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Abstract

We propose a notion of causal influence that de-
scribes the ‘intrinsic’ part of the contribution of
a node on a target node in a DAG. By recursively
writing each node as a function of the upstream
noise terms, we separate the intrinsic informa-
tion added by each node from the one obtained
from its ancestors. To interpret the intrinsic in-
formation as a causal contribution, we consider
‘structure-preserving interventions’ that random-
ize each node in a way that mimics the usual de-
pendence on the parents and does not perturb the
observed joint distribution. To get a measure that
is invariant with respect to relabelling nodes we
use Shapley based symmetrization and show that
it reduces in the linear case to simple ANOVA
after resolving the target node into noise vari-
ables. We describe our contribution analysis for
variance and entropy, but contributions for other
target metrics can be defined analogously. The
code is available in the package gcm of the open
source library DoWhy.

1 INTRODUCTION

Quantification of causal influence not only plays a role in
expert’s research on scientific problems, but also in highly
controversial public discussions. For instance, the question
to what extent environmental factors versus genetic dispo-
sition influence human intelligence, is an ongoing debate
(Krapohl et al., 2014). Given the relevance of these ques-
tions, there is surprisingly little clarity about how to define
strength of influence in the first place, see e.g. Rose (2006).
More recent discussions on feature relevance quantification
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in explainable artificial intelligence have raised the prob-
lem of quantification of influence from a different perspec-
tive (Datta et al., 2016; Lundberg and Lee, 2017; Frye et al.,
2020; Janzing et al., 2020; Wang et al., 2021; Jung et al.,
2022). The quantification of causal influence proposed here
is based on the intuition of measuring to what extent several
factors influencing a target variable of interest ‘explain’ the
variation (aka uncertainty) of the latter. Attributing un-
certainty of the target to the influencing factors thus fol-
lows the spirit of Analysis of Variance (ANOVA) (North-
cott, 2008).

Quantifying the causal influence has already resulted in a
broad variety of proposals. A tentative taxonomy could
classify measures according to the following three aspects:
1/ What type of intervention is used: Ay and Polani
(2008); Datta et al. (2016); Lundberg and Lee (2017); Frye
et al. (2020); Janzing et al. (2020); Heskes et al. (2020);
Jung et al. (2022) use do-interventions (also called point-
interventions) on nodes of a causal directed acyclic graph
(DAG) in the sense of Pearl (2000), while Janzing et al.
(2013); Schamberg et al. (2020) use interventions on the
edges, and our paper uses conditional interventions.
2/ Which ones of the context variables are adjusted (and
to which values) when the intervention is performed: Here
and in most recent approaches one averages over all pos-
sible choices of adjustment sets based on Shapley values
(but most approaches adjust values of nodes, while we ad-
just their mechanisms).
3/ Which target metric is used to assess the impact of those
interventions: Here, we use uncertainty in the sense of en-
tropy or variance, while Datta et al. (2016); Lundberg and
Lee (2017); Frye et al. (2020); Janzing et al. (2020); Wang
et al. (2021) use shift of the target value itself or its ex-
pectation for an attribution referring to individual instances
at hand (as opposed to average contributions over popula-
tions). As a further example, Janzing et al. (2013); Scham-
berg et al. (2020) measure distribution change in terms of
relative entropy.

Variations of these three different aspects can mostly be
constructed independently in a modular manner. It is there-
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fore pointless to blindly compare measures of influence
that differ by more than one aspect. To explain, for in-
stance, why our paper uses conditional interventions in-
stead of point interventions, we will compare it to hypo-
thetical modifications of existing measures that would also
be based on variance or entropy of a target node, rather than
the target metric used in the respective literature.1

The crucial aspect of our proposal is what we consider the
so-called ‘intrinsic’ contribution. We explain this intuition
via the following toy example which is paradigmatic for a
large class of scheduling processes. Consider the schedule
of three trains A,B,C, where a delay in train A causes a
delay of train B, which, in turn, causes a delay in train C.
If we ask for the ‘intrinsic contribution’ of B to the delay
of C, we are not asking for the hypothetical reduction of
delay of C if B had arrived on time. Instead, we compare
the delay of C to the scenario where B does not add any
delay in addition to the one that it inherited from A. In
other words, the intrinsic contribution of B on the delay
of C is obtained via a comparison with a scenario in which
the dependences to the causal ancestors remain intact. Note
that this distinction between ‘intrinsic’ versus ‘inherited’
part makes sense regardless of whether we are interested in
the delay for a specific instance, the mean, or the variation
of the delay of C in the statistical population (although this
paper focuses on the latter).

Probabilistic versus structural causal models While
Causal Bayesian Networks (Spirtes et al., 1993; Pearl,
2000) model causal relations via a DAG with random vari-
ables as nodes, a more ‘fine-grained’ causal model is given
by structural causal models:

Definition 1 (Structural Causal Model (SCM)). An SCM
corresponding to a DAG G with observed variables
X1, . . . , Xn as nodes is given by
(i) exogenous noise variablesN1, . . . , Nn being jointly sta-
tistically independent
(ii) functions fj that express each Xj deterministically in
terms of its parents and the noise term, that is,

Xj = fj(PAj , Nj). (1)

Moreover, (1) entails the counterfactual statement that,
for any particular observation (x1, . . . , xn), setting PAj

to pa′j instead of paj would have changed xj to x′j =
fj(pa

′, nj) (where nj denotes the value attained by Nj for
that particular statistical instance).

Throughout the paper we leave it open whether or not the
noise variables Nj are observed or not. The idea is that
Xj are variables whose values are more immediately ac-
cessible, while the Nj or only its distribution P (Nj) may

1We have seen that verbal discussions on causal attribution
often blur the importance of all three aspects, e.g. by claims like
‘we measure causal impact via Shapley values’.

be inferred from X1, . . . , Xn. Here and henceforth, we de-
note probability distributions by the capital letter P and the
corresponding densities or probability mass functions by p
(e.g. P (X1) versus p(x1)).

The existence of an SCM implies that P (X1, . . . , Xn) sat-
isfies the Markov condition with respect toG (Pearl, 2000).
On the other hand, every joint distribution that is Marko-
vian relative to G can be generated by an SCM, but this
construction is not unique. This is because knowing the
causal DAG and the joint distribution alone does not de-
termine all counterfactual causal statements (‘rung 3 in
the ladder of causation’ according to Pearl and Mackenzie
(2018)).2

Section 2 defines Intrinsic Causal Contribution (ICC) us-
ing the resolution into noise terms and quantifies the part
of the uncertainty contributed by each noise variable. Sec-
tion 3 explains that ICC has a causal interpretation in terms
of interventions on the variablesXj although it requires ad-
justments of the noise at first glance. Then we discuss some
properties of ICC in Section 4. Section 5 compares ICC to
related information based approaches in the literature. Fi-
nally, Section 6 shows experiments with real data.

We will see that the quantification of the influence of a vari-
able on a target crucially depends on the type of interven-
tions considered. Therefore, we argue that different notions
of causal influence coexist for good reasons, since they for-
malize different ideas on what causal influence is about.
We emphasize that this paper is mostly theoretical and its
main contribution is conceptual, rather than containing new
mathematical insights. Further, also questions on statistical
robustness and scalability for complex causal DAGs go be-
yond its scope. Constructing good proxies and adding as-
sumptions that enable good estimates is left to future work,
here we want to focus on providing an understanding of
ICC to let readers judge themselves for which scenarios it
is conceptually the right measure to ask for.

2 DEFINING ICC

2.1 Resolving variables into noises

To discuss the idea of ‘intrinsic’ within the language of
SCMs, consider first the following metaphoric example.
An empty donation box which starts at person A, is handed
over to personB and finally arrives at C. Each person adds
the donation NA, NB , NC , respectively. If Xj denotes the
amount of money after the box passed person j, we obtain
the simple SCM:

XA = NA (2)
XB = XA +NB (3)
XC = XB +NC , (4)

2See also Peters et al. (2017), Section 3.4, for an explicit de-
scription of the ambiguity.
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where we consider Nj the exogenous ‘noise’ variables
(which we know in this case), and the causal DAG reads

XA → XB → XC . (5)

Obviously, we would consider NB the contribution of B to
the final amount XC . Hence, the noise terms carry the in-
formation about what has been added at the respective node
Xj , not the values of the nodes Xj directly. Clearly, Nj
captures what we would describe as one’s contribution in
our everyday language, notXj . The example is metaphoric
in the sense that it deals with contribution to a fixed amount,
while we will later focus on contributions to the uncer-
tainty. We only want to motivate why our notion of con-
tribution focuses on what is added by the noise terms. For
this example one may argue that one could equally well de-
fine an augmented DAG containing NX explicitly as nodes
in order to avoid focusing on exogenous variables. We ar-
gue, however, that the values TX are more directly observ-
able, while the ‘contributions’ NX are reconstructed from
the former, using the above SCM. Likewise, the total delay
of a train is more directly observable than the amount con-
tributed by the respective train itself, and we argue that sim-
ilar statements apply to a large class of problems of causal
contribution analysis (see also Section 6), which justifies
our view of looking at contributions as something to be re-
constructed from the SCM.

To quantify the contribution of each ancestor to some tar-
get node Xn of interest (which is assumed to have no de-
scendants without loss of generality), we recursively insert
structural equations (1) into each other and write Xn en-
tirely in terms of the unobserved noise variables:

Xn = Fn(N1, . . . , Nn). (6)

Now we can think ofXn as being the effect of the indepen-
dent causes3 N1, . . . , Nn. Note that we do not introduce
further assumptions regarding Fn, i.e. we allow arbitrary
SCMs and do not limit it to a specific form such as additive
noise models. While this resolution coincides with the root
cause analysis of outliers by Budhathoki et al. (2022) and
also with backtracking counterfactuals by Von Kügelgen
et al. (2023), ICC does not require the assumption of invert-
ible SCMs, that is, we do not need to be able to reconstruct
the values of the noise from observed variables for single
observations, we only need to know their distribution. This
is because ICC is not about contributions to single events.

2.2 Quantifying conditional reduction of uncertainty

Next we quantify the reduction of uncertainty inXn caused
by a hypothetical adjustment of Nj (which coincides with
usual conditioning due to exogeneity).

3Writing each node in terms of independent noise variables is
also possible for some cyclic causal models, to which we could
easily generalize ICC (Bongers et al., 2021).

Definition 2 (intrinsic causal contribution (ICC)). Let Fn
as in (6) express Xn in terms of all noise variables
(N1, . . . , Nn) =: N. Then the ICC of node Xj (with
j = 1, . . . , n), given some additional adjustment set T ⊂
{1, . . . , n}, is defined by

ICCψ(Xj → Xn|T ) := ψ(Xn|NT )− ψ(Xn|Nj ,NT ),
(7)

where ψ can be any kind of conditional uncer-
tainty measure satisfying monotonicity ψ(Xn|NT ) −
ψ(Xn|Nj ,NT ) ≥ 0 and calibrationψ(Xn|N) = 0. Here,
ψ(.|NT ) denotes conditioning on all noise variables Nj
with j ∈ T .

Monotonicity is not strictly needed. But in real-world ap-
plications positive contributions are easier to interpret and
visualize (e.g., in pie charts), therefore we prefer a contri-
bution that is non-negative. Although the does not refer
to interventions, Section 3 explains that it is nevertheless
causal because it can be recast in terms of (a non-standard
type of) interventions, but we keep Definition 2 because of
its simplicity.

Note that we decided to write ICCψ(·|T ) instead of
ICCψ(·|XT ) to emphasize that we do not condition on the
random variables XT , but the corresponding noise terms.
Possible choices of ψ are:

Example 1 (conditional Shannon entropy). With
ψ(Xn|NT ) := H(Xn|NT ) we obtain conditional
mutual information (Cover and Thomas, 1991)

ICCH(Xj → Xn|T ) = H(Xn|NT )−H(Xn|Nj ,NT )

= I(Nj : Xn |NT ).

Non-negativity of the r.h.s. implies monotonicity of ψ. Cal-
ibration is satisfied for discrete Xn, while continuous en-
tropy tends to minus infinity for a distribution approaching
point measure.

We only use entropy when the target Xn is discrete. Note
that it does not matter whether the Nj are continuous or
discrete, in both cases we can measure the conditional un-
certainty of Xn in terms of Shannon entropy.

Although information theoretic quantification of influence
comes with the advantage of being applicable to variables
with arbitrary finite range, e.g., categorical variables, quan-
tification in terms of variance is more intuitive and often
easier to estimate from finite data:

Example 2 (expected conditional variance). For
ψ(Xn|NT ) := E[Var(Xn|NT )] we obtain

ICCVar(Xj → Xn|T ) =
E[Var(Xn|NT )]− E[Var(Xn|Nj ,NT )].

The monotonicity of expected conditional variance follows
from the law of total variance, Var(Y ) = E[Var(Y |
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X)]+Var(E[Y | X]). Thus, E[Var(Y )] ≥ E[Var(Y | X)]
(where E[Var(Y )] = Var(Y )). Further, E[Var(Y )] ≥
E[Var(Y | X)], which entails also the conditional version
E[Var(Y | W)] ≥ E[Var(Y | W, X)] for any random
vector W. Note that Analysis of Variance (ANOVA) re-
lies on the same idea for the special case of a linear model
where variances are just additive for independent factors
(Lewontin, 1974; Northcott, 2008). Variance based sensi-
tivity analysis (Sobol, 2001) allows for non-linear models,
but does not necessarily measure causal influence since
it considers reduction of variance by conditioning on ob-
served nodes regardless of whether the statistical relation
to the target is causal or confounded. In Section 3 we ex-
plain a rephrasing of ICC in terms of interventions on ob-
served nodes, which also admits a generalization for semi-
Markovian models.

2.3 Symmetrization via Shapley values

Unfortunately, the contribution of each node Xj in (7) de-
pends on the index subset T ⊂ {1, . . . , n} given as con-
text. For any ordering π in the symmetric group Sn we
can certainly define ‘Plain ICC’ by decomposing ψ(Xn)
into contributions ICCψ(Xπ(j) → Xn|T jπ), where T jπ de-
notes the set of indices that occur before j in the ordering
π. Unfortunately, the dependence on π introduces an unde-
sired arbitrariness. Feature relevance quantification in ex-
plainable AI (Datta et al., 2016; Lundberg and Lee, 2017;
Frye et al., 2020; Janzing et al., 2020) addresses similar
problems via Shapley values from cooperative game theory
(Shapley, 1953), which implicitly amounts to symmetriz-
ing over all orderings π. For the definition of Shapley val-
ues see Section 1 in the appendix.
Definition 3 (Shapley ICC). Let the ‘worth of a coalition of
noise terms NT ’ for T ⊂ {1, . . . , n} be given by ν(T ) :=
−ψ(Xn|NT ). Then the (Shapley based) ICC of each node
Xj to the uncertainty of Xn reads:

ICCShψ (Xj → Xn)

:=
∑

T⊆U\{j}

1

n
(
n−1
|T |

) [ν(T ∪ {j})− ν(T )] (8)

=
∑

T⊆U\{j}

1

n
(
n−1
|T |

)ICCψ(Xj → Xn|T ),

where U := {1, . . . , n}

Due to general properties of Shapley values (see Section
A), Shapley based ICC values sum up to the uncertainty of
Xn:

n∑
j=1

ICCShψ (Xj → Xn) = ν({1, . . . , n})− ν(∅)

= ψ(Xn)− ψ(Xn|N) = ψ(Xn). (9)

Using an alternative equivalent definition of Shapley
values, which enables simple Monte Carlo estimators

(Mitchell et al., 2022), we can also average over Sn instead:

ICCShψ =
1

n!

∑
π∈Sn

ψ(Xn|NT j
π
)−ψ(Xn|N{j}∪T j

π
), (10)

which we will also use later.

Example 3 (linear SCMs). Given the linear SCM X =
AX + N where X = (X1, . . . , Xn) and A is a lower tri-
angular matrix. Then, X = (I − A)−1N and thus Xn is
the linear combination of n independent noise terms Xn =∑n
j=1 βnjNj , where βnj is the last row of (I −A)−1. The

contribution of each Nj to the variance of Xn thus reads
β2
nj · Var(Nj), independently of the conditioning set S.

Hence, we simply obtain

ICCShVar(Xj → Xn) = β2
nj ·Var(Nj),

which amounts to usual ANOVA (without the computational
load entailed by Shapley values) after resolvingXn into the
noise terms.

3 CAUSAL INTERPRETATION

3.1 Structure-preserving interventions

We now argue that ICC can be rephrased using interven-
tions on the nodes X1, . . . , Xn: Going through the nodes
in any topological ordering of the DAG, replace each Xj

with fj(pa′j , n
′
j) where n′j is a fixed value of an indepen-

dent copy N ′
j of Nj , and pa′j denotes the values of the

parents obtained from the upstream interventions. In con-
trast, standard interventions do(Xj = xj) replace struc-
tural assignment (1) with the trivial structural assignment
Xj := xj . Although our intervention may be interpreted
as setting the noise variable Nj to n′j (which is unfeasible
if we think of the exogenous noise of something that is not
under our control, or even worse, not even observable), we
suggest to interpret it as a intervention on Xj instead that
depends on the values of the parents. Given assignment (1),
we can intervene on Xj without perturbing the joint dis-
tribution of all observable nodes X1, . . . , Xn as follows:
after observing that PAj attained the values paj , we set
Xj to the value x′j := fj(paj , n

′
j) where n′j is randomly

drawn from P (Nj). Any statistical dependence between
Xi and our i.i.d. copy N ′

j of Nj indicates causal impact
of Xj on Xi. This is because N ′

j is randomized and thus
interventional and observational probabilities coincide, i.e.
P (·|do(N ′

j = n′j)) = P (·|N ′
j = n′j). Generalized in-

terventions that replace the structural assignment (1) with
a different one, have been studied in the literature earlier
(Eberhardt and Scheines, 2007; Korb et al., 2004; Tian and
Pearl, 2001; Daniel and Murphy, 2007; Markowetz et al.,
2005; Correa and Bareinboim, 2020), but we keep (1) and
replace only Nj with an observable and accessible copy
N ′
j .
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3.2 Adjusting mechanisms at a node, not their values

The fact that we do not measure the reduction of uncer-
tainty entailed by adjusting the value xj of the observed
node Xj , but instead the reduction caused by adjusting the
noise, can be nicely interpreted in terms of the response
function formulation of SCMs (Greenland and Robins,
1986). Then each value nj of Nj corresponds to a func-
tion f

nj

j : paj 7→ xj and the SCM is merely a proba-
bility distribution over the set of functions (‘deterministic
mechanisms’) fnj

j . In this sense, ICC measures the extent
to which the variability of the respective mechanisms con-
tribute to the variability of the target variable. While phras-
ing ICC in terms of adjusting some of the Nj resulted in a
simple formal definition (to avoid distributions over func-
tions), the more principled way of thinking of ICC is given
by adjustments of the mechanism f

nj

j . The drawing of val-
ues of the iid copy N ′

j above now translates into iterating
over randomized adjustments of the mechanisms.

Note that the decision of whether we are seeking for a con-
tribution measure that adjusts values or one that adjusts
mechanisms is related to philosophical questions of blam-
ing and the normative aspect of ‘actual causation’ (Hitch-
cock and Knobe, 2009; Halpern and Hitchcock, 2013). If
we, for instance, blame a train for its entire delay, we im-
plicitly consider the option of departing in time regardless
of delays of ‘ancestor’ trains (corresponding to adjusting
the value), while intrinsic contribution accepts the depen-
dence as mandatory by adjusting the mechanism.

3.3 Generalization of ICC to the confounded case

Let us now assume a causal model with common causes
of nodes Xi, Xj which are not blocked by any set of
nodes in {X1, . . . , Xn}. The easiest way to generalize
ICC to this case is given by allowing for dependent noise
terms. We then define the worth of the coalition for any
T ⊂ {1, . . . , n} by

ν(T ) := −ψ(Xn|do(NT ))

:=

{ ∑
nT
H(Xn|do(NT = nT ))p(nT )∑

nT
Var(Xn|do(NT = nT ))p(nT )

,

where the meaning of do(NT ) is defined by the respective
right hand sides. Note that in the unconfounded scenario
with independent noise variables Nj we did not explicitly
introduce interventional probabilities since they coincided
with conditional probabilities anyway. Assuming that the
dependence of noise variables relies on common causes,
the interventional probabilities are now given by the back-
door formula (Pearl, 2000)

P (Xn|do(NT = nT )) =
∑
nT

P (Xn|nT̄ ,nT )p(nT̄ ),

(11)
where T̄ denotes the complement of T . Assuming that
the noises are only connected by a common cause does

not entail any loss of generality: assume we had a path
from one noise to another (Ni → Nj), then we can intro-
duce a mediator N ′

i between Ni and Xi, and Ni becomes
a common cause of N ′

i and Nj . Since the only relevance
of the noise consists in its effect on the response function
paj 7→ fj(paj , ni), the modified model responds in the
same way to structure preserving interventions.

For ease of notation, we have phrased ν(T ) in terms of
interventions on the noise variables Nj although we have
emphasized in Section 3.2 in the main paper that ICC only
requires interventions on the variables Xj , provided that
we consider structure preserving interventions instead of
usual do-interventions. We can do the same here, but the
interventions are now controlled by a simulated noise vec-
tor N′

T which is a copy of NT , that is, has the same joint
distribution (rather than having separate copies N ′

j of each
Nj). Note that we have ν({1, . . . , n}) = −ψ(Xn|do(N =
n)) = 0 and ν(∅) = −ψ(Xn). Therefore, Eq. (9) in the
main paper holds for the confounded case as well, which is
crucial for the interpretation of attributing the total uncer-
tainty of Xn to its ancestors. Note, however, that ICC can
become now negative because dropping a correlated noise
variable can increase the variance of the target.

4 SOME PROPERTIES OF ICC

Here we describe properties that help getting an intuition on
the behavior of ICC, particularly with respect to extending
or marginalizing models. These properties will later help
to understand the difference to other measures of causal in-
fluence in the literature and help the reader decide whether
ICC is appropriate for the problem at hand.

4.1 Inserting nodes being perfect wires

Assume we are given the causal DAG X → Y with the
structural equations X := NX and Y := fY (X,NY ).
Then, application of Definition 2, eq. (7) and (8) yields

ICCShψ (X → Y ) =
1

2
[ψ(Y )− ψ(Y |NX) (12)

+ ψ(Y |NY )− ψ(Y |NX , NY )].

Let us now insert an intermediate node X̃ that is just an
exact copy of X , that is, we define the modified SCM

X = NX (13)
X̃ = X (14)
Y = fY (X̃,NY ). (15)

The corresponding DAG reads X → X̃ → Y . From a
physicists perspective, such a refinement of the descrip-
tion should always be possible because any causal influence
propagates via a signal that can be inspected right after it
leaves the source. Lemma 1 in Section A shows that (13)
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to (15) entail the same value for ICCShψ (X → Y ) as (12)
because the constant ‘dummy’ noise NX̃ corresponding to
X̃ is irrelevant for the contribution of the other nodes.

4.2 Marginalizing over intermediate nodes or
grandparents

While we inserted a deterministic node in Subsection 4.1
we now marginalize over an intermediate node that de-
pends non-deterministically on its cause.4 Let us again con-
sider the chain

X → Y → Z, (16)

with the structural equations

X := NX (17)
Y := fY (X,NY ) (18)
Z := fZ(Y,NZ).. (19)

Recall that, in case of entropy, ICCShH (X → Z) contains
the terms I(NX : Z), I(NX : Z |NY ), I(NX : Z |NZ),
I(NX : Z |NY , NZ).

Marginalizing over Y yields the causal DAG X → Z with
the structural equations

X := NX (20)
Z := f̃Z(X, ÑZ), (21)

where ÑZ := (NY , NZ) and

f̃Z(X, ÑZ) = fZ(fY (X,NY ), NZ).

For the reduced structure, ICCShH (X → Z) contains only
terms of the form I(NX : Z) and

I(NX : Z |ÑZ) = I(NX : Z |NY , NZ),

while the terms I(NX : Z |NY ), I(NX : Z |NZ) do not
occur any longer. Hence, the Shapley based ICC is not in-
variant with respect to the marginalization. The reason is
that Shapley symmetrization averages the relevance of NX
over all possible combinations of background conditions.
Reducing the possible combinations by ignoring nodes can
result in different values for ICCShψ . One may consider
this as a caveat: we would not like the contribution of train
A for the delay of train C depend on whether B is explicitly
taken into account or not. However, the reason is a caveat
that other Shapley based quantification of feature relevance
show as well: Assume we are given Y = f(X1, X2, X3)
and compute relevance of feature X1 for Y according to
Lundberg and Lee (2017). One can then verify that the
relevance of X1 changes when we merge X2, X3 to a vec-
tor valued feature X ′

2 and write Y = f ′(X1, X
′
2). This

4Note that consistency of causal structures under various
coarse-grainings is an interesting topic in a more general context
too (Rubenstein et al., 2017).

is exactly what happens in our case: marginalizing over Y
merges the noise variables NY and NZ to one noise vari-
able for Z.

One also checks easily that the contribution of Y changes
when marginalizing overX . In the limiting case where Y is
just a copy of X we even obtain ICCShψ (Y → Z) = 0 for
DAG (16) while the DAG Y → Z is blind for the fact that
Y has ‘inherited’ all its information from its grandparent.
Following our intuition of contribution, this change of ICC
is required because we marginalization blurs that part of
the uncertainty of Y is just propagated from its parent.

4.3 Continuity w.r.t. removing weak edges

To define a family of models for which an edge gets arbi-
trarily weak we consider variables attaining finitely many
values and again use the response function formulation of
SCMs, where (1) turns into a probability distribution on
the set Fj of functions from the set of possible states of
PAj to the possible states of Xj . For each parent PAij ,
there is a subset F i

j ⊂ Fj of functions that are constant
in PAij . ‘Fading away’ of an edge from PAij can then be
described by continuously turning the probability distribu-
tion into one with support F i

j . For discrete variables, en-
tropy and variance are continuous on finite sets, thus ICC
will not show any discontinuity when the probability of the
complement of F i

j reaches zero.

4.4 Dependence on the SCM

ICC may differ for different SCMs (with the same DAG)
describing the same interventional probabilities for inter-
ventions do(Xi = xi) (rung 3 versus rung 2 causal state-
ments). As an example, let us take a look at X → Y with
binary variables X,Y . First consider the structural equa-
tions

X := NX , Y := X ⊕NY (22)

where ⊕ denotes the XOR operator. With ψ = H and
assuming ‘ùnbiased coins” P (NX = 1) = P (NY = 1) =
1/2 we then obtain

ICCShH (X → Y ) =
1

2
(I(NX : Y ) + I(NX : Y |NY ))

=
1

2
(0 + 1) = 1/2.

The same joint distribution P (X,Y ) can also be generated
by

X := NX , Y := NY (23)
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for which we obtain5 ICCShH (X → Y ) = 0. Hence, ICC
also captures counterfactual influence which is invisible by
usual interventions on the node itself. This can be desir-
able, for instance, in the following scenario: Let X be a
random variable denoting a text in binary encoding. Let
Y be its encrypted version generated by bitwise XOR with
a randomly generated secret key N . If we have no access
to N , we cannot detect any statistical dependence between
X and Y . However, we would not argue that the binary
encoding of X did not contribute to the encryption Y just
because the statistical dependence gets only visible after
knowing N . Even if we are not able to decrypt Y because
N is unknown to us, the mere knowledge that Y could
be decrypted after knowing N suffices to acknowledge the
contribution ofX to Y .6 As far as we can see, all known at-
tempts based on usual point interventions fail to formalize
our intuitive notion of ‘intrinsic’, despite being reasonable
concepts in their own right. This will be explained in the
following section.

5 PREVIOUS WORK ON QUANTIFYING
CAUSAL INFLUENCE

Since do-interventions are accepted as a crucial concept
of causality, we want to check how they cold potentially
capture ‘intrinsic’ contribution without relying on rung 3
causal models. To this end we consider the contribution of
X2 on X3 in the causal chain

X1 → X2 → X3, (24)

and emphasize that we want it to be zero whenX2 is a copy
of X1. We will see that most approaches fail in this regard,
except for one case which we reject because it violated con-
tinuity.

Information Flow: This measure, introduced by Ay and
Polani (2008) and denoted by I(X2 → X3), measures
the mutual information of X3 and X2 with respect to the
joint distribution obtained when X2 is subjected to ran-
domized adjustments according to P (X2) (see Section C
for the formal definition). This concept is certainly causal,
but does not separate the information generated at X2 from
the one inherited from X1. One option to achieve this sep-
aration would be to randomize X2 according to the condi-
tional distribution P (X2|do(X1 = x1)) instead of P (X2),
which yields the conditional Information Flow I(X2 →
X3|do(x1)) (Ay and Polani, 2008). Its average over P (X1)

5Readers may find it disturbing that (22) generates an unfaith-
ful distribution and (23) actually corresponds to a DAG without
arrows. But we have chosen this example only to keep the so-
lution simple, dependence on SCM also holds for more generic
models.

6The idea that noise terms Nj in SCMs may be unobservable
in one context, but not in principle, is also emphasized by Pearl
(2000) to justify the scientific content of counterfactuals.

is denoted by I(X2 → X3|do(X1)). For the example
where X2 is just a deterministic copy of X1, we obtain
I(X2 → X3|do(X1)) = 0, as desired, since adjusting X1

sets X2 to a constant. However, if I(X2 → X3|do(X1))
is a better candidate for ’intrinsic’ contribution, generaliza-
tion to arbitrary DAGs is unclear. The example suggests
to measure the intrinsic contribution of any node Xi in a
DAG with n nodes to the information on Xj by I(Xi →
Xj |do(PAi)). Accordingly, in the DAG in Figure 1a, we
would consider I(X2 → X3 |do(X1)) the intrinsic contri-
bution of X2 on X3. In Figure 1b, X1 is no longer a parent

X1 X2

X3

(a)

X1 X2

X3

(b)

Figure 1: Left: Causal DAG for which it is already non-
trivial to define the strength of the influence of X1 on X3

– if one demands that this definition should also apply to
the limiting case on the right (where the edge X1 → X2

disappeared).

of X2 and then we would consider choosing I(X2 → X3)
instead. This raises a conceptual problem raised by switch-
ing from conditional to unconditional Information Flow:
let the edge X1 → X2 be arbitrarily weak, such that it
disappears entirely, which entails a discontinuous change
from I(X2 → X3 |do(X1)) to I(X2 → X3). This is be-
cause the difference between I(X2 → X3 |do(X1)) and
I(X2 → X3) remains even when the edge disappears,
which is easily seen for binary variables linked by a log-
ical XOR gate: let X3 = X1 ⊕X2 and X1 be an unbiased
coin. Without adjusting X1, adjusting X2 has no average
influence onX3, hence I(X2 → X3) = 0. When adjusting
X1, however, X2 controls X3 entirely and when X2 is un-
biased too, we thus obtain I(X2 → X3 |do(X1)) = 1Bit.

Causal Shapley Values and do-Shapley Values: Us-
ing the idea of these concepts (Heskes et al., 2020; Jung
et al., 2022), but also modifying it to uncertainty as our
target metric, we define the worth of a coalition T as
ψ(Xn|do(XT )) :=

∑
xT
ψ(Xn|do(XT = xT ))p(xT ).

Then the contribution of X2 on X3 in the DAG (24) is
given by a sum of two terms of the form ψ(Xn|do(XT ))−
ψ(Xn|do(X2), do(XT )), which is non-zero for T = ∅ in
contrast to what we demand.

Asymmetric Shapley Values: Let us now modify (10)
by averaging only over all possible topological orderings
of the DAG. For those π we have

ψ(Xn|NT j
π
) = ψ(Xn|XT j

π
)) = ψ(Xn|do(XT j

π
)).

The first equality follows from Xn ⊥⊥ XT j
π
|NT j

π
and be-

cause XT j
π

is a function of NT j
π

. The second one follows
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because conditioning on all ancestors blocks all backdoor
paths. This way, we end up with a causal contribution
measure that contains only observational conditionals and,
more importantly, avoids rung 3 causal models. It turns out
that this measure would be a straightforward modification
of Asymmetric Shapley Values (Frye et al., 2020), with the
only difference that we measure contribution to uncertainty
in the population, while the former measures contribution
of a specific value to the target value.

Since the causal chain (24) only admits one unique order-
ing, we obtain ψ(X3|do(X2)) − ψ(X3|do(X2), do(X1)),
which is zero when X2 is a copy of X1, as desired. Unfor-
tunately, Asymmetric Shapley Values can change discon-
tinuously when edges ‘fade away’, because a DAG sud-
denly admits more topological orderings after removing an
edge, which we wanted to avoid. For this reason, we be-
lieve that ‘fair’ intrinsic causal contribution should account
for all orderings, and thus also account for terms that result
from adjusting mechanisms (aka noise variables) down-
stream while randomizing those of the ancestors (which
requires causal models of rung 3, see Subsection 4.4).

Nevertheless, ICC with averaging over topological order-
ings only may be a reasonable approach, for instance in
causal models of time series without instantaneous effects.
There, non-topological orderings would result in counterin-
tuitive terms anyway which randomize past noise variables,
while adjusting later ones.

Strength of edges and paths: We sketch proposals for
quantifying the strength of edges or paths (Janzing et al.,
2013; Wang et al., 2021) in Section B.

6 EXPERIMENTS

6.1 River flows

We have used a data set with 3,953 daily records of the river
flows (in m3/s) at 5 different stations in England at Hen-
thorn, Hodder Place, Whalley Weir, New Jumbles Rock,
and Samlesbury7 between 1979/05/01 and 2021/12/11.
Samleybury is considered the target since the other 4 sta-
tions are upstream, as seen on the map on Figure 2. New
Jumbles Rock lies at a confluence point of the 3 rivers pass-
ing Henthorn, Hodder Place, and Whalley Weir. The wa-
ter passing a certain station is certainly a mixture of some
fraction of the amount observed at the next stations further
upstream plus some amount contributed by streams and lit-
tle rivers entering the river in between from the countryside
around. Again, the intrinsic contribution is the unrecorded
amount required to explain the water flows observed at the
respective station, given the flows at the adjacent stations
upstream. Therefore, choosing the DAG (Figure 2, mid-

7https://environment.data.gov.uk/
hydrology/explore

dle) containing only the observed flows seems more nat-
ural than an augmented DAG containing the unrecorded
influx as additional nodes, given that the latter values are
reconstructed. Due to strong confounding effects (we have
seen strong correlations of root nodes), estimating causal
regression coefficients and noise by OLS would be heavily
biased. Therefore we have inferred the SCM from common
sense knowledge and set all regression coefficients to 1, as-
suming, for simplicity, that most of the water flow at each
node will also reach downstream nodes. Hence, the noise
(i.e., the hidden influx) is simply the difference to the sum
over all parents. Afterwards, we have applied ICC for the
confounded scenario, see Subsection 3.3, and Section D for
more details.

Figure 2, right, shows the ICC values. The low values for
New Jumbles Rock and Samlesbury show that the flow at
the root notes already explains most of the variation of the
former. We have also applied variance based do-Shapley,
as explained in Section 5, and obtained high contributions
for New Jumbles Rock, see Section D for details.

Adjusting values versus adjusting mechanisms: The low
value for New Jumbles Rock distinguishes ICC from causal
influence measures that quantify contribution via the im-
pact of a do-intervention on the respective node: adjust-
ing the flow at New Jumbles Rock reduces the variance
of Samlesbury significantly. Assume politicians of Sam-
lesbury want to reduce the fluctuations of water flows ob-
served there (to enable safe shipping or reduce flooding
risk) by building retention dams spread over the country-
side around the rivers. Then the intrinsic contribution of
each node is the maximal reduction achievable by dams in
the respective region. A different strategy for getting more
constant flow through Samlesbury would be to build dams
inside the river, directly controlling the flow. Assume all
the 5 location were candidates for possible places. Triv-
ially, having a dam in Samlesburry has the strongest im-
pact, but there may be other aspects for preferring one of
the other 4 locations. In this case, a measure of causal in-
fluence that quantifies the variance reduction by usual do-
interventions would be the right one to assess the impact
of these dams. This example shows, again, that different
measures of causal influence are appropriate for different
goals.

6.2 Fuel consumption of engines

Here we consider a data set with non-linearities, as veri-
fied by scatter plots of bivariate dependences between some
of the variables. Although we have still fitted an additive
noise model as a convenient approximation, non-linearity
of structural equations entail that then noise variables in-
fluence the target quantity in a non-additive way.

The dataset AUTO MPG in the UCI Machine Learning
Repository (Bache and Lichman, 2013), contributed by R.

https://environment.data.gov.uk/hydrology/explore
https://environment.data.gov.uk/hydrology/explore
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Figure 2: Left: location of the 5 stations at which water flows are recorded. Middle: Causal model for the flows with
Weather as latent confounder. Right: ICC with bootstrap confidence bounds for each of the 4 upstream stations and the
target station (Samlesbury) itself.

cyl dis mpg

wgt

hp

Figure 3: Causal DAG of the AUTO MPG dataset for fac-
tors influencing fuel consumption with cyl: Cylinders, dis:
displacement, hp: horsepower, wgt: weight, mpg: miles
per gallon

Quinlan contain 7 features that are relevant for the predic-
tion of miles per gallon (mpg) of a car engine. The causal
DAG given in Wang and Mueller (2017), after removing
variables that have no influence on mpg, is shown in fig-
ure 3. We have obtained the following values for ICCShVar

after normalizing with the total variance: cyl 64%, dis
17%, hp < 1% , wgt 3%, mpg 15%. It turns out that
the number of cylinders already explains a large fraction
of the fuel consumption in the sense that the number com-
monly entails design decisions that involve parameters like
the recorded ones. The intermediate nodes like dis, hp,
and wgt mostly inherit uncertainty from their parents, but
roughly 1/7 of the variance of mpg remains unexplained
by all of the above factors.

7 DISCUSSION

Computational complexity of ICC. The exact computa-
tion of the Shapley values is an expensive job which thus
requires approximations. The package SHAP for explain-
able AI (Lundberg and Lee, 2017) uses a probabilistic ap-
proach with random subsets (for a different kind of attri-
bution though). We meanwhile work with a method that
samples random permutations. This way, we simply re-
place the population average with an empirical mean, then
the Hoeffding inequality yields error bounds that, a priori,
do not depend on the number n of nodes (but on bounds
on information differences of subsets). The choice of fj
in (1) and ψ also influences the complexity of ICC. Exam-
ple 3 shows a choice that simplifies computation. In partic-
ular, in linear models, variance based ICC does not involve
costly averaging over subsets S. If we were to compute

the reduction of variance entailed by do-interventions on
the Xj instead, even the linear case would involve costly
computation of Shapley values. To see this, consider the
chain X1 → X2 → · · · → Xn−1 → Xn, with the struc-
tural equation Xj = αj−1Xj−1 +Nj . The contribution of
Xn−1 on Xn is computed via terms Var(Xn|do(XT )) −
Var(Xn|do(Xn−1), do(XT )), and certainly the variance
reduction by adjusting Xn−1 is smaller when upstream
nodes that are close by are already adjusted (such that the
variance of Xn−1 is also low without adjusting it). Thus,
ICC raises less computational challenges than other Shap-
ley value based measures for the linear case, and similar
ones for non-linear models.

Can we learn the SCM? Although the observed condi-
tionals PXj |PAj

do not in general determine the SCM, the
hardness of inferring PXj |PAj

from finite data often re-
quires strong restriction of model classes such that the SCM
follows ‘for free’ (Kano and Shimizu, 2003; Zhang and
Hyvärinen, 2009; Peters et al., 2014; Mooij et al., 2016).
For instance, additive noise model based inference (Mooij
et al., 2016) infers PXj |PAj

by fitting the structural equa-
tion Xj = f̃j(PAj) + Nj with Nj independent of PAj

and f̃j(paj) := E[Xj |paj ]. Hence, the SCM and also Nj
can then be entirely derived from observable entities due to
Nj = Xj −E[Xj |PAj ]. For more SCM-learning methods
see e.g. Storkey et al. (2006); Pawlowski et al. (2020).

Does ICC reduce to some known measure after aug-
menting the DAG? One may wonder whether ICC reduces
to some known measure of causal influence in a DAG that
contains all Xj and Nj . However, in this augmented DAG
usually interventions on Xj and Nj both can have an im-
pact on the target. This way, we then obtain separate con-
tributions for Xj and for Nj8, while ICC yields one contri-
bution per Xj . In other words, no obvious modification of
existing proposals seems to capture our notion of intrinsic
by simply augmenting the DAG.

8Here we assume that we apply Causal Shapley Values or do
Shapley to all nodes in the augmented DAG, as usual. If we con-
sider all variables Nj as independent causes of Xn, then they co-
incide with ICC on this DAG.
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1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model: Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm: No

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results: Yes

(b) Complete proofs of all theoretical results: Yes
(c) Clear explanations of any assumptions: Yes

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL): Yes
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(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen): Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to the
random seed after running experiments multiple
times): Not Applicable

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider): Not Applicable

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets: Not Applicable

(b) The license information of the assets, if applica-
ble: Yes

(c) New assets either in the supplemental material or
as a URL, if applicable: Not Applicable

(d) Information about consent from data
providers/curators: Not Applicable

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content: Not Applicable

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots: Not Applicable

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable: Not Applicable

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation: Not Applicable
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A SHAPLEY VALUES

Definition 4 (Shapley values). Let N be a set with n elements (called ‘players’ in the context of game theory) and ν :
2N → R be a set function with ν(∅) = 0 (assigning a ‘worth’ to each ‘coalition’). Then the Shapley value of i ∈ N is
given by

φi(ν) :=
∑

S⊂N\{i}

|S|!(n− |S| − 1)!

n!
(ν(S ∪ {i})− ν(S)) =

∑
S⊂N\{i}

1

n
(
n−1
|S|

) (ν(S ∪ {i})− ν(S)). (25)

φi(ν) is thought of measuring the contribution of each player in a fair way and satisfies

n∑
i=1

φi(ν) = ν(N). (26)

Lemma 1 (dummy noise variables). Let N1, . . . , Nn be noise variables of an SCM M with observed nodes X1, . . . , Xn.
Let M̃ be a modified SCM with observed variables X1, . . . , Xn+k and noise variables N1, . . . , Nn+k modeling the same
joint distribution on X1, . . . , Xn, N1, . . . , Nn. Assume that the additional noise variables Nn+1, . . . , Nn+k are irrelevant
for Xj , that is

Nn+1, . . . , Nn+k ⊥⊥ Xj |NT , (27)

for all T ⊂ {1, . . . , n}. Then M and M̃ yield the same values for ICCShψ (Xi → Xj) for all i = 1, . . . , n.

We first need the following property of Shapley values:

Lemma 2 (adding zero value players). For an extended set Ñ ⊃ N , define a coalition function ν̃ : 2Ñ → R by

ν̃(S̃) := ν(S̃ ∩N),

that is, ν̃ is an extension of ν to irrelevant elements. Then

φi(ν̃) = φi(ν) ∀i ∈ N.

Proof. It is sufficient to show the claim for the case where Ñ contains just one additional element, say n + 1, since the
remaining part follows by induction.

When computing φi(ν̃) via a sum over all S̃ ⊂ Ñ we can always merge two corresponding terms: one set S not containing
n+ 1 and one corresponding set S′ := S ∪ {n+ 1}. Due to the irrelevance of n+ 1 we have

ν̃(S′ ∪ {i})− ν̃(S′) = ν̃(S ∪ {i})− ν̃(S) = ν(S ∪ {i})− ν(S),

that is, both terms are the same as for the set S in (9), up to the combinatorial factors. For the computation of φ̃i, the term
with S comes with the factor |S|!(n− |S|)!/(n+ 1)!, while S′ comes with (|S|+ 1)!(n− |S| − 1)!/(n+ 1)!. The sum of
these terms reads

|S|!(n− |S| − 1)!

(n+ 1)!
((n− |S|) + (|S|+ 1)) =

|S|!(n− |S| − 1)!

n!
,

which coincides with the factor in (8).□
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To prove Lemma 1, we note that ICCShψ is given by first defining the coalition function ν(S) := −ψ(Xj |NS), for each
S ⊂ {1, . . . , n}. Then ICCShψ (Xi → Xj) = φi(ν). Further, define

ν̃(S̃) := −ψ(Xj |NS̃). (28)

for each S̃ ⊂ {1, . . . , n+ k}. Then, ν̃(S̃) = ν(S̃ ∩ {1, . . . , n}). To see this, set S := S̃ ∩ {1, . . . , n}. Then (28) implies

ψ(Xj |NS̃) = ψ(Xj |NS),

since conditioning on the dummy nodes does not change the distribution of Xj . Hence, ν̃ defines an extension of ν to
irrelevant elements in the sense of Lemma 2. Since ICCShψ (Xi → Xj) with respect to the extended SCM is given by
φ̃i(ν̃), the statement follows from Lemma 2.

B STRENGTH OF EDGES AND PATHS

B.1 Strength of causal arrows and indirect causal influence

Janzing et al. (2013) defined ’strength of an edge’ in the sense of an information theoretic quantity. It is based on an
operation they called ‘cutting of edges’. To quantify the information transferred along an arrow, one thinks of arrows as
’channels’ that propagate information through space – for instance ‘wires’ that connect electrical devices. To measure the
impact of an arrow Xj → Xi, they ‘cut’ it and feed it with a random input that is an i.i.d. copy of Xj . This results in the
following ‘post-cutting’ distribution:

Definition 5 (Single arrow post-cutting distribution). Let G be a causal DAG with nodes X1, . . . , Xn and PX1,...,Xn be
Markovian with respect to G. Further, let PAj

i denote the parents of Xi without Xj . Define the ‘post-cutting conditional’
by

pXj→Xi(x|pa
j
i ) :=

∑
xj

p(xi|paji , xj)p(xj). (29)

Then, the post-cutting distribution PXj→Xi(x1, . . . , xn) is defined by replacing p(xi|pai) in the causal factorization
p(x1, . . . , xn) =

∏
j p(xj |paj) with (29).

The relative entropy between the observed joint distribution P (x1, . . . , xn) and the post-cutting distribution PXi→Xj now
measures the strength of the arrow:

CXi→Xj
:= D(P∥PXi→Xj

).

This measure is one of the concepts for which it is most apparent that its intention is different from ICC, and even comple-
mentary in a sense. To see this, note that Postulate 2 in Janzing et al. (2013) states that a measure of strength of an edge
should be independent from how its tail node depends on its parents. This implies, in particular, that the values CX2→X3

for the DAGs X1 → X2 → X3 and X2 → X3 coincide. Thus, the postulate explicitly requires CXi→Xj
to ignore whether

the information of Xi has been inherited or not.

This fundamental conceptual difference to ICC carries over to many other quantifications of causal influence, in particular
the information theoretic indirect and path-specific causal influence in Schamberg et al. (2020), which generalizes (Janzing
et al., 2013). For the quantification of the influence of X2 on X3 in X1 → X2 → X3, the indirect influence (which is the
same as the direct one here) by Schamberg et al. (2020) coincides with the strength of the arrow X2 → X3 from Janzing
et al. (2013). Further, note that also more classical approaches to mediation analysis and quantifying indirect effect, e.g.,
Pearl (2001, 2014) have a different intention and do not distinguish whether the information node X2 propagated to the
target X3 has been inherited from X2’s parents or generated at the node itself.

B.2 Shapley Flow

Wang et al. (2021) aim to quantify the contribution of edges to the value attained by a specific target node. They argue that
these attributions can also be used to measure the contribution of a node to the target. First, we are going to explain the
concept of Shapley Flow. In section B.3 we want to argue, that ICC can be seen as a special case of a modified version of
Shapley Flow.
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Boundary consistency Wang et al. (2021) state that a quantification of the influence of edges must be invariant to
refinement of the causal model. This is formalized in an axiom, which they call boundary consistency. They partition the
nodes of a DAG G into a data side D and a model side F (note that the terminology is motivated by applying their concept
to model explainability in the context of explainable AI), where all root nodes (i.e. nodes without parents) of the DAG must
lie in D and the target node in F . Further, there must not be edges from F to D. The idea is that F represents a new model
with D as input data. Let ϕB(e) be the contribution of edge e to the target node with respect to the boundary B = (D,F ).
Let further cut(D,F ) be the set of all edges with one end in D and one end in F . Then ϕ is boundary consistent, when

ϕB1
(e) = ϕB2

(e) iff e ∈ (cut(B1) ∩ cut(B2)). (30)

Update of edges The goal of Shapley Flow is to attribute the change in the target node between a foreground setting x
and a background setting x∗ of the variables. To derive an attribution that fulfils the boundary consistency axiom, they
traverse the DAG in a depth-first search (DFS) order and update edges along the way. We will discuss later, how the
attribution is symmetrized over all possible DFS orders. When updated, an edge propagates an updated value (or the given
foreground value for root nodes) to one child at a time. The other children will be updated later, when they are explored
by the DFS. The child node uses this new value to update its own value according to the SCM (and stays at this value until
updated again). For its other parents the child resorts back to the last value it received in an update or their background
values if the respective edge has not been updated yet. This is motivated by the analogy to a message passing system that
propagates the updated values step by step through the graph. Formally, the history of updates is represented as a list of
edges. The value of a variable Xi ∈ D after updating the edges in history h is calculated according to the SCM and the
values of the parents PAi that Xi has been sent and stored, namely

x̃i(h) = fi(mi,1(h), . . . ,mi,l(h)), (31)

where l = |PAi| andmi,j(h) is the value in the memory slot whereXi stores the value of its j-th parent node, after history
h. Let PAi,j denote the j-th parent of Xi. Initially (for the empty history), all these memory slots contain the respective
baseline values from x∗, i.e. with Xk = PAi,j we have

mi,j([ ]) = x∗k. (32)

Let h be a history, (Xk → Xi) an edge and h′ = h+ (Xk → Xi) be the history that we get when we append (Xk → Xi)
to the end of h. When we already know the values mi,j(h) and x̃i(h) for i = 1, . . . , n and j = 1, . . . , |PAi| we get the
updated memory for h′ by changing the memory slot, where Xi stores the value of Xk. This means, if Xk = PAi,j we get

mi,j(h
′) =

{
xk if Xk is a root node
x̃k(h) else

(33)

where xk is the foreground value of Xk from x and x̃k(h) is the updated value of the node Xk after history h (as defined
in equation 31). The other memory values stay the same, i.e.

mî,j(h
′) = mî,j(h) (34)

for î = i and PAi,j ̸= Xk or î ̸= i and j = 1, . . . , |PAî|. Note, that a node Xk can have multiple children and can thus
appear in the set PAi for several Xi. Yet, the respective value does not have to be the same, since these children might
have been sent an updated value of Xk at different points along history h. I.e., if PAi,j = Xk = PAîĵ for i ̸= î that does
not necessarily mean, that mi,j(h) = mîĵ(h) for all h.

Once an update crosses the boundary B = (D,F ), it immediately reaches the target Y over all paths, i.e. edges between
two nodes in F are assumed to instantly propagate the values of their parents. This reflects the idea that F is thought of as
a new model that operates normally, while Shapley Flow only alters the dependencies in the data. Let for Xi ∈ F the set
PAD

i be the parents of Xi in D and PAF
i the parents in F . Then replace the functions of the SCM according to

fhi (pa
F
i ) = fi(pa

F
i ,pa

D
i (h)). (35)

Note, that for a fix h the value paDi (h) is a constant. As a special case, the equation of an Xi does not change, if all its
parents are in F . The equations can recursively be solved for the variables in D (like a normal SCM would be solved
for the noise variables). For a variable Xi ∈ F the notation x̃i(h) refers to the value of Xi after solving the functional
equations for the nodes in D and inserting the respective values for history h.

As an intermediate step, we define a function νB that assigns a value to a history, according to

νB(h) = ỹ(h). (36)



Quantifying intrinsic causal contributions

Depth-first search The histories that Shapley Flow actually considers, are the ones that emerge from a DFS. In a DFS,
the graph is traversed in a recursive manner, i.e., each node recursively does a DFS on all its children. Once the target
Y is reached, the algorithm returns. Through this, the DFS finds all paths from the root nodes to the target node. Note,
that DFS does not dictate an order in which a node has to explore its children. This means, there are several orderings
in which a DFS can find the paths. Further note, that the number of these possible orderings is smaller, than the number
of all permutations of paths. Once DFS is called on a node X , it will be called recursively on all children of X before it
backtracks . Therefore, the respective paths always appear next to each other in an ordering derived from a DFS.

The purpose of these DFS orderings is to ensure boundary consistency. To get some intuition, consider two boundaries
B1 = (D,F ),B2 = (D ∪ {X}, F \ {X}), that only differ in one node X ̸∈ D. Once a message passes the boundary, it is
immediately propagated further by all downstream edges. So, once an update reaches X w.r.t. B1, all outgoing edges of X
instantly propagate this update. Once an update reaches X w.r.t. B2, all outgoing edges of X will be updated, before any
update can cross the boundary elsewhere. This means for the other edges it looks like nothing changed from B1 to B2.

Shapley contribution of edges The attribution to an edge e is the sum of all path attributions to paths, that contain e.
This procedure can also be formulated as follows. Let ΠDFS be the set of orderings of paths, in which they can be found
through depth-first search. For path i from root node to sink node define

ϕ̃(i) :=
1

|ΠDFS |
∑

π∈ΠDFS

(
ν̃ ([j | π (j) ≤ π (i)])− ν̃ ([j | π(j) < π(i)])

)
, (37)

where ν̃(S) operates on an list of lists of edges and evaluates the function νB on the concatenation of all paths in S and
with respect to a boundary B. Here we assume that a path is represented as a list of edges and that these lists of paths are
sorted according to π. Then we have

ν̃(S) := νB(s1 + · · ·+ sm), m = |S|, si ∈ S. (38)

Eventually, the Shapley Flow for an edge e is

ϕ(e) :=
∑

p∈ paths inG

1[e ∈ p]ϕ̃(p). (39)

Wang et al. (2021) implicitly assume that all relationships in the DAG are deterministic, with only the root nodes being
random. Put into the framework defined in Eq. (1) in the main paper, this means, that all nodes depend either on endogenous
parents or on exogenous noise, i.e., all structural equations have one of the following forms

Xj = fj(PAj) or Xj = fj(Nj). (40)

If one wishes to calculate the Shapley Flow on a general SCM, the augmented DAG is needed, containing all the noise
variables Nj as additional nodes with the edges Nj → Xj .

B.3 Describing ICC using modified Shapley Flow

Adding the noise variables Now consider the augmented DAG G′ with 2n nodes and the boundary B′ := (N,X).
Since the SCM assumes causal sufficiency (i.e. all noise terms are only causing one variable) the cut of our boundary B′

contains the n edges Nj → Xj . Further, the set of DFS paths from the nodes Nj to the boundary is also n (namely the
paths Nj → Xj) and the number of DFS orderings thereof is n!. Wang et al. (2021) emphasize that in general attributions
to nodes can be made by summing up the attribution to all outgoing edges. Since the nodes Nj only have Nj → Xj as
outgoing edges, we can interpret their contribution as the contribution of Xj . We will therefore identify the edges with
their respective noise node in the following equation. Rephrasing Equation (37) with respect to boundary B′ results in

ϕ̃(i) =
1

n!

∑
π∈Π

[ν̃ ({j | π (j) ≤ π (i)})− ν̃ ({j | π(j) < π(i)})] =
∑

S⊂N\{i}

1

n
(
n−1
|S|

) (ν̃(S ∪ {i})− ν̃(S)),

where Π is the set of all permutations over N1, . . . , Nn. Hence, the Shapley Flow amounts to measuring the impact of
updating the edges Nj → Xj in a symmetrized way. This way, it reduces to the standard way of measuring the impact of
n independent causes N1, . . . , Nn on the value of the target node.
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Replacing the target metric Since Shapley Flow quantifies contribution of edges to the value of a target node, while we
want to measure the uncertainty of the target node, we need a different choice for the set function ν̃: instead of measuring
the value of the target node, we need a metric that measures the uncertainty of the target after activating an edge by feeding
with an independent random input. This amounts to replacing the set function above with an uncertainty measure ψ to
finally obtain ICC.

Remark With this reinterpretation, the flow conservation property of Shapley Flow nicely captures the intuition that the
strengths of the outgoing edges sum up to the flow coming from the parents plus the intrinsic contribution. This is seen as
follows. The flow property implies ∑

Xj∈PA′
i

ϕ(Xj → Xi) =
∑

Xk∈CH′
i

ϕ(Xi → Xk), (41)

with PA′
i and CH′

i being the parents and children, respectively, of Xi in the augmented DAG G′. This amounts to∑
Xj∈PAi

ϕ(Xj → Xi) + ϕ(Ni → Xi) =
∑

Xk∈CHi

ϕ(Xi → Xk),

where PAi and CHi are the parents and children, respectively, of Xi in the original DAG G, and ϕ(Ni → Xi) measuring
the intrinsic contribution.

C DEFINITION OF INFORMATION FLOW

As pointed out by Ay and Polani (2008), quantifying causal influence between observed nodes via the information they
share, requires computing information with respect to interventional probabilities rather than information given in a passive
observational scenario (recall that this distinction has been irrelevant for us since dependences between observed nodes
and noise are always causal and unconfounded). Accordingly, they define the information flow from a set XA of variables
to another set XB , imposing that some background variables XS are set to xS by

I(XA → XB |do(xS)) := −
∑

xA,xB

p(xB |do(xA,xS))p(xA|xS) log
p(xB |do(xA,xS))∑

x′
A
p(xB |do(x′

A,xS))p(x
′
A|do(xS))

. (42)

Here, p(·|do(xA,xS)) is the interventional probability after setting XA,XS to xA,xS . Moreover, Ay and Polani (2008)
define also the average of (42) over all xS :

I(XA → XB |do(XS)) :=
∑
xS

I(XA → XB |do(xS))p(xS).

Note that I(XA → XB |do(xS)) measures the mutual information of XA and XB when XS is set to xS and XA is
randomized with probability p(XA|do(xS)).

D ADDITIONAL INFORMATION EXPERIMENTS AND MORE DETAILS

For ICC on the Auto MPG data set we have used the publicly available implementation of ICC in DoWhy (Blöbaum et al.,
2022), where we have chosen the auto-assign function.

For the river flows, we have worked with an SCM where each variable is a sum of its parents plus noise, that is, all
regression coefficients are set to 1. Accordingly, the variance of the target after adjusting all noise variables in S, is given
by

Var(XSy|do(NS = nS)) = Var(
∑
j∈S̄

Nj), (43)

which does not coincide with the sum of the corresponding variances because the noise terms heavily correlate due to
confounding. To compute the Shapley value computed for the set function (43) (up to a negative sign) we have used
variance-based feature relevance attribution gcm.parent relevance from DoWhy GCM (Blöbaum et al., 2022) with
linear regression.

https://www.pywhy.org/dowhy/v0.11.1/user_guide/causal_tasks/quantify_causal_influence/icc.html
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To explicitly show the difference to do-intervention based measures, we consider a modification of do-Shapley using
variance as target metric instead of expectation based on the set function

ν(S) := −
∑
xS̄

Var(Xn|do(XS = xS))p(xS), (44)

where S ⊂ {1, . . . , n− 1} since conditioning on do(Xn = xn) is pointless. Whenever the mediator New Jumbles Rock is
in the adjustment set, all the variance that originates from the root nodes is screened off. Accordingly, New Jumbles Rock
gets quite high contribution, namely around 41%. To compute variance-based do-Shapley for this example, we have used
the following rule: whenever New Jumbles Rock is in the adjustment set S, we have Var(XSy|do(NS = nS) = Var(NSy),
that is the influx at Samlesbury is the only source of uncertainty. Otherwise (that is, the adjustment set contains only root
nodes), the variance of Samlesbury is given by the variance of the sum over all noise terms of the non-adjusted nodes and
reads Var(XSy|do(NS = nS)) = Var(

∑
j∈S̄ Nj).

We also tried ‘causal-DAG agnostic’ Shapley value based feature relevance attribution where the interventional conditional
in (44) is replaced with the observational conditional. Then, more than 100% of the variance is attributed to the mediator
XJR (with slightly negative contributions of the root nodes), aligning with the fact that all other features were conditionally
independent of the target, given the mediator, if there were no confounding effects. There, we have again used the function
gcm.parent relevance from DoWhy GCM (Blöbaum et al., 2022), but this time we regress XSy on the river flows
of the upstream nodes, rather than on the noise (i.e. the influx).

The fact that the flow at New Jumbles Rock is mostly explained by the flow of the root nodes is only reflected by the ICC
values and not by the other approaches of quantifying influence mentioned here.


