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Abstract

Standard federated learning (FL) algorithms
typically require multiple rounds of commu-
nication between the server and the clients,
which has several drawbacks, including re-
quiring constant network connectivity, re-
peated investment of computational resources,
and susceptibility to privacy attacks. One-
Shot FL is a new paradigm that aims to ad-
dress this challenge by enabling the server
to train a global model in a single round
of communication. In this work, we present
FedFisher, a novel algorithm for one-shot FL
that makes use of Fisher information matri-
ces computed on local client models, moti-
vated by a Bayesian perspective of FL. First,
we theoretically analyze FedFisher for two-
layer over-parameterized ReLU neural net-
works and show that the error of our one-shot
FedFisher global model becomes vanishingly
small as the width of the neural networks
and amount of local training at clients in-
creases. Next, we propose practical variants
of FedFisher using the diagonal Fisher and
K-FAC approximation for the full Fisher and
highlight their communication and compute
efficiency for FL. Finally, we conduct exten-
sive experiments on various datasets, which
show that these variants of FedFisher con-
sistently improve over competing baselines.

1 Introduction

Data collection and storage are becoming increasingly
decentralized, both due to the proliferation of smart de-
vices and privacy concerns stemming from transferring
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and storing data at a centralized location. Federated
Learning (FL) is a framework designed to learn the pa-
rameters W ∈ Rd of a model f(W , ·) on decentralized
data distributed across a network of clients under the
supervision of a central server (Kairouz et al., 2021; Li
et al., 2020a; Yang et al., 2019). Formally, we formulate
FL as the following distributed optimization problem:

min
W∈Rd

{
L(W ) :=

1

M

M∑
i=1

Li(W )

}
where

Li(W ) =
1

n

∑
(xij ,yij)∈Di

ℓ(f(W ,xij),yij). (1)

Here, M is the number of clients, Di is the i-th
client’s local dataset consisting of input-label pairs
{(xij ,yij)}nj=1 where x ∈ Rp is the input and y ∈ RC

is the label, and n = |Di| is the dataset size. For sim-
plicity, we consider the case where clients have equal
amounts of data; our algorithm and analysis can easily
be extended to the case where client objectives are
unequally weighted based on their local dataset sizes.
The loss function ℓ(·, ·) penalizes the difference between
the prediction of the model f(W ,x) and the true label
y. We use D = {Di}Mi=1 to denote the collection of
data across all clients and N = Mn to denote the total
number of data samples across clients.

The fundamental challenge with learning in federated
settings is data heterogeneity across clients (Karim-
ireddy et al., 2020; Li et al., 2020a). In particular,
while clients can independently train a model that fits
their local data, it is unclear how the server can com-
bine these local models to get a global model that works
for all the clients. To tackle this problem, standard
FL algorithms such as FedAvg (McMahan et al., 2017)
and FedProx (Li et al., 2020b) resort to an iterative
approach requiring multiple rounds of communication
between clients and the server in order for the local
models to reach a consensus. However, this multi-round
approach has several drawbacks. First, clients need to
frequently connect with the server to send and receive
updates. Second, a client needs to invest computational
resources repeatedly to update the global model every
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time it participates in training. Third, it increases sus-
ceptibility to attacks such as data and model poisoning
since attackers can continuously modify and update
their attacks based on the global model they receive
from the server in each round.

To overcome these drawbacks, a recent line of work has
focused on the paradigm of one-shot FL which aims
to learn the parameters of the global model in a single
round of communication between clients and the server.
Existing work for one-shot FL can be broadly split into
two categories: (i) knowledge distillation methods and
(ii) neuron matching methods. Knowledge distillation
methods treat the collection of client models as an en-
semble and propose to distill the knowledge from this
ensemble into a single global model. To perform the
distillation step, some works assume that the server
has access to an auxiliary public dataset (Gong et al.,
2021; Li et al., 2021; Lin et al., 2020), which clearly
simplifies the problem. Another set of works proposes
training generative models such as GANs (Zhang et al.,
2022; Zhu et al., 2021) or variational autoencoders
(Heinbaugh et al., 2023) to artificially generate data
using local models of the clients. This again raises
privacy questions, since a sufficiently powerful gener-
ative model can simply reconstruct client data (Hitaj
et al., 2017). Moreover, both the data generation and
distillation steps impose a significant computation cost
on the server and require careful hyperparameter tun-
ing (Kurach et al., 2019), which is itself a challenge to
implement in one-shot FL.

Neuron matching methods are based on the obser-
vation that neural networks (NNs) are permutation
invariant, i.e., it is possible to create NNs that differ
only in the ordering of weights while having the same
output (Ainsworth et al., 2023; Akash et al., 2022; En-
tezari et al., 2022; Jordan et al., 2023; Liu et al., 2022;
Singh and Jaggi, 2020). Based on this observation,
these works propose to first align the weights of the
client models according to a common ordering (called
matching) and then average the aligned client mod-
els. Although this idea has been shown to work well
when combining simple models like feedforward NNs,
the performance drops considerably for more complex
models such as CNNs (Wang et al., 2020a). Another
line of work, termed as model fusion has looked at
fusing the capabilities of multiple existing models into
a single model (Choshen et al., 2022; Ilharco et al.,
2023; Jin et al., 2023; Matena and Raffel, 2022; Yadav
et al., 2023). While not explicitly designed for one-shot
FL, some of these techniques, such as Jin et al. (2023);
Matena and Raffel (2022); Yadav et al. (2023) can be
considered as an improvement over vanilla averaging.
However, we note that these methods focus mostly on
fusing pre-trained models and do not consider the effect

of data heterogeneity used in training the models. We
defer a more extensive discussion of such methods and
other related work to Appendix A. Finally, we note that
none of these existing works provide any theoretical
guarantees for their proposed methods.

Thus, motivated by the limitations of multi-round FL
and current approaches for one-shot FL, we ask the fol-
lowing questions: Can we devise a one-shot FL method
that is simultaneously communication and computa-
tion efficient (at both the server and clients), privacy-
preserving, and has good practical performance? Fur-
thermore, can we provide theoretical guarantees for such
a method?

Our Contributions. In this work, we take a step
towards providing an affirmative answer to both of the
questions formulated above. To do so, we use the idea
that Equation (1) can alternatively be reformulated as
a posterior inference problem, specifically finding the
mode of a global posterior over the model parameters
(Al-Shedivat et al., 2021; Guo et al., 2023). While Al-
Shedivat et al. (2021) and Guo et al. (2023) use this idea
to propose a multi-round algorithm, our contribution
lies in showing how this reformulation can yield a novel
one-shot FL algorithm, which we term as FedFisher.
Some highlights of our contribution are as follows.

• We propose FedFisher and show how the prob-
lem of finding the mode of a global posterior can
be solved in a one-shot manner, using the local
models at clients and some approximation of the
Fisher information matrices computed at these
local models (Section 2).

• We theoretically analyze FedFisher for the case
of over-parameterized two-layer neural networks.
In particular, we show that when we utilize the
full Fisher information in FedFisher, the error
of our one-shot global model becomes vanishingly
small as the width of the neural networks and the
amount of local training at the clients increase
(Section 3).

• We propose practical variants of FedFisher
using the diagonal and K-FAC approxima-
tion, which we term as FedFisher(Diag) and
FedFisher(K-FAC), respectively, and highlight
the communication and compute efficiency of these
variants along with their compatibility with secure
aggregation (Section 4).

• We evaluate FedFisher(Diag) and
FedFisher(K-FAC) on a range of one-shot
FL tasks using deep neural networks and show
that they give a consistent 5− 10% improvement
in global model accuracy compared to competing
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one-shot baselines involving knowledge distillation,
neuron matching, or model fusion (Section 5).

2 Proposed Algorithm: FedFisher

To begin our discussion, we first state the following
standard assumption on the loss function ℓ(·, ·), which
is true for most common loss functions such as the
squared loss and the cross-entropy loss.

Assumption 1. Given z = f(W ,x), we assume
that ℓ(z,y) is proportional to the negative log likeli-
hood of y under some exponential-family probabilistic
model, i.e., ℓ(z,y) ∝ − logP(y|z) where P(y|z) =
h(y) exp(z⊤T (y) − A(z)) and h(y), T (y), A(z) are
some real-valued functions.

Let us define the likelihood for a data point (x,y)
for a given W as P((x,y)|W ) = P(x)P(y|x,W ) ∝
q(x) exp(−ℓ(f(W ,xij),y)), where q(·) is some prior
on x, independent of W . Given this definition, we can
adopt a Bayesian viewpoint and try to find the max-
imum a posteriori probability (MAP) estimate, i.e.,
find W where the posterior likelihood P(W |D) ∝
P(D|W )P(W ) is maximized with P(W ) being some
prior belief over W . Our motivation to do so comes
from the following proposition.

Proposition 1. (Global Posterior Decomposition (Al-
Shedivat et al., 2021)) Under the flat prior P(W ) ∝ 1,
the global posterior decomposes into a product of local
posteriors, i.e., P(W |D) ∝

∏M
i=1 P(W |Di). Further-

more, the modes of the global posterior coincide with
the optima of the FL objective in Equation (1), i.e,
argmaxW∈Rd P(W |D) = argminW∈Rd L(W ).

Proposition 1 tells us that as long as clients compute
and send their local posteriors P(W |Di) to the server,
no further server-client communication is needed to find
the global MAP estimate or equivalently a minimizer to
our FL objective, giving us a one-shot inference proce-
dure. However, doing so is challenging since P(W |Di)
typically does not have an analytical expression. To
get a tractable solution, we propose to use some ap-
proximate inference techniques, as discussed below.

Mode of Local Posterior. To apply the approxi-
mate inference techniques detailed below, clients first
need to compute W̃i ≈ argmaxW P(W |Di), an esti-
mate of the mode of their local posterior under the flat
prior. Note that this corresponds to a minimizer of
Li(W ) under Assumption 1 and therefore W̃i can be
obtained using standard gradient-based optimizers.

Laplace Approximation for Local Posterior.
Now using a second order Taylor expansion around
W̃i, we can get the following approximation for the

log-posterior at the i-th client:

logP(W |Di) ≈ logP(W̃i|Di)

− n

2
(W − W̃i)

⊤Hi(W − W̃i), (2)

where we additionally use ∇ logP(W |Di)|W=W̃i
≈ 0.

Here Hi = − 1
n∇

2 logP(W |Di)|W=W̃i
is the Hessian

of the negative log-posterior at client i computed at
W̃i. Thus, we see that the local posterior of a client is
now parameterized by W̃i and Hi.

Approximating Hessian with Fisher. The Fisher
information matrix Fi (for brevity, we refer to it as
“the Fisher” in the rest of the paper) of the local model
W̃i at client i is defined as follows:

Fi =
1

n

n∑
j=1

Ey

[
∇ logP(y|xij ,W )∇ logP(y|xij ,W )⊤

]
(3)

computed at W = W̃i. Now, under Assumption 1
and assuming W̃i fits the data at client i perfectly, i.e.,
f(W̃i,xij) = yij ,∀j ∈ [n], it can be shown that the
Hessian at W̃i corresponds exactly to the Fisher, i.e.,
Hi = Fi (Martens, 2020; Singh and Alistarh, 2020).
The latter condition usually holds true for modern over-
parameterized deep learning models when trained for
sufficient epochs. Motivated by this observation, we can
further approximate Hi with Fi. This approximation
is useful since, unlike the Hessian, the Fisher is guaran-
teed to be positive semi-definite, a condition required
for tractable inference at the global server. However,
computing (and communicating) the full Fisher would
require O(d2) bits, which is infeasible when the models
are neural networks with d in the order of millions. In
practice, clients can replace the full Fisher Fi with an-
other computationally tractable approximation F̃i such
as the diagonal Fisher or K-FAC (Grosse and Martens,
2016), which preserves the positive semi-definiteness of
Fi (see discussion in Section 4). Thus we have

Hi ≈ Fi ≈ F̃i. (4)

Computing Mode of Global Posterior. Now as-
suming clients compute and send back W̃i and F̃i to
the server, we can use Proposition 1, Equation (2) and
Equation (4) to approximate the logarithm of the global
posterior as

logP(W |D) ≈
M∑
i=1

logP(W̃i|Di)

− n

2

M∑
i=1

(W − W̃i)
⊤F̃i(W − W̃i). (5)
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Algorithm 1 FedFisher

1: Input: initial W0, no. of iterations K, T , client
and server step sizes η and ηS respectively

2: Global server does:
3: Communicate W0 to all clients;
4: Clients i ∈ [M ] in parallel do:
5: Set W

(0)
i ←W0;

6: For k = 0, . . . ,K − 1 iterations:
7: W

(t+1)
i ←W

(t)
i − η∇Li(W

(t)
i );

8: Set W̃i ←W
(K)
i ;

9: Compute F̃i; // Approximation to true Fisher
10: Communicate W̃i and F̃i to the server;
11: Global server does:
12: Set W (0) =

∑M
i=1 W̃i/M ;

13: For t = 0, . . . , T − 1 iterations:
14: W (t+1) ← W (t) −

ηS
∑M

i=1

(
F̃iW

(t) −
∑M

i=1 F̃iW̃i

)
;

With this approximation, finding a mode of the global
posterior can be written as the following optimization
problem:

min
W∈Rd

M∑
i=1

(W − W̃i)
⊤F̃i(W − W̃i). (6)

Since each F̃i is positive semi-definite, a global mini-
mizer of Equation (6) can be found by simply setting
the derivative of the objective to zero. Doing so, we
have the following proposition.
Proposition 2. Any W that satisfies (

∑M
i=1 F̃i)W =∑M

i=1 F̃iW̃i is a minimizer of the objective
∑M

i=1(W −
W̃i)

⊤F̃i(W − W̃i).

For over-parameterized models, i.e, d ≫ N , the rank
of
∑M

i=1 F̃i will be smaller than d and therefore the
system of equations (

∑M
i=1 F̃i)W =

∑M
i=1 FiW̃i will

not have a unique solution. To resolve this, we propose
to use the solution that minimizes the sum of distances
from the local models W̃i of each client, i.e., mini-

mizing
∑M

i=1

∥∥∥W − W̃i

∥∥∥2
2
. Such a constraint ensures

fairness of the FedFisher objective towards all clients
and prevents the solution from drifting too far away
from the local models of each client. We express this
mathematically as follows.

FedFisher objective:

min
W∈Rd

{
L̃(W ) =

M∑
i=1

∥∥∥W − W̃i

∥∥∥2
2
,

such that

(
M∑
i=1

F̃i

)
W =

M∑
i=1

F̃iW̃i

}
. (7)

We refer to the minimizer W ∗ of Equation (7) as the

FedFisher global model in the rest of our discussion.
We now show that W ∗ can be easily computed using
gradient descent (GD) with proper initialization and
learning rate conditions via the following lemma.

Lemma 1. Let W (1),W (2), . . . be the iterates gener-
ated by running the following gradient descent (GD) pro-
cedure: W (t+1) = W (t) − ηS

∑M
i=1

(
F̃iW

(t) − F̃iWi

)
with W (0) =

∑M
i=1 W̃i/M and ηS ≤ 1/λmax where

λmax is the maximum eigenvalue of
∑M

i=1 F̃i. Then,
limT→∞ W (T ) = W ∗.

Proofs for all lemmas and theorems in this paper can
be found in Appendix B. This concludes our discussion
of the proposed algorithm FedFisher. An algorithm
outline for FedFisher can be found in Algorithm 1,
with practical implementation considerations discussed
in Section 4. Next, we analyze the performance of
FedFisher for over-parameterized two-layer networks.

3 Theoretical Analysis for Two-layer
Over-parameterized Neural Network

In this section, we characterize the performance of
the FedFisher global model W ∗, on the true global
objective L(W ) when f(W , ·) is a two-layer over-
parameterized neural network.

Sources of Error for FedFisher. We see that the
mismatch between FedFisher objective L̃(W ) in Equa-
tion (7) and L(W ) can be characterized into the fol-
lowing sources of error: (i) the suboptimality of W̃i,
i.e, ∇Li(W̃i) ̸= 0, (ii) the Laplace approximation, i.e.,
neglecting higher order terms in the Taylor expansion
in Equation (2), and (iii) the error introduced by ap-
proximating the true Fisher Fi with F̃i in Equation (4).
The error introduced by (iii) is orthogonal to (i) and
(ii) and depends on the specific approximation used.
Moreover, commonly used approximations, such as the
diagonal and K-FAC, are primarily empirically moti-
vated and have limited theoretical guarantees. There-
fore, to simplify our analysis, we assume that clients
send their full Fisher and focus on bounding the error
due to the first two sources.

Novelty of Analysis. While the error due to (i)
can be thought of as a function of the number of local
training steps K, it is less clear how the error due to
(ii) can be bounded. In this analysis, we show that
for over-parameterized two-layer ReLU NNs, the error
due to (ii) can be controlled using the width of the
network. Intuitively, the quality of the approximation
in Equation (2) depends on the distance between the
weights of the FedFisher global model W ∗ and clients’
local models W̃i; the larger the distance the greater
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will be the effect of the higher-order terms and hence
worse the approximation. Our contribution lies in
showing that for a sufficiently wide model, this distance
decreases as O(1/m) where m is the width of the model.
Doing so requires a careful analysis of the trajectory
of iterates generated by the optimization procedure in
Lemma 1 and novel bounds on the smallest and largest
eigenvalues of the aggregated Fisher

∑M
i=1 Fi/M (see

proofs in Appendix B). We believe that our analysis
can also be extended to deeper NNs as future work.

We begin by modeling a two-layer ReLU NN as follows:

f(W ,x) =
1√
m

m∑
r=1

arσ(x
⊤wr). (8)

Here, m is the number of hidden nodes in the first layer,
{wr}Mr=1 are the weights of the first layer, {ar}mr=1 are
the weights of the second layer, and σ(x) = max{x, 0} is
the ReLU function. We use W = vec(w1,w2, . . . ,wm)
to parameterize the weights of the first layer. Similar to
Du et al. (2019), we consider ar’s to be fixed beforehand
(initialized to be +1 or −1 uniformly at random) and
only consider the case where wr’s are trained. We also
consider the squared loss function ℓ(z, y) = 1

2 (y − z)2.

Recall that D is the collection of data across
all the clients. Define {(xk, yk)}Nk=1 =
{(x11, y11), (x12, y12), . . . , (xMn, yMn)} to be an
ordering of the data in D. We state some definitions
and assumptions that will be needed in our analysis.
Definition 1. (Minimum eigenvalue of
Gram Matrix (Du et al., 2019)) Define
the matrix H∞ ∈ RN×N as H∞

k,l =

Ew∼N (0,I)

[
x⊤
k xlI

{
w⊤xk ≥ 0

}
I
{
w⊤xl ≥ 0

}]
and

λ0 = λmin(H
∞).

Assumption 2. (Data normalization) For any
(x, y) ∈ D, we have ∥x∥2 = 1 and |y| ≤ C, where
C is some positive constant.
Assumption 3. (Data uniqueness) For any
(x, y), (x′, y′) ∈ D, we have ∥x− x′∥2 ≥ ϕ, where ϕ is
some strictly positive constant.
Assumption 4. (Full Fisher) Clients compute and
send their full Fisher, i.e, F̃i = Fi.

Note on Definition and Assumptions. The rate
of convergence of GD for two-layer ReLU neural net-
works depends closely on H∞ and λ0 as shown in Du
et al. (2019). Assumption 2 and Assumption 3 are stan-
dard in NN optimization literature (Allen-Zhu et al.,
2019a,b; Du et al., 2019; Zou and Gu, 2019) and are
needed to ensure bounded loss at initialization and
λ0 > 0, respectively. Assumption 4 is specific to our
setting, as discussed at the start of this section.
Theorem 1. Under Assumptions 2, 3, 4, for m ≥
poly(N,λ−1

0 , δ−1, κ−1), and i.i.d Gaussian initializa-

tion weights of W0 as w0,r ∼ N (0, κ), and initializing
the second layer weights ar = {−1, 1} with probabil-
ity 1/2 for all r ∈ [m], for step sizes η = O(λ0/N

2),
ηS = O(λ0/N

2) and for a given failure probability
δ ∈ (0, 1), the following is true with probability 1 − δ
over the random initialization:

L(W ∗) ≤ O
(
(1− ηλ0/2)

K N

δ

)
︸ ︷︷ ︸

local optimization error

+

O
(
(2− (1−ηλ0/2)

K)
poly(N,κ−1, λ−1

0 , δ−1)

m

)
︸ ︷︷ ︸

Laplace approximation error

.

(9)

Corollary 1. Under the conditions of Theorem 1,
if we set m = O

(
poly(N,κ−1,λ−1

0 ,δ−1)
ϵ

)
and K =

O
(

1
ηλ0

log(N/δϵ)
)
, then for failure probability δ ∈

(0, 1) and target error ϵ ∈ (0, 1), the global loss
L(W ∗) ≤ ϵ with probability 1− δ.

Takeaways. Theorem 1 shows that for sufficiently
wide networks, L(W ∗) can be decomposed into two
distinct sources of error. The first term is the local
optimization error, which measures how well W̃i fits the
data at the i-th client, and the second term corresponds
to the error introduced by the Laplace approximation in
Equation (2). While the overall error always decreases
as the width m increases, there is a trade-off in the
number of local optimization steps K. In particular,
a larger K reduces the local optimization error but
increases the Laplace error as each local model W̃i

drifts further away from W ∗. Corollary 1 shows that
by setting m and K large enough, the total training
error can be made vanishingly small in just one round.

Effect of Data Heterogeneity. Note that our result
does not make any explicit assumptions on the hetero-
geneity of data across clients such as bounded dissimi-
larity (Karimireddy et al., 2020; Wang et al., 2020b).
We find that the notion of heterogeneity that implicitly
appears in our analysis is the distance between the
weights of any two local models, i.e, ∥w̃i,r − w̃j,r∥2
for any i ≠ j. For two-layer neural networks this
quantity can be bounded as follows: ∥w̃i,r − w̃j,r∥2 ≤
∥w̃i,r −w0,r∥2 + ∥w̃j,r − w̃0,r∥2 ≤ O(1/

√
m) (see first

part of Lemma 6 in Appendix B), where w0,r are the
weights of the common initialization point across clients.
This bound is agnostic to the correlation of data across
clients and shows that ∥w̃i,r − w̃j,r∥2 always decreases
as the width of the model increases. Improving this
bound by incorporating the effects of data correlation
can be an interesting direction for future work.

Empirical Validation. We conduct experiments on a
synthetic dataset with M = 2 clients, p = 2 dimensions,
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and n = 100 samples to verify our theoretical findings.
This setting allows us to ensure that the conditions
in Theorem 1, such as computing the full Fisher, are
computationally tractable. The synthetic data is gener-
ated following a similar procedure as Li et al. (2020b).
Further details of the experimental setup can be found
in Appendix D. In Figure 1a we fix the number of local
steps K = 2048 and vary the width of the model. As
predicted by our theory, we see that the training error
for FedFisher monotonically decreases as we increase
the width of the model. In Figure 1b we fix the width
of the model to m = 512 and vary the number of local
steps. Here we see a trade-off in the effect of local steps
– the error initially decreases as clients do more local
steps and then rises again, as predicted by our theory.
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Figure 1: Empirical validation of Theorem 1 in a synthetic
setting. For a fixed number of local steps (Figure 1a), the
error for FedFisher decreases as the width of the model
increases. For a fixed width (Figure 1b), the error first
decreases and then increases as local steps increases.

Generalization Bounds. Motivated by Arora et al.
(2019), we can also provide generalization bounds on
the performance of the FedFisher global model by
bounding ∥W ∗ −W0∥2, which is the total distance be-
tween the weights of W ∗ and the initialization point
W0. We provide these bounds and subsequent discus-
sion in Appendix B.

4 A Practical Implementation of
FedFisher

Two of the most popular approximations for the Fisher
are the diagonal Fisher and the Kronecker Factored
Approximate Curvature (K-FAC). The diagonal Fisher
simply approximates the full Fisher with its diago-
nal elements and has been used in previous work for
applications such as network pruning (LeCun et al.,
1989) and transfer learning (Kirkpatrick et al., 2017).
The K-FAC introduced by Grosse and Martens (2016);
Martens and Grosse (2015) uses two approximations:
(i) it assumes that the Fisher is block diagonal where

each block corresponds to the Fisher of a particular
layer, and (ii) it approximates the Fisher of each block
as the Kronecker product of two smaller matrices, i.e,
F̃ ≈ A⊗B. Thus, storing (and communicating) the
K-FAC only takes O (dim(A) + dim(B)) bits instead
of O (dim(A) · dim(B)) bits. Using these approxima-
tions as a substitute for the true Fisher in Equation (4),
we get two practical variants of FedFisher, which we
term as FedFisher(Diag) and FedFisher(K-FAC), re-
spectively. We highlight the computation and commu-
nication efficiency of these variations along with their
compatibility with secure aggregation below.

Computation Efficiency. To compute their diag-
onal Fisher or K-FAC, clients need to perform an ad-
ditional forward-backward pass over the data, i.e., an
additional epoch of training, plus some small overhead
cost. This is a reasonable cost for FL setups, since most
of the computation cost goes into computing W̃i, which
requires multiple local epochs. This is demonstrated
in Table 1, where we see that FedFisher(Diag) and
FedFisher(K-FAC) add less than 14.5% of the total
computational cost of FedAvg at clients for our FL
setups described in Section 5.

Table 1: Computation time in seconds averaged across
M = 5 clients for FL setup described in Section 5.

Method FashionMNIST CIFAR10

FedAvg 14.5 − 20.9 −
FedFisher(K-FAC) 16.0 +10.3% 23.1 +10.5%
FedFisher(Diag) 16.6 +14.4% 23.7 +13.4%

Communication Efficiency. The communication
cost of FedFisher depends on the number of parame-
ters in the approximate Fisher. For the diagonal Fisher
this is exactly d, while for the K-FAC it is model
specific, but usually less than 10d. We find that the
total communication cost of both FedFisher(Diag)
and FedFisher(K-FAC) (including local models) can
be easily reduced to match that of FedAvg using a mix
of standard compression techniques such as quantiza-
tion and low-rank decomposition without significantly
affecting the accuracy of the final one-shot model. We
discuss more details about this compression in Ap-
pendix C. For all our experiments in Section 5, we en-
sure that the communication cost of FedFisher(Diag)
and FedFisher(K-FAC) matches that of FedAvg.

Compatibility with Secure Aggregation. In the-
ory, the server optimization in FedFisher just needs
the aggregate quantities

∑M
i=1 F̃i,

∑M
i=1 F̃iW̃i and∑M

i=1 W̃i (see Algorithm 1). For the diagonal Fisher,
these quantities can be computed using secure aggrega-
tion (Bonawitz et al., 2016; Kadhe et al., 2020), thus
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Table 2: Test accuracy results on different datasets by keeping number of client M = 5 fixed and varying heterogeneity
parameter α (smaller α is more heterogeneous). FedFisher variants consistently outperform other baselines.

Dataset α FedAvg OTFusion PFNM RegMean DENSE Fisher FedFisher FedFisher
Merge (Diag) (K-FAC)

0.2 59.11±3.82 58.40±4.95 63.50±3.07 71.09±2.19 72.69±1.99 61.81±3.98 65.44±3.04 76.28±2.56

FashionMNIST 0.1 41.72±4.54 43.77±2.03 59.27±3.19 56.98±4.08 50.11±4.99 54.71±4.96 55.04±4.15 68.36±3.44

0.05 36.02±2.77 37.53±1.20 45.69±5.32 50.40±2.69 46.62±3.21 43.03±5.51 45.92±6.13 53.29±4.17

0.2 63.39±2.27 68.05±0.98 69.11±1.35 74.04±1.20 77.73±2.07 65.42±3.72 68.68±3.42 75.92±1.16

SVHN 0.1 39.42±2.52 52.34±0.18 53.19±4.18 64.16±3.51 56.31±2.17 64.06±2.86 64.20±3.08 69.09±2.81

0.05 27.03±0.71 37.24±0.88 45.62±3.55 55.83±4.44 49.16±1.63 49.32±2.83 51.48±2.91 57.41±3.79

0.2 41.77±0.79 40.35±1.96 45.75±0.58 43.41±1.56 44.79±1.04 39.90±3.21 44.04±2.10 51.67±1.03

CIFAR10 0.1 36.43±2.51 40.45±0.96 39.43±1.80 36.65±1.29 38.65±2.67 36.53±2.74 40.04±1.35 47.01±1.87

0.05 29.75±1.32 30.62±1.20 30.58±3.65 32.84±1.39 32.65±2.35 30.89±1.11 31.08±1.52 40.02±3.64

0.2 37.15±0.87 36.88±1.44 39.94±0.60 36.19±1.07 35.64±1.22 37.01±4.07 41.88±2.53 43.45±0.54

CINIC10 0.1 32.43±1.57 34.92±1.68 35.86±1.65 31.54±0.67 30.89±1.44 32.91±2.44 37.68±2.21 39.16±1.19

0.05 27.58±0.76 26.39±0.35 29.04±1.26 28.14±0.79 28.13±1.10 29.77±1.05 31.72±1.48 32.90±2.60

preventing the server from accessing individual W̃i’s
and F̃i’s and improving privacy. For K-FAC, however,
while the server does not need access to individual
W̃i’s, it does need access to individual F̃i’s. This is
because there does not exist a summation operation
over K-FAC matrices that preserves the Kronecker fac-
torization property. In other words, to compute matrix
vector products of the form

∑M
i=1 F̃ix, the server needs

to store each F̃i and individually compute and sum
up F̃ix. However, we argue that having access to F̃i

can be more private than having access to local models
W̃i, where the latter is needed for knowledge distilla-
tion and neuron matching baselines. We discuss this
in more detail, including an experiment on measuring
privacy using model inversion attacks (Zhang et al.,
2020), in Appendix E.

5 Experiments

5.1 Setup

We evaluate the performance of FedFisher in com-
parison to state-of-the-art (SOTA) neuron matching,
knowledge distillation, and model fusion baselines
across a range of image recognition tasks in a FL
setting. The datasets that we use are (i) Fashion-
MNIST (Xiao et al., 2017), (ii) SVHN (Netzer et al.,
2011), (iii) CIFAR10 (Krizhevsky et al., 2009) and (iv)
CINIC10 (Darlow et al., 2018). Our code is available
at https://github.com/Divyansh03/FedFisher.

Baselines. We compare FedFisher with 6 other one-
shot baselines. FedAvg is the de facto baseline in all
our experiments. The other baselines that we com-
pare with are (i) PFNM (Wang et al., 2020a; Yurochkin
et al., 2019), (ii) OTFusion (Singh and Jaggi, 2020),

(iii) DENSE (Zhang et al., 2022), (iv) FisherMerge
(Matena and Raffel, 2022) and (v) RegMean (Jin et al.,
2023). PFNM and OTFusion are popular neuron match-
ing methods that first permute the weights of local
models and then average them, rather than directly
averaging the weights. DENSE is a SOTA method for
one-shot FL based on data-free knowledge distillation
that uses GANs to artificially generate data for dis-
tillation at the server. FisherMerge and RegMean are
SOTA model fusion baselines. We note that, similar to
FedFisher(Diag), FisherMerge also proposes using
the diagonal Fisher when merging models. However,
our application of the diagonal Fisher differs in how
we compute the Fisher averaged model (Lemma 1)
and additional regularization (Equation (7)). We defer
a more detailed discussion on the difference between
the algorithms to Appendix A. We avoid comparing
with baselines that need auxiliary data or maintain
an ensemble of local models (Diao et al., 2023; Guha
et al., 2019) at the server to ensure fairness of compari-
son. We also avoid comparing with algorithms that are
inherently multi-round in nature such as FedProx (Li
et al., 2020b), SCAFFOLD (Karimireddy et al., 2020) and
adapative variants of FedAvg such as FedAdam (Reddi
et al., 2021) since their performance would be similar
to FedAvg for one round.

Models and Other Details. For FashionMNIST
we use the LeNet architecture (LeCun et al., 1998); for
other datasets we use a CNN model proposed in Wang
et al. (2020a). To simulate data heterogeneity among
the client datasets, we split our original image dataset
into M partitions using a Dirichlet sampling procedure
with parameter α (Hsu et al., 2019; Reddi et al., 2021),
with a lower value of α implying a more heterogeneous
split. The local optimization procedure is the same

https://github.com/Divyansh03/FedFisher
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Figure 2: Results of performing 5 rounds of local training and aggregation across different datasets for α = 0.1 and M = 5.
FedFisher variants offer additional utility in multi-round settings and continue to improve over baselines.

Table 3: Results on one-shot aggregation using a pre-trained ResNet-18 model with α = 0.1 and M = 5. FedFisher
variants show a significant improvement in performance compared to baselines when using a pre-trained model.

Dataset FedAvg OTFusion RegMean DENSE Fisher FedFisher FedFisher
Merge (Diag) (K-FAC)

CIFAR10 56.89±1.31 56.89±1.33 60.98±1.84 57.18±1.11 78.76±2.30 79.06±0.82 80.42±1.13

CINIC10 50.05±0.70 50.04±0.69 50.53±0.69 50.83±0.32 66.89±1.87 69.33±3.44 68.04±1.64

GTSRB 40.63±3.30 40.40±3.35 46.05±2.52 44.87±1.13 61.27±2.80 62.80±4.43 69.29±1.72

CIFAR100 30.54±0.46 30.43±0.36 32.10±0.58 33.29±0.48 43.27±1.06 49.00±1.88 48.73±0.58

across all algorithms. In particular, clients perform E =
30 epochs of local training using the SGD optimizer
with local learning rate η = 0.01, batch size 64 and
momentum factor 0.9. To compute the Fisher diagonal
and Fisher K-FAC we use the nngeometry package
(George, 2021). Further details, including how we tuned
hyperparameters, can be found in Appendix D.

5.2 Results

FedFisher outperforms baselines across varying
heterogeneity. As a first step, we seek to understand
the impact of data heterogeneity on the performance
of FedFisher and other one-shot baselines. To do so,
we fix the number of clients M = 5 and vary α in the
range {0.05, 0.1, 0.2} which can be considered moderate
to high data heterogeneity. Table 2 summarizes the
results obtained by the algorithms across the various
datasets. We see that FedFisher variants, especially
FedFisher(K-FAC), consistently outperform baselines
and give almost 10 − 20% improvement over vanilla
averaging in most cases. This highlights the effective-
ness of FedFisher as a one-shot algorithm that can
tackle data heterogeneity in FL settings while being
computation and communication efficient.

FedFisher outperforms baselines across varying
number of clients. In Appendix D, we provide ex-
perimental results in which we fix heterogeneity α = 0.3
and vary the number of clients as M = {10, 20, 30}.

Our results show that FedFisher(K-FAC) continues to
outperform baselines across different M with up to 10%
improvement in some cases like CIFAR10.

Extension to Few-Shot Settings. A natural ques-
tion to consider is if we can gain additional utility
from FedFisher by extending it to the few shot set-
ting, i.e., using a few more rounds of local training and
aggregation. Figure 2 presents the results of perform-
ing 5 rounds of aggregation with different algorithms
with α = 0.1 and M = 5. We omit comparison with
OTFusion here because we did not find the performance
to be competitive with FedAvg after the second round.
We also omit comparison with PFNM as it modifies the
global model architecture, leading to increased client
computation and communication in every round. We
see that while the use of multiple rounds improves the
performance of all algorithms, FedFisher variants con-
tinue to show the greatest improvement, especially for
CINIC10 which can be considered the hardest dataset
in our experiments. This highlights the additional
utility offered by FedFisher in few-shot settings.

Using Pre-trained Models. As motivated by re-
cent literature in FL (Chen et al., 2022; Nguyen et al.,
2022; Tan et al., 2022), in many cases the server might
have access to a model pre-trained on a large pub-
lic dataset. We consider a setting where the server
has a ResNet-18 (He et al., 2016) pre-trained on Tiny-
ImageNet (Le and Yang, 2015) and wants to fine-tune
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this model. The fine-tuning datasets that we consider
are CIFAR10, CINIC10, GTSRB Stallkamp et al. (2011)
and CIFAR100. In all cases we split the fine-tuning
dataset across M = 5 clients with α = 0.1 heterogene-
ity. We focus on full fine-tuning, i.e., clients update
all weights in the model, for E = 30 local epochs for
CIFAR100 and E = 10 local epochs for the rest. We
also use a smaller step size of η = 0.001 in this setting.
We omit comparison with PFNM since it does not sup-
port ResNet-like architectures. Table 3 summarizes the
results of one-shot aggregation in this setting. We see
that algorithms that use Fisher information, including
FisherMerge, improve on FedAvg and other baselines
by almost 20%, with our methods achieving the highest
accuracy. We attribute this large improvement to the
reduced distance between weights of the local models
when starting from a pre-trained model, which in turn
reduces the approximation error in Fisher averaging as
discussed in Section 3.

6 Conclusion

In this work, we propose FedFisher, a novel algo-
rithm for one-shot FL motivated by a Bayesian per-
spective of FL. We theoretically analyze FedFisher
for two-layer over-parameterized neural networks and
propose its practical versions FedFisher(Diag) and
FedFisher(K-FAC) that outperform current state-of-
the-art one-shot methods while being computation and
communication efficient. As future work, we would
like to extend the analysis of FedFisher for deeper
neural networks and investigate the use of differen-
tial privacy to improve the privacy guarantees of the
practical versions of FedFisher.
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jiv Kumar, and H Brendan McMahan. Adaptive
federated optimization. In International Conference
on Learning Representations (ICLR), 2021.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Ji-
hong Park, Mehdi Bennis, and Seong-Lyun Kim.
Xor mixup: Privacy-preserving data augmentation
for one-shot federated learning. arXiv preprint
arXiv:2006.05148, 2020.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Effi-
cient second-order approximation for neural network
compression. Advances in Neural Information Pro-
cessing Systems, 33:18098–18109, 2020.

Sidak Pal Singh and Martin Jaggi. Model fusion via
optimal transport. Advances in Neural Information
Processing Systems, 33:22045–22055, 2020.

Bingqing Song, Prashant Khanduri, Xinwei Zhang, Jin-
feng Yi, and Mingyi Hong. Fedavg converges to zero
training loss linearly: The power of overparameter-
ized multi-layer neural networks.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
C. Igel. The german traffic sign recognition bench-
mark: A multi-class classification competition. The
2011 International Joint Conference on Neural Net-
works, pages 1453–1460, 2011. URL https://api.
semanticscholar.org/CorpusID:15926837.

Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou,
and Jing Jiang. Federated learning from pre-trained
models: A contrastive learning approach. Advances
in Neural Information Processing Systems, 35:19332–
19344, 2022.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-
itris S. Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In 8th In-
ternational Conference on Learning Representations,
2020a.

https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://api.semanticscholar.org/CorpusID:15926837
https://api.semanticscholar.org/CorpusID:15926837


FedFisher: Leveraging Fisher Information for One-Shot Federated Learning

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi,
and H Vincent Poor. Tackling the objective inconsis-
tency problem in heterogeneous federated optimiza-
tion. Advances in Neural Information Processing
Systems, 33:7611–7623, 2020b.

Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms.
https://arxiv.org/abs/1708.07747, aug 2017.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. Resolving interfer-
ence when merging models. arXiv preprint
arXiv:2306.01708, 2023.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and ap-
plications. ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):12, 2019.

Yaodong Yu, Alexander Wei, Sai Praneeth Karim-
ireddy, Yi Ma, and Michael Jordan. Tct: Convexi-
fying federated learning using bootstrapped neural
tangent kernels. Advances in Neural Information
Processing Systems, 35:30882–30897, 2022.

Kai Yue, Richeng Jin, Ryan Pilgrim, Chau-Wai Wong,
Dror Baron, and Huaiyu Dai. Neural tangent kernel
empowered federated learning. In International Con-
ference on Machine Learning, pages 25783–25803.
PMLR, 2022.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learn-
ing of neural networks. In International Conference
on Machine Learning, pages 7252–7261. PMLR, 2019.

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang
Wu, Shouhong Ding, Chunhua Shen, and Chao Wu.
Dense: Data-free one-shot federated learning. Ad-
vances in Neural Information Processing Systems, 35:
21414–21428, 2022.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang,
Bo Li, and Dawn Song. The secret revealer: Gen-
erative model-inversion attacks against deep neural
networks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 253–261, 2020.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and
Dapeng Wu. Distilled one-shot federated learning.
arXiv preprint arXiv:2009.07999, 2020.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-
free knowledge distillation for heterogeneous feder-
ated learning. In International Conference on Ma-
chine Learning, pages 12878–12889. PMLR, 2021.

Difan Zou and Quanquan Gu. An improved analysis
of training over-parameterized deep neural networks.

Advances in Neural Information Processing Systems,
32, 2019.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]
Yes. Please see Section 2 and Section 3.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]
Yes. Please see Section 3 and Section 4.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]
Yes. Please see supplemental.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]
Yes. Please see Section 3.

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]
Yes. Please see Appendix B.

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]
Yes. Please see Section 3.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable]
Yes. Please see Section 5 and Ap-
pendix D in supplemental.

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]
Yes. Please see Section 5 and Ap-
pendix D in supplemental.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times).
Yes. Please see Appendix D in supple-
mental.



Divyansh Jhunjhunwala, Shiqiang Wang, Gauri Joshi

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]
Yes. Please see Appendix D.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes/No/Not Applicable]
Yes.

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable]
Not Applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]
Not Applicable.

(d) Information about consent from data
providers/curators. [Yes/No/Not Applicable]
Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]
Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Applica-
ble]
Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable]
Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applicable]
Not Applicable.



Appendix for “FedFisher: Leveraging Fisher Information for One-Shot
Federated Learning”

A Additional Related Work 15

B Proofs 16

B.1 Proof of Proposition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2 Proof of Proposition 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.3 Proof of Lemma 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.4.1 Additional Notation and Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.4.2 Key Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B.4.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B.5 Generalization Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B.5.1 Additional Assumptions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B.5.2 Key Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B.5.3 Generalization Theorem and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C Communication Efficiency of FedFisher Variants 34

D Additional Experimental and Details 36

D.1 Details on Synthetic Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.2 Experiment on Varying Number of Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.3 Hyperparameter Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.4 Computation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E Measuring Privacy Using Inversion Attacks 38

14



A Additional Related Work

One-Shot FL. We review here some additional work on one-shot FL apart from the Knowledge Distillation
and Neuron Matching baselines discussed in our work. Initial works such as Guha et al. (2019) propose to just use
the ensemble of client models at the server. However, this approach increases the storage and computation cost
by a factor of M where M is the number of clients. The work of Diao et al. (2023) discusses how we can improve
the prediction of this ensemble when the label distribution across client data is highly skewed. Another line of
work proposes that clients send some distilled form of their data to the server (Shin et al., 2020; Zhou et al.,
2020). However, the privacy guarantees of such methods is unclear. The work of Garin et al. (2022) proposes
techniques to optimize the weights of given to the local models when aggregating them at the server to improve
one-shot performance. However, their analysis is limited to simple linear models and does not consider combing
neural networks. We also note the existence of works that propose to perform clustering in a one-shot manner in
FL setting (Armacki et al., 2022; Dennis et al., 2021); these approaches our orthogonal to our problem of finding
a global minimizer in a one-shot manner.

Convergence of overparameterized NNs in FL. The works of Huang et al. (2021), Deng et al. (2020);
Song et al. study the convergence of FedAvg for overparameterized neural networks. We note that these works
are primarily concerned with convergence and do not propose any new algorithms as such compared to our work.
We also note the existence of related works (Yu et al., 2022; Yue et al., 2022) that proposes to use NTK style
Jacobian features to speed up FL training; however these works usually require multiple training rounds.

Comparison with (Matena and Raffel, 2022). We note that, similar to FedFisher(Diag), FisherMerge
(Matena and Raffel, 2022) also proposes using the diagonal Fisher when merging models. However, there are
several key differences which we would like to mention. Firstly our problem is more well-defined in the sense that
we have an explicit objective in Equation (1) that we are trying to solve with Fisher merging. This theoretical
formulation is what leads us to propose the additional regularization in FedFisher in Equation (7) (and also
FedFisher(Diag) subsequently) and guarantees for two-layer networks. Matena and Raffel (2022) on the other
hand does not provide any theoretical guarantees. Also note that the procedure to compute the Fisher averaged
model is different (gradient descent in our work versus diagonal Fisher inversion in Matena and Raffel (2022)).
Finally, on a practical side, Matena and Raffel (2022) do not consider the effect of data heterogeneity in their
experiments and focus on fusing two models whereas we explicitly account for data heterogeneity in our model
training and aggregate up to thirty local models in our experiments (see results in Figure 3).
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B Proofs

B.1 Proof of Proposition 1.

Proposition 1. (Global Posterior Decomposition (Al-Shedivat et al., 2021)) Under the flat prior P(W ) ∝ 1, the
global posterior decomposes into a product of local posteriors, i.e., P(W |D) ∝

∏M
i=1 P(W |Di). Furthermore, modes

of the global posterior coincide with the optima of the FL objective in Equation (1), i.e, argmaxW∈Rd P(W |D) =
argminW∈Rd L(W ).

Proof.

We have,

P(W |D) ∝ P(D|W ) (∵ P(W ) ∝ 1)

=

M∏
i=1

P(Di|W ) (Di are i.i.d generated)

∝
M∏
i=1

P(W |Di). (10)

Also,

argmax
W∈Rd

P(W |D) = argmax
W∈Rd

logP(D|W )

= argmax
W∈Rd

M∑
i=1

n∑
j=1

(log q(xij)− ℓ(f(W ,xij),yij)) (Assumption 2)

= argmax
W∈Rd

−
M∑
i=1

n∑
j=1

ℓ(f(W ,xij),yij)

= argmin
W∈Rd

L(W ). (11)

B.2 Proof of Proposition 2.

Proposition 2. Any W which satisfies
(∑M

i=1 F̃i

)
W =

∑M
i=1 F̃iW̃i is a minimizer of the objective

∑M
i=1(W −

W̃i)
⊤F̃i(W − W̃i).

Proof.

Define G(W ) =
∑M

i=1(W − W̃i)
⊤F̃i(W − W̃i). First note that

∇2G(W ) = 2

M∑
i=1

F̃i ≽ 0 (F̃i is positive semi-definite and symmetric ∀i ∈ [M ]). (12)

This implies that G(W ) is a convex function. Therefore any W which satisfies ∇G(W ) = 0 is a minimizer of
G(W ). We have,

∇G(W ) = 2

M∑
i=1

F̃i(W −Wi). (13)

Setting ∇G(W ) = 0 we get
(∑M

i=1 F̃i

)
W =

∑M
i=1 F̃iW̃i.
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B.3 Proof of Lemma 1.

Lemma 1. Let W (1),W (2), . . . be the iterates generated by running the following gradient descent (GD) procedure:
W (t+1) = W (t) − ηS

∑M
i=1

(
F̃iW

(t) − F̃iW̃i

)
with W (0) =

∑M
i=1 W̃i/M and ηS ≤ 1/λmax where λmax is the

maximum eigenvalue of
∑M

i=1 F̃i. Then, limT→∞ W (T ) = W ∗.

Proof.

Recall,

W ∗ = argmin
W∈Rd

{
L̃(W ) =

M∑
i=1

∥∥∥W − W̃i

∥∥∥2
2

such that

(
M∑
i=1

F̃i

)
W =

M∑
i=1

F̃iW̃i

}
. (14)

Let F =
∑M

i=1 F̃i, b =
∑M

i=1 F̃iW̃i and W̄ =
∑M

i=1 W̃i/M . Also note that
∑M

i=1

∥∥∥W − W̃i

∥∥∥
2
= M

∥∥W − W̄
∥∥2
2
+∑M

i=1

∥∥∥W̄ − W̃i

∥∥∥2
2
. Therefore, the expression for W ∗ can be simplified as,

W ∗ = argmin
W∈Rd

{
L̃(W ) =

∥∥W − W̄
∥∥2
2

such that FW = b
}
. (15)

Since F is symmetric and PSD (see Equation (12)), we have by the spectral decomposition of F ,

F = V ΣV ⊤ =
[
V1 V2

] [Σ1 0

0 0

][
V ⊤
1

V ⊤
2

]
= V1Σ1V

⊤
1 . (16)

Here V ∈ R(d×d) is an orthogonal matrix consisting of the eigenvectors of F , and Σ is a diagonal matrix consisting
of all the eigenvalues of F . Σ1 is a diagonal matrix consisting of only the positive eigenvalues. V1 consists of the
eigenvectors corresponding to the positive eigenvalues while V2 consists of the eigenvectors corresponding to the
zero eigenvalues. Also note that we have V ⊤

1 V2 = 0.

We first observe that for any W ∗
1 and W ∗

2 such that FW ∗
1 = FW ∗

2 = b we have,

FW ∗
1 = FW ∗

2 ⇐⇒ V1Σ1V
⊤
1 W ∗

1 = V1Σ1V
⊤
1 W ∗

2

⇐⇒
(
V1Σ

−1
1 V ⊤

1

)
V1Σ1V

⊤
1 W ∗

1 =
(
V1Σ

−1
1 V ⊤

1

)
V1Σ1V

⊤
1 W ∗

2

⇐⇒ V1V
⊤
1 W ∗

1 = V1V
⊤
1 W ∗

2 . (17)

Next we observe,

V2V
⊤
2 W ∗ = V2V

⊤
2 W̄ . (18)

The proof for this follows via simple contradiction argument as follows. Suppose V2V
⊤
2 W ∗ ̸= V2V

⊤
2 W̄ . Let W ⋄

be a vector such that FW ⋄ = b and V2V
⊤
2 W ⋄ = V2V

⊤
2 W̄ . Then,∥∥W̄ −W ∗∥∥2

2
=
∥∥V2V

⊤
2

(
W̄ −W ∗)+ V1V

⊤
1

(
W̄ −W ∗)∥∥2

2
(V2V

⊤
2 + V1V

⊤
1 = I)

=
∥∥V2V

⊤
2

(
W̄ −W ∗)+ V1V

⊤
1

(
W̄ −W ⋄)∥∥2

2
(from Equation (17))

=
∥∥V2V

⊤
2

(
W̄ −W ∗)∥∥2

2
+
∥∥V1V

⊤
1

(
W̄ −W ⋄)∥∥2

2
(V ⊤

1 V2 = 0)

=
∥∥V2V

⊤
2

(
W̄ −W ∗)∥∥2

2
+
∥∥W̄ −W ⋄∥∥2

2
(V2V

⊤
2 (W̄ −W ⋄) = 0)

>
∥∥W̄ −W ⋄∥∥2

2
(V2V

⊤
2 W ∗ ̸= V2V

⊤
2 W̄ ). (19)

leading to a contradiction.

According to the GD step in Lemma 1 we have,
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W (t+1) = W (t) − ηS(FW (t) − b)

= (I − ηSF )W (t) + ηSb. (20)

Therefore,

W (T ) = (I − ηSF )TW (0) + ηS

T−1∑
t=0

(I − ηSF )tb

= (I − ηSF )TW (0) + ηS

T−1∑
t=0

(I − ηSF )tFW ∗

= V (I − ηSΣ)TV ⊤W (0) + ηS

T−1∑
t=0

(
V (I − ηSΣ)tV ⊤)V1Σ1V

⊤
1 W ∗

= (V1(I − ηSΣ1)
TV1 + V2V

⊤
2 )W (0) + ηS

(
V1

T−1∑
t=0

(I − ηSΣ1)
tV1 + V2V

⊤
2

)
V1Σ1V

⊤
1 W ∗

= (V1(I − ηSΣ1)
TV ⊤

1 + V2V
⊤
2 )W (0) + ηS

(
V1

T−1∑
t=0

(I − ηSΣ1)
tV ⊤

1

)
V1Σ1V

⊤
1 W ∗. (21)

In the limit T →∞ and with ηS ≤ 1/λmax(Σ1), we have,

lim
T→∞

(I − ηSΣ1)
T = 0 and lim

T→∞

T−1∑
t=0

(I − ηSΣ1)
t =

1

ηS
Σ−1

1 . (22)

Thus,

lim
T→∞

W (T ) = V2V
⊤
2 W (0) + V1V

⊤
1 W ∗

= V2V
⊤
2 W̄ + V1V

⊤
1 W ∗

= V2V
⊤
2 W ∗ + V1V

⊤
1 W ∗ (from Equation (18))

= W ∗. (23)

This completes the proof.

18



B.4 Proof of Theorem 1

In this subsection, we provide the proof for Theorem 1 in Section 3 of our work. To do so, we first introduce
some additional notation and basic results.

B.4.1 Additional Notation and Basic Results

Recall the two-layer ReLU NN is modeled as follows,

f(W ,x) =
1√
m

m∑
r=1

arx
⊤wrI

{
x⊤wr ≥ 0

}
. (24)

We can write the output of the neural network alternatively as,

f(W ,x) =

m∑
r=1

(
1√
m
arI
{
x⊤wr ≥ 0

}
x

)⊤

wr

= ϕ(W ,x)⊤W , (25)

where

ϕ(W ,x) =
1√
m


a1xI

{
x⊤w1 ≥ 0

}
a2xI

{
x⊤w2 ≥ 0

}
...

amxI
{
x⊤wm ≥ 0

}
]

 ∈ Rmp. (26)

Initialization. Recall W0 is the common initialization point for all the local models before they perform local
optimization, i.e., W (0)

i = W0. Also recall W (0) = W̄ =
∑M

i=1 W̃i/M is the initialization point for the server
optimization.

Definition 2. (Matrices A0, Ã, H0, H̃) Matrices A0 and Ã are defined as follows:

A0 =


ϕ(W0,x11)

⊤

ϕ(W0,x12)
⊤

...
ϕ(W0,xMn)

⊤

 ∈ R(N×mp) (27)

and,

Ã =

 ϕ(W̃1,x11)
⊤

...
ϕ(W̃M ,xMn)

⊤

 ∈ R(N×mp). (28)

Furthermore we define H0 = A0A
⊤
0 , H̃ = ÃÃ⊤ ∈ RN×N .

Definition 3. (Vector of true labels y and vector of predicted outputs ỹ)

The vector of true labels y is defined as follows,

y =


y11
y12
...

yMn

 ∈ RN . (29)
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Given local models W̃1, W̃2, . . . , W̃M , the vector of predicted outputs ỹ is defined as follows,

ỹ =


f(W̃1,x11)

f(W̃1,x12)
...

f(W̃M ,xMn)

 ∈ RN . (30)

Definition 4. (Proxy output and vector of proxy outputs at iteration t)

Given local models W̃1, W̃2, . . . , W̃M , the proxy output f̃(W ,xij) for any W ∈ Rd and for any xij where
i ∈ [M ], j ∈ [n] is defined as,

f̃(W ,xij) = ϕ(W̃i,xij)
⊤W . (31)

Let W (0),W (1), . . . be the sequence of iterates generated by the global optimization process in FedFisher (Algo-
rithm 1 Lines 12-14). We define f̃(t) as follows:

f̃(t) =


f̃(W (t),x11)

f̃(W (t),x12)
...

f̃(W (t),xMn)

 ∈ RN . (32)

Claim 1. (Bounded gradient) For any W ∈ Rd and ∥x∥2 ≤ 1 we have ∥∇W f(W ,x)∥22 ≤ 1.

Proof.

Firstly observe that,

∇W f(W ,x) = ϕ(W ,x). (33)

We have,

∥ϕ(W ,x)∥22 =
1

m

m∑
r=1

∥∥arxI{x⊤wr ≥ 0
}∥∥2

2

≤ 1

m

m∑
r=1

∥arx∥22

≤ 1 (ar’s are ±1, ∥x∥2 ≤ 1). (34)

Claim 2. (Fisher closed-form expression) Under the squared loss ℓ(z, y) = 1
2 (y − z)2, the Fisher at client i

simplifies to,

Fi =
1

n

n∑
j=1

ϕ(W̃i,xij)ϕ(W̃i,xij)
⊤. (35)

Proof.

Under the squared loss, we have P(y|xij ,W ) ∝ exp(−(y − f(W ,xij))
2/2). Thus,

∇W logP(y|xij ,W ) = (f(W ,xij)− y)∇W f(W ,xij)

= (f(W ,xij)− y)ϕ(W ,xij) (using Equation (33)). (36)
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Thus,

Fi =
1

n

n∑
j=1

Ey

[
∇W logP(y|xij ,W )∇W logP(y|xij ,W )⊤

]
W=W̃i

=
1

n

n∑
j=1

Ey

[
(y − f(W̃i,xij)

2ϕ(W̃i,xij)ϕ(W̃i,xij)
⊤
]

=
1

n

n∑
j=1

Ey

[
(y − f(W̃i,xij)

2
]
ϕ(W̃i,xij)ϕ(W̃i,xij)

⊤

(a)
=

1

n

n∑
j=1

ϕ(W̃i,xij)ϕ(W̃i,xij)
⊤ (37)

where (a) uses P(y|f(W̃i,xij)) ∝ exp(−(y− f(W̃i,xij))
2/2) implying y|f(W̃i,xij) ∼ N (f(W̃i,xij), 1), following

Assumption 1.
Claim 3. Define the matrix H∞

i ∈ Rn×n as (H∞
i )k,l = Ew∼N (0,I)

[
x⊤
ikxilI

{
w⊤xik ≥ 0

}
I
{
w⊤xil ≥ 0

}]
. Then

λmin(H
∞
i ) ≥ λmin(H

∞) = λ0.

Proof. Suppose λmin(H
∞
i ) = λi < λmin(H

∞). Let x be such that x⊤H∞
i x = λi. Define x̃ ∈ RN×N to be a

vector such that x̃(i−1)×n+1:i×n = x and zero everywhere else. Then x̃⊤H∞x̃ = x⊤H∞
i x = λi < λmin(H

∞)
leading to a contradiction. Therefore λmin(H

∞
i ) ≥ λmin(H

∞) = λ0.
Claim 4. Let X1,X2 . . . ,XM ∈ Rn×p. Define,

X =


X1

X2

...
XM

 ∈ RN×p

Also define

DX =


X1X

⊤
1 0 · · · 0

0 X2X
⊤
2 · · · 0

...
0 0 · · · XMX⊤

M

 ∈ RN×N (38)

Then MDX ≽ XX⊤.

Proof. Let a = vec(a1,a2, . . . ,aM ) ∈ RN where each ai ∈ Rn. Then,

a⊤(MDX −XX⊤)a = M

M∑
i=1

a⊤
i XiX

⊤
i ai −

M∑
i=1

M∑
j=1

a⊤
i XiX

⊤
j aj

= (M − 1)

M∑
i=1

aiXiX
⊤
i ai −

M∑
i=1

M∑
j=1,j ̸=i

a⊤
i XiX

⊤
j aj

=

M∑
i=1

M∑
j=i+1

a⊤
i XiX

⊤
i ai + a⊤

j XjX
⊤
j aj − a⊤

i XiX
⊤
j aj − a⊤

j XjX
⊤
i ai

=

M∑
i=1

M∑
j=i+1

∥∥X⊤
i ai −X⊤

j aj

∥∥2
2

≥ 0

Thus MDX ≽ X⊤X.
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Claim 5.

M


H∞

1 0 · · · 0

0 H∞
2 · · · 0

...
0 0 · · · H∞

M

 ≽ H∞ (39)

where H∞
i is defined in Claim 3 and H∞ is defined in Definition 1.

Proof. This follows from an application of Claim 4.

B.4.2 Key Lemmas

Before moving to the theorem proof, we first state some key lemmas and their proofs. Note that the probabilities
of all events in this proof are over the random initialization of W0.

Lemma 2 is used to bound the local optimization at clients. Note that since the local optimization at each client
is independent of all other clients, we can consider them to be M instances of centralized optimization starting
from the same initialization. Thus we can use existing results in the centralized setting to give these bounds.

Lemma 2. (Theorem 3.1 and Lemma C.1 in Arora et al. (2019)) If we set m = Ω
(

N6

λ4
0κ

2δ3

)
and η = O

(
λ0

N2

)
,

then with probability at least 1− δ over the random initialization of W0, for all clients i ∈ [M ] simultaneously, we
have

1.
∑n

j=1(yij − f(W0,xij))
2 = O

(
N
δ

)
2.
∑n

j=1(yij − f(W̃i,xij))
2 ≤ (1− ηλ0/2)

KO
(
N
δ

)
3. ∥w̃i,r −w0,r∥2 ≤

4
√
N(1−(1−ηλ0/4)

K)√
mλ0

√∑n
j=1(yij − f(W0,xij))2 = R0 ∀r ∈ [m].

where w̃i,r denotes the r-th weight in the local model of the i-th client and w0,r denotes the r-th weight of the
randomly initialized model W0.

Firstly note that the local optimization at client i depends on H∞
i . Here we are using the result in Claim 3 which

shows that λmin(H
∞
i ) ≥ λmin(H

∞) = λ0. Also note that using Arora et al. (2019) we can only guarantee that
the above event holds at a single client with probability 1 − δ. In order for this event to hold simultaneously
with probability 1− δ for all clients, we use the union bound and set the failure probability at each client to be
δ′ = δ/M . This leads the bound to have a dependence on N instead of n as in the single client case.

Also note that substituting the bound in part (1) in part (3), we have the following upper bound on R0:

R0 = O
(
N(1− (1− ηλ0/4)

K)√
mδλ0

)
= O

(
N√
mδλ0

)
. (40)

Lemma 3 and Lemma 4 are standard in two-layer NN optimization and are adopted as is.
Lemma 3. (Lemma 3.2 in Du et al. (2019)) For a given R, define the following event:

Aijr(R) = {∃w : ∥w −w0,r∥2 ≤ R, I
{
x⊤
ijw0,r ≥ 0

}
̸= I

{
x⊤
ijw ≥ 0

}
}. (41)

We have Pr(Aijr(R)) ≤ 2R√
2πκ

where the randomness is over the initialization of w0,r.

Lemma 4. (Lemma 3.1 in Du et al. (2019)). If m = Ω
(

N2

λ2
0
log N

δ

)
, we have with probability 1−δ, ∥H0 −H∞∥2 ≤

λ0

4 and λmin(H0) ≥ 3λ0

4 .

Lemma 5, Lemma 6 and Lemma 7 are our contribution and form the basis of our proof.
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Lemma 5. If m = Ω
(

N6

λ4
0κ

2δ3

)
, with probability 1− δ, λmin(H̃) ≥ λ0/2 and λmax(H̃) ≤ N

Proof.

The (k, l)-th entry of H̃ ∈ RN×N is given by,

H̃kl =
1

m
x⊤
k′k′′xl′l′′

m∑
r=1

I
{
x⊤
k′k′′w̃k′,r ≥ 0

}
I
{
x⊤
l′l′′w̃l′,r ≥ 0

}
(42)

where k′ = ⌈k/n⌉, k′′ = k − k′ + 1, l′ = ⌈l/n⌉, l′′ = l − l′ + 1.

We have,

E
[
|H̃kl − (H0)kl|

]
= E

[
1

m

∣∣x⊤
k′k′′xl′l′′

∣∣ m∑
r=1

I
{
I
{
x⊤
k′k′′w̃k′,r ≥ 0

}
I
{
x⊤
l′l′′w̃l′,r ≥ 0

}
̸= I

{
x⊤
k′k′′w0,r ≥ 0

}
I
{
x⊤
l′l′′w0,r ≥ 0

}}]
(a)

≤ E

[
1

m

m∑
r=1

I
{
I
{
x⊤
k′k′′w̃k′,r ≥ 0

}
I
{
x⊤
l′l′′w̃l′,r ≥ 0

}
̸= I

{
x⊤
k′k′′w0,r ≥ 0

}
I
{
x⊤
l′l′′w0,r ≥ 0

}}]

≤ E

[
1

m

m∑
r=1

I
{
I
{
x⊤
k′k′′w̃k′,r ≥ 0

}
̸= I

{
x⊤
k′k′′w0,r ≥ 0

}}
+ I
{
I
{
x⊤
l′l′′w̃l′,r ≥ 0

}
̸= I

{
x⊤
l′l′′w0,r ≥ 0

}}]
(b)

≤ E

[
1

m

m∑
r=1

I {Ak′k′′r(R0)}+ I {Al′l′′r(R0)}

]

=
1

m

m∑
r=1

Pr(Ak′k′′r(R0)) + Pr(Al′l′′r(R0))

(c)

≤ 4R0√
2πκ

, (43)

where (a) uses
∣∣x⊤

k′k′′xl′l′′
∣∣ ≤ ∥xk′k′′∥2 ∥xl′l′′∥2 ≤ 1 (Assumption 2), (b) follows from the definition of Aijr in

Lemma 3 and definition of R0 in Lemma 2, (c) uses the result in Lemma 3.

Thus we have,

E
[
∥H̃ −H0∥F

]
≤ E

∑
k,l

|H̃kl − (H0)kl|

 ≤ 4N2R0√
2πκ

. (44)

By Markov’s inequality, with probability 1− δ, we have

∥H̃ −H0∥F ≤
E
[
∥H̃ −H0∥F

]
δ

≤ 4N2R0√
2πδκ

. (45)

Thus, ∥∥∥H̃ −H0

∥∥∥
2
≤ ∥H̃ −H0∥F ≤

4N2R0√
2πδκ

. (46)

This implies,

λmin(H̃) ≥ λmin(H0)−
4N2R0√
2πδκ

≥ λ0

2
(47)

using Lemma 4 and substituting m = Ω
(

N6

λ4
0δ

3κ2

)
in the upper bound on R0 in ??.
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We also have, ∥∥∥H̃∥∥∥
2
=
∥∥∥ÃÃ⊤

∥∥∥
2

=
∥∥∥Ã⊤Ã

∥∥∥
2

=

∥∥∥∥∥∥
M∑
i=1

n∑
j=1

ϕ(W̃i,xij)ϕ(W̃i,xij)
⊤

∥∥∥∥∥∥
2

≤
M∑
i=1

n∑
j=1

∥∥∥ϕ(W̃i,xij)ϕ(W̃i,xij)
⊤
∥∥∥
2

≤
M∑
i=1

n∑
j=1

∥∥∥ϕ(W̃i,xij)
∥∥∥2
2

≤ N (Claim 1). (48)

Therefore λmax(H̃) =
∥∥∥H̃∥∥∥

2
≤ N .

Lemma 6. If we set m = Ω
(

N6

λ4
0κ

2δ3

)
and η = O

(
λ0

N2

)
, then with probability at least 1 − δ over the random

initialization of W0, we have

1.
∥∥∥f̃(0)− ỹ

∥∥∥2
2
= O

(
N3

δλ2
0

)
2.
∥∥∥f̃(t)− ỹ

∥∥∥2
2
≤ (1− ηSλ0/2n)

t
∥∥∥f̃(0)− ỹ

∥∥∥2
2

3.
∥∥∥w∗

r −w
(0)
r

∥∥∥
2
≤ 4

√
N√

mλ0

∥∥∥f̃(0)− ỹ
∥∥∥
2
= R1.

Proof.

Part (1).

We have,

(f̃(W (0),xij)− ỹij)
2 = (ϕ(W̃i,xij)

⊤W (0) − ϕ(W̃i,xij)
⊤W̃i)

2

=

(
1√
m

m∑
r=1

arI
{
x⊤
ijw̃i,r ≥ 0

}
x⊤
ij

(
M∑
l=1

w̃l,r/M − w̃i,r

))2

≤
m∑
r=1

(
arI
{
x⊤
ijw̃i,r ≥ 0

}
x⊤
ij

(
M∑
l=1

w̃l,r/M − w̃i,r

))2

(Jensen’s inequality)

(a)

≤
m∑
r=1

∥∥∥∥∥
M∑
l=1

w̃l,r/M − w̃i,r

∥∥∥∥∥
2

2

≤ 1

M

m∑
r=1

M∑
l=1

∥w̃l,r − w̃i,r∥22 (Jensen’s inequality)

≤ 2

M

m∑
r=1

M∑
l=1

∥w̃l,r −w0,r∥22 + ∥w̃i,r −w0,r∥22

≤ 4mR2
0 (Lemma 2 Part 3)

= O
(
N2

λ2
0δ

)
(??) (49)
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where (a) uses Cauchy-Schwartz and
∥∥arI{x⊤

ijw̃i,r ≥ 0
}
xij

∥∥
2
≤ 1.

Thus,
∥∥∥f̃(0)− ỹ

∥∥∥2
2
=
∑M

i=1

∑n
j=1(f̃(W

(0),xij)− ỹij)
2 = O

(
N3

λ2
0δ

)
.

Part (2).

The GD step that the central server performs for FedFisher can be written as,

W (t+1) = W (t) − ηS

M∑
i=1

Fi

(
W (t) − W̃i

)
= W (t) − η̃S

M∑
i=1

n∑
j=1

ϕ(W̃i,xij)ϕ(W̃i,xij)
⊤
(
W (t) − W̃i

)
(Claim 2, η̃S = ηS/n)

= W (t) − η̃S

M∑
i=1

n∑
j=1

ϕ(W̃i,xij)
(
f̃(W (t),xij)− ỹij

)
(Definition 4, Definition 3)

= W (t) − η̃SÃ
⊤(f̃(t)− ỹ) (Definition 2). (50)

We have,

f̃(t+ 1)− f̃(t) = Ã(W (t+1) −W (t))

= −η̃SH̃(f̃(t)− ỹ) (Definition 2, Equation (50)). (51)

Therefore,

∥∥∥f̃(t+ 1)− ỹ
∥∥∥2
2
=
∥∥∥f̃(t+ 1)− f̃(t) + f̃(t)− ỹ

∥∥∥2
2

=
∥∥∥f̃(t)− ỹ

∥∥∥2
2
− 2η̃S(f̃(t)− ỹ)H̃(f̃(t)− ỹ) (Equation (51))

+ η̃2S

∥∥∥H̃(f̃(t)− ỹ)
∥∥∥2
2

≤ (1− η̃Sλ0 + η̃2SN
2)
∥∥∥f̃(t)− ỹ

∥∥∥2
2

(Lemma 5)

≤
(
1− ηSλ0

2n

)∥∥∥f̃(t)− ỹ
∥∥∥2
2

(
η̃S ≤

λ0

2N2

)
. (52)

Part (3).

From Equation (50) we have,

∥∥∥w(t+1)
r −w(t)

r

∥∥∥
2

(a)
=
∥∥∥η̃SÃ⊤

(r−1)p+1:rp(ỹ − f̃(t))
∥∥∥
2

≤ η̃S

∥∥∥Ã⊤
(r−1)p+1:rp

∥∥∥
2

∥∥∥ỹ − f̃(t)
∥∥∥
2

(Cauchy Schwartz)

≤ η̃S

∥∥∥Ã⊤
(r−1)p+1:rp

∥∥∥
F

∥∥∥ỹ − f̃(t)
∥∥∥
2

≤ η̃S
√
N√

m

∥∥∥ỹ − f̃(t)
∥∥∥
2

(Definition 2, ∥xij∥2 ≤ 1) (53)

where in (a) we use the notation Ax:y to denote the submatrix of A having row numbers x to y.

Therefore,
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∥∥∥w∗
r −w(0)

r

∥∥∥
2
≤

∞∑
t=0

∥∥∥w(t+1)
r −w(t)

r

∥∥∥
2

≤ η̃S
√
N√

m

∞∑
t=0

∥∥∥ỹ − f̃(t)
∥∥∥
2

(using Equation (53))

≤ η̃S
√
N√

m

∞∑
t=0

(
1− η̃Sλ0

4

)t ∥∥∥ỹ − f̃(0)
∥∥∥
2

(using Equation (52))

=
4
√
N√

mλ0

∥∥∥ỹ − f̃(0)
∥∥∥
2
. (54)

Lemma 7. Let Sij = {r ∈ [m] : I
{
x⊤
ijw

∗
r ≥ 0

}
= I

{
x⊤
ijw̃i,r ≥ 0

}
}} and S⊥

ij = [m]\Sij. With probability 1− δ

over the initialization, we have
∑M

i=1

∑n
j=1 |S⊥

ij |2 = O
(

m2N2(R2
0+R2

1)
δ2κ2

)
where R0 is defined in Lemma 2 and R1

is defined in Lemma 6.

Proof.

We have,

E
[
|S⊥

ij |
]
=

m∑
r=1

Pr(I
{
x⊤
ijw

∗
r ≥ 0

}
̸= I

{
x⊤
ijw̃i,r ≥ 0

}
)

≤
m∑
r=1

Pr
({

I
{
x⊤
ijw

∗
r ≥ 0

}
̸= I

{
x⊤
ijw0,r ≥ 0

}}
∪
{
I
{
x⊤
ijw̃i,r ≥ 0

}
̸= I

{
x⊤
ijw0,r ≥ 0

}})
(a)

≤
m∑
r=1

Pr
({

I
{
x⊤
ijw

∗
r ≥ 0

}
̸= I

{
x⊤
ijw0,r ≥ 0

}})
+ Pr

({
I
{
x⊤
ijw̃i,r ≥ 0

}
̸= I

{
x⊤
ijw0,r ≥ 0

}})
(b)

≤
m∑
r=1

Pr(Aijr(R0 +R1)) + Pr(Aijr(R0))

(c)

≤ 4m(R0 +R1)√
2πκ

(55)

where (a) uses union bound, (b) uses Lemma 3 and ∥w∗
r −w0,r∥2 ≤

∥∥∥w∗
r −w

(0)
r

∥∥∥
2
+
∥∥∥w(0)

r −w0,r

∥∥∥
2

=∥∥∥w∗
r −w

(0)
r

∥∥∥
2
+
∥∥∥ 1
M

∑M
i=1 w̃i,r −w0,r

∥∥∥
2
≤

∥∥∥w∗
r −w

(0)
r

∥∥∥
2
+ 1

M

∑M
i=1 ∥w̃i,r −w0,r∥2 ≤ R1 + R0 and

∥w̃i,r −w0,r∥2 ≤ R0, (c) again uses Lemma 3.

Thus, using Markov’s inequality, with probability at least 1− δ, we have for any i ∈ [M ] and j ∈ [n],

|S⊥
ij | = O

(
m(R0 +R1)

δκ

)
. (56)

Setting the failure probability as δ/N in Equation (56), we have with probability 1− δ, for all i ∈ [M ] and j ∈ [n]
simultaneously,

∀i ∈ [M ];∀j ∈ [n] : |S⊥
ij | = O

(
mN(R0 +R1)

δκ

)
. (57)

This implies,
M∑
i=1

n∑
j=1

|S⊥
ij |2 = O

(
m2N2(R2

0 +R2
1)

δ2κ2

)
. (58)
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B.4.3 Proof of Theorem 1

We first state the full theorem statement with the exact dependence of m on (N,λ−1
0 , δ−1, κ−1).

Theorem 1. Under Assumptions 2, 3, 4, for m = Ω
(

N9

λ8
0δ

4κ2

)
, and i.i.d Gaussian initialization weights of W0

as w0,r ∼ N (0, κ), and initializing the second layer weights ar = {−1, 1} with probability 1/2 for all r ∈ [m], for
step sizes η = O(λ0/N

2), ηS = O(λ0/N
2) and for a given failure probability δ ∈ (0, 1), the following is true with

probability 1− δ over the random initialization:

L(W ∗) ≤ O
(
(1− ηλ0/2)

K N

δ

)
︸ ︷︷ ︸

local optimization error

+O
(
(2− (1− ηλ0/2)

K)
N9

λ8
0δ

4m

)
︸ ︷︷ ︸

Laplace approximation error

. (59)

Proof.

Note that the conditions on m, η and ηS in Lemma 2, Lemma 4, Lemma 5 and Lemma 6 are satisfied by setting
m = Ω

(
N9

λ8
0δ

4κ2

)
, η = O(λ0/N

2), ηS = O(λ0/N
2) and hence we can now apply these lemma results for our proof.

Furthermore, we can scale down the failure probability in these lemmas by a constant factor to ensure that all
the results in the lemmas hold simultaneously with high probability via union bound.

First observe that setting t→∞ in Lemma 6 part (2), we have,

f̃(W ∗,xij) = ỹij (60)

Now,

L(W ∗) =
1

N

M∑
i=1

n∑
j=1

(f(W ∗,xij)− yij)
2

=
1

N

M∑
i=1

n∑
j=1

(
(ϕ(W ∗,xij)

⊤W ∗ − ỹij + ỹij − yij
)2

(Equation (25))

≤ 2

N

M∑
i=1

n∑
j=1

(
ϕ(W ∗,xij)

⊤W ∗ − ỹij
)2

︸ ︷︷ ︸
T1

+
2

N

M∑
i=1

n∑
j=1

(ỹij − yij)
2

︸ ︷︷ ︸
T2

. (61)

T2 measures how well the local models fit their local data and can be bounded as

T2 = O
(
(1− ηλ0/2)

K N

δ

)
(62)

using the result from Lemma 2.

We now bound T1 as follows:
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T1 =
2

N

M∑
i=1

n∑
j=1

(
ϕ(W ∗,xij)

⊤W ∗ − ỹij
)2

=
2

N

M∑
i=1

n∑
j=1

(
ϕ(W ∗,xij)

⊤W ∗ − f̃(W ∗,xij)
)2

(Equation (60))

=
2

N

M∑
i=1

n∑
j=1

(
ϕ(W ∗,xij)

⊤W ∗ − ϕ(W̃i,xij)
⊤W ∗

)2
(Definition 4)

=
2

N

M∑
i=1

n∑
j=1

(
1√
m

m∑
r=1

arx
⊤
ijw

∗
r

(
I
{
x⊤
ijw

∗
r ≥ 0

}
− I
{
x⊤
ijw̃i,r ≥ 0

}))2

(a)
=

2

N

M∑
i=1

n∑
j=1

 1√
m

∑
r∈S⊥

ij

arx
⊤
ijw

∗
r

(
I
{
x⊤
ijw

∗
r ≥ 0

}
− I
{
x⊤
ijw̃i,r ≥ 0

})2

≤ 2

N

M∑
i=1

n∑
j=1

|S⊥
ij |
m

∑
r∈S⊥

ij

(
arx

⊤
ijw

∗
r

)2
(Jensen’s inequality)

(b)

≤ 2

N

M∑
i=1

n∑
j=1

|S⊥
ij |
m

∑
r∈S⊥

ij

(
x⊤
ijw

∗
r − x⊤

ijw̃i,r

)2
≤ 2

N

M∑
i=1

n∑
j=1

|S⊥
ij |2

m
max
r∈[m]

∥w∗
r − w̃i,r∥22

(c)
= O

(
m2N(R4

0 +R4
1)

δ2κ2m

)
(d)
= O

(
N9

λ8
0δ

4κ2m
(2− (1− ηλ0/2)

K)

)
(63)

where (a) follows from the definition of S⊥
ij in Lemma 7. (b) uses the observation that since r ∈ S⊥

ij we have
sign(x⊤

ijw
∗
r) ̸= sign(x⊤

ijw̃i,r) which implies |x⊤
ijw

∗
r | ≤ |x⊤

ijw
∗
r − x⊤

ijw̃i,r|. For (c) we use Lemma 7 to bound∑M
i=1

∑n
j=1 |Sij |2 as O

(
m2N2(R2

0+R2
1)

δ2κ2

)
and ∥w∗

r − w̃i,r∥22 ≤ 2
∥∥∥w∗

r −w
(0)
r

∥∥∥2
2
+2
∥∥∥w(0)

r − w̃i,r

∥∥∥2
2
≤ 2R2

0+2R2
1. For

(d) we use R0 = O
(

N√
mδλ0

(1− (1− ηλ0/4)
K)
)

from Lemma 2 and R1 = O
(

N2
√
mδλ2

0

)
from Lemma 6.

Now substituting the bounds in Equation (62) and Equation (63) in Equation (61), we have,

L(W ∗) ≤ O
(
(1− ηλ0/2)

K N

δ

)
+O

(
(2− (1− ηλ0/2)

K)
N9

λ8
0δ

4κ2m

)
(64)

which completes the proof.
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B.5 Generalization Guarantees

In this subsection we provide generalization guarantees for the FedFisher global model. To do so, we first
introduce some additional assumptions and definitions.

B.5.1 Additional Assumptions and Definitions

Definition 5. A distribution ξ over Rd × R is (λ0, δ,N)-non degenerate if for N i.i.d samples {(xk, yk)}Nk=1

from D, with probability at least 1− δ, we have λmin(H
∞) ≥ λ0 > 0.

Assumption 5. Let ξ̄ be the distribution from which the test data points are sampled. ξ̄ is a (λ0, δ/3, N)-non-
degenerate distribution and the data samples {(xk, yk)}Nk=1 ∈ D are i.i.d samples from ξ̄.

Remark 1. Note that in Assumption 5, we are only assuming that the collection of local data across clients is
drawn i.i.d from some distribution ξ̄. This does not imply that the data at any particular client i is drawn from ξ̄,
i.e., Di ∼ ξ̄ or that the data at client i is i.i.d with the data at client j for i ̸= j. The data in D can be partitioned
arbitrarily across clients and we make no assumptions on this. For instance, consider the case with M = 2 clients,
D = {(xk, yk) ∼ N (0, I)}Nk=1, D1 = {(x, y) ∈ D such that y ≥ 0} and D2 = {(x, y) ∈ D such that y < 0}. Then
clearly the data in D1 and D2 are not sampled from N (0, I) and are not i.i.d with each other.

Given the test data distribution ξ̄, for a function f : Rd → R, we have the following definitions of population loss
Lξ̄(f) and empirical loss L(f):

Lξ̄(f) = E(x,y)∼ξ̄

[
1

2
(f(x)− y)2

]
, (65)

L(f) =
1

2N

N∑
k=1

(f(xk)− yk)
2. (66)

Definition 6. (Rademacher complexity) Given N samples, x1,x2, . . . ,xN , the Rademacher complexity of a
function class F that maps from Rd to R is defined as,

RS(F) =
1

N
Eϵ1,ϵ2,...,ϵN

[
sup
f∈F

N∑
k=1

ϵkf(xk)

]
(67)

where each ϵi is sampled independently from the Rademacher distribution unif({−1, 1}).

B.5.2 Key Lemmas

We now state some key lemmas that will be used in the generalization proof.

We begin with the following lemma from Arora et al. (2019) which bounds the Rademacher complexity of the
class of two-layer neural network functions with bounded distance from initialization.

Lemma 8. (Lemma 5.4 in Arora et al. (2019)) Given R > 0, with probability at least 1− δ over the random
initialization of (W0,a), simultaneously for every B > 0, the function class

FW0,a
R,B = {fW ,a : ∥wr −w0,r∥2 ≤ R ∀r ∈ [m], ∥W −W0∥2 ≤ B}

has Rademacher complexity bounded as,

RS(FW0,a
R,B ) ≤ B√

2N

(
1 +

(
2 log 2/δ

m

)1/4
)

+
2R2
√
m

κ
+R

√
2 log

2

δ
. (68)

Lemma 9 is standard in generalization theory and used to bound the population loss in terms of the empirical
loss and Rademacher complexity of the class of functions to which our estimator belongs.
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Lemma 9. (Mohri et al. (2018)) Suppose 1
2 (f(x)− y)2 is bounded in the range [0, c]. With probability 1− δ over

the random sampling of D we have,

sup
f∈F
{Lξ̄(f)− L(f)} ≤ 2RS(F) + 3c

√
log 2/δ

2N
. (69)

Similar to Lemma 2, we can use existing results in the centralized setting to bound the total distance moved by
the local model of a client from its initialization.

Lemma 10. (Lemma C.3 and Lemma 5.3 in Arora et al. (2019)) If we set m ≥ κ−2poly(N, δ−1, λ−1
0 ) and

η = O
(
λ0

N2

)
, then with probability at least 1− δ over the random initialization, we have

1. ∥H0 −H∞∥2 ≤ O
(

N
√

logN/δ√
m

)
2.
∥∥∥W̃i −W0

∥∥∥
2
≤
√
y⊤
i (H

∞
i )−1yi +O

(
Nκ
λ0δ

)
+

poly(N,λ−1
0 ,δ−1)

m1/4κ1/2 ∀i ∈ [M ]

where yi = vec(yi1, yi2, . . . , yin) and H∞
i is defined in Claim 3.

Note that in order to ensure that part (2) holds simultaneously for all i ∈ [M ] we set the failure probability to be
δ/M in Lemma 5.3 in Arora et al. (2019).

The following lemmas are our contribution and used to bound the distance of the FedAvg model from initialization
and the FedFisher model from the FedAvg model respectively.

Lemma 11. (Bounding distance of FedAvg model from initialization)

Assuming the conditions in Lemma 10 hold true we have,∥∥∥W (0) −W0

∥∥∥
2
≤
√
2y⊤(H∞)−1y +O

(
Nκ

λ0δ

)
+

poly(N,λ−1
0 , δ−1)

m1/4κ1/2
(70)

Proof. We have,

∥∥∥W (0) −W0

∥∥∥2
2
=

∥∥∥∥∥
M∑
i=1

W̃i/M −W0

∥∥∥∥∥
2

2

≤ 1

M

M∑
i=1

∥∥∥W̃i −W0

∥∥∥2
2

≤

(
1

M

M∑
i=1

2y⊤
i (H

∞
i )−1yi

)
+O

(
N2κ2

λ2
0δ

2

)
+

poly(N,λ−1
0 , δ−1)

m1/2κ
(using Lemma 10)

= 2y⊤(Mdiag(H∞
1 ,H∞

2 , . . . ,H∞
M ))−1y +O

(
N2κ2

λ2
0δ

2

)
+

poly(N,λ−1
0 , δ−1)

m1/2κ

≤ 2y⊤(H∞)−1y +O
(
N2κ2

λ2
0δ

2

)
+

poly(N,λ−1
0 , δ−1)

m1/2κ
(using Claim 5)

(71)

Thus we have,∥∥∥W (0) −W0

∥∥∥
2
≤
√
2y⊤(H∞)−1y +O

(
Nκ

λ0δ

)
+

poly(N,λ−1
0 , δ−1)

m1/4κ1/2
(
√
a+ b ≤

√
a+
√
b) (72)

This completes the proof.
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Lemma 12. (Bounding distance of FedFisher model from FedAvg model) If we set m ≥ κ−2poly(N, δ−1, λ−1
0 ),

η = O
(
λ0

N2

)
and κ = O

(
λ0δ
N

)
then with probability at least 1− δ over the random initialization, we have,∥∥∥W ∗ −W (0)

∥∥∥
2
= O

(
N

λ0

)
(73)

Proof.

We have,

∥∥∥W ∗ −W (0)
∥∥∥2
2
=

∥∥∥∥∥
∞∑
t=0

W (t+1) −W (t)

∥∥∥∥∥
2

2

=

∥∥∥∥∥−η̃S
∞∑
t=0

Ã⊤(f̃(t)− ỹ)

∥∥∥∥∥
2

2

(Equation (50))

=

∥∥∥∥∥η̃S
∞∑
t=0

Ã⊤(I − η̃SH̃)t(f̃(0)− ỹ)

∥∥∥∥∥
2

2

(Equation (51))

=
∥∥∥Ã⊤T (f̃(0)− ỹ)

∥∥∥2
2

(
T := η̃S

∞∑
t=0

(I − η̃SH̃)t

)
= (f̃(0)− ỹ)⊤TH̃T (f̃(0)− ỹ) (H̃ = ÃÃ⊤)

(a)

≤
2
∥∥∥f̃(0)− ỹ

∥∥∥2
2

λ0

(b)
= O

(
N2

λ2
0

)
. (74)

For (a) we use the following argument. Let H̃ = V DV ⊤ be the eigen decomposition of H̃. We see that
T = η̃SV

∑∞
t=0(I − η̃SD)V ⊤ = V D−1V ⊤. Thus TH̃T = V D−1V ⊤ = H̃−1. Furthermore

∥∥∥H̃−1
∥∥∥
2
≤ 2

λ0

which follows from Lemma 5.

For (b) we use the following argument,

∥∥∥f̃(0)− ỹ
∥∥∥2
2
=

M∑
i=1

n∑
j=1

(f̃(W (0),xij)− ỹij)
2

=

M∑
i=1

n∑
j=1

(ϕ(W̃i,xij)
⊤W (0) − ϕ(W̃i,xij)

⊤W̃i)
2

≤
M∑
i=1

n∑
j=1

∥∥∥ϕ(W̃i,xij)
∥∥∥2
2

∥∥∥W (0) − W̃i

∥∥∥2
2

(Cauchy-Schwartz)

≤
M∑
i=1

n∑
j=1

∥∥∥W (0) − W̃i

∥∥∥2
2

(Equation (33))

≤ 2

M∑
i=1

n∑
j=1

∥∥∥W (0) −W0

∥∥∥2
2
+
∥∥∥W̃i −W0

∥∥∥2
2

(c)
=

M∑
i=1

n∑
j=1

O
(
N

λ0

)

= O
(
N2

λ0

)
. (75)
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where (c) follows from Lemma 10 part (2), Lemma 11 and setting κ = O
(
λ0δ
N

)
.

Thus, ∥∥∥W ∗ −W (0)
∥∥∥
2
= O

(
N

λ0

)
.

B.5.3 Generalization Theorem and Proof

We first state the generalization bound and then provide the proof below.
Theorem 2. Fix a failure probability δ ∈ (0, 1). Under Assumptions 2, 3, 5, if we let κ = O

(
λ0δ
N

)
, m ≥

κ−2poly(N,λ−1
0 , δ−1), K = Ω

(
1

ηλ0
log(N/δ)

)
then with probability at least 1− δ over the random initialization

and sampling of training data points, we have

E(x,y)∼ξ̄[(f(W
∗,x)− y)2] ≤ O

(√
N

λ0

)
+

√
y⊤(H∞)−1y

N
+O

√ log N
λ0δ

N

 (76)

Remark 2. We see that the last two terms in our bound match the generalization bound of a model trained in the
centralized setting on D (Arora et al., 2019). The first term of order O

(√
N

λ0

)
comes from bounding the distance

of the FedFisher model from FedAvg, i.e.,
∥∥W ∗ −W (0)

∥∥
2

and can be seen as the additional error incurred in

the federated setting by FedFisher. In particular, to bound
∥∥W ∗ −W (0)

∥∥
2

we need to bound
∥∥∥f̃(0)− ỹ

∥∥∥
2

(see

Lemma 11). Clearly, if the data across clients is similar then
∥∥∥f̃(0)− ỹ

∥∥∥
2

will be small. However, our current

approach does not make any bounded heterogeneity assumptions leading to a pessimistic O
(√

N
λ0

)
bound. We

conjecture that this bound can be improved by explicitly incorporating bounded data heterogeneity assumptions;
however we leave the investigation of this as future work.

Proof.

As a first step, we bound the distance of the W ∗ from W0. We have,

∥W ∗ −W0∥2 ≤
∥∥∥W ∗ −W (0)

∥∥∥
2
+
∥∥∥W (0) −W0

∥∥∥
2

≤ O
(
N

λ0

)
+
√
2y⊤(H∞)−1y +O

(
Nκ

λ0δ

)
+

poly(N,λ−1
0 , δ−1)

m1/4κ1/2
(Lemma 10, Lemma 11)

= O
(
N

λ0

)
(77)

where the last line follows from setting κ = O
(
λ0δ
N

)
, m ≥ κ−2poly(N,λ−1

0 , δ−1) and observing that√
2y⊤(H∞)−1y = O(

√
N/λ0).

Next we aim to bound ∥w∗
r −w0,r∥2 for any r ∈ [m]. Recall we already bounded this quantity in Equation (63)

as follows,

∥w∗
r −w0,r∥2 ≤

∥∥∥w∗
r −w(0)

r

∥∥∥
2
+
∥∥∥w(0)

r −w0,r

∥∥∥
2

≤
∥∥∥w∗

r −w(0)
r

∥∥∥
2
+

1

M

M∑
i=1

∥w̃i,r −w0,r∥2

= R1 +R0 (Lemma 2, Lemma 6)

= O

(
N2

√
mδλ2

0

)
+O

(
N√
mδλ0

(1− (1− ηλ0/4)
K)

)
= O

(
poly(N, δ−1, λ−1

0 )

m1/2

)
(78)
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We now use a similar argument as the proof of theorem 5.1 in Arora et al. (2019) to provide the generalization
guarantee. Under Assumption 5 we have D ∼ ξ̄, where ξ̄ is a (λ0, δ/3, N) non-degenerate distribution. This
implies with probability 1 − δ/3 we have λmin(H

∞) ≥ λ0 > 0. Assuming this event holds, we note that the
following events hold with probability 1− δ over the random initialization.

i)

L(W ∗) ≤ 1√
N

(79)

which follows from Theorem 1 by setting m = Ω
(
poly(N,λ−1

0 , δ−1, κ−1)
)
, K = Ω

(
1

ηλ0
log(N/δ)

)
, η = O

(
λ0

N2

)
and ηS = O

(
λ0

N2

)
.

ii)

∥W ∗ −W0∥2 ≤ B and ∥w∗
r −w0,r∥2 ≤ R where B = O

(
N

λ0

)
and R = O

(
poly(N, δ−1, λ−1

0 )

m1/2

)
(80)

which follows from Equation (77) and Equation (78) respectively.

iii) For k = 1, 2, . . . , let Bk = k. Let k∗ be the smallest integer such that Bk∗ = k∗ ≥ B. This implies Bk∗ ≤ B+1
and k∗ = O (N/λ0). Using Lemma 8 we have,

RS(FW0,a
R,Bk∗ ) ≤

B + 1√
2N

(
1 +

(
2 log 2/δ

m

)1/4
)

+
2R2
√
m

κ
+R

√
2 log

2

δ

≤ O

(√
N

λ0

)
+

√
y⊤(H∞)−1y

N
+

2√
N

(81)

where the last inequality follows from setting m ≥ poly(N,λ−1
0 , δ−1, κ−1), κ = O

(
λδ
N

)
and Equation (77). Also

note that fW ∗,a ∈ FW0,a
R,B∗

k
.

iv) Using Lemma 9 and a union bound over all k ∈ {0, 1, 2,O(N/δ)} we have,

sup
f∈FW0,a

R,Bk

{Lξ̄(f)− L(f)} ≤ 2RS(FW0,a
R,Bk

) +O

(√
log(N/δλ0)

N

)
∀k ∈ {0, 1, 2,O(N/δ)}. (82)

Note that we can scale down the failure probabilities in each of the above events to ensure that all the above
events hold simultaneously with probability 1− δ, via union bound. Now assuming all the above conditions hold
simultaneously, we have,

Lξ̄(fW ∗,a) ≤ L(fW ∗,a) + 2RS(FW0,a
R,Bk∗ ) +O

√ log N
λ0δ

N

 (from Equation (82))

≤ 1√
N

+ 2RS(FW0,a
R,Bk∗ ) +O

√ log N
λ0δ

N

 (from Equation (79))

≤ O

(√
N

λ0

)
+

√
y⊤(H∞)−1y

N
+O

√ log N
λ0δ

N

 (from Equation (80) and Equation (81))

(83)

which completes the proof.
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C Communication Efficiency of FedFisher Variants

We assume that the number of bits used to represent a scalar is 32 by default. For FedAvg, clients just need
to transfer W̃i, making the total communication cost 32d bits. Our goal in this section is to show that we can
introduce compression techniques in FedFisher(Diag) and FedFisher(K-FAC) to match the communication cost
of FedAvg while having similar accuracy as the uncompressed version of these algorithms. To do so, we use
standard uniform quantization and SVD compression as described below.

Uniform Quantization. Let sq ∈ {1, 2, . . . , 16} be the factor by which we want to compress our information.
We define number of quantization levels as lq = 2⌊32/sq⌋−1− 1. Now given a vector x ∈ Rd, we define each element
of the quantized x as follows,

[Q(x, sq)]i = ∥x∥∞sign(xi)ζi(x, sq) (84)

where ∥x∥∞ = maxi∈[d] |xi| and ζi(x, sq) =
⌈
lq

|xi|
∥x∥∞

⌉
/lq. Note that ζi(x, sq) can take only lq + 1 = 2⌊32/sq⌋−1

distinct values and therefore to communicate ζi(x, sq) we only need ⌊32/sq⌋ − 1 bits. To communicate sign(xi)
we need 1 bit and to communicate ∥x∥∞ we need 32 bits. Thus the communication cost of Q(x, sq) becomes
d(⌊32/sq⌋ − 1) + d+ 32 = d(⌊32/sq⌋) + 32 bits.

Singular Value Decomposition Compression. Let A = R(m×m) matrix. The SVD decomposition of A can
be written as,

A = UΣV ⊤ (85)

where U = R(m×m) is the matrix of left singular vectors, Σ ∈ R(m×m) is a diagonal matrix with each element
corresponding to a singular value and V = R(m×m) is the matrix of right of singular vectors. The singular
values are assumed to be sorted by magnitude, i.e., |Σ1,1| ≥ |Σ2,2| . . . , |Σm,m|. We see that the total cost for
communicating A will 32m2 bits. To reduce this cost, a standard idea is to send only a limited number of singular
values and singular vectors obtained by the SVD decomposition of A. Specifically let sv be the factor by which
we want to compress the information in A. We define lv = ⌊m/2sv⌋. Then the SVD decompression of A can be
defined as,

V (A, sv) = UlvΣlvV
⊤
lv (86)

where Ulv ∈ R(m×lv) corresponds to first lv columns of U , Σlv ∈ R(lv×lv) is a diagonal matrix corresponding to
the first lv elements of Σ and V ∈ R(m×lv) corresponds to the first lv columns of V . The communication cost of
V (A, sv) becomes 32(mlv + lv +mlv) ≈ 64mlv ≤ 32m2/sv bits, thereby achieving close to sv compression.

Compression in FedFisher(Diag). For FedFisher(Diag) , clients need to communicate W̃i and F̃i where
the number of parameters in F̃i is exactly d. To ensure comparable communication to FedAvg, we quantize the
weights corresponding to each layer of a neural network in W̃i and F̃i by a factor of 2, i.e, sq = 2. This ensures that
the communication of FedFisher(Diag) is 32(d+2L) bits where L is the number of layers in the neural network.
We note that there is a small overhead of 64L bits; however is negligible since d≫ 2L for our neural networks.
Table 4 shows the effects of compression on the accuracy of FedFisher(Diag) for CIFAR-10 and FashionMNIST
datasets. For FashionMNIST the compressed version even slightly improves upon the uncompressed version which
can be attributed to an additional regularization effect of compression. For CIFAR-10, the drop in accuracy is
less than 1%.

Compression in FedFisher(K-FAC). Let {m0,m1,m2, . . . ,mL} be the dimensions of each layer of a L layer
neural network with m0 corresponding to the dimension of the input. For FedFisher(K-FAC), F̃i can be
represented as {(A1 ⊗B1), (A2 ⊗B2), . . . , (AL ⊗BL)} where Al ∈ R(ml−1×ml−1) and Bl ∈ R(ml×ml) represents
the Kronecker factors of the l-th layer. Thus, the communication cost of F̃i in this case is

∑L
l=1 32(m

2
l−1 +m2

l )
bits.

Our goal is to ensure that the communication cost of compressed F̃i is less than 16d bits (we compress W̃i to 16d
bits using quantization, similar to FedFisher(Diag)). To do so, we use a mix of quantization and SVD compression.
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Table 4: Test accuracy performance of FedFisher(K-FAC) with different levels of sq compression on FashionMNIST and
CIFAR10 with 5 clients and α = 0.1.

Dataset sq Compression Test Accuracy

FashionMNIST 1 − 54.64±4.91

2 2× 56.56±5.57

CIFAR-10 1 − 39.68±2.45

2 2× 39.44±2.31

Specifically each Al and Bl is first compressed to the SVD decomposition corresponding to maintaining the
top lv vectors. This ensures that the communication cost of (Al,Bl) is 32(2ml−1lv + 2mllv + 2lv). This SVD
decomposition is then further compressed using sq quantization compression to ensure that the communication
cost is (32/sq)(2ml−1lv + 2mllv + 2lv). We set sq and lv such that

∑L
l=1(32/sq)(2ml−1lv + 2mllv + 2lv) ≤ 16d.

The corresponding sv is then defined as ⌈m/2lv⌉. Table 5 summarizes the results obtained by different levels of
sq and sv for the FashionMNIST and CIFAR datasets respectively. We see that keeping sq = 4 and setting sv
accordingly usually gives the best performance and hence we use this setting for all our experiments.

Table 5: Test accuracy performance of FedFisher(K-FAC) with different levels of sq × sv compression on FashionMNIST
and CIFAR10 with 5 clients and α = 0.1.

Dataset sq sv Compression Test Accuracy

1 1 − 68.47±2.73

FashionMNIST 2 3 6× 65.87±3.42

4 1.5 6× 68.96±2.71

6 1 6× 63.90±4.34

1 1 − 49.13±1.25

CIFAR-10 2 4 8× 45.29±1.30

4 2 8× 47.60±0.84

6 1.33 8× 43.53±1.85
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D Additional Experimental and Details

D.1 Details on Synthetic Experiment

Our setup consists of M = 2 clients and n = 100 data points at each client with x ∈ R2 and y ∈ R. The data
at each client is generated following a similar procedure as Li et al. (2020a). For each i ∈ [M ], we first sample
wi ∼ N (0, 1), bi ∼ N (0, 1), wi ∼ N (wi, I) ∈ R2, bi ∼ N (bi, I) ∈ R2. Then for all j ∈ [n] we have x̃ij ∼ N (bi,Σ),
xij = x̃ij/ ∥x̃ij∥2 and yij = w⊤

i xij where Σ = diag(1, 2−1.2).

For our two layer neural network, we initialize the weights in the second layer as ar = 1√
m

with probability 1/2

or ar = − 1√
m

otherwise for all r ∈ [m]. We keep the weights in the second layer to be fixed as assumed in our
analysis. The weights in the first layer are initialized as wr ∼ N

(
0, 1

2

)
for all r ∈ [m]. We set η = 0.1 for the

local optimization and ηS = 0.001 for the global optimization. Results in Figure 1(a) were averaged over 50 seeds
and results in Figure 1(b) were averaged over 10 random seeds.

D.2 Experiment on Varying Number of Clients

Figure 3 shows the result our experiment where we keep the heterogeneity to be fixed as α = 0.3 and vary the
number of clients M = {10, 20, 30}. Note that as the total dataset size is fixed, as we increase M , each client gets
assigned fewer data samples. Thus as M increases, local models have a larger tendency to overfit the data they
are trained on, making it harder to aggregate such models to achieve a global model with good performance.
Nonetheless we see that FedFisher variants, especially FedFisher(K-FAC), continue to outperform baselines
even for large M with up to 8% improvement in some cases such as CIFAR-10.
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Figure 3: Test accuracy results on different datasets by keeping α = 0.3 fixed and varying number of clients M . FedFisher
variants, especially FedFisher(K-FAC), consistently outperforms other baselines.

D.3 Hyperparameter Details

For hyperparameter tuning we assume that the server has access to a dataset of 500 samples, sampled uniformly
from the original training set. We describe the hyperparameters tuned for each of the algorithms below.

FedFisher(Diag) and FedFisher(K-FAC). While Algorithm 1 performs the server optimization with GD, this
can be replaced with any other suitable GD optimizer. We choose to use the Adam optimizer here. We set
ηS = 0.01, β1 = 0.9, β2 = 0.99 and ϵ = 0.01 for the Adam optimizer and number of steps T = 2000 for all our
experiments. We measure the validation performance after every 100 steps and use the model which achieves the
best validation performance as the final FedFisher model.

PFNM. For PFNM we use the version applicable for CNNs whose code is available at https://github.com/IBM/
FedMA. We keep the default values of the hyperparameters σ = 1, σ0 = 1 and γ = 7 as in the original code in all
our experiments.

DENSE. For DENSE we use the default settings as described in Section 3.1.4 of Zhang et al. (2022) and official
code implementation available at https://github.com/zj-jayzhang/DENSE. In particular we set TG = 30, λ1 =
1, λ2 = 0.5 and train the server model with SGD optimizer with learning rate ηS = 0.01 and momentum factor
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0.9. We use the validation data to determine the model which achieves the best validation performance during
the server training and use this as the final model.

OTFusion. The official code for OTFusion available at https://github.com/sidak/otfusion contains more
than 15 hyperparameters, making it hard to tune each of these parameters. Among these we found that the
correction and past-correction hyperparameter affect performance most and hence we focus on tuning these
hyperparameters for our experiments. In particular we vary correction ∈ {True,False} and past-correction
∈ {True,False} in our experiments and choose the model which achieves the best validation performance.

RegMean. For RegMean, we keep all parameters the same as the official code available at https://github.com/
bloomberg/dataless-model-merging and only tune α in the range {0.1, 0.9} using validation data as suggested
by the authors.

FisherMerge. For FisherMerge, we compute the diagonal Fisher at each client using the entire dataset
available at each client with a batch size of 1 and set λi = pi where pi is the proportion of data available at
client i. We also keep the fisher-floor variable to be 10−6 as in the official code implementation available at
https://github.com/mmatena/model_merging/tree/master/model_merging.

D.4 Computation Details

Experiments in Table 2, Table 4, Table 5 and Figure 3 were averaged over 5 seeds and run on a NVIDIA TitanX
GPU. Results in Figure 2 and Table 3 were averaged over 3 seeds and run on NVIDIA A100 GPU.
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E Measuring Privacy Using Inversion Attacks

Measuring Privacy using Inversion Attacks. As discussed in Section 4, for FedFisher(K-FAC), while the
local models can be securely aggregated, the server does need access to individual K-FAC information at clients
to perform the global optimization. We argue, however, that this is more privacy-preserving than having access
to the local models which is needed for knowledge distillation and neuron matching baselines. We demonstrate
this empirically via the following inversion attack on the MNIST dataset LeCun (1998).

We consider a setup where client 1 has all the images corresponding to label 3 along with 1000 randomly sampled
images. The remaining data is then split among 9 clients with α = 0.1. The objective at the server is to
reconstruct the data at client 1 corresponding to label 3. To do so, we adopt the attack strategy outlined in Zhang
et al. (2020), a popular model inversion attack using GANS. We assume that the server has access to auxiliary
data of size 5000 that is randomly sampled from the data belonging to clients 2 to 10. Note that this ensures
that the server does not have any samples corresponding to label 3. We now consider three cases (i) server has
access to the local model at client 1 (DENSE, OTFusion, PFNM) (ii) server has access to the aggregate of local
models (FedAvg) and (iii) server has access to the aggregate of local model plus the K-FAC computed by client 1
(FedFisher(K-FAC)). To modify the attack to include the K-FAC information, we add an additional loss term
that penalizes the difference between the K-FAC on the generated data and the given K-FAC. In particular, we
use the squared loss between the elements of the generated K-FAC and given K-FAC, summed over all elements.

Table 6 summarizes the attack accuracy in the different cases. Figure 4 shows the generated images for the first
and third case. We see that while adding the K-FAC information slightly improves the attack accuracy compared
to case (ii), the overall accuracy is still much lower than case (i) as also evidenced by the generated images. This
hints at the difficulty of inverting the K-FAC to generate meaningful client data, especially when we do not have
access to the local models themselves. We acknowledge that there could be more sophisticated attacks designed
especially for inverting the K-FAC; however we leave a investigation of such methods to future work.

Table 6: Inversion attack accuracy at server corresponding to different algorithms. While FedFisher(K-FAC) improves
attack accuracy compared to FedAvg, it is still lower than other one-shot baselines.

Algorithm Attack Accuracy

OTFusion, PFNM, DENSE 78.4±3.0

FedAvg 5.0±1.0

FedFisher(K-FAC) 9.6±2.9

(a) (b)

Figure 4: Reconstructed images when (a) server has access to the local model at first client and (b) server has access to
the global model and K-FAC information of first client. The goal is to generate images corresponding to digit 3.
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