly from Lemma 1.
For a classifier Cϕ : Rh → [0, 1]k as the sensitive feature predictor, we have

Lfair ≥ max
a,b∈A

Exa∼Xa,xb∼Xb

[∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1

]
≥ max

a,b∈A

∥∥∥Exa∼Xa

[
Cϕ(Hθ(xa))

]
− Exb∼Xb

[
Cϕ(Hθ(xb))

]∥∥∥
1

= max
a,b∈A

∥∥∥E[
Cϕ(Hθ(x))|A = a

]
− E

[
Cϕ(Hθ(x))|A = b

]∥∥∥
1

,
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where the second inequality follows Jensen’s inequality and the feature distributions are independent, and the last row is
the demographic disparity among k groups. Since Hθ in FSNS model minimizes w.r.t. Lfair, the demographic disparity
of f is bounded by this minimized L∗

fair. In other words, when Lfair is close to 0, the demographic disparity is also close
to 0.

Next, for the equalized odds metric, we denote Yj as the conditional distribution for y = j for j ∈ {1, · · · , c} in c-class
classification task. Following Lemma 1 and decomposing by the target label provides:

Lfair ≥ max
a,b∈A

Exa∼Xa,xb∼Xb

[∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1

]
= max

a,b∈A

c∑
j=1

P (y ∼ Yj) · Ey∼Yj ,xa∼Xa,xb∼Xb

[∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1

]
≥ max

a,b∈A

c∑
j=1

P (y ∼ Yj) ·
∥∥∥Ey∼Yj ,xa∼Xa

[
Cϕ(Hθ(xa))

]
− Ey∼Yj ,xb∼Xb

[
Cϕ(Hθ(xb))

]∥∥∥
1

= max
a,b∈A

c∑
j=1

P (y ∼ Yj) ·
∥∥∥E[

Cϕ(Hθ(x))|A = a, Y = j
]

− E
[
Cϕ(Hθ(x))|A = b, Y = j

]∥∥∥
1

≥ C max
a,b∈A

c∑
j=1

(∥∥∥E[
Cϕ(Hθ(x))|A = a, Y = j

]
− E

[
Cϕ(Hθ(x))|A = b, Y = j

]∥∥∥
1

)
,

(10)

where C = minj∈{1,··· ,c}
(
P (y ∼ Yj)

)
. The second inequality again follows Jensen’s inequality by interchanging the

absolute value and (conditional) expectation.

For the binary classification with binary sensitive group scenario, i.e., a, y ∈ {0, 1} and Cϕ(·) ∈ [0, 1], we can easily show
the standard equal opportunity metric from Eqn. (10) as

Lfair ≥ k ·
∣∣∣E[

Cϕ(Hθ(x))|A = 0, Y = 1
]

− E
[
Cϕ(Hθ(x))|A = 1, Y = 1

]∣∣∣ ,

where 0 ≤ k = P (y ∼ Y1) ≤ 1.

Proof for Lemma 3: CE loss. The proof follows a similar procedure as for the L1-norm loss. It is important to note the
relationship between the CE loss and the L1-norm loss. When the target label is one-hot encoded, i.e., categorical, the
cross-entropy (CE) is proven to be lower bounded by mean absolute error (MAE) in Theorem 1 of Feng et al. (2020) as

LCE

(
ey, f(x)

)
≥ 1

2LMAE

(
ey, f(x)

)
for any predicted outcomes f(x) and one-hot encoded target ey ∈ {0, 1}c, where eyj = 1 if j = y, otherwise 0. The proof
of this result applies the Taylor expansion to the log function; see details in Feng et al. Feng et al. (2020) for derivations.

Hence, applying Lemma 2 and the inequality property of CE loss Feng et al. (2020), we can get the bound of CE loss for a
sensitive feature classifier Cϕ : Rh → [0, 1]k as

Lfair ≥ 1
k

max
a,b∈A

Exa∼Xa,xb∼Xb

[
LCE

(
ea, Cϕ(Hθ(xa))

)
+ LCE

(
eb, Cϕ(Hθ(xb))

)]
.

≥ 1
2k

max
a,b∈A

Exa∼Xa,xb∼Xb

[∥∥ea − Cϕ(Hθ(xa))
∥∥

1 +
∥∥eb − Cϕ(Hθ(xb))

∥∥
1

]
≥ 1

2k
max
a,b∈A

Exa∼Xa,xb∼Xb

[∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1

]
≥ 1

2k
max
a,b∈A

∥∥∥Exa∼Xa

[
Cϕ(Hθ(xa))

]
− Exb∼Xb

[
Cϕ(Hθ(xb))

]∥∥∥
1

= 1
2k

max
a,b∈A

∥∥∥E[
Cϕ(Hθ(x))|A = a

]
− E

[
Cϕ(Hθ(x))|A = b

]∥∥∥
1

.
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The third inequality can be shown by direct comparison. To see this, the L1-norm in the second row (within the conditional
expectation) for the k-dimensional space can be written as:∥∥ea − Cϕ(Hθ(xa))

∥∥
1 +

∥∥eb − Cϕ(Hθ(xb))
∥∥

1 =
∣∣∣1 − Cϕ(Hθ(xa))a

∣∣∣ +
∣∣∣1 − Cϕ(Hθ(xb))b

∣∣∣
+

k∑
i∈A\{a,b}

(
Cϕ(Hθ(xa))i + Cϕ(Hθ(xb))i

)
+ Cϕ(Hθ(xa))b + Cϕ(Hθ(xb))a.

Similarly, the third row can be written as∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1 =
∣∣∣Cϕ(Hθ(xa))a − Cϕ(Hθ(xb))a

∣∣∣
+

∣∣∣Cϕ(Hθ(xa))b − Cϕ(Hθ(xb))b

∣∣∣ +
k∑

i∈A\{a,b}

∣∣∣Cϕ(Hθ(xa))i − Cϕ(Hθ(xb))i

∣∣∣
Note that Cϕ outputs probability vectors, i.e.,

∑
i Cϕ(Hθ(x))i = 1 and Cϕ(Hθ(x))i ∈ [0, 1] for each i. Then directly

comparing each term of the decomposition, we can easily achieve the inequality as:∥∥ea − Cϕ(Hθ(xa))
∥∥

1 +
∥∥eb − Cϕ(Hθ(xb))

∥∥
1 ≥

∥∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))
∥∥

1.

Thus, under the CE loss, when Lfair is close to 0, the demographic disparity is also close to 0. The proof for equalized
odds and equal opportunity follows from the same procedure as in Eqn. (10) for the L1-norm loss.

6.2 Insight from the Min-Max Perspective

The results in Lemmas 1 and 2 indicate that for any given classifier Cϕ, optimizing Hθ w.r.t. minimizing Lfair leads to
minimizing the upper bound of the separability of Cϕ (in terms of L1-norm and CE loss, respectively). In the algorithm,
we choose C∗

ϕ in Lfair when minimizing this Lfair loss. We now explain the role in using C∗
ϕ for Lfair. We use the

L1-norm loss to illustrate; the insights are the same when applying the CE loss.

First, recall that C∗
ϕ is obtained as

C∗
ϕ = arg min

Cϕ

E(x,a)∼X ×A
[
L

(
a, Cϕ(Hθ(x))

)]
,

where a ∈ {1, · · · , k} is the sensitive feature given in the data. Under the L1 norm loss, the expectation within the arg min
can be further rewritten as

E(x,a)∼X ×A
[
L

(
a, Cϕ(Hθ(x))

)]
=

∑
a∈A

P (x ∼ Xa) Exa∼Xa

[
∥ea − Cϕ(Hθ(xa))∥1

]
≥ ρ

∑
a∈A

Exa∼Xa

[
∥ea − Cϕ(Hθ(xa))∥1

]
≥ ρ Exa∼Xa,xb∼Xb

[
∥ea − Cϕ(Hθ(xa))∥1+∥eb − Cϕ(Hθ(xb))∥1

]
for a, b ∈ A

≥ ρ Exa∼Xa,xb∼Xb

[
2 − ∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))∥1

]
≥ ρ

(
2 − Exa∼Xa,xb∼Xb

[
∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))∥1

])
(11)

where ρ = mina∈A
(
P (x ∼ Xa)

)
and ea is one-hot vector with eaj = 1 only if j = a, otherwise 0. The last row is the

separability w.r.t. Cϕ. Since C∗
ϕ minimizes L, we have

E(x,a)∼X ×A

[
L

(
a, Cϕ(Hθ(x))

)]
≥ E(x,a)∼X ×A

[
L

(
a, C∗

ϕ(Hθ(x))
) ]

≥ ρ
(

2 − Exa∼Xa,xb∼Xb

[∥∥C∗
ϕ(Hθ(xa)) − C∗

ϕ(Hθ(xb))
∥∥

1

])
≥ ρ

(
2 − max

a,b∈A
Exa∼Xa,xb∼Xb

[∥∥C∗
ϕ(Hθ(xa)) − C∗

ϕ(Hθ(xb))
∥∥

1

])
,
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In other words, for any Cϕ

2 − 1
ρ
E(x,a)∼X ×A

[
L

(
a, Cϕ(Hθ(x))

)]
≤ max

a,b∈A
Exa∼Xa,xb∼Xb

[∥∥C∗
ϕ(Hθ(xa)) − C∗

ϕ(Hθ(xb))
∥∥

1

]
.

Thus, plugging C∗
ϕ into Eqn. (5), we get

Lfair ≥ max
a,b∈A

Exa∼Xa,xb∼Xb

[∥∥C∗
ϕ(Hθ(xa)) − C∗

ϕ(Hθ(xb))
∥∥

1

]
≥ 2 − 1

ρ
E(x,a)∼X ×A

[
L

(
a, Cϕ(Hθ(x))

)]
, ∀Cϕ.

In other words, when we minimize the fairness loss such that it is close to 0, we make sure that the maximal separability
(produced when using C∗

ϕ) will be controlled to be close to 0. This min-max interaction enables us to find an efficient
predictor yet maintaining fairness.

6.3 Proof for Theorem 1

The interpretation of the proposed framework from a min-max perspective in Section 6.2 provides a compelling motivation
for developing theoretical analyses of fair representation learning.

Theorem 2. Consider the optimal classifier C∗
ϕ : Rh → [0, 1]k for the sensitive feature prediction. Denote Lfair(C∗

ϕ) =
Ex∼X

[
L

(
ā, C∗

ϕ(Hθ(x))
)]

, i.e., the fair loss using C∗
ϕ and the representation learned by Hθ in FSNS. Under the ℓ1-norm

loss or the cross-entropy loss for L, the following fairness metrics for multi-class classification with multiple sensitive
groups are bounded by Lfair for some classifier W : Rh → [0, 1]c for the target label prediction:

• the demographic disparity:

Lfair(C∗
ϕ) ≥ ∆DP = max

a,b∈A

∥∥∥E[
W (Hθ(x))|A = a

]
− E

[
W (Hθ(x))|A = b

]∥∥∥
1

,

• the equalized odds:

Lfair(C∗
ϕ) ≥ ∆EO = C max

a,b∈A

c∑
j=1

(∥∥∥E[
W (Hθ(x))|A = a, Y = j

]
− E

[
W (Hθ(x))|A = b, Y = j

]∥∥∥
1

)
,

where C = minj∈{1,··· ,c}
(
P (y ∼ Yj)

)
.

Proof. Recall that in Lemma 3, we showed that the following lower bound holds for Lfair for any classifier Cϕ:

• Condition on the group:

Lfair(Cϕ) ≥ max
a,b∈A

∥∥∥E[
Cϕ(Hθ(x))|A = a

]
− E

[
Cϕ(Hθ(x))|A = b

]∥∥∥
1

,

• Condition on the group and label:

Lfair(Cϕ) ≥ C max
a,b∈A

c∑
j=1

(∥∥∥E[
Cϕ(Hθ(x))|A = a, Y = j

]
− E

[
Cϕ(Hθ(x))|A = b, Y = j

]∥∥∥
1

)
,

which also holds for C∗
ϕ. In addition, the optimal classifier C∗

ϕ, which minimizes the prediction loss of sensitive attributes,

maximizes Exa∼Xa,xb∼Xb

[
∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))∥1

]
as provided in Eqn. (11). Thus, the RHS of the first inequality

above can be lower bounded by

Exa∼Xa,xb∼Xb

[
∥C∗

ϕ(Hθ(xa)) − C∗
ϕ(Hθ(xb))∥1

]
≥ Exa∼Xa,xb∼Xb

[
∥Cϕ(Hθ(xa)) − Cϕ(Hθ(xb))∥1

]
,

which holds for any classifier Cϕ that takes the learned representation from Hθ as the input.
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Inspired by the adversarial setting in the theoretical analysis of fair representation by Madras et al.Madras et al. (2018), we
substitute the classifier in the RHS with W , i.e., the target label predictor, which gives us

Exa∼Xa,xb∼Xb

[
∥C∗

ϕ(Hθ(xa)) − C∗
ϕ(Hθ(xb))∥1

]
≥ Exa∼Xa,xb∼Xb

[
∥W (Hθ(xa)) − W (Hθ(xb))∥1

]
.

(12)

This substitution is intuitively supported considering two boundary cases: 1) when Y is independent of A (Y ⊥ A); 2)
when Y is identical to A (Y = A). If the target label is independent of A, RHS would be 0. In contrast, if Y depends
solely on A, then the equality holds. In either case, there exists some classifier W such that (12) holds. Additionally, it
holds in general as the design of FSNS ensures that the predictor C∗

ϕ is more powerful (4-layered MLP) compared to the
target predictor W (linear SVM) (C∗

ϕ corresponds to the optimal adversary in Madras et al. (2018) and can be proved to
upper bound the difference in the RHS for any given learner W in the binary classification setting, since it dominates the
naive adversary of choosing the opposite of W ). In other words, the sensitive feature predictions made by C∗

ϕ are more
confident and separable than the target prediction made by W on any given sensitive groups. Then, we can rewrite RHS,
which is defined as

∆DP = Exa∼Xa,xb∼Xb

[
∥W (Hθ(xa)) − W (Hθ(xb))∥1

]
.

Therefore, fair loss on optimal classifier C∗
ϕ upper bounds demographic parity violation as:

Lfair(C∗
ϕ) ≥ Exa∼Xa,xb∼Xb

[
∥C∗

ϕ(Hθ(xa)) − C∗
ϕ(Hθ(xb))∥1

]
≥ ∆DP . (13)

Thus, minimizing the proposed fair loss function Lfair with respect to the encoder Hθ results in learning a fair repre-
sentation by minimizing the upper bound of fairness violation. Intuitively, this can be interpreted as if separability w.r.t.
sensitive attribute is minimized, we can reduce the disparity of prediction for any downstream tasks. Similar results can be
easily extended to equalized odds (∆EO). It is worth noting that with the unified fair loss function Lfair, we can achieve
the upper bound for both demographic parity and equalized odds, while LAFTR Madras et al. (2018) requires specific loss
terms for each fairness goal.

7 Additional Experimental Results

The source code of FSNS can be found in the Repository 3.

7.1 Evaluation of the Learned Representation

Table 3: The prediction accuracy on the target label (Label) in columns 1,2 and sensitive feature (Sens) in columns 3,4 using
the original data or the latent representation from FSNS. Higher accuracy on “Label” prediction is desired for the prediction
task. Lower accuracy on “Sens” prediction indicates fairer representation that contains less sensitive information.

Dataset Label (Orig) Label (FSNS) Sens (Orig) Sens (FSNS)
Adult 0.749 0.861 0.869 0.741

COMPAS 0.536 0.872 0.704 0.657
German 0.651 1.000 0.754 0.679

We further quantitatively evaluate the quality of the learned representation from FSNS. To verify our FSNS model generates
a fair representation that we cannot infer the sensitive feature from it, we trained an auxiliary classifier to predict sensitive
features from the distribution, which has four layers, and each layer has 64 units with ReLU activation.

Table 3 summarizes the results of classification accuracy of target label and sensitive attribute based on different distribu-
tions. As per columns 3 and 4 in Table 3, we achieve lower predictive accuracy from our representation than that from the
original data. Higher accuracy w.r.t. sensitive feature indicates that the network can easily infer the sensitive feature from
the distribution, which is undesirable. Therefore, this demonstrates that the original data contains plenty of information

3https://github.com/Taeuk-Jang/FSNS

https://github.com/Taeuk-Jang/FSNS
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(a) Adult Dataset (b) COMPAS Dataset (c) German Dataset

Figure 5: Illustration of the trend in accuracy and equalized odds as the ratio of training data poisoning increases.

about sensitive features, i.e., sensitive-relevant feature, and directly training a network can cause discrimination in the
predictive performance. In contrast, FSNS significantly boosts target label accuracy (desired) while preventing sensitive
information leakage. This also consent with the qualitative analysis of the representation in Fig. 3 in the main paper.

In Figure 6, 7, and 8, we further illustrate t-SNE visualization Maaten and Hinton (2008) of all comparing methods on
three benchmark datasets. Row 1 and 2 in each figure illustrate the learned representation colored by different labels, and
row 3 and 4 depict the same representation colored by different sensitive attributes. Similar to the result in the main paper,
FSNS achieves the best overall separability w.r.t. target label, while achieving inseparability on the sensitive attribute.

7.2 Robustness of Learned Representation

Generalization and robustness are also critical problems in classification tasks. A recent study Roh et al. (2020) showed
that training a model aimed only at robustness or fairness could suffer from severe performance degradation when it is
trained on noisy training data (e.g., target label poisoning). So they propose FR-Train to holistically aims at both goals. We
consider the margin distribution in representation space instead of general performance losses (e.g., cross-entropy, MSE).
Thus FSNS is optimized to minimize the variance of the margin, and this leverages better generalization and robustness to
the unseen data (i.e., test set).

By following the setup of Roh et al. (2020), we poison [10%, 20%, 30%, 40%, 50%] of the training data in the privileged
group (a = 1) by flipping the labels to maximize the accuracy degradation. We then evaluate the results on the clean
testing set. In Fig. 5, we compare FSNS with a recent fair representation learning method incorporating robustness to data
poisoning, FR-Train Roh et al. (2020), as well as the baseline on the three datasets. Although all methods experienced
some loss in both accuracy and fairness as the degree of poisoning increased, we observed that the FSNS consistently
outperformed the other methods at the same level of equalized odds. For example in adult dataset, note that even at the
severe poisoning (40%), we maintain relatively high accuracy (73%) while others are lower than 70%. Moreover, in german
dataset, the accuracy vastly decreases in baseline and fairness violation is amplified in FR-Train. Thus, the results suggest
that FSNS is the most robust to severe label noise and maintains the highest accuracy. This validates the effectiveness of
FSNS in learning a fair representation with a unified objective that takes into account both margin distribution and fairness
considerations, resulting in improved robustness and fairness.

7.3 Time Complexity Analysis

We conducted comparison of the training time on the Adult dataset with the same hardware as shown in the Table 4. The
result depicts the efficiency of FSNS, attributed from its unified loss and simple structure. Although slightly slower than
CFAIR, FSNS consistently outperforms across various experiments as reported in the main paper. Such efficiency adds
practical value and competitive edge of FSNS.

FSNS ODVAE CFAIR Farcon FairDisCo LAFTR (EOd)
Time 20min 26sec 33min 43sec 15min 6sec 54min 58sec 25min 17sec 25min 52sec

Table 4: Computational complexity of the comparing methods in Adult dataset.
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(a) Original Data (label) (b) LAFTR (label) (c) ODVAE (label)

(d) CFair (label) (e) Farcon (label) (f) FairDisCo (label)

(g) FSNS (label) (h) Original Data (sens) (i) LAFTR (sens)

(j) ODVAE (sens) (k) CFair (sens) (l) Farcon (sens)

(m) FairDisCo (sens) (n) FSNS (sens)

Figure 6: t-SNE visualization of the learned representation from different methods in Adult dataset. Row 1 and 2 show the
distribution w.r.t. the target label in classification, with a black line showing a linear SVM trained on the corresponding
data representation. Row 3 and 4 depict the same distribution with the sensitive feature-based coloring scheme. Ideal
representation should be separable by target label while less separable by sensitive feature.
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(a) Original Data (label) (b) LAFTR (label) (c) ODVAE (label)

(d) CFair (label) (e) Farcon (label) (f) FairDisCo (label)

(g) FSNS (label) (h) Original Data (sens) (i) LAFTR (sens)

(j) ODVAE (sens) (k) CFair (sens) (l) Farcon (sens)

(m) FairDIsCo (sens) (n) FSNS (sens)

Figure 7: t-SNE visualization of the learned representation from different methods in COMPAS dataset. Row 1 and 2 show
the distribution w.r.t. the target label in classification, with a black line showing a linear SVM trained on the corresponding
data representation. Row 3 and 4 depict the same distribution with the sensitive feature-based coloring scheme. Ideal
representation should be separable by target label while less separable by sensitive feature.
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(a) Original Data (label) (b) LAFTR (label) (c) ODVAE (label)

(d) CFair (label) (e) Farcon (label) (f) FairDisCo (label)

(g) FSNS (label) (h) Original Data (sens) (i) LAFTR (sens)

(j) ODVAE (sens) (k) CFair (sens) (l) Farcon (sens)

(m) FairDisCo (sens) (n) FSNS (sens)

Figure 8: t-SNE visualization of the learned representation from different methods in german dataset. Row 1 and 2 show
the distribution w.r.t. the target label in classification, with a black line showing a linear SVM trained on the corresponding
data representation. Row 3 and 4 depict the same distribution with the sensitive feature-based coloring scheme. Ideal
representation should be separable by target label while less separable by sensitive feature.
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