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Abstract

We introduce On-Demand Federated Learning
(On-Demand FL), which enables on-demand
federated learning of a deep model for an ar-
bitrary target data distribution of interest by
making the best use of the heterogeneity (non-
IID-ness) of local client data, unlike existing
approaches trying to circumvent the non-IID
nature of federated learning. On-Demand FL
composes a dataset of the target distribution,
which we call the composite dataset, from a
selected subset of local clients whose aggre-
gate distribution is expected to emulate the
target distribution as a whole. As the com-
posite dataset consists of a precise yet diverse
subset of clients reflecting the target distri-
bution, the on-demand model trained with
exactly enough selected clients becomes able
to improve the model performance on the tar-
get distribution compared when trained with
off-target and/or unknown distributions while
reducing the number of participating clients
and federating rounds. We model the target
data distribution in terms of class and esti-
mate the class distribution of each local client
from the weight gradient of its local model.
Our experiment results show that On-Demand
FL achieves up to 5% higher classification ac-
curacy on various target distributions just in-
volving 9× fewer clients with FashionMNIST,
CIFAR-10, and CIFAR-100.
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1 INTRODUCTION

Federated learning (FL) [Konečnỳ et al., 2016] enables
data in a large quantity to be learnable in a dis-
tributed manner with a set of local clients without
explicit data movement. However, existing methods,
such as FedAvg [McMahan et al., 2017], are known
to suffer from unstable learning and poor perfor-
mance [Sattler et al., 2019, Li et al., 2019], especially
with heterogeneous (non-IID) local data distributions.
Moreover, a single global FL model can hardly gen-
eralize to various data distributions, e.g., local client-
specific datasets [Zhao et al., 2018].

Many approaches, e.g., clustered federated learn-
ing (CFL) [Sattler et al., 2020a], federated multi-task
learning (FMTL) [Smith et al., 2017], personalized fed-
erated learning (PFL) [Hanzely and Richtárik, 2020],
etc., have been proposed to achieve effective federated
learning on heterogeneous (non-IID) data distributions.
Although they can improve the performance of feder-
ated learning by mitigating the data heterogeneity to
some degree, their scope is still limited to a pre-defined
and fixed data distribution, e.g., IID, client-specific, or
clustered distributions, which does not flexibly apply
to arbitrary and multifarious data distributions.

Unlike existing works that regard data heterogeneity
(non-IID) as an obstacle to overcome [Zhu et al., 2021],
we argue that the non-IID-ness is natural and intrin-
sic in federated learning and can be even beneficial
when carefully exploited. By actively leveraging the
heterogeneity (non-IID) of local client data instead of
trying to surmount it, it becomes possible to provide
high-performing models on diverse and ever-evolving
non-stationary data distributions. In particular, we
consider a number of disparate local client data as the
collective pool of a diverse and rich dataset from which
we can flexibly derive an arbitrary target distribution
of interest by composing an adequate subset of clients.
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Figure 1: Given an arbitrary on-demand target distri-
bution, a subset of local clients is selected to emulate
(compose) the target distribution based on the estimated
local data distributions. Then, the on-demand model is
federated-learned with the selected subset, optimizing
it for the target distribution, enhancing performance
while involving fewer clients in model training.

In this paper, we propose On-Demand Federated Learn-
ing (On-Demand FL)—a new FL paradigm capable of
optimizing a deep classification model to an arbitrary
target distribution on demand, including physically non-
existing distributions, requested from a user, especially
given heterogeneous (non-IID) distributions. The speci-
fied target distribution is composed of a subset of clients’
local datasets, called the composite dataset, selected to
collectively constitute the target distribution. Given
the diverse data distributions among local clients in fed-
erated learning, the desired target distribution can be
effectively formed by combining local clients appropri-
ately. With the composite dataset, On-Demand FL pro-
duces an on-demand model customized to the target dis-
tribution, while a much smaller number of local clients
participates in federated learning. Thus, the idea of On-
Demand FL can be seen as a generalization of existing
works that produce a single global [Zhang et al., 2021],
several clustered [Sattler et al., 2020a], or many per-
sonalized models [Tan et al., 2022].

We argue that On-Demand FL possesses inherent prop-
erties that render it a natural and advantageous choice
in many real business and industry scenarios.

Sharing Economy In the sharing economy
[David, 2017], resources are shared instead of owned,
leading to frequently changing users. Traditional
intelligent systems struggle to train personalized
models for individual users. However, On-Demand
FL allows users to efficiently use a system tailored
to each individual’s data class distribution by simply
providing their usage patterns’ data class distribution.

Industrial Internet of Things (IIoT) On-Demand
FL is also suitable for IIoT [Boyes et al., 2018], where
a multitude of sensors monitors the industrial environ-
ment and control processes. Since On-Demand FL does
not have to communicate with all clients in the indus-
trial field, it can select only a necessary subset of clients
required to construct the target distribution with fewer
clients than the entire client pool, enabling efficient
model training for the desired target class distribution.

Figure 1 depicts the four steps of On-Demand FL,
which are described as follows.

(Fig 1- 1○) On-Demand FL first takes the desired tar-
get distribution of interest from a user or application.
When dealing with data distribution, On-Demand FL
utilizes the class distribution of data, defined as the
relative ratio of each class, which is practical, efficient,
and well-fit to describe and compose the desired target
distribution. From a user’s perspective, specifying the
desired target distribution in terms of class is intuitive
and user-friendly, not entailing complex technicalities.

(Fig 1- 2○) Before composing the target class distribu-
tion from a subset of clients, the local class distribution
of each client is estimated. To this end, we propose
the class distribution predictor, a deep neural network
(DNN) that predicts the local data distribution of a
client from the weight gradient of the local model,
similar to conventional federated learning (e.g. Fe-
dAvg [McMahan et al., 2017]) that uses only the weight
parameters for model training [Konečnỳ et al., 2016].
The class distribution predictor is trained via reg-
ular federated learning, without requiring to mod-
ify any conventional federated learning protocols in
contrast to previous approaches [Sattler et al., 2020a,
Smith et al., 2017]. The run-time estimation of lo-
cal class distributions enables training an on-demand
model for the target class distribution, even if client
distributions change due to continuous data acquisition.

(Fig 1- 3○) Once the local class distribution of each client
is estimated, the composite dataset is organized from a
selected subset of clients such that their aggregate class
distribution becomes close to the target class distribu-
tion. The selected clients not only match the target
class distribution but also improve the performance of
the on-demand model. They maintain the precise tar-
get data distribution while collectively increasing the
diversity of the composite dataset, thus enhancing the
potential learning capability of the on-demand model.

(Fig 1- 4○) Finally, on-demand federated learning starts
to train the on-demand model for the target class distri-
bution only using the selected clients. Starting from the
model trained with all clients, the on-demand model
is fine-tuned to fit the composite dataset of the target
distribution, achieving improved learning performance
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with fewer local clients being involved.

We evaluate On-Demand FL on FahionMNIST
[Xiao et al., 2017], CIFAR-10, and CIFAR-100
[Krizhevsky et al., 2009], achieving improved model
performance on various target distributions, while a
much less number of clients participate in federated
learning, e.g., 5% higher classification accuracy on
CIFAR-10 with 9× fewer clients. It shows that
On-Demand FL improves the flexibility, training
efficiency, and even model performance of federated
learning for arbitrary class distributions, extending
the capability of federated learning in non-IID setups
beyond the pre-defined and fixed data configurations.

We implement the proposed On-Demand FL with Py-
Torch [Paszke et al., 2017], which is available at a pub-
lic git repository 1.

2 RELATED WORK

Client Selection Similar to On-Demand FL,
some approaches select a subset of participating
clients in homogeneous data distributions, trying
to improve model generalization capability. FA-
VOR [Wang et al., 2020] counterbalances the bias in-
troduced by non-IID data and speeds up convergence
using deep Q-learning [Mnih et al., 2013]. Another
method [Yang et al., 2021] selects a subset of clients
based on the combinatorial multi-armed bandit al-
gorithms [Chen et al., 2013] to minimize class imbal-
ance. Although the latter estimates the local class
distributions based on the local gradient updates
in a similar way to On-Demand FL, they need to
be compared against the gradients inferred from an
auxiliary dataset transferred to the server, violating
the privacy-preserving property of federated learning.
On the contrary, On-Demand FL transmits only the
weight gradient, not any local data or distributions,
to the server, so that it keeps data privacy and effi-
ciency in the same way as the original federated learn-
ing [Konečnỳ et al., 2016].

Clustered Federated Learning To improve the gen-
eralization performance of the model, clustered fed-
erated learning (CFL) has been introduced in which
clients are grouped into several clusters with jointly
trainable data distributions [Sattler et al., 2020a,
Briggs et al., 2020, Sattler et al., 2020b]. Although it
improves the accuracy of clustered models by exam-
ining the geometric properties of the loss surface, it
comes with high computation and communication costs
of the recursive bi-partitioning process with similarity
measurements between the gradient updates of clients,
making it difficult to scale out when the number of

1https://github.com/eai-lab/On-DemandFL

clients increases [Ghosh et al., 2020]. In contrast, On-
Demand FL conducts large-scale federated learning
without repetitive clustering, selecting clients only once.

Personalized Federated Learning Although per-
cluster models perform better than a single global
model, it is not guaranteed to find optimal clusters
and generalize well for all clients in the same cluster.
Alternatively, personalized federated learning (PFL)
optimizes an independent local model for each indi-
vidual client, tailored to a particular distribution of
local data [Tan et al., 2022, Arivazhagan et al., 2019].
Other methods [Hanzely and Richtárik, 2020] learn
personalized models using a mixture of global and
local models to balance generalization with personal-
ization. Similarly, APFL [Deng et al., 2020] and oth-
ers [Mansour et al., 2020] try to find the optimal com-
bination of global and local models in a communication-
efficient manner using a weighting factor on a specific
local model. FedFomo [Zhang et al., 2020] generates a
personalized model for specific data distribution but
relies on client’s validation datasets, and exchanges
local models between clients. On-Demand FL can also
be considered as a variant of personalized federated
learning as it optimizes an individual model to best fit
a particular data distribution. However, On-Demand
FL is capable of deriving custom models optimized for
any desired target distributions by composing them
from diverse local datasets.

Federated Multi-Task Learning By treating
each client as a single task in multi-task learning
(MTL) [Zhang and Yang, 2018, Caruana, 1997], feder-
ated multi-task learning (FMTL) learns a better lo-
cal model on heterogeneous local data from the rela-
tionships across clients. MOCHA [Smith et al., 2017]
uses a primal-dual formulation to optimize a person-
alized model for each client by extending distributed
MTL into federated learning. However, it is not suit-
able for many real-world applications as all clients
are required to participate in every round of model
training. Also, it does not apply to deep neural net-
works as it is devised only for convex models. Al-
though VIRTUAL [Corinzia et al., 2019] can handle
non-convex models by using a variational inference,
it is computationally expensive for large-scale cases.
FedAMP [Huang et al., 2021] is an attention-based
mechanism that encourages collaboration among clients
with similar distributions in which a personalized model
becomes the linear combination of local client models.
However, its storage and communication overhead in-
crease linearly as the client’s personalized model is
maintained on the server. Unlike such methods, On-
Demand FL does not modify existing federated learning
mechanisms and communication protocols, making it
easy to implement in practice.

https://github.com/eai-lab/On-DemandFL
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3 CLIENT DISTRIBUTION
PREDICTION

We first describe the concept of class distribution used
in On-Demand FL and the class distribution predictor
that estimates the class distribution of a client from
the weight gradient of its local model.

3.1 Class Distribution

Class Distribution For the client device c having
a total of n classes, its class distribution vector d⃗c is
composed of n distribution factors, dic for 1 ≤ i ≤ n,
where dic represents the relative ratio of data samples
belonging to the i-th class in the local dataset available
on the client c as:

d⃗c = [d1c d2c · · · dnc ] where dic =
|Di

c|∑n
k=1 |Dk

c |
(1)

Here, Dc is the local dataset on the client c, Di
c is the

set of data samples of the i-th class, and |Di
c| is the

number of samples in Di
c. The sum of class distribution

vector d⃗c is to be one, i.e.,
∑n

i=1 d
i
c = 1.

Privacy-Preserving Prediction Following the spirit
of federated learning [McMahan et al., 2017], which
trains a model on local clients and only transmits the
local weight parameters without data movement for
privacy preservation and communication efficiency, On-
Demand FL estimates the class distribution vector d⃗c
of the client c without directly exposing data or class
distribution outside of the client. In particular, the
class distribution is estimated from only the weight
gradient of the local model without exchanging any
other data between the client and server, minimizing
the risk of potential data leakages.

From Gradient to Class Distribution As briefly
mentioned above, On-Demand FL takes the weight
gradient of a local client model as the input for class
distribution prediction due to its effectiveness and effi-
ciency in finding class distribution patterns. We assume
that the primary task of On-Demand FL is a classifi-
cation deep neural network (DNN) having a softmax
output at the last layer with the cross-entropy loss Lt,
which is given by:

Lt(x
j) = −

k∑
i=1

ỹji log y
j
i where yj= Softmax(hl,j)

and hl,j = hl−1,jwl + bl

(2)

Here, {xj , ỹj} is the input-output pair of the j-th data
sample, i.e., ỹji ∈ {0, 1} is the ground-truth label of the
input xj on the i-th class, yji is the softmax output of

the i-th class on xj , wl and bl is the weight parameter
and bias set of the last layer l, respectively, and hl,j

and hl−1,j is the output at the last and penultimate
layer given xj , respectively.

Given Equation 2, the gradient of Lt(x
j) w.r.t. the

weight parameter wl is obtained by the chain rule.

∂Lt(x
j)

∂wl
=

∂Lt(x
j)

∂yj
∂yj

∂hl,j

∂hl,j

∂wl

=
[
ŷj1 ŷ

j
2 · · · ŷjn

]

yj1(1−yj1) · · · −yj1y

j
n

−yj2y
j
1 · · · −yj2y

j
n

...
...

...
−yjny

j
1 · · · yjn(1−yjn)

∂hl,j

∂wl

=
[
yj1−ỹj1 y

j
2−ỹj2 · · · yjn−ỹjn

] ∂hl,j

∂wl

(3)

where ŷji = −1/yji if ỹji = 1, and ŷji = 0 otherwise.
Since the ground-truth label ỹj is a one-hot vector,
only one of them is non-zero, i.e., ŷji = −1/yji for i

and ŷjk = 0 for all k ̸= i when ỹji = 1. For example,
when ỹj1 = 1 and ỹji = 0 for all i ̸= 1, i.e., ỹj =
[1 0 · · · 0], the first component of Equation 3 becomes
∂Lt(x

j)/∂yj = [−1/yj
1 0 · · · 0], and the dot product of the

first and second components gives ∂Lt(x
j)/∂yj ·∂yj/∂al,j =

[yj1−1 yj2 · · · yjn], which results in the following.

∂Lt(x
j)

∂wl
=

[
yj1−1 yj2 · · · yjn

] ∂hl,j

∂wl
if ỹj1 = 1 (4)

where −1 ≤ yj1−1 ≤ 0, and 0 ≤ yji ≤ 1 for all i ̸= 1

since yj is softmax, i.e., 0 ≤ yji ≤ 1 for all i.

Given ∂hl,j/∂wl = hl−1,j is at least zero as hl,j and
hl−1,j are the outputs of the last layer and penulti-
mate layer, respectively, the first column of the matrix
∂Lt(x

j)/∂wl in Equation 4 becomes negative, while the
other columns remain non-negative. Hence, the summa-
tion of the gradient (Equation 3) over k data samples
(mini-batch) of the client c can be represented by the
class distribution factor dic in Equation 1 as:

k∑
j=1

∂Lt(x
j)

∂wl
c

=

k∑
j=1

[
yj1−ỹj1 · · · yjn−ỹjn

] ∂hl,j

∂wl
c

∝
n∑

i=1

dic
[
s1 · · · sn

] k∑
j∈class i

∂hl,j

∂wl
c

(5)

where sb is the sign indicator on the b-th column,
i.e., −1 ≤ sb ≤ 0 if b = i and 0 ≤ sb ≤
1 otherwise for all 1 ≤ b ≤ n. By assuming
that limk→∞

∑k
j∈class i

∂hl,j/∂wl
c converges to a con-

stant, we hypothesize that the gradient summation
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∑k
j=1

∂Lt(x
j)/∂wl

c reflects the class distribution pat-
tern of the i-th class, dic, as

∑k
j=1

∂Lt(x
j)/∂wl

c ∝∑n
i=1 d

i
c[s1 s2 · · · sn]. As a result, we can make reliable

inferences on the i-th class distribution factor dic of the
client c from the weight gradient sum

∑k
j=1

∂Lt(x
j)/∂wl

c

obtained from the local client model.

3.2 Class Distribution Predictor

Class Distribution Prediction Based on the class
distribution analysis given above, we propose a class
distribution predictor DNN (deep neural network) that
provides the estimated class distribution of local client
data from the weight gradient of the local client model.

Given the weight parameter set at the last layer of the
local task model, wl

c, on the client c, the class distri-
bution predictor Cp estimates the class distribution
vector, d⃗c, defined in Equation 1 as follows:

∑
xj∈Dc

Cp

(
gw

l
c(xj)

)
= d⃗c where gw

l
c(xj)=

∂Lt(x
j)

∂wl
c

(6)

Here, gw
l
c(xj) is the gradient of the weight parameter

set wl
c given xj on the client c in Equation 3, and Dc

is the entire dataset of the client c. We consider that∑k
j=1 g

wl
c(xj) (Equation 5) with a reasonable size of k

or a mini-batch of gw
l
c(xj) can approximate the gradient

over the entire dataset
∑

xj∈Dc
gw

l
c(xj), and thus feed∑k

j=1 g
wl

c(xj) to the class distribution predictor Cp.
The class distribution predictor DNN consists of n
fully-connected layers, as the amount of the weight
gradient at the last layer of local models is relatively
small, enabling efficient training of the class distribution
predictor locally on clients with affordable overhead.

Training of Class Distribution Predictor The class
distribution predictor is trained through regular feder-
ated learning, e.g., FedAvg [McMahan et al., 2017], in
parallel with the task model. For each round of feder-
ating iteration, the task model is trained with a batch
of k local data samples in client update, executing the
local update of its weight parameters, including the
last layer wl

c. After several local training (federating)
iterations of the task model, a pair of training exam-
ples for the class distribution predictor is produced as
{gwl

c , d⃗kc} where d⃗kc is the class distribution vector of k
data samples of client c.

Once several pairs of training examples, {gwl
c , d⃗kc},

are collected as a mini-batch, the class distribution
predictor is trained with them by executing the local
update of its own weight parameters. Specifically,
it is trained to minimize the mean squared error
(MSE). When the local client update is complete,

the server aggregates the weight parameters of each
local client to generate the global class distribution
predictor via federated learning. As the training
procedure of the class distribution predictor follows
the regular federated learning protocol, any existing
weight-based techniques can be used for weight aggre-
gation, such as FedAvg [McMahan et al., 2017],
Scaffold [Karimireddy et al., 2019], FedMD
[Li and Wang, 2019], and FedDF [Lin et al., 2020].

4 ON-DEMAND FEDERATED
LEARNING

Once the class distribution of each client is estimated
through the class distribution predictor DNN, a subset
of clients is selected to organize the composite dataset
whose aggregate distribution emulates the target class
distribution. Then, the on-demand model is optimized
(trained) for the target class distribution by performing
on-demand federated learning with the selected clients.

4.1 Target Distribution Composing

Given the target class distribution vector for n classes as
d⃗t = [d1t d2t · · · dnt ] and the estimated class distribution
vector for the k-th client as d⃗ck = [d1ck d2ck · · · d

n
ck
], a

subset of clients is chosen from a total of m clients to
perform On-Demand FL by solving the linear equation.d

1
t
...
dnt

 =

d
1
c1 d1c2 · · · d1cm
...

...
. . .

...
dnc1 dnc2 · · · dncm


 rc1

...
rcm

 (7)

The ratio vector r⃗ = [rc1 rc2 · · · rcm ] (r⃗ ≥ 0) on
the right-hand side denotes the relative ratio of each
client we want to find whose summation is one, i.e.,∑

k rck = 1. In order to determine r⃗, we solve Equa-
tion 7 by using Non-Negative Least Squares (NNLS)
[Lawson and Hanson, 1995] that finds the best x̂ when
it is supposed to have no solution x in the Ax = b
(x ≥ 0) problem. Applying NNLS to Equation 7 gives:

argmin
r⃗

||D · r⃗ − d⃗t||2 s.t. r⃗ ≥ 0 (8)

where D denotes the estimated distribution matrix
having d⃗ck as column vectors for clients, i.e., the first
component on the right-hand side of Equation 7.

Once having the ratio vector r⃗, the clients with non-
zero ratio value, rci > 0, are selected as the subset Ss

of the entire client set Sm as follows.

Ss = {ci|ci ∈ Sm ∧ rci > 0} (9)

Then, in every round of on-demand federated learning,
a fraction of the selected clients, denoted as Sr ⊆ Ss,
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is randomly sampled for the model update by using r⃗
as the client distribution of Sr as:

Sr = {ci|ci ∈ Ss} s.t. Sr ∼ r⃗ and |Sr| = |Ss|×f (10)

where f is the federated learning fraction. Here, r⃗ is
used as the per-client ratio, working as a client selection
factor that maintains the target class distribution.

4.2 On-Demand FL Algorithm

Algorithm 1 describes the entire procedure of On-
Demand FL. Each client is indexed by c, Sm is the
entire set of m clients, wt and wp are the weight param-
eters of the task model and the class distribution pre-
dictor, respectively, ηt and ηp is the learning rate of the
task model and the class distribution predictor, respec-
tively, and nt and np is the number of data samples and
weight gradients, respectively, used for a single round
of federated learning. In short, On-Demand FL first 1)
trains the task model and class distribution predictor
with federated learning manner, then 2) selects a sub-
set of clients to organize the composite dataset of the
target class distribution based on their estimated class
distributions, and finally 3) optimizes the on-demand
model to the target class distribution with selected
clients. The backbone federated learning algorithm
that updates the task model and the class distribution
predictor is compatible with various federated learn-
ing algorithms, e.g., regularized FL [Li et al., 2020,
Karimireddy et al., 2019, Acar et al., 2021]. In this pa-
per, we use FedAvg [McMahan et al., 2017] as the back-
bone federated learning algorithm.

5 EXPERIMENTS

Implementation We implement On-Demand FL with
PyTorch [Paszke et al., 2019] and open-source it with
an anonymous public git repository 1.

Experimental Setting Table 1 summarizes three ex-
perimental settings we use to evaluate the proposed
On-Demand FL. The details of the experimental set-
tings are given as follows.

Table 1: Three experimental settings with different
datasets, class numbers, and task models.

Experiment
Setting

Dataset Class
Num

Task Model
Class Distribution

Predictor
1 FashionMNIST 10 LEAF (2 conv + 2 fc)

3 layer fc2 CIFAR-10 10 LEAF (2 conv + 2 fc)
3 CIFAR-100 100 MobileNetV2

Dataset and Client Distribution We conduct
experiments on three datasets, i.e., FahionM-
NIST, CIFAR-10, and CIFAR-100 [Xiao et al., 2017,
Krizhevsky et al., 2009]. Their classes are allocated

Algorithm 1 On-Demand Federated Learning
Input: Client set Sm, local dataset Dc on each client c ∈

Sm, and target class distribution vector d⃗t
Output: On-demand model wt optimized for d⃗t
On-Demand FL begin

FedLearning(Sm, wt, wp) [train of Cp]
Ss ← select clients for d⃗t from Sm [Eq 8 and 9]
FedLearning(Ss, wt, ∅) [train of wt]

end
FedLearning(S,wt, wp) begin

for each round r = 1, 2, 3, · · · , do
Sr ← random subset of S [using Eq 10 if wp=∅]
for each client c ∈ Sr do

if wp=∅ then (wc
t , ∅) ← ClientUpdate(wc

t , ∅)
else (wc

t , w
c
p) ← ClientUpdate(wc

t , w
c
p)

end

if wp ̸=∅ then wt ←
∑

c

nc
t

nt
wc

t and wp ←
∑

c

nc
p

np
wc

p

else wt ←
∑

c r
c nc

t
nt

wc
t [rc calculated in Eq 7 and 8]

end
end
ClientUpdate(wc

t , w
c
p) begin

G← ∅
for each local epoch it ∈ {1, ..., Et} do

for xj ∈ random batch of Dc (dataset of client c)
do

wc
t ← wc

t − ηt
∂Lt(x

j)
∂wc

t

if wc
p ̸=∅ then G← G ∪ ∂Lt(x

j)

∂wl
t,c

;

end
end
for each local epoch ip ∈ {1, ..., Ep} do

if wc
p ̸=∅ then for each gradient gw

l
t,c ∈ G do

wc
p ← wc

p − ηp
∂Lp(g

wl
t,c )

∂wc
p

[Cp update]
end

end
return (wc

t , w
c
p) to server

end

to each local client based on the Dirichlet distribu-
tion [Yurochkin et al., 2019]. We set the distribution
of the i-th class on m clients (i.e., from c1 to cm) as
p⃗i = [pic1 , p

i
c2 , · · · , p

i
cm ] ∼ Dirichlet(α) with parameter

α∈{0.1, 0.5, 1.0} such that
∑m

k=1 p
i
ck
=1. The param-

eter α determines the degree of IID-ness of data; a
smaller α generates a more non-IID distribution and
vice versa. Figure 2 shows examples of client distribu-
tion on CIFAR-100.

Target Distribution (TD) Two types of target distri-
butions (TD) are constructed for the experiment. First,
we construct TD classified into three groups according
to the ratio of classes of interest (TD 1, 2, and 3), such
that each TD only contains data samples belonging to
the class {c1, · · · , ck}, where k ∈ {3×N, 4×N, 5×N}
and N is the number of classes divided by 10. Second,
we construct a set of TD mapped with the local class
distribution of clients (Local). Figure 3 depicts a visual
representation of the four TDs.
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Task Models For FashionMNIST and CIFAR-10, we
use a variant of the CNN model, which consists of two
convolution and two fully-connected layers, proposed
by LEAF [Caldas et al., 2018], a popularly used bench-
mark framework for federated learning. For CIFAR-100,
we use MobileNetV2 [Sandler et al., 2018].

Class Distribution Predictor We build the class
distribution predictor DNN as a fully-connected net-
work with variations in the architecture depending on
the dataset, task model, and other factors.

5.1 Performance of On-Demand Model

As the first evaluation, the end-to-end performances
of On-Demand FL and On-Demand FL (GT) are as-
sessed by comparing the classification accuracy of
on-demand models on the four target distributions
against those obtained by four baseline methods, i.e.,
FedAvg [McMahan et al., 2017], clustered federated
learning (CFL) [Sattler et al., 2020a], federated multi-
task learning (FMTL), MOCHA [Smith et al., 2017] in
particular, and personalized federated learning (Fed-
FOMO) [Zhang et al., 2020]. On-Demand FL (GT)
selects client subsets based on their ground truth class
distribution. We generate a total of m=100 clients
from the Dirichlet distribution with α∈{0.1, 0.5, 1.0}
and the federated learning fraction f=0.1 and test them
with the four target distributions, i.e., TD 1, 2, 3, and
Local client distributions. We allow On-Demand FL
to select at least m×f=10 clients as a subset by re-
peatedly applying NNLS (Non-Negative Least Squares)
[Lawson and Hanson, 1995] to ensure a minimum num-
ber of clients and data required by federated learning
when composing the target distributions (TDs).

Table 2 summarizes the result. Overall, On-Demand
FL outperforms or performs at least competitively to
all the baselines for TD 1, 2, 3, and Local TDs regard-
less of the non-IID-ness represented by the parameter
α, as it fine-tunes the on-demand model with a diverse
subset of clients that collectively reflects the target dis-
tribution. The slight performance difference between
On-Demand FL and On-Demand FL (GT) indicates

Figure 2: The client distributions generated from the
Dirichlet distribution with different α for the CIFAR-
100 dataset on 100 clients.

TD 1 TD 2
…

Local
TD 3

Figure 3: The four target distributions (TD). Each cell
represents a class, with color indicating sample count;
the darker, the more data samples.

Figure 4: The test classification accuracy of task models
over FL rounds optimized by On-Demand FL and the
baseline methods. The gray dotted line indicates the
starting round of On-Demand FL.

a well-optimized distribution predictor is capable of
accurately predicting the class distribution needed to
construct a subset. On-Demand FL achieves higher ac-
curacy on FashionMNIST (+0.6%), CIFAR-10 (+5.1%),
and CIFAR-100 (+0.9%) on average, compared to the
best-performing baseline, respectively, with a subset
of clients that are 9.1×, 8.9×, and 5.2× fewer than
the entire client pool. As intended, On-Demand FL
leverages heterogeneity and outperforms other FL meth-
ods in a non-IID environment (α=0.1). Furthermore,
On-Demand FL shows competitive or superior perfor-
mance in a more-IID environment (α=1.0). The results
demonstrate that On-Demand FL enables robust and
stable federated learning across various TDs with fewer
clients, which is not achievable by the baseline methods.

Figure 4 shows the test accuracy of On-Demand FL,
FedAvg, CFL, FMTL, and FedFOMO over the federat-
ing round on FashionMNIST and CIFAR-10. For TD1,
TD3, and Local TDs. On-Demand FL achieves higher
accuracy than all the other baseline federated learning
methods with large margins (i.e., 7.0% higher accuracy
on CIFAR-10 for α = 0.1 and local TDs). It notes that
On-Demand FL achieves superior or comparable model
performance using 8.9× fewer clients on average than
the baselines through training over a small number of
rounds. That can be further improved by making more
clients participate in On-Demand FL.



On-Demand Federated Learning for Arbitrary Target Class Distributions

Table 2: The test classification accuracy of task models obtained by FedAvg, CFL, FMTL, FedFOMO, On-Demand
FL, and On-Demand FL (GT) on all three experimental settings. On-Demand FL starts from 100, 150, and 1200
rounds from FedAvg for FashionMNIST, CIFAR-10, and CIFAR-100, respectively. On-Demand FL outperforms
in heterogeneous (non-IID) data distributions (i.e., α = 0.1 and 0.5) while providing comparable performance in
more homogeneous (IID) data distributions (i.e., α = 1.0) using up to 9.1× fewer clients.

Experimental
Setting

FL Algorithm
Accuracy

α = 0.1 α = 0.5 α = 1.0

TD 1 TD 2 TD 3 Local TD 1 TD 2 TD 3 Local TD 1 TD 2 TD 3 Local

1
LEAF

(FashionMNIST)

FedAvg 0.96 0.95 0.92 0.89 0.95 0.95 0.92 0.92 0.94 0.94 0.92 0.91
CFL 0.72 0.52 0.50 0.87 0.64 0.82 0.84 0.87 0.78 0.82 0.63 0.82
FMTL 0.33 0.27 0.31 0.92 0.54 0.68 0.71 0.87 0.73 0.77 0.61 0.82
FedFOMO 0.29 0.27 0.22 0.78 0.46 0.61 0.62 0.81 0.68 0.70 0.54 0.77
OnDemFL 0.97 0.95 0.91 0.95 0.96 0.94 0.92 0.93 0.95 0.95 0.92 0.92
OnDemFL (GT) 0.97 0.96 0.92 0.96 0.96 0.95 0.92 0.93 0.96 0.95 0.92 0.91

2
LEAF

(CIFAR-10)

FedAvg 0.74 0.71 0.65 0.60 0.75 0.70 0.67 0.68 0.75 0.70 0.66 0.67
CFL 0.34 0.34 0.34 0.63 0.23 0.31 0.56 0.49 0.29 0.35 0.25 0.42
FMTL 0.33 0.19 0.19 0.74 0.25 0.28 0.28 0.53 0.29 0.31 0.29 0.47
FedFOMO 0.33 0.12 0.12 0.58 0.19 0.24 0.25 0.42 0.22 0.26 0.23 0.39
OnDemFL 0.82 0.75 0.69 0.81 0.80 0.75 0.71 0.74 0.79 0.75 0.70 0.72
OnDemFL (GT) 0.82 0.78 0.71 0.85 0.81 0.76 0.73 0.75 0.79 0.76 0.71 0.72

3
MobileNetV2
(CIFAR-100)

FedAvg 0.44 0.42 0.42 0.43 0.48 0.46 0.46 0.50 0.47 0.46 0.46 0.51
CFL 0.05 0.05 0.06 0.41 0.07 0.07 0.07 0.24 0.08 0.08 0.08 0.19
FMTL 0.04 0.04 0.04 0.36 0.05 0.05 0.05 0.16 0.05 0.05 0.05 0.12
FedFOMO 0.01 0.01 0.01 0.19 0.01 0.01 0.01 0.08 0.01 0.01 0.01 0.05
OnDemFL 0.45 0.43 0.43 0.56 0.48 0.47 0.46 0.50 0.47 0.45 0.45 0.47
OnDemFL (GT) 0.47 0.44 0.44 0.60 0.48 0.47 0.46 0.50 0.48 0.46 0.45 0.48

5.2 Class Distribution Prediction

In the second experiment, we evaluate the class distri-
bution predictor. After generating a set of 10 clients
with different class distributions from the Dirichlet
distribution with α∈{0.1, 0.5, 1.0}, we measure the dif-
ference between the ground-truth class distribution of
clients and the predicted class distribution estimated
by the class distribution predictor. Table 3 shows the
differences between them measured by the mean abso-
lute error (MAE) multiplied by the number of classes.
The proposed class distribution predictor consistently
achieves lower MAEs (an average of 0.45) in all experi-
ments, indicating it provides accurate estimations.

Table 3: The MAE of the class distribution predictor
on FashionMNIST, CIFAR10, and CIFAR-100.

Experimental
Setting

MAE
α=0.1 α=0.5 α=1.0

1 FashionMNIST 1.32 0.81 0.57
2 CIFAR-10 0.84 0.44 0.30
3 CIFAR-100 0.40 0.37 0.40

Figure 5 visualizes the comparison between MAE of
the estimated class distribution before and after train-
ing of the class distribution predictor. After training,
the color representing overall MAE becomes brighter,
indicating improved accuracy in estimating class dis-
tributions. Although it does not perfectly predict
the class distribution of individual client/class, it well
reflects the tendency of distribution. We empirically

found that it is fairly sufficient to compose a variety of
target class distributions with small errors as a whole,
as shown in both the previous and next subsections.

Figure 5: The visualization (heatmap) of the MAE for
each client and class before and after training of the
class distribution predictor on CIFAR-10 with α=0.1.
The lighter, the lower MAE.

5.3 Target Distribution Composing

In the last experiment, we evaluate the difference be-
tween the target class distributions and the final class
distribution composed by the selected clients. Table 5
summarizes the MAE between them multiplied by the
number of data classes. The composed distributions
achieve the average MAE of 0.93 in TD 1, 2, 3, and
Local TD to target class distributions, showing the
effectiveness of the proposed client selection method,
which results in high-performance on-demand models
while reducing the number of clients involved in FL
(i.e., 7.2× fewer clients than entire client pool).



Isu Jeong, Seulki Lee

Table 4: The number of rounds needed to reach three accuracy point (AP), i.e., 95%, 98%, and peak point.

AP
The Number of Rounds for OnDemFL

FasionMNIST CIFAR-10 CIFAR-100
α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

95% 1.50 ± 2.59 0.43 ± 0.51 0.15 ± 0.35 8.54 ± 12.02 1.13 ± 0.46 0.98 ± 0.5 5.67 ± 3.5 6.67 ± 11.4 26.67 ± 47.15

98% 3.94 ± 5.48 1.02 ± 0.92 0.80 ± 0.47 18.96 ± 22.11 2.59 ± 2.21 2.65 ± 1.73 38.00 ± 37.52 17.17 ± 10.11 76.83 ± 81.9

peak 40.95 ± 32.27 18.45 ± 22.73 18.50 ± 22.89 62.11 ± 51.06 28.66 ± 36.17 29.42 ± 37.33 112.67 ± 81.04 123.50 ± 85.75 130.83 ± 102.01

AP
The Number of Rounds for Backbone Algorithm (FedAvg)

FasionMNIST CIFAR-10 CIFAR-100
α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

95% 4.26 ± 7.12 2.37 ± 5.19 0.19 ± 0.8 31.25 ± 38.13 5.48 ± 8.95 2.55 ± 5.46 58.50 ± 56.89 56.33 ± 77.95 45.50 ± 77.79

98% 17.45 ± 19.77 14.92 ± 17.44 5.68 ± 6.78 53.24 ± 47.32 26.04 ± 27.6 18.57 ± 16.34 148.17 ± 69.74 62.50 ± 73.63 45.67 ± 78.16

peak 59.24 ± 29.8 69.61 ± 26.84 64.25 ± 31.09 65.46 ± 47.47 67.76 ± 44.31 54.08 ± 37.37 178.17 ± 76.64 181.83 ± 86.82 94.83 ± 108.05

Table 5: The MAE between the target and the com-
posed distributions organized by the selected clients
multiplied by the number of classes. The number in
parentheses indicates the number of selected clients
among a total of 100 clients.

Experimental
Setting

α
MAE

TD1 TD2 TD3 Local
1

LEAF
(FashionMNIST)

0.1 1.03 (10) 0.60 (12) 0.98 (10) 0.99 (10.95)
0.5 0.63 (12) 0.68 (12) 0.96 (11) 0.82 (11.28)
1.0 0.64 (10) 0.65 (11) 0.38 (11) 0.62 (11.45)

2
LEAF

(CIFAR-10)

0.1 0.68 (12) 0.87 (11) 0.60 (11) 0.92 (11.32)
0.5 1.24 (10) 1.04 (10) 0.83 (11) 0.77 (11.46)
1.0 1.29 (12) 1.09 (11) 0.88 (13) 0.62 (11.63)

3
MobileNetV2
(CIFAR-100)

0.1 1.03 (21) 0.93 (29) 0.74 (28) 0.95 (18.14)
0.5 1.15 (13) 0.95 (14) 0.82 (20) 0.78 (20.16)
1.0 1.23 (13) 1.04 (15) 0.87 (20) 0.64 (19.84)

5.4 Overhead of On-Demand FL

On-Demand FL requires additional on-demand model
training when requested a new target distribution. To
measure the overhead of On-Demand FL, we count
the number of federated learning rounds as the proxy
of the computational complexity required to train the
on-demand model under a target distribution. Table 4
presents the number of rounds for On-Demand FL and
our backbone algorithm (FedAvg) to reach three accu-
racy points (AP), i.e., 95%, 98%, and the peak point
from the point of On-Demand FL initialization. The
results demonstrate that On-Demand FL outperforms
FedAvg in terms of efficiency, achieving a reduction of
4.0×, 2.4×, and 1.5 × in the number of rounds needed
to reach each AP compared to FedAvg.

6 LIMITATIONS

There are some limitations that can be addressed in
future work. First, On-Demand FL necessitates a class
distribution predictor. We view this as a reasonable
trade-off, offering advantages such as smaller client

subsets, swift convergence, and the ability to generate
task models for different target distributions. While
receiving class distribution directly from clients is more
efficient, we believe predicting it from the model param-
eters is a natural and secure method against potential
sniffing. Second, although On-Demand FL requires ad-
ditional on-demand model training when requesting a
new target distribution, it demonstrates rapid accuracy
improvement, as shown in Table 4. Moreover, it re-
duces communication costs compared to other federated
learning methods with a small client pool. Our future
research aims to minimize training costs by concur-
rently training models for various target distributions
and grouping similar ones.

7 CONCLUSION

We introduce On-Demand FL, a new paradigm of fed-
erated learning which optimizes a deep model for an
arbitrary target class distribution. To estimate the
class distribution of clients, we propose the class distri-
bution predictor that takes the weight gradient of the
local model on a client. Once the composite dataset is
organized from a set of selected clients, the on-demand
model is trained via federated learning. The evaluation
shows On-Demand FL achieves up to 5% higher accu-
racy on the target distribution using 9× fewer clients
compared to SOTA federated learning methods.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
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