
Feasible Q-Learning for Average Reward Reinforcement Learning

Ying Jin Jose Blanchet Ramki Gummadi Zhengyuan Zhou2

Stanford University Stanford University Google New York University

Abstract

Average reward reinforcement learning (RL)
provides a suitable framework for capturing
the objective (i.e. long-run average reward)
for continuing tasks, where there is often
no natural way to identify a discount fac-
tor. However, existing average reward RL al-
gorithms with sample complexity guarantees
are not feasible, as they take as input the (un-
known) mixing time of the Markov decision
process (MDP). In this paper, we make initial
progress towards addressing this open prob-
lem. We design a feasible average-reward Q-
learning framework that requires no knowl-
edge of any problem parameter as input.
Our framework is based on discounted Q-
learning, while we dynamically adapt the dis-
count factor (and hence the effective horizon)
to progressively approximate the average re-
ward. In the synchronous setting, we solve
three tasks: (i) learn a policy that is ϵ-close
to optimal, (ii) estimate optimal average re-
ward with ϵ-accuracy, and (iii) estimate the
bias function (similar to Q-function in dis-
counted case) with ϵ-accuracy. We show that
with carefully designed adaptation schemes,

(i) can be achieved with Õ(
SAt8mix

ϵ8) samples,

(ii) with Õ(
SAt5mix

ϵ5) samples, and (iii) with

Õ(SAB
ϵ9) samples, where tmix is the mixing

time, and B > 0 is an MDP-dependent con-
stant. To our knowledge, we provide the first
finite-sample guarantees that are polynomial
in S,A, tmix, ϵ for a feasible variant of Q-
learning. That said, the sample complexity
bounds have tremendous room for improve-

2This work is generously supported by National Science
Foundation grants CCF-2312205 and CCF-2312204. Cor-
respond to ying531@stanford.edu and zz26@nyu.edu.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

ment, which we leave for the community’s
best minds. Preliminary simulations verify
that our framework is effective without prior
knowledge of parameters as input.

1 Introduction

Reinforcement learning (RL) has achieved remarkable
success in simulated environments such as beating
world human champions in playing poker, chess and
Go (Brown and Sandholm, 2018; Schrittwieser et al.,
2020; Silver et al., 2018; Mnih et al., 2015; Schaeffer
et al., 1992; Campbell et al., 2002). Such empirical
successes–and the excitements generated therefrom–
have motivated a remarkably fruitful line of research
on the sample complexity of various RL algorithms,
which characterizes how many samples (from a gener-
ative model such as a simulator) are needed to obtain
an ϵ-optimal policy.

Regarding sample complexity, an important setting
is the discounted infinite-horizon RL, where the
goal is to maximize the (infinite) sum of all future
γ-discounted rewards for a given factor 0 < γ <
1. Broadly speaking, there are (at least) two main
classes of methods to tackle the problem: model-based
methods and model-free methods. Model-free algo-
rithms learn to select actions without model estima-
tion. Compared with model-based ones (Azar et al.,
2013; Sidford et al., 2018b,a; Wang, 2020; Agarwal
et al., 2020), they are often more computationally effi-
cient, have less storage overhead, and are easy to gen-
eralize to RL with function approximation (Sutton and
Barto, 2018; François-Lavet et al., 2018). In partic-
ular, Q-learning (Watkins and Dayan, 1992), as the
prototypical model-free algorithm, has been studied3

extensively in discounted infinite-horizon RL (Kearns
and Singh, 1999; Even-Dar et al., 2003; Beck and
Srikant, 2012; Wainwright, 2019a; Chen et al., 2020;
Li et al., 2021).

3Earlier works on discounted Q-learning focused on
characterizing its asymptotic convergence without any
finite-sample guarantees; see Jaakkola et al. (1994); Tsit-
siklis (1994); Szepesvári (1998); Borkar and Meyn (2000).

Feasible Q-Learning for Average Reward Reinforcement Learning

Such remarkable research efforts notwithstanding,
average-reward infinite-horizon RL remains far
from being resolved: As recognized by the RL commu-
nity (Sutton and Barto, 2018; Wan et al., 2021; Ma-
hadevan, 1996; Dewanto et al., 2020), average reward
RL, which provides a more natural objective for many
continuing tasks, is a much more challenging problem
and has remained largely under-explored. The sparsity
of theoretical understanding also limits the implemen-
tation. Indeed, discount factors are often used in prac-
tical instantiations of RL algorithms, even when the
final objective of interest is clearly the average undis-
counted reward in the long term. This is partly due
to the fact that algorithms to directly optimize aver-
age reward are much more challenging to characterize
than the discounted ones. As a result, popular RL
algorithms make an ad-hoc choice of a fixed discount
factor that are only partially understood (Tang et al.,
2021). However, many RL applications do not have a
natural discount factor that can be endogenously iden-
tified.

Classical results (Blackwell, 1962; Mahadevan, 1996)
connect the discounted and average reward formula-
tions via fundamental relations between optimal value
functions asymptotically, yet there is only limited
finite-sample guarantees related to algorithmic trans-
fer between the two frameworks, given the ubiquitous
practice of implementing the former to solve the lat-
ter. Recent works leverage similar relations to devise
algorithms that optimizes the γ-discounted reward to
approximate optimal average reward for a carefully de-
signed, fixed γ (Jin and Sidford, 2020, 2021). How-
ever, these (model-based) algorithms that have finite-
sample guarantees all require knowing the mixing time
tmix and are hence infeasible. In parallel, finite-sample
guarantees for model-free methods (sometimes called
R-learning, see Section 1.1) for average reward are
even more scarce; the only one we know of is very
recent (Zhang et al., 2021), and the algorithm therein
also relies on unknown parameters as input. As such,
and in light of the merits of model-free RL algo-
rithms mentioned before, we are naturally led to the
open question:

Can we design a feasible model-free average-
reward RL algorithm with finite-sample guar-
antees for the sample complexity?

In this paper, we provide new theoretical results that
highlight an important algorithmic role for the dis-
counted formulation as a subroutine in solving sev-
eral learning tasks in the average reward scenario. In
contrast to the typical use of a fixed discount fac-
tor, we highlight the importance of a carefully selected
schedule for progressively finer discount factors to ob-

tain a solution to the average reward objective. Our
high-level idea is in concordance with Hordijk and Ti-
jms (1975) which provides an asymptotic analysis for
such paradigm when planning with knowledge of the
MDP; in contrast, we provide finite-sample analysis for
a learning problem, which requires judiciously chosen
schemes of both discount factors and learning rates to
tackle random data.

1.1 Related Work

We include more detailed discussion of related work in
this part, extending Section 1.2 in the main text.

Model-based average-reward RL. (Kearns and
Singh, 2002) is an early work on average-reward
RL that proposes a model-based learning algo-
rithm and establishes a sample complexity bound

of Õ(
S5poly(A)t5mix

ϵ6), where poly(A) is an unspeci-
fied polynomial of A. From an algorithmic stand-
point, an important issue of the algorithm is that
it requires the knowledge of both tmix and the opti-
mal average reward4. More recently, several differ-
ent model-based average reward RL algorithms have
been proposed Wang (2017); Zhang and Xie (2023);
Jin and Sidford (2020, 2021), with the latter two
achieving state-of-the-art sample-complexity bounds

of Õ(
SAt2mix

ϵ2) and Õ(SAtmix

ϵ3), respectively. All three
algorithms rely on knowing tmix or similar quanti-
ties. Jin and Sidford (2021) further provides a lower

bound of Õ(SAtmix

ϵ2) for average-reward RL when tmix

is known. Consequently, while having the pleasing
optimal dependence on SA, a minimax optimal algo-
rithm for average-reward RL is not yet known even
under known tmix, an impractical assumption to be-
gin with.

Model-free average-reward RL. More recently,
driven by the merits of model-free algorithms, Zhang
et al. (2021) provides the very first finite-sample anal-
ysis of a average reward Q-learning variant, yielding

a sample complexity bound of Õ(SAJ3

(1−δ)5ϵ2), where J

and δ are two unknown MDP-dependent constants
that may arbitrarily depend on tmix. This pioneer-
ing bound itself is valuable in light of the difficulty in
characterizing finite-sample guarantees of Q-learning
algorithms for average reward RL. However, the issue
is that Zhang et al. (2021) assumes J and δ are known
and given, rendering the algorithm infeasible.

Feasible average-reward RL with asymptotic
guarantees. The only feasible average-reward Q-
learning (sometimes also called R-learning) variants

4How to learn this quantity efficiently also remains
under-explored. We provide an answer on this as well.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou6

that we know of are Wan et al. (2021); Abounadi et al.
(2001), which attempt to directly learn the Q-values
(called bias function in average-reward RL) associated
with the Bellman equation for average reward MDP
(discussed in more detail in Section 2). However, for
both algorithms, only asymptotic consistency is es-
tablished. It is largely unclear whether finite-sample
sample complexity bounds can be established for R-
learning algorithms, since the underlying update is not
a contraction. Remotely related is Hordijk and Tijms
(1975), which shares a similar spirit as our methods for
gradually adjusting discount factors to approximate
average reward; however, it requires the exact knowl-
edge of the MDP and hence solves a planning – rather
than learning – problem (see the next subsection for
more details), and only provide asymptotic analysis.

Other metrics for average-reward RL. Finally,
we mention in passing that the literature has also stud-
ied other metrics such as regret Jaksch et al. (2010);
Jin et al. (2018); Dong et al. (2019); Fruit et al. (2020);
Dong et al. (2021); Wei et al. (2020), which is not the
focus here. While there are online-to-batch tricks to
turn regrets to sample complexity (e.g., via a randomly
sample from history of policies), they can not tell which
policy is ϵ-close to optimal; this deviates from our goal
of designing a practically feasible algorithm and an-
alyzing its sample complexity. Instead, we focus on
algorithms with a deterministic output given data.

1.2 Our Contributions and Related Work

First, we design a feasible average-reward Q-learning
algorithmic framework that requires no knowledge of
any problem parameter. In contrast to the aforemen-
tioned Q-learning variants for average-reward RL Wan
et al. (2021); Abounadi et al. (2001); Zhang et al.
(2021) that all aim to directly learn the bias function
(which determines the optimal policy; see Section 2)
in the average-reward Bellman equation, our algorith-
mic framework uses discounted Q-learning but dynam-
ically adjusts the discount factor towards 1 – and hence
gradually enlarging the effective horizon – to yield pro-
gressively finer approximations of the average-reward
setting. This idea is quite simple and intuitive; how-
ever, the challenge lies in designing the specific hori-
zon adaptation scheme (involving the simultaneous ad-
justment of learning rate and discount factor; see Al-
gorithm 1) such that the finite-sample analysis goes
through. Note that unlike in the discounted setting
with a fixed γ, we now have a “moving target” prob-
lem as the discount factor is constantly shifting and
weaker contraction, thereby making the analysis much
more difficult. On this note, an early work back to
1970s Hordijk and Tijms (1975) shares a similar idea
of adjusting discount factors; however, it only provides

asymptotic guarantees (and does so without any spe-
cific adaptation scheme); further, it requires the exact
knowledge of the MDP and hence solves a planning
problem.

Second, we offer two concrete instantiations of our
framework under (distinct) judiciously chosen adap-
tation schemes. Using the first scheme, stopping our
algorithm at any iteration T yields a policy whose
average reward differs from the optimal by at most
Õ(tmix/T

1/8). Under the synchronous setting we con-
sider (see Section 2), it translates to a sample complex-

ity bound of Õ(SAt8mix/ϵ
8). Furthermore, if the goal is

to simply estimate the optimal average reward, then
we can do so at a faster rate by our second scheme:
stopping at any iteration T yields an estimation ac-
curacy of Õ(tmix/T

1/5), which translates to a sample

complexity of Õ(SAt5mix/ϵ
5). These results also indi-

cate that our algorithm is any time: we do not need
to know T beforehand when running the algorithm5.
To the best of our knowledge, these are the first finite-
sample guarantees for a feasible Q-learning algorithm.
That said, we believe these bounds can be improved;
and we view our results as an open invitation for fur-
ther progress in feasible average-reward RL.

Additionally, although not the main focus here, we
also extend our algorithmic framework to estimate
the bias function in the average-reward MDP Bell-
man equation (Section 5). As mentioned before, exist-
ing average-reward Q-learning algorithms Wan et al.
(2021); Abounadi et al. (2001); Zhang and Ji (2019);
Zhang et al. (2021) learn a policy through estimat-
ing the bias function. Viewed through this lens, we
provide an alternative way for estimating this quan-
tity that has a sample complexity of Õ(SAB

ϵ9). Similar
to Zhang et al. (2021) (which is the only work that has
a finite-sample guarantee for estimating the bias func-
tion), our bound has an unpleasing dependence on an
unknown MDP-dependent constant B. However, dif-
ferent from Zhang et al. (2021), our algorithm itself is
feasible (and does not need to know B or any other
problem parameter). Note that the two bounds – ours
and the one in Zhang et al. (2021) – are incompara-
ble as all of those problem-dependent constants are
unknown.

Finally, through preliminary simulations, we verify
that our algorithm learns the near-optimal policy with
satisfactory convergence, and performs well across
MDPs with various values of mixing time without the
need of any prior knowledge of the mixing time.

5Algorithms without this property cannot provably
adapt to additional samples beyond an initially chosen T .

Feasible Q-Learning for Average Reward Reinforcement Learning

2 Problem Setup

We consider an infinite-horizon tabular MDP M =
(S,A, P, r), with finite state space S = {1, . . . , S}, fi-
nite action space A = {1, . . . , A}, transition probabil-
ity P : S × A → ∆(S) (i.e., P (s′ | s, a) is the prob-
ability of transiting to s′ from a state-action pair
(s, a) ∈ S ×A), and reward function r : S ×A → [0, 1]
(i.e., r(s, a) is the immediate reward at state s ∈ S if
action a ∈ A is taken). We let π : S → ∆(A) denote
a policy, i.e., π(a | s) is the probability of taking a at
state s. When π is a deterministic policy, π(s) denotes
the action chosen at state s.

Learning objective. Given a policy π, we define its
long-term average reward as

V π(s) = lim inf
T→∞

Eπ

[
1

T

T∑
k=1

r(sk, ak)

∣∣∣∣ s1 = s

]
for all s ∈ S. Here Eπ denotes the expectation over
the trajectory {(sk, ak)}k≥0 of the MDP under policy
π. Under sufficient generality7, the standard MDP
theory (Puterman, 2014) shows that for any policy π,
there exists a constant Jπ ∈ [0, 1] such that V π(s) =
Jπ for all s ∈ S. The long-term average reward of
π initialized at any state-action pair also equals Jπ,
that is, Jπ ≡ lim infT→∞ Eπ

[
1
T

∑T
k=1 r(sk, ak)

∣∣ s1 =

s, a1 = a
]
for all (s, a) ∈ S × A. We use Jπ ∈ [0, 1] to

denote the average reward of policy π.

The optimal policy π∗ for average reward attains
Jπ∗

= maxπ J
π, and we denote J∗ = Jπ∗

. Further-
more, there exists a function q∗ : S×A → R so that the
following Bellman equation holds for all (s, a) ∈ S×A:

J∗ + q∗(s, a) = r(s, a) + Es′∼P (· | s,a)
[
v∗(s′)

]
, (1)

where v∗(s′) = maxa′∈A q∗(s′, a′) for all s′ ∈ S. The
optimal policy π∗ is greedy w.r.t. q∗, i.e., π∗(s) =
argmaxa∈A q∗(s, a) for all s ∈ S. The solution (q∗, v∗)
to (1) is unique up to a constant; one solution is

v∗(s) = Eπ∗

[∞∑
k=1

(
r(sk, ak)− J∗) ∣∣∣∣ s1 = s

]
, (2)

q∗(s, a) = Eπ∗

[∞∑
k=1

(
r(sk, ak)− J∗) ∣∣∣∣ s1 = s, a1 = a

]
,

where v∗ and q∗ are called the value bias function and
q-value bias function respectively (Puterman, 2014).

In this work, we will consider three tasks: (1) learning
the optimal reward J∗ up to ϵ-accuracy, (2) learning a

7Puterman (2014) shows that if the state space S is
finite or countable, then the limit (instead of liminf) V π(s)
exists; if the chain induced by π is irreducible or has a
single recurrent class, then V π(s) is a constant function.
We operate in this scenario.

policy whose average reward is ϵ-close to J∗, and (3)
learning the bias functions q∗ and v∗ up to constants.

2.1 Sampling Scheme: Synchronous Setting
with a Generative Model

Throughout this paper, we work under the syn-
chronous scenario with a generative model (or sim-
ulator) (Even-Dar et al., 2003). That is, we con-
sider algorithms that proceed in multiple iterations.
In each iteration t, we receive an independent sample
s′ ∼ P (· | s, a) for all state-action pairs (s, a) ∈ S ×A.
Despite being relatively simple, it serves as an ideal-
istic sampling protocol that has received much atten-
tion for various RL algorithms throughout the RL lit-
erature (Kearns et al., 2002; Kakade, 2003; Even-Dar
et al., 2003; Azar et al., 2013; Beck and Srikant, 2012;
Sidford et al., 2018a,b; Wainwright, 2019a,b; Yang and
Wang, 2019; Zanette et al., 2019; Agarwal et al., 2020;
Li et al., 2021). We focus on this setting as a start-
ing point for studying sample complexity of feasible
average-reward RL algorithms.

2.2 Mixing time and other related notions

Definition 2.1. The mixing time tmix of an MDP is

max
π

min
{
t : max

q∈∆(S)
dTV

(
(Pπ)t(q), νπ

)
≤ 1/4

}
, (3)

where dTV(µ, ν) := 1
2

∑
s∈S |µ(s) − ν(s)| is the total

variation distance, and (Pπ)t(q) is the distribution of
st induced by policy π with initial distribution s0 ∼ q.
We suppose for any policy π there exists a stationary
distribution νπ ∈ ∆(S); otherwise tmix = ∞.

The notion of mixing time (3) is widely adopted in the
literature of average reward MDPs (Wei et al., 2020;
Jin and Sidford, 2021), and our assumption is standard
inthe liteature Wang (2017); Jin and Sidford (2020).
While we adopt such notion to be consistent with the
literature, our analysis framework also works under
other regularity conditions.

Remark 2.2. Our results remain true if the mixing
time (3) is replaced by the reward averaging time sim-
ilar to De Farias and Van Roy (2006); Dong et al.
(2021); the latter is also closely related to the no-
tion of averaging time considered in Kearns and Singh
(2002). To be specific, the reward averaging time is de-
fined as τ = maxπ supT≥1

{
T · |Jπ−V π(s, T)|

}
, where

V π(s, T) = Eπ

[
1
T

∑T
t=1 r(st, at)

∣∣ s1 = s
]
is the T -step

average reward value function of π. Our results carry
over to this setting with tmix replaced by τ < ∞ in the
upper bound.

Remark 2.3. Our framework also applies to weakly
communicating MDPs (Wei et al., 2020). Define the

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou8

span of the optimal γ-discounted value function as
sp(γ) =

(
maxs V

∗
γ (s)−mins V

∗
γ (s)

)
/(1−γ), where V ∗

γ

is the optimal discounted value function with a scaling;
the exact definition of V ∗

γ is deferred to (4). It is ar-
gued in Wei et al. (2020) that the span is bounded by
the diameter of the MDP (Lattimore and Szepesvári,
2020) for weakly-communicating MDPs. Our bound
applies to MDPs with bounded spans with tmix re-
placed by supγ∈(0,1) sp(γ).

3 Algorithm: Dynamic Horizon
Q-Learning

3.1 Recap: Discounted Q-Learning

We start with a brief recap on the celebrated Q-
learning algorithm for discounted value functions.
Given any discount factor γ ∈ (0, 1) and any policy
π, with rewards rk = r(sk, ak), we denote the rescaled
γ-discounted value function and Q-function of π as

V π
γ (s) = (1− γ)Eπ

[∑∞
k=1γ

t−1rk
∣∣ s1 = s

]
,

Qπ
γ (s, a) = (1− γ)Eπ

[∑∞
k=1γ

k−1rk
∣∣ s1 = s, a1 = a

]
for all (s, a) ∈ S × A. The optimal discounted value
function V ∗

γ and Q-function Q∗
γ are

V ∗
γ (s) = max

π
V π
γ (s), Q∗

γ(s, a) = max
π

Qπ
γ (s, a) (4)

for (s, a) ∈ S×A. For preparation, we also denote the
unscaled γ-discounted value and Q-functions of π as

vπγ = V π
γ /(1− γ), qπγ = Qπ

γ/(1− γ),

and the optimal ones as

v∗γ = V ∗
γ /(1− γ), q∗γ = Q∗

γ/(1− γ). (5)

The optimal policy for γ-discounted reward is de-
noted as π∗

γ . It is well-known that π∗
γ is a deter-

ministic policy with π∗
γ(s) = argmaxa∈A Q∗

γ(s, a) =
argmaxa∈A q∗γ(s, a).

In synchronous setting, the Q-learning algorithm for
γ-discounted rewards maintains an estimate Qt : S ×
A → [0, 1] for the optimal Q-function Q∗

γ . In each iter-
ation t, it updates all entries of the estimate at once,
according to Qt = (1 − ηt)Qt−1 + ηtTt(Qt−1). Here
ηt ∈ (0, 1] is the learning rate or the step size, and Tt is
the empirical Bellman operator depending on the sam-
ples collected in the t-th iteration (with proper scal-
ing): Tt(Q)(s, a) = (1−γ)r(s, a)+γmaxa′∈A Q(s′, a′),
where s′ ∼ P (· | s, a) is the independent sample col-
lected for (s, a) from the generative model.

3.2 Dynamic Horizon Q-Learning Framework

In the existing works of Wei et al. (2020); Jin and
Sidford (2021), algorithms for the discounted setting
are applied with a properly chosen discounted factor
γ that depends on the known mixing time and a pre-
specified sample size. Rather distinct from them, we
avoid the knowledge of the mixing time and a pre-
specified sample size by employing a series of dynamic
discount factors.

To be specific, given a sequence of discount factors
{γt}t≥1, we maintain an estimateQt : S×A → R in the
t-th iteration. In each iteration, the algorithm updates
all entries of the Q-function estimate via

Qt(s, a) = (1− ηt)Qt−1(s, a)

+ ηt
[
(1− γt)r(s, a) + γt max

a′∈A
Qt−1

(
st(s, a), a

′)] (6)

for all state-action pairs (s, a) ∈ S × A. Here st(s, a)
is the independent sample from the generative model,
γt is the discount factor and ηt ∈ (0, 1] is the learning
rate in the t-th iteration. Correspondingly, we define
the estimate of value function in the t-th iteration as
Vt(s) := maxa∈A Qt(s, a) for all s ∈ S, and the associ-
ated greedy policy as

πt(s) := argmax
a∈A

Qt(s, a), (7)

so that Vt(s) = Qt(s, πt(s)) for all s ∈ S. The com-
plete algorithm is summarized as follows.

Algorithm 1 Dynamic Horizon Q-Learning

{ηt}t≥1, {γt}t≥1.Initialization: Q0 ≡ 0. for t =
1, 2, . . . do

1:2:3: Generate st(s, a) ∼ P (· | s, a) for all (s, a) ∈ S ×
A.

4: Set Qt(s, a) = (1 − ηt)Qt−1(s, a) + ηt[(1 −
γt)r(s, a) + γtVt−1(st(s, a))], ∀(s, a) ∈ S ×A.

5: Set Vt(s) = maxa∈A Qt(s, a) for all s ∈ S.
6: end for

3.3 Theory for estimating optimal reward

We provide theoretical guarantee of Algorithm 1 for
learning the optimal reward J∗ as follows. The proof
of Theorem 3.1 is sketched in Section 4.1 and 4.2, while
detailed in Appendix A.1.

Theorem 3.1. In Algorithm 1, we set ηt =
(
1 +

c1t
3/5

(log t)3

)−1
, γt = 1 − t−1/5, t ≥ 2, for some con-

stant c1 > 0 and set η1 = η2, γ1 = γ2. Let
ε ∈ (0, 1) and δ ∈ (0, 1). Suppose T is sufficiently
large such that T/ log T ≥ 300, T 1/5(log T)2 ≥ 4c2,
(log T)2 ≥ 12(10 + c1), c2T

1/5 ≥ 24(10 + c1)(log T)
2/5

Feasible Q-Learning for Average Reward Reinforcement Learning

and T 2/5 ≥ 64(log T)4

9c1
log |S||A|T

δ for some constant
c2 > 0. . Then with probability at least 1− δ, after T
iterations, Algorithm 1 achieves∣∣VT (s)− J∗∣∣ ≤ c · tmix(log T)

4 log |S||A|T
δ

T 1/5

simultaneously for all s ∈ S, where J∗ ∈ [0, 1] is the
optimal average reward defined in Section 2, and c > 0
is an absolute constant that only depends on c1, c2.

We take a moment to discuss the general idea of our
learning framework. At a high level, we approximate
the ultimate targets (i.e., the optimal average reward
J∗) with a sequence of proxies {Q∗

γt
} that our esti-

mates {Qt} eventually converge to. In particular,∣∣Qt(·, ·)− J∗∣∣ ≤ ∣∣Q∗
γt
(·, ·)− J∗∣∣+ ∣∣Qt(·, ·)−Q∗

γt
(·, ·)

∣∣
(8)

for all inputs in S × A. The first term in (8) is the
approximation error by discounted Q-functions that is
controlled as follows (proof in Appendix A.2).

Lemma 3.2.
∣∣V ∗

γ (s) − J∗
∣∣ ≤ 3(1 − γ)tmix and∣∣Q∗

γ(s, a)− J∗
∣∣ ≤ 3(1− γ)tmix for all (s, a) ∈ S ×A.

The second term of (8) is the estimation error of {Qt}
to the dynamic targets {Q∗

γt
}. We provide the sketch

of a recursive analysis for this term in Section 4.1.

3.4 Theory for Learning ϵ-Optimal Policy

Algorithm 1 can be adapted to learn a policy whose
average reward is ϵ-close to optimal. The idea is still to
take the greedy policy from our estimate Qt. However,
due to the subtlety between Q-function approximation
and the value of the greedy policy, we need another
adaptation scheme of {γt} and {ηt}. A partial proof
sketch of Theorem 3.3 is in Section 4.1; the detailed
proof is in Appendix B.

Theorem 3.3. In Algorithm 1, we set ηt =
(
1 +

c1t
5/8

(log t)2

)−1
, γt = 1 − t−1/8, t ≥ 2 for some con-

stant c1 > 0 and set η1 = η2, γ1 = γ2. Let πt be
the greedy policy with respect to Qt from Algorithm 1
for all t ≥ 1. Let ε ∈ (0, 1) and δ ∈ (0, 1). Suppose T
is sufficiently large such that (log T)2 ≥ 11(2 + c1)/2,
T/ log T ≥ 100, c2T

1/4 ≥ 4(2 + c1)(log T)
11/8 and

T 5/8 ≥ 64(log T)3

9c1
log |S||A|T

δ for some constant c2 > 0.
Then with probability at least 1− δ, after T iterations,
πT in Algorithm 1 satisfies∣∣JπT − J∗∣∣ ≤ c · tmix(log T)

4 log |S||A|T
δ

T 1/8
.

4 Analysis Framework

We provide the analysis framework for Theorems 3.1
and 3.3. In Section 4.1, we provide a general decompo-
sition of the estimation error; we then give the proof

sketch for Theorem 3.1 in Section 4.2. Theorem 3.3
follows similar ideas, with details in Appendix B.

Notations. Bold letters denote vectors and ma-
trices. For any matrix M , we denote ∥M∥1 =
maxi

∑
j |Mij | and ∥M∥∞ = maxi,j |Mij |. For vectors

a = [ai], b = [bi] ∈ Rn, a ≤ b (resp. a ≥ b) means ai ≤
bi (resp. ai ≥ bi) for all i. We let a ◦ b = [aibi] ∈ Rn.
For vector a = [ai], we denote |a| = [|ai|]. For a group
of vectors {ai : i ∈ I}, we denote maxi∈I ai as the
vector of entrywise maximum, that is, [maxi∈I ai]j =
maxi∈I [ai]j , ∀j. We use vector r ∈ R|S||A| to repre-
sent reward functions, so that for any (s, a) ∈ S × A,
the (s, a)-th entry of r is given by r(s, a). We rep-
resent value and Q-functions in vectors: for example,
the s-th entry of V π ∈ R|S| is given by V π(s); we de-
fine Qt,Q

π,Qπ
γ ,Q

∗
γ ,qt,q

π,q∗,qπ
α,q

∗
α ∈ R|S||A|, and

Vt,V
π,V π

γ ,V ∗
γ ,vt,v

π,v∗,vπ
α,v

∗
α ∈ R|S|, analogously.

We use a matrix P ∈ R|S||A|×|S| to represent the prob-
ability transition kernel P , whose (s, a)-row Ps,a repre-
sents the vector P (· | s, a). For any vector V ∈ R|S|, we
define V arP (V) = P (V ◦V)−(PV)◦(PV) ∈ R|S||A|,
that is, the (s, a)-entry of VarP (V) is Var(V (s′)) for
s′ ∼ P (· | s, a). We also define the square probabil-
ity transition matrix P π ∈ R|S||A|×|S||A| (resp. Pπ ∈
R|S|×|S|) induced by a deterministic policy π over
the state-action pairs (resp. states) as P π := PΠπ,
Pπ := ΠπP , where Ππ ∈ {0, 1}|S|×|S||A| is the projec-
tion matrix associated with π, whose s-th row consists
of |S| blocks each of length |A|, among which the s-th
block is e⊤π(s), and ei is the i-th standard basis vec-

tor. Given samples st(s, a) ∼ P (· | s, a) collected in
the t-th iteration, we define the empirical transition
matrix Pt ∈ {0, 1}|S||A|×|S| by Pt

(
(s, a), s′

)
= 1{s′ =

st(s, a)}.

4.1 Framework of Analysis for Algorithm 1

In this section, we provide a sketch of analysis for Al-
gorithm 1. To begin with, we denote ∆t = Qt −Q∗

γt
,

which is the estimation error of Qt for the rescaled
optimal Q-function with γt in the t-th iteration. Our
updating rule (6) in the t-th iteration admits the rep-
resentation:

Qt = (1− ηt)Qt−1 + ηt
[
(1− γt)r + γtPtVt−1

]
.

Employing the Bellman equation Q∗
γt

= (1 − γt)r +
γtPV ∗

γt
(note the rescaling of the value and Q-

functions compared to conventional notations),

∆t = Qt −Q∗
γt

= (1− ηt)Qt−1 + ηt
[
(1− γt)r + γtPtVt−1

]
−Q∗

γt

= (1− ηt)
[
Qt−1 −Q∗

γt

]
+ ηt

[
(1− γt)r + γtPtVt−1 −Q∗

γt

]

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou9

= (1− ηt)
[
Qt−1 −Q∗

γt

]
+ ηt

[
(1− γt)r + γtPtVt−1 − (1− γt)r − γtPV ∗

γt

]
= (1− ηt)∆t−1 + (1− ηt)

[
Q∗

γt−1
−Q∗

γt

]
+ ηtγt

[
PtVt−1 − PV ∗

γt

]
. (9)

The decomposition (9) is similar to what appears in
the standard analysis of discounted Q-learning up-
dates, such as Li et al. (2021); Wainwright (2019b);
however, we note a few key technical challenges due to
a dynamic discount factor and a moving target Q∗

γt
,

which require considerably more efforts and techniques
to address.

(1) First, due to the dynamic discount factor γt → 1,
the contraction of (9) is much weaker than that
with a fixed discount factor, so that the last term
ηtγt

[
PtVt−1−PV ∗

γt

]
is much more difficult to con-

trol. As a result, γt cannot converge to 1 too fast.

(2) Due to the moving target Q∗
γt
, there is a bias (1−

ηt)
[
Q∗

γt−1
−Q∗

γt

]
in (9). It is large if γt converges

to 1 too quickly or if ηt is too small. A similar
bias occurs in ηtγt

[
PtVt−1 − PV ∗

γt

]
. In light of

(1) and (2) and the bias in Lemma 3.2 (large if
γt converges to 1 too slowly), we need a careful
choice of γt to balance different sources of bias.

(3) Similar to the discounted setting, the learning rate
ηt needs to balance the bias from earlier updates
and variance from recent updates. Moreover, as
ηt is coupled with γt in the third term, we have
to admit a less aggressive learning rate due to ad-
ditionally balancing the bias&variance in random
update with ηt and the bias from γt.

To summarize, in sharp distinction from the dis-
counted Q-learning, we need to address the bias due
to γt → 1 in conjunction with the statistical error in
random learning update. As a result, our dynamic Q-
learning algorithm typically yield slower convergence
compared with the discounted counterpart.

Our analysis partially builds on the recent progress
in sharp analysis for discounted Q-learning Li et al.
(2021). However, we additionally tackle the bias due
to γt ̸= γt−1, which leads to distinct analysis. The last
term in the bracket in (9) can be further decomposed
as

PtVt−1 − PV ∗
γt

=(Pt − P)Vt−1 + P (Vt−1 − V ∗
γt−1

)

+ P (V ∗
γt−1

− V ∗
γt
),

where

P (Vt−1 − V ∗
γt−1

) = P πt−1Qt−1 − P
π∗
γt−1Q∗

γt−1

≤ P πt−1Qt−1 − P πt−1Q∗
γt−1

= P πt−1∆t−1,

P (Vt−1 − V ∗
γt−1

) = P πt−1Qt−1 − P
π∗
γt−1Q∗

γt−1

≥ P
π∗
γt−1Qt−1 − P

π∗
γt−1Q∗

γt−1
= P

π∗
γt−1∆t−1.

Above two inequalities use the fact that P ∗
γt−1 is

greedy w.r.t. Q∗
γt−1

, while πt−1 is greedy w.r.t. Qt−1.
Plugging them back into (9) leads to

∆t ≤ (1− ηt)∆t

+ dt + ηtγt
[
P πt−1∆t−1 + (Pt − P)Vt−1

]
; (11a)

∆t ≥ (1− ηt)∆t

+ dt + ηtγt
[
P

π∗
γt−1∆t−1 + (Pt − P)Vt−1

]
, (11b)

where we define the switching error in the t-th iteration

dt = (1− ηt)[Q
∗
γt−1

−Q∗
γt
] + ηtγtP (V ∗

γt−1
− V ∗

γt
).

Applying (11a) and (11b) recursively, we arrive at

∆t ≤
t∑

i=1

η
(t)
i γi

[
(Pi − P)Vi−1 + P πt−1∆i−1

]
+η

(t)
0 ∆0 +

t∑
i=1

η
(t)
i di/ηi,

∆t ≥
t∑

i=1

η
(t)
i γi

[
(Pi − P)Vi−1 + P

π∗
γi−1∆i−1

]
+η

(t)
0 ∆0 +

t∑
i=1

η
(t)
i di/ηi,

(12)

where we define η
(t)
t = ηt, η

(t)
0 =

∏t
j=1(1 − ηj) and

η
(t)
i = ηi ·

∏t
j=i+1(1− ηj) for i ≥ 1.

We now proceed to bound (12). Let β ∈ (0, 1) be a
constant whose value will be specified later. Writing
tβ = ⌊(1− β)t⌋, the upper bound in (12) is

∆t ≤ ζt + ξt +

t∑
i=1+tβ

η
(t)
i γiP

πi−1∆i−1 + δt, (13)

where

ζt := η
(t)
0 ∆0 +

tβ∑
i=1

η
(t)
i γi

[
(Pi − P)Vi−1 + P πt−1∆i−1

]
,

ξt :=
t∑

i=1+tβ

η
(t)
i γi(Pi − P)Vi−1,

δt :=
t∑

i=1

η
(t)
i di/ηi.

The convergence rates for these quantities then depend
on the choice of {ηt} and {γt}, which we analyze in a
case-by-case fashion for all our theoretical results.

4.2 Sketch of Analysis for Theorem 3.1

As an example of our analysis, we now bound the terms
δt, ζt and ξt in the decomposition (13), which leads to

Feasible Q-Learning for Average Reward Reinforcement Learning

a recursive bound on ∆t for Theorem 3.1. To begin
with, for the constant c2 > 0 in Theorem 3.1, we set

β =
c2

T 1/5(log T)2
.

The lemmas throughout this subsection will be under
the same conditions as Theorem 3.1.

Bounding switching error. First, the dynamic
discount factors leads to the switching error δt, since
the estimation targets Q∗

γt
keeps moving.

Lemma 4.1. Let T satisfy the conditions of Theo-
rem 3.1. Then ∥δt∥∞ ≤ 2(log T

T)2/5 for all t obeying
T/ log T ≤ t ≤ T .

Bounding ζt. The second term ζt is the cumulative
estimation error up to tβ = ⌊(1 − β)t⌋. It can be
bounded via appropriate contraction with appropriate
choices of tβ . We bound its ℓ∞-norm as follows. The
proof of Lemma 4.2 is in Appendix A.5.

Lemma 4.2. Let T satisfy the conditions of Theo-
rem 3.1. Then ∥ζt∥∞ ≤ 2

T for all T/ log T ≤ t ≤ T .

Bounding ξt. Finally, ξt is a random error term, for
which we derive a high-probability bound, adapting
the sharp analysis strategies introduced in Li et al.
(2021). The proof of Lemma 4.3 is in Appendix A.6.

Lemma 4.3. For any fixed t obeying T/ log T ≤ t ≤
T , it holds with probability at least 1− δ that

|ξt| ≤ 5

√
(log T)

19
5 log |S||A|T

δ

c1T 3/5
(14)

×
√(

max
⌊(1−β)t⌋<i≤t

VarP (Vi−1) + T−1/51
)
.

A recursive bound. With the above three bounds
in place, we put them together and obtain a recursive
bound on∆t, whose detailed proof is in Appendix A.3.

Proposition 4.4. Under the conditions in Theo-
rem 3.1, with probability at least 1− δ,

∆t ≤

√
c3(log T)4 log

|S||A|T
δ

T 1/5(T log T)1/5
(15)

×
√(

1 + 9tmix(log T)1/5 + T 1/5 max
⌊t/2⌋≤i<t

∥∆i∥∞
)
· 1

holds simultaneously for all 3T
2 log T ≤ t ≤ T , where

c3 > 0 is a constant that only depends on c1, c2.

The techniques of Proposition 4.4 are related to Li
et al. (2021), but controlling multiple sources of bias
and variance relies on quite different ideas.

A similar lower bound is in Proposition 4.5, whose
proof is essentially the same as that of Proposition 4.4
hence omitted here.

Proposition 4.5. Suppose T satisfies the conditions
in Theorem 3.1. Then with probability at least 1− δ,

∆t ≥ −

√
c3(log T)4 log

|S||A|T
δ

T 1/5
(T log T)−1/5 (16)

×
√(

1 + 9tmix(log T)1/5 + T 1/5 max
⌊t/2⌋≤i<t

∥∆i∥∞
)
1

holds simultaneously for all t obeying 3T
2 log T ≤ t ≤ T ,

where c3 > 0 is a constant that only depends on c1, c2.

Finally, solving the recursive bounds proves Theo-
rem 3.1; see Appendix A.1 for details.

5 Extension to Learning Bias
Function

We now propose a variant of our framework that learns
(up to a constant) q∗(s, a) in (1) hence the optimal
policy for average reward. In particular, our approach
overcomes the non-contraction of the empirical Bell-
man updates that are often considered in the litera-
ture (Abounadi et al., 2001; Zhang et al., 2021), en-
abling finite-sample analysis of convergence to solu-
tions to (1).

Our new algorithm maintains an estimate qt : S×A →
R for all t ≥ 1; in each iteration t, it updates all entries
of the estimate for all (s, a) ∈ S ×A via

qt(s, a) = (1− θt)qt−1(s, a)

+ θt
[
r(s, a) + αt max

a′∈A
qt−1

(
st(s, a), a

′)]. (17)

Here st(s, a) is the independent sample from the gen-
erative model, and αt and θt are the discount factor
and learning rate in the t-th iteration, respectively. In
addition, we define the value function vt : S → R in
the t-th iteration by vt(s) := maxa∈A qt(s, a) for all
s ∈ S. See Algorithm 2 for a formal statement.

Algorithm 2 Dynamic Horizon q-Learning

{θt}t≥1, {αt}t≥0.Initialization: q0 ≡ 0. for t =
1, 2, . . . do

1:2:3: Generate st(s, a) ∼ P (· | s, a) for all (s, a) ∈ S ×
A.

4: Update qt(s, a) = (1−θt)qt−1(s, a)+θt
[
r(s, a)+

αtvt−1(st(s, a))
]
for all (s, a) ∈ S ×A.

5: Set vt = maxa∈A qt(s, a) for all s ∈ S.
6: end for

The distinction between this procedure and Algo-
rithm 1 is that we use r(s, a) instead of (1−αt)r(s, a) in
the update. As a result, our estimates approximate an-
other set of dynamic targets: the unscaled discounted

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou10

value functions {q∗αt
} and {v∗αt

} (c.f. (5)), which fur-
ther approximate solutions to (1).

Lemma 5.1. There exists a constant B > 0 which
only depends on the underlying MDP such that∣∣v∗α(s) − J∗

1−α − v∗(s)
∣∣ ≤ (1 − α)B and

∣∣q∗α(s, a) −
J∗

1−α − q∗(s, a)
∣∣ ≤ (1 − α)B for all state-action pairs

(s, a) ∈ S × A, where J∗ is the optimal average re-
ward, q∗α and v∗α are the unscaled optimal α-discounted
Q- (value) functions, and q∗ and v∗ are the bias func-
tions defined in (2).

The proof of Lemma 5.1 is in Appendix D.2. Thus,∣∣qt(s, a)− q∗(s, a)− J∗/(1− αt)
∣∣

≤ (1− α)B +
∣∣qt(s, a)− q∗αt

(s, a)
∣∣,

where, similar to the previous case, it remains to con-
trol the estimation error to the dynamic targets.

Theorem 5.2. In Algorithm 2, we set θt =
(
1 +

c1t
2/3

(log t)2

)−1
, αt = 1− t−1/9, t ≥ 2, for some constant

c1 > 0, and set θ1 = θ2, α1 = α2. Let ε ∈ (0, 1) and
δ ∈ (0, 1). Suppose T is sufficiently large such that
T/ log T ≥ max{e2+c1 , 100, 64(2 + c1)

3}, c3(log T)5 ≥
5, c1T

3 ≥ 3(log T)5, 2c3T ≥ (1 + 3/c1)
2(log T)2 and

c2 log T ≥ 5(2+ c1)(log T)
1/3+log log T for some con-

stant c2 > 0 and c3 = 16/c1+144/c21. Then with prob-
ability at least 1 − δ, after T iterations, Algorithm 2
achieves∣∣qT (s, a)− q∗(s, a)− J∗

1−αT

∣∣ ≤ B+c(log T)4(log
T |S||A|

2δ)2

T 1/9 ,

and
∣∣vT (s)− v∗(s)− J∗

1−αT

∣∣ ≤ B+c(log T)4(log
T |S||A|

2δ)2

T 1/9

simultaneously for all (s, a) ∈ S×A, where c > 0 is an
absolute constant that only depends on c1, c2, B is the
constant given in Lemma 5.1, q∗ and v∗ are the bias
functions defined in (2).

See Appendix C.1 for a sketch of analysis, and Ap-
pendix C.2 for a detailed proof.

With the bias function estimator qT , a natural idea for
the task of policy learning is to take the greedy policy
with respect to qT :

πT (s) = argmax
a∈A

∈ qT (s, a).

Its suboptimality from the true optimal reward turns
out to be of the same scale as the estimation error
bound of qT . We thus have its near-optimality prop-
erty. The proof of Corollary 5.3 is in Appendix C.3.

Corollary 5.3. Under the same conditions of Theo-
rem 5.2, the greedy policy πT with respect to qT obeys

J∗ − JπT ≤
2B + 2c(log T)4(log T |S||A|

2δ)2

T 1/9
.

6 Empirical Validation

We support our theoretical results with preliminary
simulations. We design MDPs with |S| = 10 and
|A| = 8 according to the construction in Jin and
Sidford (2021), which is the hardest instance (in
the sense of information-theoretic lower bound) for
learning a policy. We vary the mixing time tmix ∈
{O(10), O(100), O(1000)}, which is obtained by tun-
ing the parameter γ ∈ {0.1, 0.01, 0.001} in Jin and
Sidford (2021). On each MDP instance, we run our
algorithm for Theorem 3.3 in 200 independent exper-
iments for T = 107. We keep the same scheduling

of γt = 1 − t−1/8 and ηt = (1 + t5/8

(log t)2)
−1 for all in-

stances, without adjusting algorithm inputs using any
prior knowledge.

We compute the frequency where the algorithm
finds the optimal action for each state at t ∈
{10, 102, . . . , 106, 107} in Figure 1 (for the first 4 states
for visualization). The results suggest that our algo-
rithm performs stably well, finding the optimal pol-
icy within a reasonable time of training (which might
be better than what is predicted by our theory). As
promised, it does not need any prior information as
input, but works well for MDPs with different tmix.
Interestingly, the recovery frequency turns out to be
relatively stable across different values of tmix.

1−1/t_mix = 0.9 1−1/t_mix = 0.99 1−1/t_mix = 0.999

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0.4

0.6

0.8

1.0

log_10(T)F
re

qu
en

cy
 o

f f
in

di
ng

 o
pt

im
al

 a
ct

io
n

state 1 2 3 4

Figure 1: Frequency of recovering optimal action.

Conclusions

In this paper, we provide a feasible framework for
average-reward RL that, distinct from existing works,
does not require any problem-dependent parameters
as input. Our results highlight the algorithmic role
of sequentially adjusted discounted factors, along with
a carefully selected adaptation scheme, in achieving
several average reward learning objectives. We pro-
vide finite-sample guarantees for three popular learn-
ing tasks. We envision this work as initial progress to-
wards algorithmic design and theoretical understand-
ing of feasible model-free average-reward RL, and an
invitation for subsequent efforts in these aspects.

Feasible Q-Learning for Average Reward Reinforcement Learning

References

Abounadi, J., Bertsekas, D., and Borkar, V. S.
(2001). Learning algorithms for markov decision pro-
cesses with average cost. SIAM Journal on Control
and Optimization, 40(3):681–698.

Agarwal, A., Kakade, S., and Yang, L. F. (2020).
Model-based reinforcement learning with a genera-
tive model is minimax optimal. In Conference on
Learning Theory, pages 67–83. PMLR.

Azar, M. G., Munos, R., and Kappen, H. J. (2013).
Minimax pac bounds on the sample complexity of
reinforcement learning with a generative model. Ma-
chine learning, 91(3):325–349.

Beck, C. L. and Srikant, R. (2012). Error bounds
for constant step-size q-learning. Systems & control
letters, 61(12):1203–1208.

Blackwell, D. (1962). Discrete dynamic program-
ming. The Annals of Mathematical Statistics, pages
719–726.

Borkar, V. S. and Meyn, S. P. (2000). The ode
method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Con-
trol and Optimization, 38(2):447–469.

Brown, N. and Sandholm, T. (2018). Superhuman
ai for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002).
Deep blue. Artificial intelligence, 134(1-2):57–83.

Chen, Z., Theja Maguluri, S., Shakkottai, S., and
Shanmugam, K. (2020). Finite-sample analysis of
stochastic approximation using smooth convex en-
velopes. arXiv e-prints, pages arXiv–2002.

De Farias, D. P. and Van Roy, B. (2006). A cost-
shaping linear program for average-cost approximate
dynamic programming with performance guarantees.
Mathematics of Operations Research, 31(3):597–620.

Dewanto, V., Dunn, G., Eshragh, A., Gallagher, M.,
and Roosta, F. (2020). Average-reward model-free
reinforcement learning: a systematic review and lit-
erature mapping. arXiv preprint arXiv:2010.08920.

Dong, S., Van Roy, B., and Zhou, Z. (2019). Prov-
ably efficient reinforcement learning with aggregated
states. arXiv preprint arXiv:1912.06366.

Dong, S., Van Roy, B., and Zhou, Z. (2021). Sim-
ple agent, complex environment: Efficient reinforce-
ment learning with agent state. arXiv preprint
arXiv:2102.05261.

Even-Dar, E., Kakade, S. M., and Mansour, Y.
(2009). Online markov decision processes. Mathe-
matics of Operations Research, 34(3):726–736.

Even-Dar, E., Mansour, Y., and Bartlett, P. (2003).
Learning rates for q-learning. Journal of machine
learning Research, 5(1).

Feinberg, E. A. and Shwartz, A. (2012). Handbook of
Markov decision processes: methods and applications,
volume 40. Springer Science & Business Media.

François-Lavet, V., Henderson, P., Islam, R., Belle-
mare, M. G., and Pineau, J. (2018). An introduc-
tion to deep reinforcement learning. arXiv preprint
arXiv:1811.12560.

Freedman, D. A. (1975). On tail probabilities for
martingales. the Annals of Probability, pages 100–
118.

Fruit, R., Pirotta, M., and Lazaric, A. (2020). Im-
proved analysis of ucrl2 with empirical bernstein in-
equality. arXiv preprint arXiv:2007.05456.

Hordijk, A. and Tijms, H. (1975). A modified form of
the iterative method of dynamic programming. The
Annals of Statistics, pages 203–208.

Jaakkola, T., Jordan, M. I., and Singh, S. P.
(1994). On the convergence of stochastic iterative
dynamic programming algorithms. Neural computa-
tion, 6(6):1185–1201.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-
optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(51):1563–
1600.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I.
(2018). Is q-learning provably efficient? arXiv
preprint arXiv:1807.03765.

Jin, Y. and Sidford, A. (2020). Efficiently solving
mdps with stochastic mirror descent. In International
Conference on Machine Learning, pages 4890–4900.
PMLR.

Jin, Y. and Sidford, A. (2021). Towards tight bounds
on the sample complexity of average-reward mdps.
arXiv preprint arXiv:2106.07046.

Kakade, S. and Langford, J. (2002). Approximately
optimal approximate reinforcement learning. In IN
PROC. 19TH INTERNATIONAL CONFERENCE
ON MACHINE LEARNING, pages 267–274.

Kakade, S. M. (2003). On the sample complexity of
reinforcement learning. University of London, Uni-
versity College London (United Kingdom).

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou11

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A
sparse sampling algorithm for near-optimal planning
in large markov decision processes. Machine learning,
49(2):193–208.

Kearns, M. and Singh, S. (1999). Finite-sample con-
vergence rates for q-learning and indirect algorithms.
Advances in neural information processing systems,
pages 996–1002.

Kearns, M. and Singh, S. (2002). Near-optimal re-
inforcement learning in polynomial time. Machine
learning, 49(2):209–232.

Lattimore, T. and Szepesvári, C. (2020). Bandit al-
gorithms. Cambridge University Press.

Li, G., Cai, C., Chen, Y., Gu, Y., Wei, Y., and
Chi, Y. (2021). Is q-learning minimax optimal? a
tight sample complexity analysis. arXiv preprint
arXiv:2102.06548.

Mahadevan, S. (1996). Average reward reinforcement
learning: Foundations, algorithms, and empirical re-
sults. Machine learning, 22(1):159–195.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforce-
ment learning. nature, 518(7540):529–533.

Puterman, M. L. (2014). Markov decision processes:
discrete stochastic dynamic programming. John Wi-
ley & Sons.

Schaeffer, J., Culberson, J., Treloar, N., Knight, B.,
Lu, P., and Szafron, D. (1992). A world championship
caliber checkers program. Artificial Intelligence, 53(2-
3):273–289.

Schrittwieser, J., Antonoglou, I., Hubert, T., Si-
monyan, K., Sifre, L., Schmitt, S., Guez, A., Lock-
hart, E., Hassabis, D., Graepel, T., et al. (2020). Mas-
tering Atari, Go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y.
(2018a). Near-optimal time and sample complexities
for solving markov decision processes with a genera-
tive model. Advances in Neural Information Process-
ing Systems, 31.

Sidford, A., Wang, M., Wu, X., and Ye, Y. (2018b).
Variance reduced value iteration and faster algo-
rithms for solving markov decision processes. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 770–787.
SIAM.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou,
I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Ku-
maran, D., Graepel, T., et al. (2018). A gen-
eral reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science,
362(6419):1140–1144.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Szepesvári, C. (1998). The asymptotic convergence-
rate of q-learning. In Proceedings of the 1997 confer-
ence on Advances in neural information processing
systems 10, pages 1064–1070.

Tang, Y., Rowland, M., Munos, R., and Valko, M.
(2021). Taylor expansions of discount factors. In
Proceedings of the 29th International Conference on
Machine Learning (ICML-21).

Tsitsiklis, J. N. (1994). Asynchronous stochastic
approximation and q-learning. Machine learning,
16(3):185–202.

Wainwright, M. J. (2019a). Stochastic approximation
with cone-contractive operators: Sharp ℓ∞-bounds
for q-learning. arXiv preprint arXiv:1905.06265.

Wainwright, M. J. (2019b). Variance-reduced
q-learning is minimax optimal. arXiv preprint
arXiv:1906.04697.

Wan, Y., Naik, A., and Sutton, R. S. (2021). Learn-
ing and planning in average-reward markov decision
processes. In International Conference on Machine
Learning, pages 10653–10662. PMLR.

Wang, M. (2017). Primal-dual π learning: Sample
complexity and sublinear run time for ergodic markov
decision problems. arXiv preprint arXiv:1710.06100.

Wang, M. (2020). Randomized linear programming
solves the markov decision problem in nearly linear
(sometimes sublinear) time. Mathematics of Opera-
tions Research, 45(2):517–546.

Watkins, C. J. and Dayan, P. (1992). Q-learning.
Machine learning, 8(3-4):279–292.

Wei, C.-Y., Jahromi, M. J., Luo, H., Sharma, H., and
Jain, R. (2020). Model-free reinforcement learning in
infinite-horizon average-reward markov decision pro-
cesses. In International conference on machine learn-
ing, pages 10170–10180. PMLR.

Yang, L. and Wang, M. (2019). Sample-optimal
parametric q-learning using linearly additive features.
In International Conference on Machine Learning,
pages 6995–7004. PMLR.

Feasible Q-Learning for Average Reward Reinforcement Learning

Zanette, A., Kochenderfer, M. J., and Brunskill, E.
(2019). Almost horizon-free structure-aware best pol-
icy identification with a generative model. Advances
in Neural Information Processing Systems, 32.

Zhang, S., Zhang, Z., and Maguluri, S. T. (2021).
Finite sample analysis of average-reward td learning
and q-learning. Advances in Neural Information Pro-
cessing Systems, 34.

Zhang, Z. and Ji, X. (2019). Regret minimization for
reinforcement learning by evaluating the optimal bias
function. Advances in Neural Information Processing
Systems, 32.

Zhang, Z. and Xie, Q. (2023). Sharper model-free re-
inforcement learning for average-reward markov de-
cision processes. In The Thirty Sixth Annual Confer-
ence on Learning Theory, pages 5476–5477. PMLR.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable] (Explanation: we
will do so when it is possible to de-anonymize
the paper.)

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou12

A Technical Proofs Regarding Theorem 3.1

In this section, we provide detailed proofs for results regarding Theorem 3.1. Appendix A.1 provides the detailed
proof for Theorem 3.1, and the remaining subsections provide proofs for intermediate results in the analysis
sketch of Section 4.

Throughout the section, the learning rates and discount factors are

ηt =
1

1 + c1t3/5

(log t)3

, γt = 1− t−1/5,

and we choose the proportion

β =
c2

T 1/5(log T)2

for the constant c2 > 0 in Theorem 3.1.

A.1 Proof of Theorem 3.1

Proof of Theorem 3.1. We solve the recursive bounds in Propositions 4.4 and 4.5 to obtain the final high-
probability bound. For any positive integer k, we define

uk = max
{
∥∆i∥∞ : 2k

3T

2 log T
≤ i ≤ T

}
.

A naive upper bound is uk ≤ 1 for all k. Furthermore, by (15) and the definition of uk, with probability at least
1− δ, it holds simultaneously for all k ≥ 1 that

uk+1 ≤

√
c3(log T)4 log

|S||A|T
δ

T 1/5

((log T)−1/5 + 9tmix

T 1/5
+

uk

(log T)1/5

)
1

for some absolute constant c3 > 0. If there exists some k such that

uk ≤ c4
(
(log T)−1/5 + 9tmix

) (log T)4 log |S||A|T
δ

T 1/5

for some sufficiently large constant c4 > 0, then

uk+1 ≤

√
c3(log T)4 log

|S||A|T
δ

T 1/5

(log T)−1/5 + 9tmix

T 1/5

(
1 + c4(log T)4 log

|S||A|T
δ

)
≤ c4

(
(log T)−1/5 + 9tmix

) (log T)4 log |S||A|T
δ

T 1/5

as well. By induction, the above bound holds for all j ≥ k, hence

∥∆T ∥∞ ≤ c4
(
(log T)−1/5 + 9tmix

) (log T)4 log |S||S|T
δ

T 1/5
.

On the other hand, suppose uj > c4((log T)
−1/5 + 9tmix)

(log T)4 log
|S||A|T

δ

T 1/5 for any 1 ≤ j ≤ k. Then we know

uj+1 ≤

√
2c3(log T)4 log

|A||S|T
δ

T 1/5
uj , for all 1 ≤ j ≤ k,

which implies

log uj+1 ≤ 1

2
log uj +

1

2
log θ, where θ = 2c3 · T−1/5(log T)4 log

|S||A|T
δ

Feasible Q-Learning for Average Reward Reinforcement Learning

for some constant c6 > 0. Recursively applying this relation for 1 ≤ j < k yields

2k log uk ≤ log u0 +

k−1∑
j=0

2j log θ ≤ (2k − 1) log θ,

where we used the fact that u0 ≤ 1. Hence

uk ≤ θ1−1/2k =
(
2c3 · T−1/5(log T)4 log

|S||A|T
δ

)1−1/2k

=
(
2c3 · (log T)4 log

|S||A|T
δ

)1−1/2k

· T−1/5 · T 2−k

5

≤ 2c3 ·
(log T)4 log |S||A|T

δ

T 1/5
· exp

(
log T · 2−k/5

)
.

Now we can set 2k ≥ log T/5, so that the above upper bound translates to

∥∆T ∥∞ ≤ uk ≤ 6c3 ·
(log T)4 log |S||A|T

δ

T 1/5
.

Combining the two cases above, we arrive at

∥∆T ∥∞ ≤
[
c4
(
(log T)−1/5 + 9tmix

)
+ 6c3

] (log T)4 log |S||A|T
δ

T 1/5

with probability at least 1− δ for T obeying the conditions of Proposition 4.4. Furthermore, since tmix ≥ 1, the
above bound translates to

∥∆T ∥∞ ≤ ctmix

(log T)4 log |S||A|T
δ

T 1/5

for some constant c > 0 that only depends on c1, c2, which completes the proof of Theorem 3.1.

A.2 Proof of Lemma 3.2

Proof of Lemma 3.2. For any discounted factor γ ∈ (0, 1), the optimal policy π∗
γ with respect to γ-discounted

reward attains the optimal Q-function, i.e., Q∗
γ = Q

π∗
γ

γ . Similarly, the optimal policy π∗ with repsect to average

reward satisfies J∗ = Jπ∗
. Applying Lemma D.1 to π∗

γ and γ leads to

Q∗
γ(s, a) = Q

π∗
γ

γ (s, a) ≤ Jπ∗
γ + 3(1− γ)tmix ≤ J∗ + 3(1− γ)tmix

for any state-action pair (s, a) ∈ S ×A. On the other hand, applying Lemma D.1 to π∗ and γ leads to

Q∗
γ(s, a) ≥ Qπ∗

γ (s, a) ≥ Jπ∗
− 3(1− γ)tmix ≥ J∗ − 3(1− γ)tmix

for any state-action pair (s, a) ∈ S × A. The last steps of the two equations follow from the bounded reward
averaging time for π∗

γ and π∗. Combining the two inequalities, we complete the proof of Lemma 3.2.

A.3 Proof of Proposition 4.4

Proof of Proposition 4.4. Combining Lemma 4.1, 4.2 and 4.3, for sufficiently larget T obeying the conditions of
Theorem 3.1 and any fixed t within T/ log T ≤ t ≤ T , it holds with probability at least 1− δ that

∆t ≤
2(log T)2/5

T 2/5
+

2

T
+ 5

√
(log T)

19
5 log |S||A|T

δ

c1T 3/5

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−1/51

)
+

t∑
i=1+⌊(1−β)t⌋

η
(t)
i γiP

πt−1∆i−1

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou13

≤
(
1 +

5
√
c1

)√ (log T)
19
5 log |S||A|T

δ

T 3/5

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−1/51

)
+

t∑
i=1+⌊(1−β)t⌋

η
(t)
i γiP

πi−1∆i−1, (18)

where the second inequality follows from the fact that

2(log T)2/5

T 2/5
+

2

T
≤ 4(log T)2/5

T 2/5
≤

√
(log T)

19
5 log |S||A|T

δ

T 4/5

for T so large that T/ log T ≥ 300. Once (1 − β) ≥ 3/4, for any fixed t obeying 3T/(2 log T) ≤ t ≤ T , we
apply (18) with a union bound over {k : 2t

3 ≤ k ≤ t} — as a result, with probability at least 1− δ, one has

∆k ≤ √
φt +

k∑
i=1+⌊(1−β)k⌋

η
(k)
i γiP

πi−1∆i−1, for all
2t

3
≤ k ≤ t, (19)

where we define

φt =
(
1 +

5
√
c1

)2

·
(log T)

19
5 log |S||A|T

δ

T 3/5

(
max

⌊t/2⌋<i≤t
VarP (Vi−1) + T−1/51

)
(20)

≥ 2
(
1 +

5
√
c1

)2

·
(log T)

19
5 log |S||A|T

δ/T

T 3/5

(
max

⌊(1−β)k⌋<i≤k
VarP (Vi−1) + T−1/51

)
.

Before proceeding to recursively bound ∆t, we define {α(t)
i } as

α
(t)
i :=

η
(t)
i+1∑t−1

j=⌊(1−β)t⌋ η
(t)
j+1

, (21)

which, following Li et al. (2021), satisfies

α
(t)
i ≥ η

(t)
i+1 and

t−1∑
j=⌊(1−β)t⌋

α
(t)
j+1 = 1 (22)

for all t. When T is sufficiently large so that 1− β ≥ 2/3, We decompose (19) as

∆k ≤ √
φt +

k∑
i=1+⌊(1−β)k⌋

η
(k)
i γiP

πi−1∆i−1 =

k−1∑
i1=⌊(1−β)k⌋

(
α
(k)
i1

√
φt + η

(k)
i1+1γi1+1P

πi1∆i1

)
.

We recursively apply the above relation in a manner similar to Equation 68 of Li et al. (2021), yet with a sequence
of dynamic discount factor {γt}:

∆t ≤
t−1∑

i1=⌊(1−β)t⌋

(
α
(t)
i1

√
φt + η

(t)
i1+1γi1+1P

πi1∆i1

)

≤
t−1∑

i1=⌊(1−β)t⌋

[
α
(t)
i1

√
φt + η

(t)
i1+1γi1+1P

πi1

i1−1∑
i2=⌊(1−β)i1⌋

(
α
(i1)
i2

√
φt + η

(i1)
i2+1γi2+1P

πi2∆i2

)]

≤
t−1∑

i1=⌊(1−β)t⌋

α
(t)
i1

√
φt +

t−1∑
i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

α
(t)
i1
α
(i1)
i2

(
γi1+1P

πi1

)√
φt

+

t−1∑
i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

η
(t)
i1+1η

(i1)
i2+1

2∏
k=1

(γik+1P
πik)∆i2

)

Feasible Q-Learning for Average Reward Reinforcement Learning

≤
t−1∑

i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

α
(t)
i1
α
(i1)
i2

{I + γi1+1P
πi1 }√φt

+

t−1∑
i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

η
(t)
i1+1η

(i1)
i2+1

2∏
k=1

(γik+1P
πik)∆i2 , (23)

where the third line uses η
(t)
i1+1 ≤ α

(t)
i in (22), and the last line uses

∑i1−1
i2=⌊(1−β)i1⌋ α

(i1)
i2

= 1 in (22). We shall
further recursively apply the above relation. To begin with, we set

H := T 1/5(log T)2 and α{ik}H
k=1

:= α
(t)
i1
α
(i1)
i2

. . . α
(iH−1)
iH

≥ 0

for any t > i1 > i2 > · · · > iH , which (according to (22)) satisfies

α{ik}H
k=1

≥ η
(t)
i1+1η

(i1)
i2+1 · · · η

(iH−1)
iH+1 .

We define the index set

It =
{
(i1, . . . , iH) : ⌊(1− β)t⌋ ≤ i1 ≤ t− 1, ⌊(1− β)ij−1⌋ ≤ ij ≤ ij−1 − 1, ∀1 ≤ j < H

}
,

which satisfies ∑
(i1,...,iH)∈It

α{ik}H
k=1

= 1.

By definition of β, we have

(1− β)H ≥ exp(−βH) ≥ 2

3

for sufficiently small c2 ≤ log(3/2), which implies

i1 > i2 > · · · > iH ≥ 2t/3, for all (i1, . . . , iH) ∈ It.

Recursively invoking (23), we obtain

∆t ≤
∑

(i1,...,iH)∈It

α{ik}H
k=1

{(
I +

H−1∑
h=1

h∏
k=1

(γik+1P
πik)

)√
φt +

H∏
h=1

(γih+1P
πih)|∆iH |

}

≤ max
(i1,...,iH)∈It

{(
I +

H−1∑
h=1

h∏
k=1

(γik+1P
πik)

)√
φt︸ ︷︷ ︸

=:β1

+

H∏
h=1

(γih+1P
πih)|∆iH |︸ ︷︷ ︸

=:β2

}
, (24)

where the second line uses
∑i1−1

i2=⌊(1−β)i1⌋ α
(i1)
i2

= 1 in (22). In the following, we are to bound β1 and β2 in (24)

separately. The easier term is β2: noting that by definition of the discount factor {γt}, we have γj ≤ γT for all
2t/3 ≤ j ≤ T , indicating

|β2| ≤ γH
t

H∏
h=1

P πih |∆H | ≤ γH
T

∥∥∥∥ H∏
h=1

P πih

∥∥∥∥
1

∥∆H∥∞
(i)

≤ γH
T

(ii)

≤ 1

T
, (25)

where (i) follows from the bounded magnitude ∥∆H∥∞ ≤ 1 and the fact that
∏H

h=1 P
πih is a probability

transition matrix; (ii) follows from

γH
T =

(
1− T−1/5

)T 1/5(log T)2 ≤ exp
(
− (log T)2

)
≤ 1

T
.

Moving on to β1, its entrywise square can be upper bounded as

|β1|2 =

∣∣∣∣H−1∑
h=0

h∏
k=1

(γik+1P
πik)

√
φt

∣∣∣∣2 ≤
∣∣∣∣H−1∑
h=0

γh
T

(h∏
k=1

P πik

)√
φt

∣∣∣∣2

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou14

(i)

≤
∣∣∣∣H−1∑
h=0

γ
h/2
T γ

h/2
T

√∏h
k=1P

πikφt

∣∣∣∣2
(ii)

≤
H−1∑
h=0

γh
T ·

H−1∑
h=0

γh
T

h∏
k=1

P πikφt

(iii)

≤ 1

1− γT

H−1∑
h=0

γh
T

h∏
k=1

P πik

2(1 + 5√
c1
)2(log T)

19
5 log |S||A|T

δ/T

T 3/5

(
max

⌊(1−β)k⌋<i≤k
VarP (Vi−1) + T−1/51

)
(iv)

≤
4(1 + 5√

c1
)2(log T)

19
5 log |S||A|T

δ

T 2/5

(H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (Vi) + 1

)
, (26)

where (i) follows from Jensen’s inequality noting that
∏h

k=1 P
πik is a probability transition matrix, (ii) follows

from the Cauchy-Schwarz inequality, (iii) follows from the definition of φt in (20), and (iv) follows from the fact

that
∏h

k=1 P
πik1 = 1 since

∏h
k=1 P

πik is a probability transition matrix. We employ the following lemma to
bound the first term of (26), whose proof is in Appendix D.4.

Lemma A.1. Suppose T ≥ 160, then it holds for all T/ log T ≤ t ≤ T that

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (Vi) ≤
(
7 + 72tmix(log T)

1/5 + 8T 1/5 max
⌊t/2⌋≤i<t

∥∆i∥∞
)
1. (27)

Invoking Lemma A.1, we obtain an upper bound

|β1|2 ≤
4(1 + 5√

c1
)2(log T)

19
5 log |S||A|T

δ

T 2/5

(
8 + 72tmix(log T)

1/5 + 8T 1/5 max
⌊t/2⌋≤i<t

∥∆i∥∞
)
1. (28)

Recalling (24), by the upper bound (25) on |β2| and (28) on |β1|, for any fixed t such that 3T/(2 log T) ≤ t ≤ T ,

∆t ≤
1

T
+

√√√√4(1 + 5√
c1
)2(log T)

19
5 log |S||A|T

δ

T 2/5

(
8 + 72tmix(log T)1/5 + 8T 1/5 max

⌊t/2⌋≤i<t
∥∆i∥∞

)
1

≤ 4
(
1 +

5
√
c1

)√ (log T)4 log |S||A|T
δ

T 2/5

(8

(log T)1/5
+ 72tmix +

8T 1/5

(log T)1/5
max

⌊t/2⌋≤i<t
∥∆i∥∞

)
1 (29)

holds with probability at least 1− δ.

We now further take a union bound for (29) over {t : 3T/(2 log T) ≤ t ≤ T}, which leads to the simultaneous
(1− δ) high-probability bound

∆t ≤ 16
(
1 +

5
√
c1

)√ (log T)4 log |S||A|T
δ

T 2/5

(
(log T)−1/5 + 9tmix + (T/ log T)1/5 max

⌊t/2⌋≤i<t
∥∆i∥∞

)
1

for all t such that 3T/(2 log T) ≤ t ≤ T , as log |S||A|T
δ/T ≤ 2 log |S||A|T

δ . This completes the proof of Proposition 4.4.

A.4 Proof of Lemma 4.1

Proof of Lemma 4.1. Employing Lemma D.4, each term dt can be bounded as

∥dt∥∞ ≤ (1− ηt)
∥∥Q∗

γt−1
−Q∗

γt

∥∥
∞ + ηtγt

∥∥P (V ∗
γt−1

− V ∗
γt
)
∥∥
∞

≤ (1− ηt)
∥∥Q∗

γt−1
−Q∗

γt

∥∥
∞ + ηtγt∥P∥1

∥∥V ∗
γt−1

− V ∗
γt

∥∥
∞

≤ (1− ηt)
∥∥Q∗

γt−1
−Q∗

γt

∥∥
∞ + ηtγt

∥∥V ∗
γt−1

− V ∗
γt

∥∥
∞ ≤ γt−1 − γt

1− γt−1
, (30)

Feasible Q-Learning for Average Reward Reinforcement Learning

where the second line uses ∥AB∥∞ ≤ ∥A∥1∥B∥∞ for matrices A,B, the third line follows from ∥P ∥1 = 1 since
each row of P is a probability vector. For any t > 1, we let α = t−2/5 ∈ (0, 1). By the triangular inequality, the
switching error can be bounded as∥∥∥∥ t∑

i=1

η
(t)
i di/ηi

∥∥∥∥
∞

≤
t∑

i=1

t∏
j=i

(1− ηj)∥di∥∞

=

⌊(1−α)t⌋∑
i=1

t∏
j=i

(1− ηj)∥di∥∞ +

t∑
1+⌊(1−α)t⌋

t∏
j=i

(1− ηj)∥di∥∞.

Firstly, when t obeys ⌊(1 − α)t⌋ = ⌊t − t2/5⌋ ≥ 150 (which is satisfied by t ≥ 160), for any i such that
1 ≤ i ≤ ⌊(1− α)t⌋, we have

t∏
j=i

(1− ηj) ≤
t∏

j=⌊(1−α)t⌋

(1− ηj) ≤ exp
(
−

∑t
j=⌊(1−α)t⌋ηj

)
(i)

≤ exp

(
−

t∑
j=⌊(1−α)t⌋

(log j)3

(10 + c1)j3/5

)
(ii)

≤ exp

(
− αt(log t)3

(10 + c1)t3/5

)
,

where (i) follows from (99), and (ii) follows from (100) for j ≥ ⌊(1 − α)t⌋ ≥ 150. Together with the fact that
∥di∥∞ ≤ 1, the above bound implies

⌊(1−α)t⌋∑
i=1

t∏
j=i

(1− ηj)∥di∥∞ ≤ t · exp
(
− αt2/5(log t)3

10 + c1

)
= exp

(
log t− (log t)3/(10 + c1)

)
. (31)

On the other hand, (30) implies

∥di∥∞ ≤ (i− 1)−1/5 − i−1/5

(i− 1)−1/5
≤ 1− (1− 1/i)1/5 ≤ 2

5i
≤ 2

5(1− α)t
,

for all i ≥ 1 + ⌊(1− α)t⌋. The second inequality above is implied by

1− (1− 1/i)1/5 = 1− exp

(
log(1− 1/i)

5

)
≤ 1− exp (−2/(5i)) ≤ 2/(5i),

where for i ≥ 2, we use the fact that log(1 − x) ≥ −2x for x ≤ log 2/2 and ex ≥ 1 + x for x ∈ R. Therefore,
noting that α ≤ 0.2 for t ≥ 150, we have

t∑
1+⌊(1−α)t⌋

t∏
j=i

(1− ηj)∥di∥∞ ≤
t∑

1+⌊(1−α)t⌋

∥di∥∞ ≤ 2αt

5(1− α)t
≤ α/2 =

1

2t2/5
. (32)

Combining (31) and (32), once T/ log T ≥ 160, we have∥∥∥∥ t∑
i=1

η
(t)
i di/ηi

∥∥∥∥
∞

≤ exp
(
log t− (log t)3/(10 + c1)

)
+

1

2t2/5

≤ exp
(
log T − (log T − log log T)3

10 + c1

)
+

(log T)2/5

2T 2/5

≤ exp
(
log T − (log T)3

8(10 + c1)

)
+

(log T)2/5

2T 2/5
≤ 2(log T)2/5

T 2/5

for all T/ log T ≤ t ≤ T , where the third inequality follows from log T ≥ 2 log log T , and the last inequality
follows from (log T)3/(80 + 8c1) ≥ 7

5 log T . Therefore, we complete the proof of Lemma 4.1.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou15

A.5 Proof of Lemma 4.2

Proof of Lemma 4.2. The ℓ∞-norm of ζt can be bounded as

∥ζt∥∞ ≤
∥∥η(t)0 ∆0

∥∥
∞ +

⌊(1−β)t⌋∑
i=1

η
(t)
i γi

∥∥(Pi − P)Vi−1 + P πt−1∆i−1

∥∥
∞

(i)

≤ η
(t)
0 +

⌊(1−β)t⌋∑
i=1

η
(t)
i γi

[
∥Pi − P ∥1∥Vi−1∥∞ + ∥P πt−1∥1∥∆i−1∥∞

]
(ii)

≤ η
(t)
0 + 3

⌊(1−β)t⌋∑
i=1

η
(t)
i γi.

Here (i) uses ∥AB∥∞ ≤ ∥A∥1∥B∥∞ for matrices A,B, and (ii) follows from the fact that ∥Pi − P ∥1 ≤
∥Pi∥1 + ∥P ∥1 ≤ 2 and ∥P πt−1∥1 ≤ 1 (since they are all probability matrices), and the bounded magnitudes
∥Vi−1∥∞ ≤ 1 and ∥∆i−1∥∞ ≤ 1.

By definition of {ηt}, as long as β < 1/2 and t ≥ 300,

η
(t)
0 =

t∏
j=1

(1− ηj) ≤ exp
(
−
∑t

j=1ηj

)

≤ exp

(
−

t∑
j=150

(log j)3

(10 + c1)j3/5

)
≤ exp

(
− (t− 150)(log t)3

(10 + c1)t3/5

)
, (33)

where the second inequality follows from (99), and the last inequality follows from the monotonicity (100).

Similarly, when ⌊(1− β)t⌋ ≥ 150 (satisfied as long as β < 1/2 and t ≥ 300), for any 1 ≤ i ≤ ⌊(1− β)t⌋, it holds
that

η
(t)
i ≤

t∏
j=1+⌊(1−β)t⌋

(1− ηj) ≤ exp
(
−

∑t
j=1+⌊(1−β)t⌋ηj

)

≤ exp

(
−

t∑
j=1+⌊(1−β)t⌋

(log j)3

(10 + c1)j3/5

)
≤ exp

(
− βt(log t)3

(10 + c1)t3/5

)
, (34)

where the last inequality follows from (100). Combining (33) and (34), once β < 1/2, we have

∥ζt∥∞ ≤ exp

(
− (t− 150)(log t)3

(10 + c1)t3/5

)
+ 3 exp

(
log t− βt(log t)3

(10 + c1)t3/5

)
≤ exp

(
− t(log t)3

2(10 + c1)t3/5

)
+ 3 exp

(
log t− βt(log t)3

(10 + c1)t3/5

)
for all t ≥ 300. Note that when T/ log T ≥ 300, for all t such that T/ log T ≤ t ≤ T ,

t2/5(log t)3 ≥ (T/ log T)2/5(log T − log log T)3 ≥ (T/ log T)2/5 · (log T)3/8 ≥ T 2/5(log T)2/8,

where the second inequality follows from log T ≥ 2 log log T . Meanwhile, for T/ log T ≤ t ≤ T ,

log t− βt(log t)3

(10 + c1)t3/5
≤ log T − c2

T 1/5(log T)2
T 2/5

(log T)2/5
(log T)3

8(10 + c1)
≤ log T − c2T

1/5(log T)3/5

8(10 + c1)
.

Therefore, for any T/ log T ≤ t ≤ log T ,

∥ζt∥∞ ≤ exp
(
− T 2/5(log T)2

16(10 + c1)

)
+ exp

(
log(3T)− c2T

1/5(log T)3/5

8(10 + c1)

)
≤ 2

T

if T obeys (satisfied by the conditions of Theorem 3.1)

T 2/5 log T ≥ 16(10 + c1) and c2T
1/5 ≥ 24(10 + c1)(log T)

2/5,

which completes the proof of Lemma 4.2.

Feasible Q-Learning for Average Reward Reinforcement Learning

A.6 Proof of Lemma 4.3

Proof of Lemma 4.3. We begin with some basic notations for convenience: write

ξt =

t∑
i=1+⌊(1−β)t⌋

zi, where zi = η
(t)
i γi(Pi − P)Vi−1. (35)

Then (entries of) {zi} are martingale differences in the sense that

E[zi |Vi−1, . . . ,V0] = 0 ∀i > ⌊(1− β)t⌋.

We shall obtain high-probability bound on ∥ζt∥∞ via Freedman’s inequality in Lemma D.6, for which we compute
some basic quantities that would be of use.

Firstly, when ⌊(1− β)t⌋ ≥ 150 and 1− β ≥ 1/2,

max
⌊(1−β)t⌋<i≤t

∥zi∥∞ ≤ max
⌊(1−β)t⌋<i≤t

η
(t)
i γi∥Pi − P ∥1∥Vi−1∥∞

≤ max
⌊(1−β)t⌋<i≤t

2ηi

≤ 4(log t)3

c1t3/5
=: R, (36)

where the second inequality follows from ∥Pi−P ∥1 ≤ ∥Pi∥1+∥P ∥1 ≤ 2 and the bounded magnitude ∥Vi−1∥∞ ≤
1, and the third inequality follows from (103).

We denote the entrywise conditional variance of zi as Var(zi |Vi−1, . . . ,V0) ∈ R|S||A|, whose j-th element is the
variance of [zi]j conditional on Vi−1, . . . ,V0. By the definition of zi in (35),

Wt =

t∑
i=1+⌊(1−β)t⌋

Var(zi |Vi−1, . . . ,V0)

=

t∑
i=1+⌊(1−β)t⌋

γ2
i

(
η
(t)
i

)2
Var

(
(Pi − P)Vi−1

∣∣Vi−1

)
=

t∑
i=1+⌊(1−β)t⌋

γ2
i

(
η
(t)
i

)2
VarP (Vi−1).

It can be (entrywisely) upper bounded as

Wt ≤
(

max
⌊(1−β)t⌋<i≤t

η
(t)
i

) t∑
i=1+⌊(1−β)t⌋

γ2
i η

(t)
i VarP (Vi−1)

≤
(

max
⌊(1−β)t⌋<i≤t

η
(t)
i

)(t∑
i=1+⌊(1−β)t⌋

η
(t)
i

)(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1)

)
≤ 2(log t)3

c1t3/5
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1),

where the last inequality follows from (103) and the fact that
∑t

i=1+⌊(1−β)t⌋ η
(t)
i ≤ 1 due to (101). In addition,

since ∥Vi−1∥∞ ≤ 1, a deterministic upper bound of Wt is given by

∥Wt∥∞ ≤ 2(log t)3

c1t3/5
=: σ2. (37)

To apply Freedman’s inequality, we further choose the (smallest) positive integer K such that for some constant
c2 ≥ 1,

σ2

2K
≤ 2(log t)3

c1t4/5
,

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou16

which leads to

log t

5 log 2
≤ K ≤ log t

5 log 2
+ 1.

In view of (36) and (37) together with a union bound over all |S||A| entries, Freedman’s inequality (Lemma D.6)
implies that for any fixed t obeying ⌊(1− β)t⌋ ≥ 150 and β < 1/2,

|ξt| ≤
8(log t)3

3c1t3/5
log

2|S||A| log t
δ log 2

1+

√
8
(
Wt +

2(log t)3

c1t4/5
1
)
log

2|S||A| log t
δ log 2

≤
8(log t)3 log |S||A|t

δ

3c1t3/5
1+

√
16(log t)3 log |S||A|t

δ

c1t3/5

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + t−1/51

)
(38)

holds with probability at least 1− δ, where the second line follows from the fact that log t/t ≤ log 2/2 for t ≥ 4.

Finally, for any fixed t obeying T/ log T ≤ t ≤ log T , we have

(log t)3 log |S||A|t
δ

t3/5
≤

(log T)
18
5 log |S||A|T

δ

T 3/5
,

(log t)3 log |S||A|t
δ

t4/5
≤

(log T)
19
5 log |S||A|T

δ

T 4/5
.

The bound in (38) thus translates to

|ξt| ≤ 5

√
(log T)

19
5 log |A||S|T

δ

c1T 3/5

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−1/51

)
, (39)

as long as t additionally satisfies

T 2/5 ≥ 64(log T)4

9c1
log

|S||A|T
δ

.

To see (39), note that under the conditions of Theorem 3.1, one has T 2/5 ≥ 64(log T)4

9c1
log |S||A|T

δ , hence

8(log T)
18
5 log |S||A|T

δ

3c1T 3/5
1 ≤

√
(log T)

19
5 log |S||A|T

δ

c1T 4/5
1

≤

√
(log T)

19
5 log |S||A|T

δ

c1T 3/5

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−1/51

)
,

which completes the proof of Lemma 4.3.

B Proof of Theorem 3.3

In this section, we provide the detailed proof of Theorem 3.3. It follows the same idea as that of Theorem 3.1,
yet with different analysis on the convergence rates.

Recall that in Theorem 3.3, we set γt = 1− t−1/8 and

ηt =
1

1 + c1t5/8

(log t)2

, t ≥ 2

for some constant c1 > 0 in Algorithm 1. In the following, we are to set

β =
c2

T 1/8(log T)2

for the constant c2 > 0 in Theorem 3.3. In this section, we still use the same notations as in the decomposition
of Section 4.1.

Feasible Q-Learning for Average Reward Reinforcement Learning

B.1 Bound on the switching error

Following exactly the same arguments as in the proof of Lemma 4.1, the switching error can be bounded as∥∥∥∥ t∑
i=1

η
(t)
i di/ηi

∥∥∥∥
∞

≤
t∑

i=1

t∏
j=i

(1− ηj)∥di∥∞

=

⌊(1−α)t⌋∑
i=1

t∏
j=i

(1− ηj)∥di∥∞ +

t∑
1+⌊(1−α)t⌋

t∏
j=i

(1− ηj)∥di∥∞,

where we choose α = t−3/8. Firstly, when t obeys ⌊(1 − α)t⌋ = ⌊t − t5/8⌋ ≥ 50 (satisfied by t ≥ 100), for any i
such that 1 ≤ i ≤ ⌊(1− α)t⌋, we have

t∏
j=i

(1− ηj) ≤
t∏

j=⌊(1−α)t⌋

(1− ηj) ≤ exp
(
−

∑t
j=⌊(1−α)t⌋ηj

)
(i)

≤ exp

(
−

t∑
j=⌊(1−α)t⌋

(log j)2

(2 + c1)j5/8

)
(ii)

≤ exp

(
− αt(log t)2

(2 + c1)t5/8

)
,

where (i) follows from (105), and (ii) follows from (106) for j ≥ ⌊(1 − α)t⌋ ≥ 50. Together with the fact that
∥di∥∞ ≤ 1, the above bound implies

⌊(1−α)t⌋∑
i=1

t∏
j=i

(1− ηj)∥di∥∞ ≤ t · exp
(
− αt3/8(log t)2

2 + c1

)
= exp

(
log t− (log t)2/(2 + c1)

)
. (40)

On the other hand, (30) implies

∥di∥∞ ≤ (i− 1)−1/8 − i−1/5

(i− 1)−1/8
≤ 1− (1− 1/i)1/8 ≤ 1

4i
≤ 1

4(1− α)t
,

for all i ≥ 1 + ⌊(1− α)t⌋. The second inequality above is implied by

1− (1− 1/i)1/8 = 1− exp

(
log(1− 1/i)

8

)
≤ 1− exp (−2/(8i)) ≤ 2/(8i),

where for i ≥ 2, we use the fact that log(1 − x) ≥ −2x for x ≤ log 2/2 and ex ≥ 1 + x for x ∈ R. Therefore,
noting that α ≤ 0.25 for t ≥ 150, we have

t∑
1+⌊(1−α)t⌋

t∏
j=i

(1− ηj)∥di∥∞ ≤
t∑

1+⌊(1−α)t⌋

∥di∥∞ ≤ αt

4(1− α)t
≤ α/3 =

1

3t3/8
. (41)

Combining (40) and (41), once T/ log T ≥ 100, we have∥∥∥∥ t∑
i=1

η
(t)
i di/ηi

∥∥∥∥
∞

≤ exp
(
log t− (log t)2/(2 + c1)

)
+

1

3t3/8

≤ exp
(
log T − (log T − log log T)2

2 + c1

)
+

(log T)3/8

3T 3/8

≤ exp
(
log T − (log T)2

4(2 + c1)

)
+

(log T)3/8

3T 3/8
≤ 2(log T)3/8

T 3/8

for all T/ log T ≤ t ≤ T , where the third inequality follows from log T ≥ 2 log log T , and the last inequality holds
as long as T obeys (log T)3/(8 + 4c1) ≥ 11

8 log T .

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou17

B.2 Bounds on ζt

Similar to the proof of Lemma 4.2, the ℓ∞-norm of ζt can be bounded as

∥ζt∥∞ ≤ η
(t)
0 + 3

⌊(1−β)t⌋∑
i=1

η
(t)
i γi.

By definition of {ηt}, as long as β < 1/2 and t ≥ 100,

η
(t)
0 =

t∏
j=1

(1− ηj) ≤ exp
(
−
∑t

j=1ηj

)

≤ exp

(
−

t∑
j=50

(log j)2

(2 + c1)j5/8

)
≤ exp

(
− (t− 50)(log t)2

(2 + c1)t5/8

)
, (42)

where the second inequality follows from (105), and the last inequality follows from the monotonicity (106).

Similarly, when ⌊(1 − β)t⌋ ≥ 50 (which holds as long as β < 1/2 and t ≥ 100), for any 1 ≤ i ≤ ⌊(1 − β)t⌋, it
holds that

η
(t)
i ≤

t∏
j=1+⌊(1−β)t⌋

(1− ηj) ≤ exp
(
−
∑t

j=1+⌊(1−β)t⌋ηj

)
≤ exp

(
− βt(log t)2

(2+c1)t5/8

)
. (43)

Combining (42) and (43), once β < 1/2, we have

∥ζt∥∞ ≤ exp

(
− (t− 50)(log t)2

(2 + c1)t5/8

)
+ 3 exp

(
log t− βt(log t)2

(2 + c1)t5/8

)
≤ exp

(
− t(log t)2

2(2 + c1)t5/8

)
+ 3 exp

(
log t− βt(log t)3

(2 + c1)t5/8

)
for all t ≥ 100. Note that when T/ log T ≥ 100, for all t such that T/ log T ≤ t ≤ T ,

t3/8(log t)2 ≥ (T/ log T)3/8(log T − log log T)2 ≥ (T/ log T)3/8 · (log T)2/4 ≥ T 3/8(log T)2/4,

where the second inequality follows from log T ≥ 2 log log T . Meanwhile, for T/ log T ≤ t ≤ T ,

log t− βt(log t)2

(2 + c1)t5/8
≤ log T − c2

T 1/8(log T)2
T 3/8

(log T)3/8
(log T)2

4(2 + c1)
≤ log T − c2T

1/4

4(2 + c1)(log T)3/8
.

Therefore, for any T/ log T ≤ t ≤ log T ,

∥ζt∥∞ ≤ exp
(
− T 3/8(log T)2

2(2 + c1)

)
+ exp

(
log(3T)− c2T

1/4

4(2 + c1)(log T)3/8

)
≤ 4

T

if T obeys

T 3/8 log T ≥ 2(2 + c1) and c2T
1/4 ≥ 4(2 + c1)(log T)

11/8.

B.3 Bound on ξt

Similar to the proof of Lemma 4.3, we write

ξt =

t∑
i=1+⌊(1−β)t⌋

zi, where zi = η
(t)
i γi(Pi − P)Vi−1. (44)

Then (entries of) {zi} are martingale differences, and we shall obtain high-probability bound on ∥ξt∥∞ via
Freedman’s inequality as usual.

Feasible Q-Learning for Average Reward Reinforcement Learning

Firstly, parallel to (36), when ⌊(1− β)t⌋ ≥ 50 and 1− β ≥ 1/2,

max
⌊(1−β)t⌋<i≤t

∥zi∥∞ ≤ max
⌊(1−β)t⌋<i≤t

2ηi ≤
4(log t)2

c1t5/8
=: R, (45)

where the third inequality follows from (107).

We denote the entrywise conditional variance of zi as Var(zi |Vi−1, . . . ,V0) ∈ R|S||A|, whose j-th element is the
variance of [zi]j conditional on Vi−1, . . . ,V0. By the definition of zi in (44),

Wt =

t∑
i=1+⌊(1−β)t⌋

Var(zi |Vi−1, . . . ,V0) =

t∑
i=1+⌊(1−β)t⌋

γ2
i

(
η
(t)
i

)2
VarP (Vi−1).

Similar to the situation in Lemma 4.3 (c.f. Appendix A.6), we have the crude entrywise upper bounded

Wt ≤
(

max
⌊(1−β)t⌋<i≤t

η
(t)
i

) t∑
i=1+⌊(1−β)t⌋

γ2
i η

(t)
i VarP (Vi−1)

≤ 2(log t)2

c1t5/8
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1),

where the last inequality follows from (107) and the fact that
∑t

i=1+⌊(1−β)t⌋ η
(t)
i ≤ 1 due to (101). In addition,

by the boundedness of ∥Vi−1∥∞ ≤ 1, we also have a deterministic upper bound of Wt that

∥Wt∥∞ ≤ 2(log t)2

c1t5/8
=: σ2. (46)

To apply Freedman’s inequality, we further choose the (smallest) positive integer K such that for some constant
c2 ≥ 1,

σ2

2K
≤ 2(log t)2

c1t
,

which leads to

3 log t

8 log 2
≤ K ≤ 3 log t

8 log 2
+ 1.

In view of (45) and (46) together with a union bound over all |S||A| entries, Freedman’s inequality (Lemma D.6)
implies that for any fixed t obeying ⌊(1− β)t⌋ ≥ 50 and β < 1/2,

|ξt| ≤
8(log t)2

3c1t5/8
log

2|S||A| log t
δ log 2

1+

√
8
(
Wt +

2(log t)2

c1t
1
)
log

2|S||A| log t
δ log 2

≤
8(log t)2 log |S||A|t

δ

3c1t5/8
1+

√
16(log t)2 log |S||A|t

δ

c1t5/8

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + t−3/81

)
(47)

holds with probability at least 1− δ, where the second line follows from the fact that log t/t ≤ log 2/2 for t ≥ 4.

Finally, for any fixed t obeying T/ log T ≤ t ≤ log T , we have

(log t)2 log |S||A|t
δ

t5/8
≤

(log T)
21
8 log |S||A|T

δ

T 5/8
,

(log t)2 log |S||A|t
δ

t
≤

(log T)3 log |S||A|T
δ

T
.

The bound in (47) thus translates to

|ξt| ≤ 5

√
(log T)3 log |A||S|T

δ

c1T 5/8

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−3/81

)
,

as long as t additionally satisfies

T 5/8 ≥ 64(log T)3

9c1
log

|S||A|T
δ

.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou18

B.4 Recursive bound

Combining the three bounds in preceding subsections, for sufficiently large T satisfying all the mentioned condi-
tions and any fixed t obeying T/ log T ≤ t ≤ T , it holds with probability at least 1− δ that

∆t ≤
2(log T)3/8

T 3/8
+

4

T
+ 5

√
(log T)3 log |S||A|T

δ

c1T 5/8

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−3/81

)
+

t∑
i=1+⌊(1−β)t⌋

η
(t)
i γiP

πt−1∆i−1

≤
(
1 +

5
√
c1

)√ (log T)3 log |S||A|T
δ

T 5/8

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−3/81

)
+

t∑
i=1+⌊(1−β)t⌋

η
(t)
i γiP

πi−1∆i−1, (48)

where the second inequality follows from the fact that

2(log T)3/8

T 3/8
+

4

T
≤

√
(log T)3 log |S||A|T

δ

T 5/8

for T so large that T/ log T ≥ 100. Once (1 − β) ≥ 3/4, for any fixed t obeying 3T/(2 log T) ≤ t ≤ T , we
apply (48) with a union bound over {k : 2t

3 ≤ k ≤ t} — as a result, with probability at least 1− δ, one has

∆k ≤ √
φt +

k∑
i=1+⌊(1−β)k⌋

η
(k)
i γiP

πi−1∆i−1, for all
2t

3
≤ k ≤ t, (49)

where we define

φt = 2
(
1 +

5
√
c1

)2

·
(log T)3 log |S||A|T

δ

T 5/8

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−3/81

)
(50)

≥
(
1 +

5
√
c1

)2

·
(log T)3 log |S||A|T

δ/T

T 5/8

(
max

⌊(1−β)t⌋<i≤t
VarP (Vi−1) + T−3/81

)
.

In the following, we are to follow exactly the same recipe as in the proof of Proposition 4.4 (c.f. Appendix A.3),

where we correspondingly define the {α(t)
i } according this set of learning rates {ηj} here. We also set

H := T 1/8(log T)2,

so that (1 − β)H ≥ exp(−2βH) ≥ 2/3 as long as c2 ≤ log(3/2)/2. Thus, when T is sufficiently large so that
1− β ≥ 2/3, in parallel with (24), we have

∆t ≤ max
(i1,...,iH)∈It

{(
I +

H−1∑
h=1

h∏
k=1

(γik+1P
πik)

)√
φt︸ ︷︷ ︸

=:β1

+

H∏
h=1

(γih+1P
πih)|∆iH |︸ ︷︷ ︸

=:β2

}
. (51)

In the following, we are to bound β1 and β2 in (51) separately. By definition of the discount factor {γt}, we
have γj ≤ γT for all 2t/3 ≤ j ≤ T , indicating

|β2| ≤ γH
t

H∏
h=1

P πih |∆H | ≤ γH
T

∥∥∥∥ H∏
h=1

P πih

∥∥∥∥
1

∥∆H∥∞
(i)

≤ γH
T

(ii)

≤ 1

T
, (52)

Feasible Q-Learning for Average Reward Reinforcement Learning

where (i) follows from the bounded magnitude ∥∆H∥∞ ≤ 1 and the fact that
∏H

h=1 P
πih is a probability

transition matrix; (ii) follows from

γH
T =

(
1− T−1/8

)T 1/8(log T)2 ≤ exp
(
− (log T)2

)
≤ 1

T
.

Again, for β1, parallel to (26), we have the entrywise upper bound

|β1|2 ≤ 1

1− γT

H−1∑
h=0

γh
T

h∏
k=1

P πik

2(1 + 5√
c1
)2(log T)3 log |S||A|T

δ/T

T 5/8

(
max

⌊(1−β)k⌋<i≤k
VarP (Vi−1) + T−3/81

)

≤
4(1 + 5√

c1
)2(log T)3 log |S||A|T

δ

T 1/2

(H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (Vi) + 1

)
, (53)

We employ the following lemma to bound the first term of (53); it is parallel to Lemma A.1, and the proof
follows exactly the same arguments hence we omit here.

Lemma B.1. Suppose T ≥ 100, then it holds for all T/ log T ≤ t ≤ T that

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (Vi) ≤
(
7 + 72tmix(log T)

1/8 + 8T 1/8 max
⌊t/2⌋≤i<t

∥∆i∥∞
)
1. (54)

Invoking Lemma B.1, we obtain an upper bound

|β1|2 ≤
4(1 + 5√

c1
)2(log T)3 log |S||A|T

δ

T 1/2

(
8 + 72tmix(log T)

1/8 + 8T 1/8 max
⌊t/2⌋≤i<t

∥∆i∥∞
)
1. (55)

Recalling (51), by the upper bound (52) on |β2| and (55) on |β1|, for any fixed t such that 3T/(2 log T) ≤ t ≤ T ,

∆t ≤
1

T
+

√√√√4(1 + 5√
c1
)2(log T)3 log |S||A|T

δ

T 1/2

(
8 + 72tmix(log T)1/8 + 8T 1/8 max

⌊t/2⌋≤i<t
∥∆i∥∞

)
1

≤ 4
(
1 +

5
√
c1

)√ (log T)4 log |S||A|T
δ

T 1/2

(
8(log T)−1/8 + 72tmix + 8(T/ log T)1/8 max

⌊t/2⌋≤i<t
∥∆i∥∞

)
1 (56)

holds with probability at least 1− δ.

We now further take a union bound for (56) over {t : 3T/(2 log T) ≤ t ≤ T}, which leads to the simultaneous
(1− δ) high-probability bound

∆t ≤ 16
(
1 +

5
√
c1

)√ (log T)4 log |S||A|T
δ

T 1/2

(
(log T)−1/8 + 9tmix + (T/ log T)1/8 max

⌊t/2⌋≤i<t
∥∆i∥∞

)
1

for all t such that 3T/(2 log T) ≤ t ≤ T , since log |S||A|T
δ/T ≤ 2 log |S||A|T

δ .

B.5 Solving the recursive bound

We solve the recursive bounds to obtain the final high-probability bound. For any positive integer k, we define

uk = max
{
∥∆i∥∞ : 2k

3T

2 log T
≤ i ≤ T

}
.

A naive upper bound is uk ≤ 1 for all k. Furthermore, by (15) and the definition of uk, with probability at least
1− δ, it holds simultaneously for all k ≥ 1 that

uk+1 ≤

√
c3(log T)4 log

|S||A|T
δ

T 1/2

(
(log T)−1/8 + 9tmix + (T/ log T)1/8uk

)

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou19

for some absolute constant c3 > 0. If there exists some k such that 2k+1 ≤ 2 log T/3 and

uk ≤ ((log T)−1/8 + 9tmix)(T/ log T)
−1/8, (57)

then 2k+1 3T
2 log T ≤ T , and

∥∆T ∥∞ ≤ uk+1 ≤

√
c3(log T)4 log

|S||A|T
δ

T 1/2
(2(log T)−1/8 + 18tmix).

On the other hand, suppose uj > ((log T)−1/8+9tmix)(T/ log T)
−1/8 for any 1 ≤ j ≤ k for which 2k+1 ≤ 2 log T/3.

Then

uj+1 ≤

√
2c3(log T)4 log

|S||A|T
δ

T 3/8
uj , for all 1 ≤ j ≤ k,

which implies

log uj+1 ≤ 1

2
log uj +

1

2
log θ, where θ = 2c3 · T−3/8(log T)4 log

|S||A|T
δ

.

Recursively applying this relation for 1 ≤ j < k yields

2k log uk ≤ log u0 +

k−1∑
j=0

2j log θ ≤ (2k − 1) log θ,

where we used the fact that u0 ≤ 1. Hence

uk ≤ θ1−1/2k =
(
2c3 · T−3/8(log T)4 log

|S||A|T
δ

)1−1/2k

=
(
2c3 · (log T)4 log

|S||A|T
δ

)1−1/2k

· T−3/8 · T
3

8·2k

≤ 2c3 ·
(log T)4 log |S||A|T

δ

T 3/8
· exp

(
3 log T · 2−k/8

)
.

Now we can set 2k ≥ 3 log T/16, so that 2k3T/(2 log T) ≤ T , and the above upper bound translates to

∥∆T ∥∞ ≤ uk ≤ 16c3 ·
(log T)4 log |S||A|T

δ

T 3/8
.

Combining the two cases above, we arrive at

∥∆T ∥∞ ≤
(
c4

√
(log T)−1/8 + 9tmix + 16c3T

−1/8
) (log T)4 log |S||A|T

δ

T 1/4

with probability at least 1− δ for T obeying the conditions of Proposition 4.4.

We now take a moment to collect all the conditions we impose on T , which are

(log T)3/(8 + 4c1) ≥
11

8
log T, T/ log T ≥ 100, T 3/8 log T ≥ 2(2 + c1),

c2T
1/4 ≥ 4(2 + c1)(log T)

11/8, T 5/8 ≥ 64(log T)3

9c1
log

|S||A|T
δ

.

They can be further simplified to

(log T)2 ≥ 11(2 + c1)/2, T/ log T ≥ 100,

c2T
1/4 ≥ 4(2 + c1)(log T)

11/8, T 5/8 ≥ 64(log T)3

9c1
log

|S||A|T
δ

.

Feasible Q-Learning for Average Reward Reinforcement Learning

B.6 From estimation to policy learning

Finally, we are to leverage the performance difference lemma for discounted reward MDP to obtain the bounds
on average reward performance.

Invoking Lemma D.9 with γ = γT , π
′ = π∗

γT
and π = πT , the greedy policy obtained in the T -th iteration, we

know that

V πT
γT

(s)− V ∗
γT

(s) ≥ −T 1/8 · sup
s′∈S

∣∣Q∗
γT

(s′, πT (s
′))− V ∗

γT
(s′)

∣∣.
Since πT is the greedy policy with respect to QT , for any s′ ∈ S, we ahve

Q∗
γT

(s′, πT (s
′)) ≥ QT (s

′, πT (s
′))− ∥∆T ∥∞

≥ QT (s
′, π∗

γT
(s′))− ∥∆T ∥∞

≥ Q∗
γT

(s′, π∗
γT

(s′))− 2∥∆T ∥∞ ≥ V ∗
γT

(s′)− 2∥∆T ∥∞,

and also Q∗
γT

(s′, πT (s
′)) ≤ maxa∈A Q∗

γT
(s′, a) = V ∗

γT
(s′). Therefore, we have 0 ≥ V πT

γT
(s)− V ∗

γT
(s) ≥ −2∥∆T ∥∞.

Further invoking Lemma D.1, and recalling that π∗ is the optimal policy for average reward, we have

V πT (s) ≥ V πT
γT

(s)− (1− γT)tmix

≥ V ∗
γT

(s)− 2∥∆T ∥∞ − 3(1− γT)tmix

≥ V π∗

γT
(s)− 2∥∆T ∥∞ − 3(1− γT)tmix

≥ V π∗
(s)− 2∥∆T ∥∞ − 6(1− γT)tmix,

where the first line follows from Lemma D.1 for πT , the second line uses the previous result, the third line uses
the optimality of π∗

γT
for γT -discounted reward, and the last line uses Lemma D.1 for π∗. Therefore, on the

event that ∥∆T ∥∞ ≤
(
c4
√
(log T)−1/8 + 3tmix + 16c3T

−1/8
) (log T)4 log

|S||A|T
δ

T 1/4 , we have

V ∗(s)− V πT (s) ≤ 2
(
c4

√
(log T)−1/8 + 3tmix + 16c3T

−1/8
) (log T)4 log |S||A|T

δ

T 1/8
+ 6T−1/8tmix.

Since tmix ≥ 1, the above bound translates to

V ∗(s)− V πT (s) ≤ ctmix

T 1/8
(log T)4 log

|S||A|T
δ

for some absolute constant c > 0 that only depends on c1, c2. This completes the proof of Theorem 3.3.

C Technical proofs regarding Theorem 5.2

In this section, we provide detailed proofs for results regarding Algorithm 2. Appendix C.1 provides a proof
sketch for Theorem 5.2, while the remaining of this section provides detailed proofs for supportive results.

C.1 Sketch of analysis for Algorithm 2

In this section, we provide a sketch of analysis for the estimation error of Algorithm 2, which forms the basis for
proving Theorem 5.2. The general approach is similar to Section 4.1 with slightly different bounds. Let

δt = qt − q∗
αt
,

for t ≥ 0, which is the estimation error of Algorithm 2 in the t-th iteration.

Our updating rule (17) in the t-th iteration satisfies

qt = (1− θt)qt−1 + θt
[
r + αtPtvt−1

]
.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou20

Employing the Bellman equation q∗
αt

= r + αtPv∗
αt
, we obtain the decomposition

δt = qt − q∗
αt

= (1− θt)qt−1 + θt
[
r + αtPtvt−1

]
− q∗

αt

= (1− θt)δt−1 + (1− θt)(q
∗
αt−1

− q∗
αt
) + θt

[
r + αtPtvt−1 − q∗

αt

]
= (1− θt)δt−1 + (1− θt)(q

∗
αt−1

− q∗
αt
) + θt

[
αtPtvt−1 − αtPv∗

αt

]
= (1− θt)δt−1 + θtαt

[
Ptvt−1 − Pv∗

αt−1

]
+ (1− θt)(q

∗
αt−1

− q∗
αt
) + θtP (q∗

αt−1
− q∗

αt
) (58)

Similar as the arguments in the analysis of Algorithm 1 (see Section 4), we have

Ptvt−1 − Pv∗
αt−1

= (Pt − P)vt−1 + P (vt−1 − v∗
αt−1

),

where the term P (vt−1 − v∗
αt−1

) is linked to δt−1 via

P (vt−1 − v∗
αt−1

) ≤ P πt−1δt−1, (59a)

P (vt−1 − v∗
αt−1

) ≥ P
π∗
αt−1δt−1. (59b)

Here with some abuse of notations, we define πt as the greedy policy with respect to qt. Plugging (59a) and (59b)
back into (58) leads to the recursive relation

δt ≤ (1− θt)δt + θtαt

[
P πt−1δt−1 + (Pt − P)vt−1

]
+ d̄t; (60a)

δt ≥ (1− θt)δt + θtαt

[
P

π∗
αt−1δt−1 + (Pt − P)vt−1

]
+ d̄t, (60b)

where we define the switching error in the t-th iteration as

d̄t = (1− θt)(q
∗
αt−1

− q∗
αt
) + θtP (q∗

αt−1
− q∗

αt
).

Applying (60a) and (60b) recursively, we arrive at

δt ≤ θ
(t)
0 δ0 +

t∑
i=1

θ
(t)
i di/θi +

t∑
i=1

θ
(t)
i αi

[
(Pi − P)vi−1 + P πt−1δi−1

]
,

δt ≥ θ
(t)
0 δ0 +

t∑
i=1

θ
(t)
i di/θi +

t∑
i=1

θ
(t)
i αi

[
(Pi − P)vi−1 + P

π∗
αi−1δi−1

]
.

(61)

where we define θ
(t)
t = 1,

θ
(t)
0 =

∏t
j=1(1− θj), and θ

(t)
i = θi ·

∏t
j=i+1(1− θj), ∀i ≥ 1.

Now we set (with some abuse of notation)

β =
c2

T 1/3(log T)2

for some constant c2 > 0. The upper bound of (61) can be decomposed as

δt ≤ θ
(t)
0 δ0 +

⌊(1−β)t⌋∑
i=1

θ
(t)
i αi

[
(Pi − P)vi−1 + P πt−1δi−1

]
︸ ︷︷ ︸

=:ζt

+

t∑
i=1+⌊(1−β)t⌋

θ
(t)
i αi(Pi − P)vi−1︸ ︷︷ ︸
=:ξt

+

t∑
i=1+⌊(1−β)t⌋

θ
(t)
i αiP

πi−1δi−1 +

t∑
i=1

θ
(t)
i d̄i/θi︸ ︷︷ ︸
=:ωt

The three terms, similar to before, are bounded as follows.

Lemma C.1. For all sufficiently large t such that t ≥ max{e2+c1 , 100}, it holds that∥∥∥ t∑
i=1

θ
(t)
i di/θi

∥∥∥
∞

≤ 3t−2/9.

Feasible Q-Learning for Average Reward Reinforcement Learning

Proof of Lemma C.1. See Appendix C.5 for a detailed proof.

Lemma C.2. Suppose T is sufficiently large such that c2 log T ≥ 5(2+c1)(log T)
1/3+log log T , c1T

3 ≥ 3(log T)5

and (T/ log T)1/3 ≥ 4(2 + c1). Then∥∥∥∥∥θ(t)0 δ0 +

⌊(1−β)t⌋∑
i=1

θ
(t)
i θ

(t)
i αi(Pi − P)vi−1

∥∥∥∥∥
∞

≤ 2/t

for any t such that T/ log T ≤ t ≤ T .

Proof of Lemma C.2. See Appendix C.6 for a detailed proof.

We utilize the Freedman’s inequality to control the term ξt.

Lemma C.3. When β < 1/2 and T/ log T ≥ max{ec1 , 100}, for any fixed t such that T/ log T ≤ t ≤ T ,

|ξt| ≤

√
c3(log T)2(log

T |S||A|
δ)2

T 2/3

(
max

1+⌊(1−β)t⌋≤i≤t
VarP (vi−1) + 2(log T)6

)
holds with probability at least 1− δ, where c3 = 16/c1 + 144/c21 is an absolute constant.

Proof of Lemma C.3. See Appendix C.7 for a detailed proof.

Based on the above three lemmas, we have the following recursive relation, which form the base of proving
Theorem 5.2.

Proposition C.4. Suppose T is sufficiently large such that

T/ log T ≥ max{e2+c1 , 100, 64(2 + c1)
3},

c3(log T)
5 ≥ 5, c1T

3 ≥ 3(log T)5,

2c3T ≥ (1 + 3/c1)
2(log T)2

c2 log T ≥ 5(2 + c1)(log T)
1/3 + log log T

for some constant c2 > 0 and c3 = 16/c1 + 144/c21. Then with probability at least 1− δ,

∥δt∥∞ ≤

√
4c3(log T)2(log

T |S||A|
2δ)2

T 2/9

(
1 + c4(log T)2 max

⌊t/2⌋≤i<t
∥δi∥∞

)
holds simultaneously for all 3T/(2 log T) ≤ t ≤ T , where we define the constant c4 = 2(1 + 3/c1).

Proof of Proposition C.4. See Appendix C.4 for a detailed proof.

C.2 Proof of Theorem 5.2

Proof of Theorem 5.2. We solve the recursive bound of Propositions C.4 that

∥δt∥∞ ≤

√
4c3(log T)2(log

T |S||A|
2δ)2

T 2/9

(
1 + c4(log T)2 max

⌊t/2⌋≤i<t
∥δi∥∞

)
(62)

with probability at least 1− δ for all 3T/(2 log T) ≤ t ≤ T . For any positive integer k, we define

wk = max
{
∥δi∥∞ : 2k

3T

2 log T
≤ i ≤ T

}
.

By (62) and the definition of wk, with probability at least 1− δ, it holds simultaneously for all k ≥ 1 that

uk+1 ≤

√
4c3(log T)2(log

T |S||A|
2δ)2

T 2/9

(
1 + c4(log T)2uk

)
.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou21

If there exists some k such that uk ≤ 1 and 2k+1 ≤ 2 log T/3, then

∥δT ∥∞ ≤ uk+1 ≤

√
4c3(log T)2(log

T |S||A|
2δ)2

T 2/9

(
1 + c4(log T)2

)
≤

c5(log T)
2(log T |S||A|

2δ)2

T 1/9

for some sufficiently large constant c5 > 0. Otherwise, suppose uj > 1 for any 1 ≤ j ≤ k where
k ≤ ⌊log2(2 log T/3)⌋ − 1, then

uj+1 ≤

√
4c3(1 + c4)(log T)4(log

T |S||A|
2δ)2

T 2/9
uj , for all 1 ≤ j ≤ k,

which implies

log uj+1 ≤ 1

2
log uj +

1

2
log θ, where θ =

4c3(1 + c4)(log T)
4(log T |S||A|

2δ)2

T 2/9
.

Recursively applying this relation for 1 ≤ j < k yields

2k log uk ≤ log u0 +

k−1∑
j=0

2j log θ ≤ log T + (2k − 1) log θ,

where we used the fact that u0 ≤ max1≤i≤T {∥v∗
αi
∥∞ + ∥vi∥∞} ≤ 3(log T)2T 1/3/c1 + T 1/9, as long as T satisfies

3(log T)2T 1/3/c1 + T 1/9 ≤ T . Hence

uk ≤ θ1−1/2k(log T)1/2
k

≤
4c3(1 + c4)(log T)

2(log T |S||A|
2δ)2

T 2/9
· T 2−k+1

,

as long as T 7/9 ≥ 4c3(1 + c4)(log T)
4(log T |S||A|

2δ)2. Now we can set k = log2(T/6), so that 2k · 3T/ log T < T

and T 2−k+1 ≤ e12, hence

∥δ∥T ≤
c6(log T)

4(log T |S||A|
2δ)2

T 2/9

for the constant c6 = 4c3(1 + c4). Combining the two cases above, for any fixed T obeying the given conditions,

∥δ∥T ≤
c5(log T)

4(log T |S||A|
2δ)2

T 1/9

holds with probability at least 1− δ for some constant c5 > 0. Finally, by Lemma 5.1, we have∥∥qT − q∗ − J∗/(1− αT)1
∥∥
∞ ≤ ∥δT ∥∞ +

∥∥q∗
αT

− q∗ − J∗/(1− αT)1
∣∣

≤
B + c5(log T)

4(log T |S||A|
2δ)2

T 1/9
.

Put it another way, given any ε > 0, as long as T satisfies

T 1/9 ≥
B + c5(log T)

4(log T |S||A|
2δ)2

ε
,

we have
∥∥qT − q∗ − J∗/(1− αT)1

∥∥
∞ ≤ ε. On the same event of probability at least 1− δ, we also have∥∥vT − v∗ − J∗/(1− αT)1

∥∥
∞ ≤ ∥vT − v∗

αT
∥∞ +

∥∥v∗
αT

− v∗ − J∗/(1− αT)1
∣∣

≤
B + c5(log T)

4(log T |S||A|
2δ)2

T 1/9
.

We thus have
∥∥vT −v∗−J∗/(1−αT)1

∥∥
∞ ≤ ε as well. Still by Lemma 5.1, we also obtain the form of v∗ and q∗,

which by standard MDP theory (Puterman, 2014) satisfies the Bellman equation (1). Therefore, we complete
the proof of Theorem 5.2.

Feasible Q-Learning for Average Reward Reinforcement Learning

C.3 Proof of Corollary 5.3

Proof of Corollary 5.3. Recall that πT (s) = argmaxa∈A qT (s, a) for all s ∈ S is the greedy policy, and π∗ is the
optimal policy for average reward. Then under the conditions of Theorem 5.2, we have∥∥qT (s, a)− qπ

∗
(s, a)− J∗/(1− αT)

∥∥
∞ ≤ ε, (63)

where ε =
B+c(log T)4(log

T |S||A|
δ)2

T 1/9 , since the function q∗ defined in Theorem 5.2 equals qπ
∗
. Assume without loss

of generality that π∗ and πT are both deterministic policies. Invoking Lemma D.8 with π′ = πT and π = π∗, we
know that

JπT − Jπ∗
= Es∼dπ′

[∑
a∈A

(
πT (a | s)− π∗(a | s)

)
q∗(s, a)

]
≥ −max

s∈S

∣∣∣q∗(s, πT (s)
)
− q∗

(
s, π∗(s)

)∣∣∣.
Here by the optimality of π∗ and (63), we have

q∗
(
s, π∗(s)

)
≥ q∗

(
s, πT (s)

)
≥ qT

(
s, πT (s)

)
− J∗/(1− αT)− ε

≥ qT
(
s, π∗(s)

)
− J∗/(1− αT)− ε

≥ q∗
(
s, π∗(s)

)
− 2ε,

where the second and fourth lines uses the uniform bound (63), and the third line uses the property of greedy
policy πT . This leads to

JπT − Jπ∗
≥ −2ε

as desired.

C.4 Proof of Proposition C.4

Proof of Proposition C.4. Putting Lemmas C.1, C.2 and C.3 together, we arrive at

δt ≤
(
3t−2/9 + 2/t

)
1+

t∑
i=1+⌊(1−β)t⌋

θ
(t)
i αiP

πi−1δi−1

+

√
c3(log T)2(log

T |S||A|
δ)2

T 2/3

(
max

1+⌊(1−β)t⌋≤i≤t
VarP (vi−1) + 2(log T)61

)
with probability at least 1− δ for any fixed t within T/ log T ≤ t ≤ T , as long as T satisfies

T/ log T ≥ max{e2+c1 , 100}, (T/ log T)1/3 ≥ 4(2 + c1),

c2 log T ≥ 5(2 + c1)(log T)
1/3 + log log T, c1T

3 ≥ 3(log T)5.

Further simplifying this inequality leads to

δt ≤

√
2c3(log T)2(log

T |S||A|
δ)2

T 2/3

(
max

1+⌊(1−β)t⌋≤i≤t
VarP (vi−1) + 2T 2/91

)
+

t∑
i=1+⌊(1−β)t⌋

θ
(t)
i αiP

πi−1δi−1, (64)

as long as T additionally satisfy (log T)50/9 ≥ 9
2c3

. Once (1 − β) ≥ 3/4, for any fixed t obeying 3T/(2 log T) ≤
t ≤ T , we apply (64) with a union bound over {k : 2t

3 ≤ k ≤ t} — as a result, with probability at least 1− δ,

δk ≤
√
ϕt +

k∑
i=1+⌊(1−β)k⌋

θ
(k)
i αiP

πi−1δi−1, for all
2t

3
≤ k ≤ t, (65)

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou22

where we define

ϕt =
2c3(log T)

2(log T |S||A|
δ)2

T 2/3

(
max

1+⌊(1−β)k⌋≤i≤k
VarP (vi−1) + 2T 2/91

)
. (66)

Following exactly the same arguments as in the proof of Proposition 4.4, we define

λ
(t)
i :=

θ
(t)
i+1∑t−1

j=⌊(1−β)t⌋ θ
(t)
j+1

, ⌊(1− β)t⌋ ≤ i ≤ t− 1, (67)

and arrive at the decomposition

δt ≤
t−1∑

i1=⌊(1−β)t⌋

(
λ
(t)
i1

√
ϕt + θ

(t)
i1+1αi1+1P

πi1δi1

)

≤
t−1∑

i1=⌊(1−β)t⌋

[
λ
(t)
i1

√
ϕt + θ

(t)
i1+1αi1+1P

πi1

i1−1∑
i2=⌊(1−β)i1⌋

(
λ
(i1)
i2

√
ϕt + θ

(i1)
i2+1αi2+1P

πi2δi2

)]

≤
t−1∑

i1=⌊(1−β)t⌋

λ
(t)
i1

√
ϕt +

t−1∑
i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

λ
(t)
i1
λ
(i1)
i2

(
αi1+1P

πi1

)√
ϕt

+

t−1∑
i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

θ
(t)
i1+1θ

(i1)
i2+1

2∏
k=1

(αik+1P
πik)δi2

)

≤
t−1∑

i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

λ
(t)
i1
λ
(i1)
i2

{I + αi1+1P
πi1 }

√
ϕt

+

t−1∑
i1=⌊(1−β)t⌋

i1−1∑
i2=⌊(1−β)i1⌋

θ
(t)
i1+1θ

(i1)
i2+1

2∏
k=1

(αik+1P
πik)δi2 . (68)

To further apply such recursion, we define

G = T 1/9 log T, and λ{ik}G
k=1

:= λ
(t)
i1
λ
(i1)
i2

. . . λ
(iG−1)
iG

≥ 0

for any t > i1 > i2 > · · · > iH , which satisfies

α{ik}G
k=1

≥ θ
(t)
i1+1θ

(i1)
i2+1 · · · θ

(iG−1)
iG+1 .

We define the index set

It =
{
(i1, . . . , iG) : ⌊(1− β)t⌋ ≤ i1 ≤ t− 1, ⌊(1− β)ij−1⌋ ≤ ij ≤ ij−1 − 1, ∀1 ≤ j < G

}
,

which satisfies ∑
(i1,...,iG)∈It

λ{ik}G
k=1

= 1.

Note that once T 2/9 log T ≥ 6 (implied by a stronger condition T 2/9 ≥ (log T)5 imposed before), we have

(1− β)G = (1− c2T
−1/3(log T)−2)T

1/9 log T ≥ exp
(
− 2c2T

−1/3(log T)−2 · T 1/9 log T
)
≥ 2

3
,

which implies

i1 > i2 > · · · > iG ≥ 2t/3, for all (i1, . . . , iG) ∈ It.

Feasible Q-Learning for Average Reward Reinforcement Learning

Recursively invoking (68), we obtain

δt ≤
∑

(i1,...,iG)∈It

λ{ik}H
k=1

{(
I +

G−1∑
h=1

h∏
k=1

(αik+1P
πik)

)√
ϕt +

G∏
h=1

(αih+1P
πih)|δiG |

}

≤ max
(i1,...,iG)∈It

{(
I +

G−1∑
h=1

G∏
k=1

(αik+1P
πik)

)√
ϕt︸ ︷︷ ︸

=:β1

+

G∏
h=1

(αih+1P
πih)|δiG |︸ ︷︷ ︸

=:β2

}
. (69)

We now treat the two terms β1 and β2 separately. The easier part is

G∏
h=1

(αih+1P
πih)|δiG | ≤

G∏
h=1

αih+1 ·
∥∥∥ G∏

h=1

P πih

∥∥∥
1
· ∥δiG∥∞1

≤ αG
T · max

2t/3≤j≤t−1
∥δj∥∞1

≤ (1− T−1/9)T
1/9 log T · (T 1/9 + 3T 1/3(log T)3/c1) ≤ (1 + 3/c1)T

−2/3(log T)3,

where the second inequality uses the fact that
∏G

h=1 P
πih is a probability matrix, and the third inequality uses

∥δj∥∞ ≤ ∥qj∥∞ + ∥q∗
αj
∥∞ ≤ 3j1/3(log j)2/c1 + j1/9 by Lemma E.2. On the other hand, following exactly the

same argument as 26, we have

|β1|2≤
G−1∑
h=0

αh
T ·

G−1∑
h=0

αh
T

h∏
k=1

P πikϕt

≤ 1

1− αT

G−1∑
h=0

αh
T

h∏
k=1

P πik
2c3(log T)

2(log T |S||A|
δ)2

T 2/3

(
max

⌊t/2⌋≤i<t
VarP (vi−1) + 2T 2/91

)
≤
2c3(log T)

2(log T |S||A|
δ)2

T 2/3

(
2T 4/91+

G−1∑
h=0

αh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (vi)

)
. (70)

Applying Lemma D.7, we know that

max
⌊t/2⌋≤i<t

VarP (vi) ≤ max
⌊t/2⌋≤i<t

VarP (v∗
αi
) + 2(1 + 3/c1)(log T)

2T 1/3 max
⌊t/2⌋≤i<t

∥δi∥∞,

which, by the boundedness that ∥VarP (v∗
αi
)∥∞ ≤ ∥v∗

αi
∥2∞ ≤ 1

(1−αi)2
≤ T 2/9, is further bounded as

max
⌊t/2⌋≤i<t

VarP (vi) ≤ T 2/9 + 2(1 + 3/c1)(log T)
2T 1/3 max

⌊t/2⌋≤i<t
∥δi∥∞.

Plug back into (70), we have

|β1|2≤
2c3(log T)

2(log T |S||A|
δ)2

T 2/3

(
2T 4/91+

T 2/9

1− αT
1+

2(1 + 3/c1)(log T)
2T 1/3

1− αT
max

⌊t/2⌋≤i<t
∥δi∥∞

)
≤
2c3(log T)

2(log T |S||A|
δ)2

T 2/3

(
3T 4/91+ c4(log T)

2T 4/9 max
⌊t/2⌋≤i<t

∥δi∥∞
)
, (71)

where we define the constant c4 = 2(1 + 3/c1) > 0. Therefore, combining with (69), we have

δt ≤ (1 + 3/c1)T
−2/3(log T)3

+

√
2c3(log T)2(log

T |S||A|
δ)2

T 2/3

(
3T 4/91+ c4(log T)2T 4/9 max

⌊t/2⌋≤i<t
∥δi∥∞

)

≤

√
4c3(log T)2(log

T |S||A|
δ)2

T 2/3

(
4T 4/91+ c4(log T)2T 4/9 max

⌊t/2⌋≤i<t
∥δi∥∞

)
(72)

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou23

=

√
4c3(log T)2(log

T |S||A|
δ)2

T 2/9

(
1+ c4(log T)2 max

⌊t/2⌋≤i<t
∥δi∥∞

)
that holds with probability at least 1 − δ for any fixed t obeying 3T/(2 log T) ≤ t ≤ T , as long as T satisfies

T 10/9(log T |S||A|
δ)2 ≥ (1+3/c1)

2

2c3
(log T)4 to ensure (72). Taking a union bound over such t and noting that

log T |S||A|
δ/T ≤ 2 log T |S||A|

δ , we know that

δt ≤

√
4c3(log T)2(log

T |S||A|
2δ)2

T 2/9

(
1 + c4(log T)2 max

⌊t/2⌋≤i<t
∥δi∥∞

)
holds simultaneously for all 3T/(2 log T) ≤ t ≤ T with probability at least 1− δ/2. On the other hand, following
exactly the same arguments, starting from the lower bound in (61) leads to

δt ≥ −

√
4c3(log T)2(log

T |S||A|
2δ)2

T 2/9

(
1 + c4(log T)2 max

⌊t/2⌋≤i<t
∥δi∥∞

)
simultaneously for all 3T/(2 log T) ≤ t ≤ T with probability at least 1 − δ/2. Finally, we summarize all the
conditions as

T/ log T ≥ max{e2+c1 , 100}, (T/ log T)1/3 ≥ 4(2 + c1),

c2 log T ≥ 5(2 + c1)(log T)
1/3 + log log T, c1T

3 ≥ 3(log T)5,

(log T)50/9 ≥ 9

2c3
, T 10/9(log

T |S||A|
δ

)2 ≥ (1 + 3/c1)
2

2c3
(log T)4,

which can be simplified to

T/ log T ≥ max{e2+c1 , 100, 64(2 + c1)
3}, c3(log T)

5 ≥ 5, c1T
3 ≥ 3(log T)5,

c2 log T ≥ 5(2 + c1)(log T)
1/3 + log log T, 2c3T ≥ (1 + 3/c1)

2(log T)2.

We thus complete the proof of Proposition C.4 by taking a union bound.

C.5 Proof of Lemma C.1

Proof of Lemma C.1. Firstly, Lemma D.3 implies that each term di can be bounded as

∥di∥∞ =
∥∥(1− θi)(q

∗
αi−1

− q∗
αi
) + θiP (q∗

αi−1
− q∗

αi
)
∥∥
∞

≤ ∥q∗
αi−1

− q∗
αi
∥∞ ≤ 1

1− αi
− 1

1− αi−1
= i1/9 − (i− 1)1/9 ≤ (i− 1)−8/9/9 ≤ i−8/9,

where the second last inequality follows from the fact that x1/9−y1/9 = (x−y)z−8/9/9 for some z lying between
x and y.

For any fixed t ≥ 1, let λ = t−1/3, then the switching error can be decomposed as

t∑
i=1

θ
(t)
i di/θi =

⌊(1−λ)t⌋∑
i=1

θ
(t)
i di/θi +

t∑
⌊(1−λ)t⌋+1

θ
(t)
i di/θi, (73)

where the first summation can be bounded as

⌊(1−λ)t⌋∑
i=1

θ
(t)
i di/θi ≤

⌊(1−λ)t⌋∑
i=1

θ
(t)
i ∥di∥∞/θi ≤

⌊(1−λ)t⌋∑
i=1

t∏
j=i+1

(1− θj) · i−8/9, (74)

where invoking (109) we know that once (1− λ)t = t− t2/3 ≥ 50,

t∏
j=i+1

(1− θj) ≤ exp
(
−
∑t

j=⌊(1−λ)t⌋+1 θj

)
≤ exp

(
− λt · c′(log t)2t−2/3

)
≤ t−1

Feasible Q-Learning for Average Reward Reinforcement Learning

as long as log t ≥ 1/c′ = 2 + c1. When λ < 1/2, the second summation is bounded as

t∑
⌊(1−λ)t⌋+1

θ
(t)
i di/θi ≤

t∑
⌊(1−λ)t⌋+1

∥di∥∞ ≤
t∑

⌊(1−λ)t⌋+1

i−8/9 ≤ λt · (t/2)−8/9 ≤ 2t−2/9.

Putting them together, we arrive at ∥∥∥ t∑
i=1

θ
(t)
i di/θi

∥∥∥
∞

≤ 3t−2/9

as long as log t ≥ 2 + c1 and t− t2/3 > 50 (which is satisfied when t ≥ 100).

C.6 Proof of Lemma C.2

Proof of Lemma C.2. By the initialization, ∥δ0∥ ≤ 20. Once t ≥ 50, by the monotonicity in (109),

∥θ(t)0 δ0∥∞ ≤
t∏

j=1

(1− θj)∥δ0∥∞ ≤ 20 exp
(
−
∑t

j=1 θj

)
≤ 20 exp

(
−
∑t

j=50 θj

)
≤ 20 exp

(
−
∑t

j=50(log t)
2t−2/3/(2 + c1)

)
≤ 20 exp

(
− (log t)2(t− 50)t−2/3/(2 + c1)

)
≤ t−1

as long as t1/3 log t ≥ 4(2 + c1). By the boundedness of ∥vi∥∞ ≤ 3(log i)2i1/3/c1, invoking (110) we know that
when ⌊(1− β)t⌋ ≥ 50,∥∥∥∥∥

⌊(1−β)t⌋∑
i=1

θ
(t)
i θ

(t)
i αi(Pi − P)vi−1

∥∥∥∥∥
∞

≤
⌊(1−β)t⌋∑

i=1

θ
(t)
i ∥vi−1∥∞

≤ t · max
0≤i≤t

∥vi∥∞ · exp
(
− βt · (log t)2

(2 + c2)t2/3

)
≤ 3(log t)2t4/3/c1 · exp

(
− βt · (log t)2

(2 + c2)t2/3

)
Here for any t such that T/ log T ≤ t ≤ T , we have

βt · (log t)2

(2 + c1)t2/3
=

c2t
1/3(log t)2

(2 + c1)T 1/3
≥ c2(log t)

2

(2 + c1)(log T)1/3
≥ 5 log t,

as long as c2 log T ≥ 5(2 + c1)(log T)
1/3 + log log T , which leads to∥∥∥∥∥
⌊(1−β)t⌋∑

i=1

θ
(t)
i θ

(t)
i αi(Pi − P)vi−1

∥∥∥∥∥
∞

≤ t−1

for any t such that T/ log T ≤ t ≤ T , if T satisfies c1T
3 ≥ 3(log T)5. We thus complete the proof of Lemma C.2.

C.7 Proof of Lemma C.3

Proof of Lemma C.3. We write

xi := θ
(t)
i αi(Pi − P)vi−1,

so that ξt =
∑t

i=1+⌊(1−β)t⌋ xi, where {xi}ti=1+⌊(1−β)t⌋ is a martingale difference squence with the coarse deter-
ministic bound

∥xi∥∞ ≤ θ
(t)
i αi∥vi−1∥∞ ≤ θi∥vi−1∥∞ ≤ (log i)2

c1i2/3
· 3(log i)2i1/3/c1 ≤ 3c−2

1 (log t)4t−1/3 =: R.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou24

as long as β < 1/2. Furthermore, we define the sum of conditional variances as

Wt =

t∑
i=1+⌊(1−β)t⌋

Var(xi |v1, . . . ,vi−1)

=

t∑
i=1+⌊(1−β)t⌋

(
θ
(t)
i

)2
VarP (vi−1)

≤
t∑

i=1+⌊(1−β)t⌋

θ
(t)
i ·

(
max

1+⌊(1−β)t⌋≤i≤t
θ
(t)
i

)
·
(

max
1+⌊(1−β)t⌋≤i≤t

VarP (vi−1)
)

≤ (log t)2

c1(1− β)2/3t2/3
· max
1+⌊(1−β)t⌋≤i≤t

VarP (vi−1) ≤
2(log t)2

c1t2/3
· max
1+⌊(1−β)t⌋≤i≤t

VarP (vi−1)

as long as β < 1/2, where the last line follows from the fact that
∑t

i=1+⌊(1−β)t⌋ θ
(t)
i ≤

∑t
i=0 θ

(t)
i = 1. Since

∥vi∥∞ ≤ 3(log i)2i1/3/c1, we have a coarse deterministic upper bound that

∥Wt∥∞ ≤ 18(log t)2

c31t
2/3

· (log t)4t2/3 = 18(log t)6/c31 =: σ2.

We now choose the positive integer K such that

(log t)2

c1t
≤ σ2

2K
≤ 2(log t)2

c1t
, K ≤

log
2c21t

(log t)4

log 2
≤ 2 log

2t

(log t)2
≤ t/2,

as long as t ≥ max{ec1 , 100}. Applying the Freedman’s inequality (c.f. Lemma D.6) with a union bound over all
|S||A| entries, we know that with probability at least 1− δ, for any fixed t such that T/ log T ≤ t ≤ T ,

|ξt| ≤
√
8max

{
Wt,

σ2

2K

}
log

2K|S||A|
δ

+
4R

3
log

2K|S||A|
δ

≤

√
8
(2(log t)2

c1t2/3
· max
1+⌊(1−β)t⌋≤i≤t

VarP (vi−1) +
σ2

2K

)
log

2K|S||A|
δ

+
4R

3
log

2K|S||A|
δ

≤

√
16(log t)2 log(t|S||A|/δ)

c1t2/3

(
max

1+⌊(1−β)t⌋≤i≤t
VarP (vi−1) +

1

t1/3

)
+

12(log t)4

c21t
1/3

log
t|S||A|

δ

≤

√
c3(log T)2(log

T |S||A|
δ)2

T 2/3

(
max

1+⌊(1−β)t⌋≤i≤t
VarP (vi−1) + 2(log T)6

)
where c3 = 32/c1 + 144/c41. This completes the proof of Lemma C.3.

D Supporting lemmas

D.1 Relations of value functions

We quote the following lemma adapted from Jin and Sidford (2021, Lemma 2). It relates the average reward
Jπ and the rescaled discounted ones Qπ

γ , V
π
γ of any policy π. The proof the lemma is similar to that of Jin and

Sidford (2021) and is omitted here.

Lemma D.1 (Lemma 2 of Jin and Sidford (2021)). For any policy π : S → ∆(A) and any discount factor
γ ∈ (0, 1], it holds that ∥Jπ1−Qπ

γ∥∞ ≤ 3(1− γ)tmix and ∥Jπ1− V π
γ ∥∞ ≤ (1− γ)tmix.

The following lemma is adapted from Dong et al. (2021) and De Farias and Van Roy (2006), showing that our
framework is applicable when the finite mixing time condition is replaced by the reward averaging time τ (see
Remark 2.2). The proof the lemma is similar to that of De Farias and Van Roy (2006) and is omitted here.

Feasible Q-Learning for Average Reward Reinforcement Learning

Lemma D.2 (Lemma 2 of Dong et al. (2021), Theorem 4.1 of De Farias and Van Roy (2006)). For any policy
π : S → ∆(A) and any discount factor γ ∈ (0, 1], it holds that ∥Jπ1−Qπ

γ∥∞ ≤ (1− γ)τπ and ∥Jπ1− V π
γ ∥∞ ≤

(1− γ)τπ

The following lemma bounds the difference between rescaled optimal value and Q-functions with two discount
factors.

Lemma D.3. For any γ1, γ2 such that 0 < γ1 < γ2 < 1, it holds that

0 ≤
Q∗

γ2

1− γ2
−

Q∗
γ1

1− γ1
≤

(
1

1− γ2
− 1

1− γ1

)
1; (75a)

0 ≤
V ∗
γ2

1− γ2
−

V ∗
γ1

1− γ1
≤

(
1

1− γ2
− 1

1− γ1

)
1, (75b)

where 0 (resp. 1) is a vector or matrix with all entries equal to 0 (resp. 1).

Proof of Lemma D.3. We first show (75a). The upper bound follows directly from Lemma 17 of Dong et al.
(2021) with a rescaling. For any policy π, we note that

Qπ
γ2

1− γ2
= Eπ

[∞∑
k=1

γt−1
2 r(sk, ak)

∣∣∣∣ s1 = s

]
≥ Eπ

[∞∑
k=1

γt−1
1 r(sk, ak)

∣∣∣∣ s1 = s

]
=

Qπ
γ1

1− γ1
,

which follows from γ2 > γ1 and the non-negativeness of the reward function r. Applying the above relation to
π∗
γ1
, we obtain

Q∗
γ2

1− γ2
≥ Q

π∗
γ1

γ2

1− γ2
≥ Q

π∗
γ1

γ1

1− γ1
=

Q∗
γ1

1− γ1
,

which completes the proof of lower bound in (75a). Further noting V ∗
γ (s) = maxa′∈A Q∗

γ(s, a
′) for any s ∈ S, the

fact that maximum is a contraction map leads to (75b) and completes the proof of Lemma D.3.

Lemma D.4. For any discount factors γ1, γ2 such that 0 < γ1 < γ2 < 1, it holds that

∥Q∗
γ1

−Q∗
γ2
∥∞ ≤ γ2 − γ1

1− γ2
and ∥V ∗

γ1
− V ∗

γ2
∥∞ ≤ γ2 − γ1

1− γ2
. (76)

Proof of Lemma D.4. The boundedness of reward function 0 ≤ r ≤ 1 implies 0 ≤ Q∗
γi

≤ 1 for i = 1, 2. For any
state-action pair (s, a) ∈ S ×A, applying the lower bound in Lemma D.3 yields

Q∗
γ2
(s, a) ≥ 1− γ2

1− γ1
Q∗

γ1
(s, a) = Q∗

γ1
(s, a) +

γ1 − γ2
1− γ1

Q∗
γ1
(s, a) ≥ Q∗

γ1
(s, a)− γ2 − γ1

1− γ1
,

where the second inequality follows from Q∗
γ1
(s, a) ≤ 1. On the other hand, the upper bound in Lemma D.3

together with Q∗
γ1
(s, a) ≥ 0 implies

Q∗
γ2
(s, a) ≤ 1− γ2

1− γ1
Q∗

γ1
(s, a) +

γ2 − γ1
1− γ1

≤ Q∗
γ1
(s, a) +

γ2 − γ1
1− γ1

,

which leads to ∥Q∗
γ1

−Q∗
γ2
∥∞ ≤ γ2−γ1

1−γ2
. The second inequality in (76) follows from the same arguments.

Lemma D.5. For any i ≥ 1, it holds that

VarP (Vi)−VarP (V ∗
γi
) ≤ 4∥∆i∥∞. (77)

Proof of Lemma D.5. We start by bounding Vi − V ∗
γi

for all i ≥ 1. Recalling that ∆i = Qi −Q∗
γi
, we have

Vi − V ∗
γi

= P πiQi − P π∗
γiQ∗

γi

(i)

≤ P πiQi − P πiQ∗
γi

≤ ∥P πi∥1∥Qi −Q∗
γi
∥∞

(ii)

≤ ∥∆i∥∞,

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou25

where (i) follows from the optimality of π∗
γi

with respect to Q∗
γi
, and (ii) holds since P πi is a probability transition

matrix. Similarly,

Vi − V ∗
γi

≥ P π∗
γiQi − P π∗

γiQ∗
γi

≥ −∥P π∗
γi ∥1∥Qi −Q∗

γi
∥∞ ≥ −∥∆i∥∞,

which leads to

∥Vi − V ∗
γi
∥∞ ≤ ∥∆i∥∞ (78)

for all i ≥ 1. By the definition of entrywise variance, we have

VarP (Vi)−VarP (V ∗
γi
) =

(
P (Vi ◦ Vi)− (PVi) ◦ (PVi)

)
−
(
P (V ∗

γi
◦ V ∗

γi
)− (PV ∗

γi
) ◦ (PV ∗

γi
)
)

= P (Vi ◦ Vi − V ∗
γi

◦ V ∗
γi
) + (PV ∗

γi
) ◦ (PV ∗

γi
)− (PVi) ◦ (PVi)

= P
(
(Vi − V ∗

γi
) ◦ (Vi + V ∗

γi
)
)
− (PVi − PV ∗

γi
) ◦ (PVi + PV ∗

γi
). (79)

Furthermore, we have∥∥P (
(Vi − V ∗

γi
) ◦ (Vi + V ∗

γi
)
)∥∥

∞ ≤ ∥P ∥1
∥∥(Vi − V ∗

γi
) ◦ (Vi + V ∗

γi
)
∥∥
∞

≤ ∥P ∥1
∥∥Vi − V ∗

γi

∥∥
∞∥Vi + V ∗

γi

∥∥
∞ ≤ 2∥∆i∥∞,

where the last inequality follows from ∥P ∥1 = 1 and ∥Vi + V ∗
γi

∥∥
∞ ≤ ∥Vi∥∞ + ∥V ∗

γi
∥∞ ≤ 2 by the bounded

magnitude, and (78). Meanwhile, similar arguments yield∥∥(PVi − PV ∗
γi
) ◦ (PVi + PV ∗

γi
)
∥∥
∞ ≤ ∥PVi − PV ∗

γi
∥∞∥PVi + PV ∗

γi
∥∞

≤ ∥P ∥1∥Vi − V ∗
γi
∥∞∥P ∥1∥Vi + V ∗

γi
∥∞ ≤ 2∥∆i∥∞.

Plugging the two bounds back in (79) completes the proof of (77).

D.2 Proof of Lemma 5.1

Proof of Lemma 5.1. By Feinberg and Shwartz (2012, Theorem 8.1), there exists an optimal policy π∗ (namely,
a Blackwell optimal policy) for the average reward and some α∗ ∈ (0, 1), such that for all α ∈ (0, α∗), π∗ is
also the optimal policy for α-discounted reward. Since π∗ is the optimal policy for average reward, its long-term
average reward equals J∗. We define v∗ ∈ R|S| by

v∗(s) = Eπ∗

[∞∑
k=0

(rk − J∗)
∣∣∣ s0 = s

]
, ∀s ∈ S,

namely, the bias function of π∗. We also define P ∗ ∈ R|S|×|S| as the transition matrix induced by π∗, and
P ∗∗ = limT→∞

1
T

∑T
t=1(P

∗)t−1 as the long-term average transition matrix. Furthermore, let

HP = (I − P ∗ + P ∗∗)−1(I − P ∗) ∈ R|S|×|S|.

By Puterman (2014, Theorem 8.2.3), letting ρ = (1 − α)/α, for α that is sufficiently close to 1, or equivalently
for ρ that is sufficiently close to 0, we have the Laurent series expansion

vπ∗

α = (1 + ρ)
[
ρ−1J∗1+ v∗ +

∞∑
n=1

ρnyn

]
,

where J∗ is the long-term average reward of π∗, yn = (−1)nHn+1
P f , where f ∈ R|S| is the vectorization of

f(s) = r(s, π∗(s)) that also satisfies v∗ = HP f . Thus, recalling the Blackwell optimality of π∗ and taking α
sufficiently close to 1, we have

v∗
α = vπ∗

α = (1 + ρ)
[
ρ−1J∗1+ v∗ +

∞∑
n=1

ρnyn

]
.

Feasible Q-Learning for Average Reward Reinforcement Learning

It is clear to see limρ→0

∑∞
n=0 ρ

n∥yn+1∥∞ < ∞ from the definition of yn. Thus, since ρ = (1− α)/α,

∞∑
n=1

ρnyn = α
v∗
α − J∗

1−α1− v∗

α

1− α

= α
v∗
α − J∗

1−α1− v∗

1− α
− v∗,

which means

lim
α→1

∥∥v∗
α − J∗

1−α1− v∗
∥∥
∞

1− α
< ∞.

Therefore, there exists a constant B1 > 0 which only depends on the underlying MDP that

sup
α∈(0,1)

∥∥v∗
α − J∗

1−α1− v∗
∥∥
∞

1− α
≤ B1. (80)

We now define the function

q∗(s, a) = r(s, a)− J∗ + Es′∼P (· | s,a)
[
v∗(s′)

]
for all state-action pairs (s, a) ∈ S × A, so that (v∗, q∗) satisfies the Bellman equation (1) by standard MDP
theory (Puterman, 2014). The equivalent vectorized representation is

q∗ = r − J∗1+ P π∗
v∗.

Then the Bellman equation for optimal discounted value functions implies

q∗
α = r + αP π∗

αv∗
α

≥ r + αP π∗
v∗
α

≥ r + αP π∗
(J∗

1−α1+ v∗ − (1− α)B11
)

≥ r + P π∗
v∗ +

(
α

1−αJ
∗ − (1− α)∥v∗∥∞ − α(1− α)B1

)
1

= q∗ + J∗1+
(

α
1−αJ

∗ − (1− α)∥v∗∥∞ − α(1− α)B1

)
1

= q∗ +
(

J∗

1−α − (1− α)∥v∗∥∞ − α(1− α)B1

)
1,

where the second line follows from the optimality of π∗
α with respect to v∗

α, the third line follows from (80), and
the fifth line follows from the Bellman equation (1) for (q∗, v∗). Similarly, we have

q∗
α = r + αP π∗

αv∗
α

≤ r + αP π∗
α
(

J∗

1−α1+ v∗ + (1− α)B11
)

≤ r + αP π∗
v∗ +

(
α

1−αJ
∗ + α(1− α)B1

)
1

≤ q∗ + J∗1+
(

α
1−αJ

∗ + (1− α)∥v∗∥∞ + α(1− α)B1

)
1

= q∗ +
(

J∗

1−α − (1− α)∥v∗∥∞ − α(1− α)B1

)
1.

Combining the above two inequalities, we know that there exists some constant B2 > 0 such that

sup
α∈(0,1)

∥∥q∗
α − J∗

1−α1− q∗
∥∥
∞

1− α
≤ B2.

Taking B = max{B1, B2} completes the proof of Lemma 5.1.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou26

D.3 Freedman’s inequality

The following lemma is adapted by Li et al. (2021) from Freedman’s inequality Freedman (1975).

Lemma D.6 (Theorem 5 of Li et al. (2021)). Suppose Yn =
∑n

k=1 Xk ∈ R, where {Xk} is a real-valued scalar
sequence obeying

|Xk| ≤ R and E
[
Xk

∣∣ {Xj}j<k

]
= 0, ∀ k ≥ 1.

Define

Wn :=

n∑
k=1

Ek−1[X
2
k],

where we write Ek−1 for the expectation conditional on {Xj}j<k. Then for any given σ2 ≥ 0, one has

P
(
|Yn| ≥ y and Wn ≤ σ2

)
≤ 2 exp

(
− y2/2

σ2 +Ry/3

)
.

In addition, suppose Wn ≤ σ2 holds deterministically. For any positive integer K, with probability at least 1− δ
one has

|Yn| ≤
√
8max

{
Wn,

σ2

2K

}
log

2K

δ
+

4R

3
log

2K

δ
. (81)

D.4 Proof of Lemma A.1

Proof of Lemma A.1. Employing (77) of Lemma D.5, we have the entrywise bound

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (Vi)

≤
H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

{
VarP (V ∗

γi
) + ∥∆i∥∞1

}
≤

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (V ∗
γi
) + 4

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

∥∆i∥∞1

=

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (V ∗
γi
) +

4

1− γT
max

⌊t/2⌋≤i<t
∥∆i∥∞1, (82)

where the third line follows from maxi(ai + bi) ≤ maxi ai +maxi bi, and the last line follows from the fact that∏h
k=1 P

πik1 = 1 since the product is still a probability transition matrix. Following the same arguments as the
way we bound (79), it holds for all i ≥ 1 that∥∥VarP (V ∗

γi
)−VarP (V ∗

γt
)
∥∥
∞ ≤ 4

∥∥Q∗
γi

−Q∗
γt
∥∞. (83)

On the other hand,

VarP (V ∗
γt
) = P (V ∗

γt
◦ V ∗

γt
)− (PV ∗

γt
) ◦ (PV ∗

γt
)

= P πih+1 (Q∗
γt

◦Q∗
γt
) + P (V ∗

γt
◦ V ∗

γt
)− P πih+1 (Q∗

γt
◦Q∗

γt
)− (PV ∗

γt
) ◦ (PV ∗

γt
)

= P πih+1 (Q∗
γt

◦Q∗
γt
) +

(
P π∗

γt (Q∗
γt

◦Q∗
γt
)− P πih+1 (Q∗

γt
◦Q∗

γt
)
)

− 1

γ2
t

(
Q∗

γt
− (1− γt)r

)
◦
(
Q∗

γt
− (1− γt)r

)
, (84)

where the last equality follows from the Bellman equation Q∗
γ = (1−γ)r+γPV ∗

γ for all γ ∈ (0, 1). Using similar
arguments as Li et al. (2021), the second term in (84) can be bounded as∥∥P π∗

γt (Q∗
γt

◦Q∗
γt
)− P πih+1 (Q∗

γt
◦Q∗

γt
)
∥∥
∞ (85)

Feasible Q-Learning for Average Reward Reinforcement Learning

=
∥∥PΠπih+1 (Q∗

γt
◦Q∗

γt
)− PΠπ∗

γt (Q∗
γt

◦Q∗
γt
)
∥∥
∞ (86)

≤ ∥P ∥1
∥∥Ππih+1 (Q∗

γt
◦Q∗

γt
)− PΠπ∗

γt (Q∗
γt

◦Q∗
γt
)
∥∥
∞ (87)

(i)

≤
∥∥(Ππih+1Q∗

γt
−Ππ∗

γtQ∗
γt
) ◦ (Ππih+1Q∗

γt
+Ππ∗

γtQ∗
γt
)
∥∥
∞ (88)

≤
∥∥Ππih+1Q∗

γt
− V ∗

γt

∥∥
∞

∥∥Ππih+1Q∗
γt

+Ππ∗
γtQ∗

γt

∥∥
∞ (89)

(ii)

≤ 2
∥∥Ππih+1Q∗

γt
−Ππih+1Qih+1

∥∥
∞ + 2

∥∥Ππih+1Qih+1
− V ∗

γt

∥∥
∞ (90)

(iii)

≤ 2
∥∥Q∗

γt
−Q∗

ih+1

∥∥
∞ + 2

∥∥Vih+1
− V ∗

γt

∥∥
∞ (91)

(iv)

≤ 4 max
⌊t/2⌋≤i<t

∥∥Q∗
γt

−Qi

∥∥
∞ (92)

(v)

≤ 4 max
⌊t/2⌋≤i<t

∥∥Q∗
γt

−Q∗
γi

∥∥
∞ + 4 max

⌊t/2⌋≤i<t
∥∆i∥∞, (93)

where (i) follows from the fact that ∥P ∥1 = 1, (ii) is due to the boundedness of ∥Q∗
γt
∥ ≤ 1, (iii) follows from

∥Ππih+1∥1 = 1 and Vih+1
= Ππih+1Qih+1

, (iv) follows from
∥∥Vih+1

− V ∗
γt

∥∥
∞ ≤

∥∥Q∗
γt

− Q∗
ih+1

∥∥
∞, and (v)

follows from the property of entrywise maximum. We thus obtain the entrywise upper bound (uniform over all
⌊t/2⌋ ≤ i < t)

max
⌊t/2⌋≤i<t

VarP (V ∗
γi
) ≤ VarP (V ∗

γt
) + 4 max

⌊t/2⌋≤i<t

∥∥Q∗
γi

−Q∗
γt
∥∞1

≤ P πih+1 (Q∗
γt

◦Q∗
γt
) + 8 max

⌊t/2⌋≤i<t

∥∥Q∗
γt

−Q∗
γi

∥∥
∞1+ 4 max

⌊t/2⌋≤i<t
∥∆i∥∞1

− 1

γ2
t

(
Q∗

γt
− (1− γt)r

)
◦
(
Q∗

γt
− (1− γt)r

)
≤ 1

γt

(
γtP

πih+1 − I
)
(Q∗

γt
◦Q∗

γt
) + 8 max

⌊t/2⌋≤i<t

∥∥Q∗
γt

−Q∗
γi

∥∥
∞1+ 4 max

⌊t/2⌋≤i<t
∥∆i∥∞1

+
2(1− γt)

γ2
t

Q∗
γt

◦ r − (1− γt)
2

γ2
t

r ◦ r

≤ 1

γT

(
γTP

πih+1 − I
)
(Q∗

γt
◦Q∗

γt
) + 8 max

⌊t/2⌋≤i<t

∥∥Q∗
γt

−Q∗
γi

∥∥
∞1+ 4 max

⌊t/2⌋≤i<t
∥∆i∥∞1

+
2(1− γt)

γ2
t

Q∗
γt

◦ r − (1− γt)
2

γ2
t

r ◦ r, (94)

where the first inequality follows from (83) and the second inequality follows from (84) and (93), and the last
inequality follows from the monotonicity of γt. Applying (94) to (82) yields the telescoping sum

H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (Vi)

≤
H−1∑
h=0

γh
T

h∏
k=1

P πik max
⌊t/2⌋≤i<t

VarP (V ∗
γi
) +

4

1− γT
max

⌊t/2⌋≤i<t
∥∆i∥∞1

≤ 1

γT

H−1∑
h=0

γh
T

h∏
k=1

P πik

(
γTP

πih+1 − I
)
(Q∗

γt
◦Q∗

γt
)

+
(8

1− γt
max

⌊t/2⌋≤i<t

∥∥Q∗
γt

−Q∗
γi

∥∥
∞ +

8

1− γt
max

⌊t/2⌋≤i<t
∥∆i∥∞ +

2(1− γt)

γ2
t (1− γT)

∥Q∗
γt

◦ r∥∞
)
1

=
1

γT

(
γH
T

H∏
k=1

P πih+1 − I
)
(Q∗

γt
◦Q∗

γt
)

+
(8

1− γT
max

⌊t/2⌋≤i<t

∥∥Q∗
γt

−Q∗
γi

∥∥
∞ +

8

1− γT
max

⌊t/2⌋≤i<t
∥∆i∥∞ +

2(1− γt)

γ2
t (1− γT)

∥Q∗
γt

◦ r∥∞
)
1,

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou27

where the first inequality follows from (82), and the second inequality uses
∏h

k=1 P
πik1 = 1 as the product is a

probability transition matrix. As the rows of the probability transition matrix
∏H

k=1 P
πih+1 all sum up to one,

we have ∥∥∥ 1

γT

(
γH
T

H∏
k=1

P πih+1 − I
)
(Q∗

γt
◦Q∗

γt
)
∥∥∥
∞

≤ 2

γT
∥Q∗

γt
∥2∞ ≤ 2

γT
≤ 4

by the boundedness of ∥Q∗
γ∥∞ ≤ 1 for all γ ∈ (0, 1), as well as the fact that γt ≥ 1/2 for t ≥ 160. On the other

hand, for any ⌊t/2⌋ ≤ i < t, invoking Lemma D.1, we obtain∥∥Q∗
γt

−Q∗
γi

∥∥
∞ ≤

∥∥Q∗
γt

− J∗1
∥∥
∞ +

∥∥J∗1−Q∗
γi

∥∥
∞

≤ 3(1− γt)tmix + 3(1− γi)tmix ≤ 3
(
1 + 21/5

)
t−1/5tmix ≤ 9T−1/5(log T)1/5tmix

for T/ log T ≤ t ≤ log T . In addition, for T ≥ 160, we also have

2(1− γt)

γ2
t (1− γT)

∥Q∗
γt

◦ r∥∞ ≤ 3∥Q∗
γt
∥∞∥r∥∞ ≤ 3,

which, together with the above pieces, leads to (27) and completes the proof of Lemma A.1.

Lemma D.7. For any i ≥ 1, it holds that∥∥VarP (vi)−VarP (v∗
αi
)
∥∥
∞ ≤ 3(log i)2i1/3∥δi∥∞. (95)

Proof of Lemma D.7. We first bound vi − v∗
αi

for all i ≥ 1. Recalling that δi = qi − q∗
αi
, we have

vi − v∗
αi

= P πiqi − P π∗
αiq∗

αi

(i)

≤ P πiqi − P πiq∗
αi

≤ ∥P πi∥1∥qi − q∗
αi
∥∞

(ii)

≤ ∥δi∥∞,

where (i) follows from the optimality of π∗
αi

with respect to q∗
αi
, and (ii) holds since P πi is a probability transition

matrix. Similarly,

vi − v∗
αi

≥ P π∗
αiqi − P π∗

αiq∗
αi

≥ −∥P π∗
αi∥1∥qi − q∗

αi
∥∞ ≥ −∥δi∥∞,

which leads to

∥vi − v∗
αi
∥∞ ≤ ∥δi∥∞ (96)

for all i ≥ 1. By the definition of entrywise variance, we have

VarP (vi)−VarP (v∗
αi
) =

(
P (vi ◦ vi)− (Pvi) ◦ (Pvi)

)
−

(
P (v∗

αi
◦ v∗

αi
)− (Pv∗

αi
) ◦ (Pv∗

αi
)
)

= P (vi ◦ vi − v∗
αi

◦ v∗
αi
) + (Pv∗

αi
) ◦ (Pv∗

αi
)− (Pvi) ◦ (Pvi)

= P
(
(vi − v∗

αi
) ◦ (vi + v∗

αi
)
)
− (Pvi − Pv∗

αi
) ◦ (Pvi + Pv∗

αi
). (97)

Furthermore, we have ∥∥P (
(vi − v∗

αi
) ◦ (vi + v∗

αi
)
)∥∥

∞ ≤ ∥P ∥1
∥∥(vi − v∗

αi
) ◦ (vi + v∗

αi
)
∥∥
∞

≤ ∥P ∥1
∥∥vi − v∗

αi

∥∥
∞∥vi + v∗

αi

∥∥
∞

≤
(
∥vi∥∞ + ∥v∗

αi
∥∞

)
∥δi∥∞,

where the last inequality follows from ∥P ∥1 = 1, the triangular inequality, and (96). Meanwhile, similar argu-
ments yield∥∥(Pvi − Pv∗

αi
) ◦ (Pvi + Pv∗

αi
)
∥∥
∞ ≤ ∥Pvi − Pv∗

αi
∥∞∥Pvi + Pv∗

αi
∥∞

≤ ∥P ∥1∥vi − v∗
αi
∥∞∥P ∥1∥vi + v∗

αi
∥∞ ≤

(
∥vi∥∞ + ∥v∗

αi
∥∞

)
∥δi∥∞.

Plugging the two bounds back in (97) yields∥∥VarP (vi)−VarP (v∗
αi
)
∥∥
∞ ≤ 2

(
∥vi∥∞ + ∥v∗

αi
∥∞

)
∥δi∥∞

≤ 2
(
i1/9 + 3(log i)2i1/3/c1

)
∥δi∥∞ ≤ 2(1 + 3/c1)(log i)

2i1/3∥δi∥∞.

Feasible Q-Learning for Average Reward Reinforcement Learning

D.5 Performance difference lemmas

The following performance difference lemma for average reward is adapted from Even-Dar et al. (2009, Lemma
4.1).

Lemma D.8 (Performance difference lemma). For any policy π whose long-term average reward is Jπ, we define
its bias function as

qπ(s, a) = Eπ

[∞∑
k=1

(
r(sk, ak)− Jπ

) ∣∣∣ s1 = s, a1 = a
]
,

Then for any two policies π and π′, the difference between their long-term average reward is

Jπ′
− Jπ = Es∼dπ′

[∑
a∈A

(
π′(a | s)− π(a | s)

)
qπ(s, a)

]
,

where dπ is the long-term average visit probability of s under policy π.

We quote without proof the performance difference lemma for discounted reward (Kakade and Langford, 2002).

Lemma D.9 (Performance difference lemma). Recall that Qπ
γ and V π

γ is the (scaled) Q- and value functions for
any policy π and dicount factor γ. For any policies π and π′, it holds that

V π
γ (s)− V π′

γ (s) =
1

1− γ
Es′∼dπEa′∼π(· | s′)

[
Qπ′

γ (s′, a′)− V π′

γ (s′)
]
, for all s ∈ S,

where dπ(s′) = (1− γ)
∑∞

t=1 Pπ(St = s′ | s0 = s).

E Useful facts

In this section, we collect some useful facts that are useful for the technical proofs.

E.1 Magnitude of estimates

Lemma E.1. Suppose the initialization of Algorithm 1 satisfies 0 ≤ Q0 ≤ 1 (and thus 0 ≤ V0 ≤ 1), then
0 ≤ Qt ≤ 1 and ∥∆t∥∞ ≤ 1 for all t ≥ 1.

Proof of Lemma E.1. Note that if 0 ≤ Qt−1 ≤ 1 and 0 ≤ Vt−1 ≤ 1, then by the updating rule (6), since
0 ≤ r ≤ 1 and each row of Pt adds up to 1, we have Qt ≥ 0 and

Qt ≤ (1− ηt)1+ ηt
[
(1− γt)1+ γt1

]
= 1.

The desired result then follows from an induction argument. As a consequence, we have ∥∆t∥∞ ≤ 1 by the
boundedness of optimal value functions that 0 ≤ Q∗

γt
≤ 1 for all t ≥ 1.

Lemma E.2. With q0 = 0 and θt = (1 + c1t
2/3

(log t)2)
−1 for t ≥ 2 and θ1 = 0, Algorithm 2 obeys 0 ≤ qt ≤

3(log t)2t1/3/c11 and 0 ≤ vt ≤ 3(log t)2t1/3/c11 for all t ≥ 2.

Proof of Lemma E.2. Noting the induction that

∥qt∥∞ ≤ (1− θt)∥qt−1∥∞ + θt
(
∥r∥∞ + αt∥qt−1∥∞)

≤ (1− θt + θtαt)∥qt−1∥∞ + θt ≤ ∥qt−1∥∞ + θt,

we have

∥qt∥∞ ≤
t∑

i=1

θi ≤ (log t)2
t∑

i=1

i−2/3/c1 ≤ 3(log t)2t1/3/c1,

where the second inequality follows from (108). On the other hand, as 0 ≤ r ≤ 1, we have

qt ≥ (1− θ)qt−1 + θtαtqt−1,

which, by induction, leads to qt ≥ 0 for all t ≥ 1. The definition of vt implies 0 ≤ vt ≤ 3(log t)2t1/3/c11 for all
t ≥ 2, which complestes the proof of Lemma E.2.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou28

E.2 Learning rates for estimating optimal value in Theorem 3.1

In this part, we collect some useful facts about the learning rates speficied for Theorem 3.1 that would be used

repeatedly. Recall that we define the learning rates as ηt = (1 + c1t
3/5

(log t)3)
−1, ∀ t ≥ 2 for some constant c1 > 0.

Bound on ηj. Firstly, we have the naive upper bound

ηj =
1

1 + c1j3/5

(log j)3

≤ (log j)3

c1j3/5
, for all j ≥ 2. (98)

One can also check that j3/5/(log j)3 ≥ 0.1 for all j ≥ 1 with the convention that 1/0 = ∞, which leads to the
lower bounds

ηj =
1

1 + c1j3/5

(log j)3

≥ 1
10j3/5

(log j)3 + c1j3/5

(log j)3

≥ (log j)3

(10 + c1)j3/5
, for all j ≥ 2. (99)

Furthermore, it can be easily checked that (log j)3j−3/5 is decreasing in j for j ≥ 150. Hence

ηj ≥ ηt and
(log j)3

j3/5
≥ (log t)3

t3/5
, for all t > 150 and 150 ≤ j ≤ t. (100)

Compound learning rates. Some associated quantities in the analysis include η
(t)
t = ηt,

η
(t)
0 =

∏t
j=1(1− ηj), and η

(t)
i = ηi ·

∏t
j=i+1(1− ηj), ∀1 ≤ i < t.

The sum of η
(t)
i over i obeys

t∑
i=0

η
(t)
i =

t∏
j=1

(1− ηj) + η1

t∏
j=2

(1− ηj) + · · ·+ ηt−1(1− ηt) + ηt = 1. (101)

Moreover, we consider a generic β ∈ (0, 1) and bound the compound learning rates for i ≤ ⌊(1 − β)t⌋ and
i > ⌊(1− β)t⌋ separately.

• When β < 1/2, for any t ≥ 300 (so that ⌊(1− β)t⌋ ≥ 150) and any i ≤ ⌊(1− β)t⌋,

η
(t)
i ≤

t∏
j=i+1

(1− ηj) ≤ exp
(
−

∑t
j=⌊(1−β)t⌋ηj

)
≤ exp

(
−
∑t

j=⌊(1−β)t⌋ηt

)
≤ exp

(
− βt · (log t)

3

c1t3/5

)
, (102)

where the third inequality follows from (100), and the fourth inequality follows from (98).

• When β < 1/2, for any t ≥ 300 and any i > ⌊(1− β)t⌋ ≥ t/2 ≥ 150,

η
(t)
i ≤ ηi ≤

(log i)3

c1i3/5
≤ 2(log t)3

c1t3/5
(103)

following (98) and (100) and the fact that log i ≤ log t and i−3/5 ≤ 2t−3/5 for any i ≥ t/2.

E.3 Learning rates for optimal policy in Theorem 3.3

We now present some useful facts about the learning rates that are particular to Theorem 3.3. Recall that in
Theorem 3.3, we set γt = 1− t−1/8 and

ηt =
1

1 + c1t5/8

(log t)2

, t ≥ 2

for some constant c1 > 0 in Algorithm 1.

Feasible Q-Learning for Average Reward Reinforcement Learning

Bound on ηj. Firstly, we have the naive upper bound

ηj =
1

1 + c1j5/8

(log j)2

≤ (log j)2

c1j5/8
, for all j ≥ 2. (104)

One can check that j5/8/(log j)2 ≥ 0.5 for all j ≥ 1 with the convention that 1/0 = ∞, which leads to the lower
bounds

ηj =
1

1 + c1j5/8

(log j)2

≥ 1
2j5/8

(log j)2 + c1j5/8

(log j)2

≥ (log j)2

(2 + c1)j5/8
, for all j ≥ 2. (105)

Furthermore, it can be easily checked that (log j)2j−5/8 is decreasing in j for j ≥ 50. Hence

ηj ≥ ηt and
(log j)2

j5/8
≥ (log t)2

t5/8
, for all t > 50 and 50 ≤ j ≤ t. (106)

Compound learning rates. Some associated quantities in the analysis include η
(t)
t = ηt,

η
(t)
0 =

∏t
j=1(1− ηj), and η

(t)
i = ηi ·

∏t
j=i+1(1− ηj), ∀1 ≤ i < t.

The sum of η
(t)
i over i obeys

t∑
i=0

η
(t)
i =

t∏
j=1

(1− ηj) + η1

t∏
j=2

(1− ηj) + · · ·+ ηt−1(1− ηt) + ηt = 1.

Moreover, we consider a generic β ∈ (0, 1) and bound the compound learning rates for i ≤ ⌊(1 − β)t⌋ and
i > ⌊(1− β)t⌋ separately.

• When β < 1/2, for any t ≥ 100 (so that ⌊(1− β)t⌋ ≥ 50) and any i ≤ ⌊(1− β)t⌋,

η
(t)
i ≤

t∏
j=i+1

(1− ηj) ≤ exp
(
−

∑t
j=⌊(1−β)t⌋ηj

)
≤ exp

(
−
∑t

j=⌊(1−β)t⌋ηt

)
≤ exp

(
− βt · (log t)

2

c1t5/8

)
,

where the third inequality follows from (100), and the fourth inequality follows from (98).

• When β < 1/2, for any t ≥ 100 and any i > ⌊(1− β)t⌋ ≥ t/2 ≥ 50,

η
(t)
i ≤ ηi ≤

(log i)3

c1i5/8
≤ 2(log t)2

c1t5/8
(107)

following (104) and (106) and the fact that log i ≤ log t and i−5/8 ≤ 2t−5/8 for any i ≥ t/2.

E.4 Learning rates for bias function in Theorem 5.2

We now proceed to some basic facts on the learning rates of Algorithm 2. Recall that we define the learning
rates as

θt =
1

1 + c1t2/3

(log t)2

, ∀ t ≥ 2.

Ying Jin, Jose Blanchet, Ramki Gummadi, Zhengyuan Zhou29

Bound on θj. Firstly, we have the naive upper bound

θj =
1

1 + c1j2/3

(log j)2

≤ (log j)2

c1j2/3
, for all j ≥ 1. (108)

Also, one can check that j2/3/(log j)2 ≥ 1/2, which leads to

θj =
1

1 + c1j2/3

(log j)2

≥ (log j)2

(2 + c1)j2/3
, for all j ≥ 1.

Furthermore, it can be easily checked that (log j)2j−2/3 is decreasing in j for j ≥ 30. Hence

θj ≥ θt and
(log j)2

j2/3
≥ (log t)2

t2/3
, for all t > 50 and 50 ≤ j ≤ t. (109)

Compound learning rates. Some associated quantities in the analysis include θ
(t)
t = 1,

θ
(t)
0 =

∏t
j=1(1− θj), and θ

(t)
i = θi ·

∏t
j=i+1(1− θj), ∀1 ≤ i < t.

The sum of θ
(t)
i over i obeys

t∑
i=0

θ
(t)
i =

t∏
j=1

(1− θj) + θ1

t∏
j=2

(1− θj) + · · ·+ θt−1(1− θt) + θt = 1.

Moreover, we also define

β =
c2

T 1/3 log T
,

and bound the compound learning rates for i ≤ ⌊(1− β)t⌋ and i > ⌊(1− β)t⌋ separately.

• For any t such that ⌊(1− β)t⌋ ≥ 50 (so that t ≥ 50) and any i ≤ ⌊(1− β)t⌋,

θ
(t)
i ≤

t∏
j=i+1

(1− θj) ≤ exp
(
−
∑t

j=⌊(1−β)t⌋θj

)
≤ exp

(
−
∑t

j=⌊(1−β)t⌋θt

)
≤ exp

(
− βt · (log t)2

(2 + c1)t2/3

)
, (110)

where the third inequality follows from (109), and the fourth inequality follows from (108).

• For any t such that ⌊(1− β)t⌋ ≥ 50 (so that t ≥ 50) and any i > ⌊(1− β)t⌋,

θ
(t)
i ≤ θi ≤

c′(log i)3

i3/5
≤ c′(log t)3

t3/5

following (108) and (109).

