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Abstract

Tabular data is hard to acquire and is sub-
ject to missing values. This paper introduces
a novel approach for generating and imputing
mixed-type (continuous and categorical) tab-
ular data utilizing score-based diffusion and
conditional flow matching. In contrast to
prior methods that rely on neural networks
to learn the score function or the vector field,
we adopt XGBoost, a widely used Gradient-
Boosted Tree (GBT) technique. To test our
method, we build one of the most extensive
benchmarks for tabular data generation and
imputation, containing 27 diverse datasets
and 9 metrics. Through empirical evaluation
across the benchmark, we demonstrate that
our approach outperforms deep-learning gen-
eration methods in data generation tasks and
remains competitive in data imputation. No-
tably, it can be trained in parallel using CPUs
without requiring a GPU. Our Python and
R code is available at https://github.com/
SamsungSAILMontreal/ForestDiffusion.

1 INTRODUCTION

Tabular datasets are omnipresent across various fields
like economics, medicine, and social sciences. Two
interconnected fundamental challenges with this type
of data are small training datasets and missing val-
ues(Little and Rubin, 1989; Bennett, 2001). To make
the problems worse, different participants may have
missing data for different variables. Consequently,
training a model solely on complete cases would sig-
nificantly shrink the participant pool, potentially ex-
acerbating the already limited dataset size (Muzellec

† Now at Dreamfold. Proceedings of the 27th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2024, Valencia, Spain. PMLR: Volume 238. Copy-
right 2024 by the author(s).

et al., 2020), thereby reducing statistical power and
leading to bias (Donner, 1982).

The most common method to deal with missing data
is to use single or multiple imputations. Single im-
putation replaces the missing values in the dataset
with predictions and trains the model on this imputed
dataset. This can work for prediction or classifica-
tion, but relying on a single guess for each missing
data point can lead to incorrect inferences because
of the bias in the imputed dataset. Multiple imputa-
tions generate several imputed datasets, each with its
own set of imputed values. Then, a separate model is
trained per imputed dataset, and the results are com-
bined to account for the uncertainty inherent in the
imputation process (Little and Rubin, 1987).

Remarkably, there has been significant advancements
in the field of generative models such as images (Brock
et al., 2018; Karras et al., 2019; Rombach et al., 2022),
audio (Chen et al., 2020; Kong et al., 2020), videos (Vo-
leti et al., 2022; Harvey et al., 2022), graphs (Niu et al.,
2020), and tabular data (Kim et al., 2022; Kotelnikov
et al., 2023; Borisov et al., 2022b). These methods offer
the possibility to artificially expand datasets, address-
ing the challenge of limited data akin to data augmen-
tation techniques Mumuni and Mumuni (2022). Fur-
thermore, the latest generative models have demon-
strated remarkable effectiveness at inpainting (Meng
et al., 2021; Lugmayr et al., 2022; Zheng and Charoen-
phakdee, 2022; Ouyang et al., 2023), which involves
restoring missing image portions, much like imputing
missing data in the case of tabular data (Yun et al.,
2023). This demonstrates the potential of generative
models to alleviate the challenges of limited data and
missing values encountered in tabular datasets.

One of the most successful recent generative models is
Diffusion Models (DMs) (Sohl-Dickstein et al., 2015;
Song and Ermon, 2019, 2020; Song et al., 2021; Ho
et al., 2020). DMs estimate the score-function (gra-
dient log density) and rely on Stochastic Differential
Equations (SDEs) to generate samples. A more recent
approach called Conditional Flow Matching (CFM) in-
stead estimates a vector field and relies on Ordinary
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Figure 1: Iris dataset: Three-way interaction between Petal length, width, and species using real or fake samples
(using Forest-Flow, our XGBoost method, or TabDDPM and STaSy, deep-learning diffusion methods)

Differential Equations (ODEs) to generate data (Liu
et al., 2022; Albergo and Vanden-Eijnden, 2023; Lip-
man et al., 2022; Tong et al., 2023b,a). Both methods
have been successful in data generation tasks.

Traditionally, DMs and CFMs have relied on deep
neural networks to estimate the score-function or
the vector field because Neural Networks (NNs) are
considered Universal Function Approximators (UFAs)
(Hornik et al., 1989). However, many other UFAs ex-
ist. For example, Decision Trees and more complex
tree-based methods such as Random Forests (Breiman,
2001) or Gradient-Boosted Trees (GBTs) (Friedman
et al., 2000; Friedman, 2001) are also UFAs (Royden
and Fitzpatrick, 1968; Watt et al., 2020). Further-
more, for tabular data prediction and classification,
GBTs tend to perform better than neural networks
(Shwartz-Ziv and Armon, 2022; Borisov et al., 2022a;
Grinsztajn et al., 2022), and most of them can natively
handle missing data through careful splitting (Chen
et al., 2015; Prokhorenkova et al., 2018).

Because Gradient-Boosted Trees (GBTs) perform par-
ticularly well on tabular data, we sought to use GBTs
as function estimators in flow and diffusion models. In
doing so, our main contributions are:

• We create the first diffusion and flow models
for tabular data generation and imputation using
XGBoost (see Figure 1), a popular GBT method,

instead of neural networks.
• Contrary to most generative models for tabular

data, our method can be trained directly on in-
complete data thanks to XGBoost, which learns
the best split for missing values.

• We provide an extensive benchmark for gener-
ation and imputation methods on 27 real-world
datasets with a wide range of evaluation metrics
tackling four quadrants: closeness in distribution,
diversity, prediction, and statistical inference.

• Our method generates highly realistic synthetic
data when the training dataset is either clean or
tainted by missing data.

2 BACKGROUND

2.1 Gradient-boosted trees and XGBoost

Decision Trees are predictive models that partition
input data into distinct subsets via decision splits,
thereby culminating in terminal nodes, each furnishing
a definitive prediction. They recursively partition the
feature space to maximize the homogeneity of predic-
tions within each partition. By strategically selecting
decision splits based on certain criteria, they efficiently
maximize predictive performance.

GBTs (Friedman et al., 2000; Friedman, 2001) take
decision trees a step further by building decision trees



Alexia Jolicoeur-Martineau, Kilian Fatras, Tal Kachman

sequentially, where each tree corrects the errors made
by the previous one. It starts with a simple tree, often
called a weak learner, and then iteratively adds more
trees while emphasizing the examples that the previ-
ous trees predicted incorrectly. This iterative process
continues until a specified number of trees are built
or until a certain level of accuracy is achieved. GBTs
have shown great success for tabular data prediction
and classification (Zhang et al., 2017; Touzani et al.,
2018; Machado et al., 2019; Ma et al., 2020).

XGBoost (eXtreme Gradient Boosting) is a popular
open-source GBT. It uses a second-order Taylor expan-
sion, fast parallelized/distributed system, fast quantile
splitting, and sparsity-aware split finding (allowing it
to naturally handle missing values) for maximum per-
formance (Shwartz-Ziv and Armon, 2022; Florek and
Zagdański, 2023). We rely on XGBoost as our ablation
(see Section 4.4) showed it performed the best.

2.2 Generative diffusion and conditional flow
matching models

Previous generations of generative models, such as
GANs Goodfellow et al. (2014) or VAEs Kingma and
Welling (2013), requires to differentiate through two
models. This prevents the use of non-differentiable
models such as GBTs. However, the new diffusion and
flow-based models only need one model, which paves
the way for using GBTs in generative modeling.

SDEs and score-based models The purpose of
generative models is to generate realistic data from
Gaussian noise. As highlighted in Song et al. (2021), a
possible manner to generate data can be done through
stochastic differential equations (SDE) (Feller, 1949).
The forward diffusion process consists of transforming
data into Gaussian noise through an SDE of the form:

dx = ut(x) dt+ g(t)dw, (1)

where t ∈ [0, 1], u : [0, 1]×Rd → Rd is a smooth time-
varying vector field, g : R→ R is a scalar function and
w is a Brownian motion. Different choices of forward
diffusion process exists to ensure that x(t = 0) is a real
data, while x(t = 1) is pure Gaussian noise. Some of
the popular choices are the Variance Preserving (VP)
(Ho et al., 2020) or the Variance Exploding (VE) (Song
and Ermon, 2019) SDEs. Importantly, it is possible
to reverse the forward diffusion process (1) through a
reverse SDE of the form:

dx = [ut(x)− g(t)2∇x log pt(x)] dt+ g(t)dw̄, (2)

where w̄ is the reverse Brownian motion. The main
idea of score-based models is to i) learn the score func-
tion ∇x log pt(x) by perturbing real data with Gaus-

sian noise Song and Ermon (2019) with the score-
matching loss, which reads:

lsm(θ) = Etλ
2
tEx0,xt|x0

∥sθ(t, xt)−∇ log pt(xt|x0)∥2, (3)

where t ∼ U(0, 1) and λt is a positive weight. Then,
ii) generate fake data by solving the reverse SDE (2)
with the score function approximation while starting
at random Gaussian noise (effectively going backward
from noise to data). In practice, to solve the reverse
SDE, we generally discretize t over a fixed set of noise
levels nt going from t = 1 to t = 0.

ODEs and conditional flow matching When
g(t) = 0 in (1), we recover the setting of an ordinary
differential equation (ODE), making the forward and
reverse flow deterministic and simplifying the problem
to be solved. We denote by ϕt(x) the solution of this
ODE with initial conditions ϕ0(x) = x; that is, ϕt(x)
is the point x transported along the vector field u from
t = 1 up to t = 0. Given a density p0 over Rd, we can
define the time-varying density pt = [ϕt]#(p0), where
[ϕt]# is the pushforward operator of ϕ. By construc-
tion, the density pt verifies the well-known continuity
equation with initial conditions p0.

Approximating ODEs with neural networks is a rich
research direction (Kidger, 2022). Chen et al. (2018)
approximated the vector field ut(x) with a neural net-
work vθ(t, x) : [0, 1] × Rd → Rd. However, this direc-
tion requires the simulation of the ODE, which does
not scale well to high dimensions. Another direction is
to regress vθ(t, x) against the vector field ut(x). Unfor-
tunately, this loss is intractable as it requires knowing
the probability path pt(x) and the vector field ut(x).

A workaround was proposed in Lipman et al. (2022).
In their framework, they assume that the probabil-
ity path is a mixture of conditional probability paths.
Formally, pt(x) =

∫
pt(x|z)q(z)dz, where q is a la-

tent distribution and the conditional probability paths
pt(x|z) are supposed to be generated from some con-
ditional vector fields µt(x|z). Then, they defined the
following vector field: µt(x) = Eq(z)

µt(x|z)pt(x|z)
pt(x)

and
showed that it generates the probability path pt(x)
(i.e., µt and pt verify the continuity equation). They
also proved that regressing vθ(t, x) against the con-
ditional vector field µt(x|z) leads to the same gradi-
ents as regressing vθ(t, x) against the vector field µt(x).
Therefore, they minimize:

lcfm(θ) = Et,q(z),pt(x|z)∥vθ(t, x)− µt(x|z)∥2. (4)

After training vθ, they generate fake samples by solv-
ing the following ODE (t = 1 to t = 0)1:

dx = vθ(t, x) dt. (5)
1Note that we have considered ODE from t = 1 to t = 0

for consistencies with respect to diffusion models.
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Figure 2: Illustration of our Forest-Flow method based on I-CFM Tong et al. (2023b) (see §A.3 for more details).
The first step duplicates the original dataset. The second step adds a different noise to each duplicated dataset.
The third step computes the linear interpolation between the duplicated dataset and their corresponding noise
for different time t (i.e., Xi(t) = tX +(1− t)Zi,∀i ∈ [1, . . . , nnoise] and ∀t ∈ tlevels). The final step is to regress a
GBT model at each noise level against the vector field; the training of the nt models is parallelized over CPUs.

This direction has made ODE-based generative models
competitive compared to their stochastic variant.

In practice, we use the I-CFM method Tong et al.
(2023b). This method assumes that z is a tuple of
noise and real data (i.e., z = (x0, x1)) and the dis-
tribution q is the independent coupling q(x0, x1) =
q(x0)q(x1). We choose the conditional probability
path to be pt(x|(x0, x1)) = N (tx1 + (1 − t)x0, σ) for
σ > 0. This results in the following conditional vector
field: µt(x|(x0, x1)) = x1 − x0. We refer to §A.3 for a
longer discussion on Flow Matching.

3 TRAINING DIFFUSION & FLOW
MODELS WITH XGBOOST

Traditionally (and exclusively as far as we know), flow
and diffusion models have relied on deep neural net-
works. Instead, our method relies on Gradient-boosted
Trees (GBTs) to estimate the vector field or score-
function. We explain the details of our method below
(see also Figure 2 for an illustration of the method).

Let us assume that we have a training dataset X of size
[n, d] and that we have discrete set of nt noise levels t ∈
tlevels = { 1

nt
, . . . , nt−1

nt
, 1}, where t = 0 corresponds to

real data, while t = 1 corresponds to Gaussian noise.

3.1 Duplicating the dataset to estimate the
expectation in diffusion and flow losses

A key component of NNs training is Stochastic Gradi-
ent Descent (SGD). To use SGD for training a diffusion
model, a mini-batch of data of size b is selected from
the training dataset along with random Gaussian noise
of the same size (i.e., [b, d]). For each of the b sam-
ples, a random noise level t and a Gaussian noise z (of
size d) are sampled. These are then used to compute
the noisy sample x(t) using the forward diffusion/flow
step. By using SGD with random sampling, we can
minimize the expectations (3) and (4) over mini-batch

of data, Gaussian noise, and noise level.

Unfortunately, GBTs do not rely on SGD and are in-
stead trained on the entire dataset (although each tree
can be trained on different subsamples of the data as
a regularization). Therefore, we need to prepare a sin-
gle input and output training dataset precomputed in
advance to approximate the expectations (3) and (4).
Since the expectations are over all possible noise-data
pairs, we need to sample multiple Gaussian noise z per
data sample x, i.e., we build a set {(zi, x)i∈[1,...,nnoise]}.
To achieve this, we duplicate the observations (i.e., the
rows) of the original dataset nnoise times (going from
size [n, d] to size [nnoisen, d]) as illustrated in Step 1
of Figure 2. Then, we sample random Gaussian noise
of the same dimension ([nnoisen, d]), as illustrated in
Step 2 of Figure 2, so that each sample get nnoise dif-
ferent random noise. These two datasets (containing
the duplicated data samples and the random Gaussian
noise) are used to produce one fixed dataset X(t) con-
taining all the pre-calculated noisy samples x(t) and
one fixed dataset Y (t) containing their corresponding
outputs y(t) (∇ log pt(xt|x0) for diffusion model and
µt(x|z) for flow model) for all t2. It is illustrated in
the third step of Figure 2. The entire process for our
Flow-based method is illustrated in Figure 2.

In practice, nnoise is one of the most critical hyper-
parameters for achieving good performance because
it controls the approximation of the expectation over
data-noise pairs. Therefore, nnoise should be as high as
possible, given memory constraints. We set nnoise =
100 for all datasets, unless memory is an issue (when
nd is large), in which case we reduce it to nnoise = 50.

3.2 Training different models per noise level

As seen from (3) and (4), the model depends on both xt

and t. Since training a neural network to approximate
2Since the release of XGBoost 2.0, data duplication can

be avoided using XGBoost’s novel data iterator which mim-
ics minibatches. Other GBTs still require this procedure.
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Figure 3: Our method learns a different GBT model
(with 100 trees) for each noise-level (here nt = 4). We
can re-interpret this as a single model with giants trees
where the time variable splits are hard-coded.

the vector field or score-function can be very slow, it
is usual to take the noise level t as an input (which
is processed through a complex Sinusoidal (Vaswani
et al., 2017) or Fourier feature (Tancik et al., 2020)
embedding). The same idea can be done with GBTs by
taking t as an additional model feature. However, this
approach is problematic when the number of variables
d is large. For simplicity, assume that the variables
used for the tree splits are randomly chosen, then the
probability of splitting a node by t is 1

d+1 . This high-
lights the fact that with many variables, the chance of
splitting by the noise level is very small, which greatly
minimizes the influence of t on the output.

To better differentiate the vector field or score at dif-
ferent noise levels, we train a different model per noise
level t, leading to nt models whose training can be par-
allelized over multiple CPUs. cost. It can be seen as
a model where the time variable splits are hard-coded
(see Figure 3). In practice, nt = 50 is enough to reach
state-of-the-art or competitive performance. Increas-
ing nt could lead to greater performance but at the
price of a higher computational cost.

3.3 Choice of Gradient-boosted Trees

In theory, we could use any Gradient-boosted Trees.
We experimented our method with Random Forests
(Ho, 1995; Breiman, 2001), XGBoost (Chen et al.,
2015), LightGBM (Ke et al., 2017), and CatBoost
(Prokhorenkova et al., 2018). We have found that
XGBoost achieved superior performance than all other
GBT methods (see Ablation §4.4). Furthermore, Ran-
dom Forests cannot be trained with missing data, mo-
tivating our choice to exclusively use XGBoost as GBT
for our approach (see §3.5).

Algorithm 1: Forest-Diffusion Training
Input: Dataset X of size [n, d], nnoise = 100 noise
sample per data sample, nt = 50 noise levels.
X ′ ← Duplicate the rows of X nnoise times
Z ← Dataset of z ∼ N (0, 1) with the size of X ′

tlevels = { 1
nt
, . . . , nt−1

nt
, 1}

// Parallelized on CPUs
for t ∈ tlevels do

X(t), Y (t)← Forward(Z,X ′, 0, t | nt)
f(t)← Regression XGBoost model to predict
Y (t) given X(t)

end
return {f(t)}t∈tlevels

Algorithm 2: Forest-Diffusion Sampling
Input: XGBoost models {f(t)}t∈tlevels

, nobs

samples, d variables, nt = 50 noise levels.
X(1)← Dataset of z ∼ N (0, 1) with size [nobs, d]
t← 1
while t > 0 do

X(t− 1
nt
)← Reverse(X(t) | f(t), t, nt)

t← t− 1
nt

end
return X(0)

3.4 Forward Diffusion/Flow process

There are many possible choices for the forward pro-
cess of diffusion and flow models. For diffusion,
we use the Variance Preserving (VP) process (Song
et al., 2021). For CFM, we use the deterministic
independent-coupling conditional flow matching (I-
CFM) (Tong et al., 2023b). See Appendix A.2 for the
forward and reverse processes of VP and I-CFM.

3.5 Imputation via diffusion and XGBoost

As previously mentioned, inpainting (restoring miss-
ing parts of an image) is effectively the same problem
as imputing missing data when dealing with tabular
data. For this reason, as a method of imputation, we
use REPAINT (Lugmayr et al., 2022), a powerful in-
painting diffusion models method.

A critical distinction between the training of diffu-
sion models for image inpainting and the training of
GBTs diffusion/flow models is that inpainting models
are trained on complete images. In contrast, we must
train on incomplete data. For this reason alone, XG-
Boost is particularly interesting for this task because it
can handle missing data by learning the best splitting
direction for missing values. Thus, we leverage this
property to train a diffusion model on incomplete data
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Algorithm 3: Forest-Diffusion Imputation
Input: XGBoost models {f(t)}t∈tlevels

, dataset X
of size [nobs, d], nt = 50 noise levels.
M ← Mask indicating which values are
non-missing in X (1: non-missing, 0: missing)
X(1)← Dataset of z ∼ N (0, 1) with size [nobs, d]
t← 1
while t > 0 do

X(t− 1
nt
)← Empty Dataset with size [nobs, d]

// Reverse process for missing values
X(t− 1

nt
)[1−M ]← Reverse(X(t)[1−M ] |

f(t), t, nt)
// Set non-missing values to truth
X(t− 1

nt
)[M ]← Forward(Z[M ], X[M ], 0, t | nt)

t← t− 1
nt

end
return X(0)

and use it to impute missing data with REPAINT.

Importantly, REPAINT is an algorithm made for diffu-
sion models. By their deterministic nature, flow mod-
els are not suited for inpainting and we are not aware
of any CFM method which tackles inpainting. We pro-
vide some additional intuition as to why it may not be
possible to impute nor inpaint in Appendix A.4.

3.6 Data processing

Pre-processing Tabular data can contain both nu-
merical and categorical variables. Our method takes
continuous variables in R. We make the categorical
variables continuous by dummy encoding them (Suits,
1957). Then, we min-max normalize every variable
(including dummies) to the range [−1, 1].

Post-processing After data generation (or imputa-
tion), we clip the generated values between [−1, 1] and
reverse the min-max normalization. For integer vari-
ables, we also round these variables to remove any dec-
imals. Finally, we round the dummy variables to the
nearest class to obtain the categorical variables.

3.7 Gradient-Boosted Tree hyperparameters

Since our goal is to estimate the flow or score-function
of the distribution, overfitting is of very little concern,
while underfitting is a major concern. For this rea-
son, we do not use any regularization, such as L1 or
L2 penalizations. Outside of the L2 hyperparameter,
which we set to 0, all other hyperparameters of XG-
Boost are left at their default values (note that the
default number of trees is 100).

Table 1: Evaluation metrics used in our experiments

Metric Abbreviation Purpose
Distance in distribution (or to ground-truth)

Wasserstein dis-
tance

Wtrain,
Wtest

Distance to train/test data
distributions

Minimum Mean
Absolute Error

MinMAE Distance between closest
imputation and non-
missing data

Average Mean
Absolute Error

AvgMAE Average distance between
imputation and non-
missing data

Diversity
Coverage covtrain,

covtest
Diversity of fake samples
relative to train/test data

Mean Absolute
Deviation

MAD Diversity of imputations

Prediction
R-squared and
F1-score

R2
fake,

F1fake,
R2

imp,
F1imp

Usefulness of fake or
imputed data for Ma-
chine Learning predic-
tion/classification

Discriminator F1-
score

F1disc Ability to distinguish real
from fake data

Statistical inference
Percent Bias Pbias Regression parameter preci-

sion
Coverage Rate covrate Regression parameter confi-

dence intervals coverage

3.8 Training one model per category

When the dataset has a categorical outcome (i.e., a
dataset for classification), Kotelnikov et al. (2023)
train their score function conditional on the label.
Then, they generate data by i) sampling a random
label with the same probabilities as the training data
and ii) generating fake data conditional on that label.
They do so to improve performance and reduce the de-
grees of freedom by one. We use this idea, but instead
of conditioning on the label, we train a different XG-
Boost model per label. It is equivalent to forcing each
tree to split by the labels before building deep trees.
We find that it improves generation performance.

3.9 Algorithm details

The training algorithm is described in Algorithm 1.
The sampling and imputation methods are described
in Algorithms 2 and 3. Note that we removed RE-
PAINT from the imputation algorithm for simplicity,
but the algorithm using REPAINT can be found in the
Appendix (see Algorithm 4). Again, for simplicity, We
also leave out the details on the Forward and Reverse
process in the Appendix (see Algorithms 5, 6, and 7).

4 EXPERIMENTS

We evaluate our method on 27 real-world classifica-
tion/regression datasets (with input X and outcome
y) on the following tasks: 1) generation with com-
plete data, 2) imputation, and 3) generation with in-
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Table 2: Tabular data generation with complete data (27 datasets, 3 experiments per dataset); averaged rank
over all datasets and experiments (standard-error). Best highlighted in bold.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F1fake ↓ F1disc ↓ Pbias ↓ covrate ↓

GaussianCopula 6.1 (0.3) 6.2 (0.3) 6.3 (0.3) 6.4 (0.3) 5.2 (0.2) 5.6 (0.3) 6.1 (0.4) 5.7 (1.0) 6.7 (0.6)
TVAE 4.3 (0.2) 4.1 (0.2) 4.7 (0.2) 4.7 (0.2) 5.5 (0.7) 5.2 (0.5) 4.9 (0.2) 6.5 (0.5) 6.0 (0.4)

CTGAN 7.4 (0.1) 7.4 (0.2) 7.3 (0.2) 7.1 (0.2) 7.5 (0.2) 7.3 (0.2) 6.1 (0.3) 4.7 (1.0) 6.3 (0.5)
CTAB-GAN+ 5.8 (0.3) 5.7 (0.3) 6.3 (0.3) 6.1 (0.3) 6.0 (0.3) 6.0 (0.3) 6.5 (0.2) 6.8 (0.7) 6.0 (0.8)

STaSy 5.1 (0.2) 5.3 (0.2) 4.3 (0.2) 4.4 (0.2) 5.5 (1.0) 4.3 (0.3) 5.1 (0.3) 4.2 (0.7) 3.9 (0.9)
TabDDPM 2.7 (0.6) 3.4 (0.5) 2.6 (0.4) 2.9 (0.4) 1.2 (0.2) 3.4 (0.5) 2.0 (0.4) 2.7 (0.7) 1.4 (0.2)
Forest-VP 2.7 (0.1) 2.5 (0.1) 2.9 (0.2) 2.7 (0.3) 2.8 (0.3) 2.0 (0.2) 2.6 (0.3) 3.0 (0.8) 3.2 (0.6)

Forest-Flow 1.8 (0.1) 1.4 (0.1) 1.6 (0.2) 1.6 (0.2) 2.3 (0.4) 2.1 (0.3) 2.7 (0.3) 2.5 (0.3) 2.5 (0.3)

Table 3: Tabular data imputation (27 datasets, 3 experiments per dataset, 10 imputations per experiment) with
20% missing values; averaged rank over all datasets and experiments (standard-error). Best highlighted in bold.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2
imp ↓ F1imp ↓ Pbias ↓ Covrate ↓

KNN 4.8 (0.4) 5.5 (0.4) 4.2 (0.4) 4.2 (0.3) 7.4 (0.0) 5.7 (0.9) 5.0 (1.0) 5.5 (0.8) 4.8 (0.5)
ICE 6.0 (0.4) 3.9 (0.4) 6.2 (0.5) 6.4 (0.4) 1.4 (0.2) 5.2 (1.0) 6.0 (0.6) 4.8 (0.8) 4.7 (0.6)

MICE-Forest 3.4 (0.4) 2.0 (0.3) 2.5 (0.2) 2.5 (0.3) 3.2 (0.2) 3.3 (1.2) 2.6 (0.9) 4.8 (1.0) 3.9 (0.6)
MissForest 2.3 (0.4) 3.5 (0.4) 1.5 (0.2) 1.7 (0.3) 4.6 (0.1) 3.3 (1.2) 1.9 (0.4) 4.8 (1.3) 3.0 (0.4)
Softimpute 5.9 (0.4) 6.7 (0.3) 6.2 (0.4) 6.5 (0.4) 7.4 (0.0) 5.2 (0.8) 6.8 (0.4) 5.3 (0.9) 5.9 (0.4)

OT 5.2 (0.4) 5.3 (0.3) 5.2 (0.4) 5.2 (0.4) 3.2 (0.2) 5.2 (0.5) 5.8 (0.6) 4.5 (0.8) 4.3 (0.5)
GAIN 3.9 (0.4) 5.6 (0.3) 5.2 (0.3) 5.2 (0.2) 5.9 (0.1) 4.7 (0.8) 4.4 (0.8) 3.7 (1.0) 4.5 (0.5)

Forest-VP 4.5 (0.4) 3.5 (0.4) 5.0 (0.3) 4.5 (0.4) 2.9 (0.3) 3.5 (0.9) 3.6 (0.8) 2.5 (0.7) 4.8 (0.6)

complete data. For all tasks, we split the datasets in
training (80%) and testing (20%) splits. We consider
similar datasets as Muzellec et al. (2020), and they are
from the UCI Machine Learning Repository (Dua and
Graff, 2017) or scikit-learn (Pedregosa et al., 2011).
The list of all datasets can be found in §B.1. To get
a broad and careful assessment of the data quality,
we consider a wide range of evaluation metrics accross
four quadrants: closeness in distribution (or ground
truth for imputations), diversity, prediction, and sta-
tistical inference (comparing regression parameters es-
timated with the true data versus those estimated with
fake/imputed data). We summarize the evaluation
metrics in Table 1. For more details on the choice
and definitions of metrics, we refer to §B.2.

To condense the information across the 27 datasets, we
report the average rank (with standard-error) of
each method relative to other methods. Looking at
the average rank allows for easier interpretation and
reduces outliers by preventing a single low or high per-
formance from providing an unfair (dis)advantage. We
provide the tables with the averaged raw scores of
each evaluation metric as well as the bar plots for
each dataset, metric and method in §C.1 and §C.2.
We denote our method Forest-VP with VP-diffusion
and Forest-Flow with conditional flow matching.

4.1 Generation with complete tabular data

For the generation task, we generate both input X and
outcome y. We compare our method to a wide range of
tabular data generative models. We consider a statisti-
cal method: Gaussian Copula (Joe, 2014; Patki et al.,

2016). We also consider deep-learning VAE and GAN
based methods: TVAE (Xu et al., 2019), CTGAN
(Xu et al., 2019), CTAB-GAN+ (Zhao et al., 2021).
Finally, we consider deep-learning diffusion methods:
STaSy (Kim et al., 2022), and TabDDPM (Kotelnikov
et al., 2023). Details on methods can be found in §B.3.

Averaged score of the different methods are presented
in Table 2, their raw scores in Table 8 and the bar plots
in C.2.1. We find that Forest-Flow is the highest per-
forming method (across nearly all metrics), followed
closely by both Forest-VP and TabDDPM. Forest-
Flow even nearly match the Wasserstein distance to
the test set of the training data (denoted oracle in the
table). This shows that our method does performs
extremely well at generating realistic synthetic data.

4.2 Imputation on missing tabular data

For imputation, we randomly remove 20% of the val-
ues in the input X (Missing Completely at Ran-
dom; MCAR). The outcome y is left as non-missing.
We compare our method to a wide range of tabular
data generative models. We consider non-deep meth-
ods: kNN-Imputation (Troyanskaya et al., 2001), ICE
(Van Buuren and Groothuis-Oudshoorn, 2011; Buck,
1960), MissForest (Stekhoven and Bühlmann, 2012),
MICE-Forest (Van Buuren et al., 1999; Wilson et al.,
2023), softimpute (Hastie et al., 2015) and minibatch
Sinkhorn divergence (Muzellec et al., 2020). We also
consider deep-learning methods: MIDAS (Lall and
Robinson, 2022), and GAIN (Yoon et al., 2018). De-
tails on each method can be found in Appendix B.3.
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Table 4: Tabular data generation with incomplete data (27 datasets, 3 experiments per dataset, 20% missing
values), MissForest is used to impute missing data except in Forest-VP and Forest-Flow; average rank (standard-
error) over all datasets and experiments. Best highlighted in bold.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F1fake ↓ F1disc ↓ Pbias ↓ covrate ↓

GaussianCopula 6.0 (0.3) 6.2 (0.2) 6.3 (0.3) 6.1 (0.3) 5.3 (0.4) 5.8 (0.2) 6.4 (0.5) 4.7 (0.8) 6.7 (0.6)
TVAE 4.2 (0.3) 3.9 (0.2) 4.8 (0.3) 4.8 (0.2) 5.0 (1.0) 4.9 (0.5) 5.0 (0.3) 7.0 (0.4) 5.5 (0.8)

CTGAN 7.3 (0.2) 7.4 (0.2) 7.4 (0.2) 7.3 (0.2) 7.3 (0.3) 7.4 (0.2) 6.0 (0.2) 4.2 (1.1) 6.1 (0.7)
CTABGAN 5.7 (0.4) 5.6 (0.3) 6.1 (0.3) 5.8 (0.3) 6.5 (0.4) 6.3 (0.3) 6.1 (0.3) 6.7 (0.8) 5.2 (0.5)

Stasy 4.9 (0.2) 5.1 (0.3) 4.3 (0.2) 4.1 (0.3) 5.2 (0.7) 3.7 (0.3) 4.3 (0.3) 3.3 (0.4) 4.2 (0.9)
TabDDPM 2.7 (0.6) 3.0 (0.6) 2.1 (0.4) 2.7 (0.5) 1.3 (0.2) 2.9 (0.5) 2.0 (0.4) 3.3 (1.1) 1.7 (0.3)
Forest-VP 2.8 (0.2) 2.7 (0.2) 3.0 (0.2) 3.0 (0.3) 2.7 (0.2) 1.9 (0.2) 2.6 (0.3) 3.7 (0.7) 3.8 (1.0)

Forest-Flow 2.3 (0.3) 2.2 (0.3) 2.1 (0.2) 2.2 (0.2) 2.7 (0.6) 3.2 (0.3) 3.7 (0.3) 3.2 (0.7) 2.8 (0.7)

Table 5: Forest-Flow ablation on the Iris dataset
(baseline: nt = 50, nnoise = 100, ycond = False)

Wtest ↓ covtest ↑ F1fake ↑
nt = 10 0.34 0.93 0.92
nt = 25 0.32 0.93 0.95

(Base) nt = 50 0.32 0.92 0.95
nt = 100 0.33 0.92 0.93
nt = 200 0.33 0.95 0.94

nnoise = 1 0.52 0.86 0.81
nnoise = 5 0.38 0.91 0.90

nnoise = 10 0.37 0.91 0.93
nnoise = 25 0.36 0.93 0.92
nnoise = 50 0.35 0.93 0.91

(Base) nnoise = 100 0.32 0.92 0.95
(Base) XGBoost 0.32 0.92 0.95

LightGBM 0.32 0.94 0.93
CatBoost 0.48 0.78 0.85

Random Forests 0.55 0.78 0.91
(Base) ycond = False 0.34 0.92 0.95

ycond = True 0.35 0.92 0.97

Results are presented in Table 3. We find that the
best overall methods are MICE-Forest and MissFor-
est; both methods are nearly equally good, with the
difference being that MissForest has low diversity and
is thus best for single imputation. These results high-
light the power of tree-based methods on tabular data.

For the remaining methods, it is hard to rank them
globally since they vary in performance across the dif-
ferent metrics. With raw scores, our method gener-
ally outperforms them (See Table 9 and bar plots in
§C.2.2). However, with rank scores, our method can
rank above or below GAIN, OT, and KNN, depending
on the metrics. However, we note that our method
is much more diverse than other methods, making it
appealing for multiple imputation strategies.

4.3 Generation with incomplete tabular data

For generation of incomplete data, we follow the same
setup as the generation with complete data (see Sec-
tion 4.1) but randomly remove 20% of the values in the
input X (MCAR). Our method can work on incom-
plete data directly thanks to XGBoost, so we do not
impute the data. For other methods, we first impute
the input data X with MissForest prior to training (we

Table 6: Forest-VP ablation on the Iris dataset (base-
line: nt = 50, nnoise = 100, ycond = False)

Wtest ↓ covtest ↑ F1fake ↑
nt = 10 0.57 0.56 0.84
nt = 25 0.37 0.88 0.93

(Base) nt = 50 0.33 0.93 0.96
nt = 100 0.34 0.93 0.95
nt = 200 0.35 0.91 0.95

nnoise = 1 0.65 0.71 0.69
nnoise = 5 0.44 0.89 0.90

nnoise = 10 0.40 0.90 0.93
nnoise = 25 0.35 0.92 0.94
nnoise = 50 0.35 0.90 0.95

(Base) nnoise = 100 0.33 0.93 0.96
(Base) XGBoost 0.33 0.93 0.96

LightGBM 0.33 0.92 0.97
CatBoost 0.64 0.56 0.81

Random Forests 0.94 0.34 0.78
(Base) ycond = False 0.33 0.93 0.96

ycond = True 0.33 0.93 0.97

could also follow this strategy for our Forest Flow and
Diffusion methods).

The averaged rank of each method is presented in Ta-
ble 4, their raw scores in Table 10 and the bar plots
in C.2.3. Forest-Flow and Forest-VP perform simi-
larly and are generally the highest-performing meth-
ods except on training coverage, R-squared, and cov-
erage rate metrics, where TabDDPM is slightly better.
These results show that our method performs similarly
or better than their deep-learning counterpart without
needing GPUs and by training directly on missing data
instead of relying on missing data imputation.

4.4 Ablation of Forest-VP and Forest-Flow

We run an ablation on the Iris dataset when varying
the hyperparameters of the algorithm and the choice
of tree-based approximator (with default hyperparam-
eters and L1/L2 penalizations disabled). The results
can be found for Forest-Flow in Table 5 and for Forest-
Diffusion in Table 6. For both flow and diffusion, the
best performance is obtained at nt = 50, and the
larger nnoise is. XGBoost and LightGBM are supe-
rior to other tree-based methods. However, LightGBM
freezes when running multiple models in parallel, and
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training not-in-parallel is much slower than training
XGBoost in parallel; thus, given its significant speed
advantage, we use XGBoost as our main GBT method.
We observe that conditioning on the outcome label
improves performance for some metrics, but the dif-
ference is not significative.

5 CONCLUSION

We presented the first approach to train diffusion
and flow-based models using XGBoost (and other
Gradient-Boosted Tree methods) instead of neural
networks. Our method generates highly realistic
synthetic tabular data even when the training data
contains missing values and they also generate di-
verse imputations. Our method performs better or
on-par to deep-learning methods without requiring
GPUs. Our work shows that tree-based methods
are currently the best algorithms to deal with tab-
ular data on data generation tasks. Our Python
(Van Rossum and Drake, 2009) and R (R Core
Team, 2021) code is available at https://github.
com/SamsungSAILMontreal/ForestDiffusion.

While powerful, our method has limitations. Although
we obtain state-of-the-art results on the generation
task, MICE-Forest and MissForest remain better for
imputation. Furthermore, because of not using mini-
batch training, the memory demand of GBTs can po-
tentially be higher than deep-learning methods for
large datasets. This limitation is further exacerbated
by the fact that we duplicate the rows of the dataset
nnoise times, thus making the dataset much bigger.

As future work, we could potentially use multinomial
diffusion (Hoogeboom et al., 2021) to improve perfor-
mance. We could also consider using new diffusion
processes (Karras et al., 2022) or classifier-free guid-
ance (Ho and Salimans, 2022). It would be helpful to
find a way to train Tree models with mini-batches to
remove the need to train on a duplicated dataset (sim-
ilarly to the novel data iterator from XGBoost 2.0).
As future applications, it would be interesting to apply
this technique to data-augmentation, class imbalance,
and domain translation tasks.

To better understand the data generation process, one
could extract feature importance across all XGBoost
models (an example is shown in Figure 4 for Forest-
Flow). This could also be used for variable selection.

6 BROADER IMPACTS

Our method generates new observations that closely
match the data’s true observations. Although the syn-
thetic samples are highly realistic, they are still gener-

Figure 4: Average feature importance (SHAP value)
across all XGBoost models trained with Forest-Flow
on Iris dataset. The features (from 0 to 4) are, respec-
tively, sepal length, sepal width, petal length, petal
width, and species. Instead of average, one could also
get a different plot per noise-level or variable predicted.

ated. One should be careful about drawing inferences
on fake participants, considering their potential real-
world impact. We encourage practitioners to always
compare fake data inference to real data inference.

Missing data imputation is ultimately an elaborate
guess. Imputing data is sensible when one has few
missing values per participant or when non-missing
values are highly correlated to missing values. Oth-
erwise, imputation methods effectively fabricate most
of the information about an observation (or person),
and the practitioner may draw conclusions based on
this information. We encourage practitioners to 1) use
multiple imputations to average over different plausi-
ble imputations when making inferences and 2) not
use imputations when they have too much missing
data (get more participants or find ways to retrieve
the missing data).

Perhaps one of the biggest advantages of our method is
its conservative nature with respect to resources. Typ-
ical diffusion models and generative AI algorithms are
extremely resource intensive, taking special dedicated
hardware as well as distributed training. Meanwhile,
our method can be run on a regular laptop (with 4-
12 CPUs). This is in extreme contrast to most deep
neural networks, which require expensive GPUs.
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Supplementary material:
Generating and Imputing Tabular Data via Diffusion and Flow-based

Gradient-Boosted Trees

The supplementary material is structured as follows:

• Appendix A describes the full algorithms of our methods Forest-VP and Forest-Flow.

• Appendix B describes the datasets, the metrics and the competitors that we used in our experiments.

• Appendix C reports all averaged raw scores over the 27 datasets as well as the bar plots for each dataset,
metric and method.

A ALGORITHMS

A.1 REPAINT Imputation Algorithm

Algorithm 4: Forest-Diffusion Imputation with REPAINT
Input: XGBoost models {f(t)}t∈tlevels

, dataset X of size [nobs, d], d variables, nnoise = 100, nt = 50 noise
levels, r = 10 repaints, jump size j = 5.
M ← Mask indicating which values are non-missing in X (1: non-missing, 0: missing)
X(1)← Dataset of z ∼ N (0, 1) with size [nobs, d]
nrepaint ← 1
t← 1
while t > 0 do

X(t− 1
nt
)← Empty Dataset with size [nobs, d]

// Reverse process for missing values
X(t− 1

nt
)[1−M ]← Reverse(X(t)[1−M ] | f(t), t, nt)

// Set non-missing values to truth
X(t− 1

nt
)[M ]← Forward(Z[M ], X[M ], 0, t | nt)

if nrepaint < r and t+ 1 mod j = 0 then
// go back a few steps to repaint
nrepaint ← nrepaint + 1
Z ← Dataset of z ∼ N (0, 1) with size [nobs, d]
X(t+ j

nt
)[M ]← Forward(Z[M ], X(t)[M ], t, t+ j

nt
, | nt)

t← t+ j
nt

end
if nrepaint = r and ntt+ 1 mod j = 0 then

nrepaint ← 0 // finished repainting
end
t← t− 1

nt

end
return X(0)
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A.2 Forward and Reverse step Algorithms

Algorithm 5: Forward (0→ t)

Input: Noise data Z, dataset X, time t, number of noise levels nt, boolean flow (if True, use conditional
flow matching; if False, use VP diffusion), β = [0.1, 20].

if flow then
X(t)← (1− t)Z + tX
Y (t)← X − Z

end
else

C ← − 1
4 t

2(β[1]− β[0])− 0.5tβ[0]
X(t)← expCX +

√
1− exp 2CZ

Y (t)← Z
end
return X(t), Y (t)

Algorithm 6: Forward (t→ tnext)

Input: Noise data Z, dataset X, next time tnext (where tnext > t) , current time t, number of noise levels
nt, boolean flow (if True, use conditional flow matching; if False, use VP diffusion), β = [0.1, 20].
h← tnext − t
if flow then

X(tnext)← Z + h(X − Z)
end
else

βt = β[0] + t(β[1]− β[0])
X(tnext)← X(t)− h 1

2βtX(t) +
√
βtZ

end
return X(tnext)

Algorithm 7: Reverse
Input: dataset X(t), time t, XGBoost model f(t), number of noise levels nt, boolean flow (if True, use
conditional flow matching; if False, use VP diffusion), β = [0.1, 20].
h← 1

nt

if flow then
X(t− 1

nt
)← X(t) + hf(t)

end
else

βt = β[0] + t(β[1]− β[0])
C ← − 1

4 t
2(β[1]− β[0])− 0.5tβ[0]

score← − f(t)√
1−exp 2C

µ = − 1
2βtX(t)− βtscore

X(t− 1
nt
)← X(t)− hµ+ βt

√
hZ

end
return X(t− 1

nt
)

A.3 Flow matching

Flow matching has been introduced by several works under different names Lipman et al. (2022); Albergo and
Vanden-Eijnden (2023); Liu et al. (2022). As explained in the main text, Flow Matching’s objective is to regress
a conditional vector field built from conditional probability paths. In this section, we provide more details about
the conditional probability paths and conditional vector fields that were used respectively in Lipman et al. (2022)
and Tong et al. (2023b).
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The natural choice of the conditional probability path pt(x|z) is a Gaussian conditioned on a latent variable
z ∼ q(z) with variance σt leading to pt(x) =

∫
N (νt(z), σt)q(z)dz. In particular, we want that p1 approximates

the distribution q. When we use a Gaussian for the conditional probability path, it is possible to compute the
conditional vector field in closed-form thanks to the next Theorem:

Theorem 1 (Theorem 3 of Lipman et al. (2022)). The unique vector field whose integration map satisfies
ρt(x) = νt + σtx has the form

µt(s) =
σ′
t

σt
(s− νt) + ν′t, (6)

Therefore to develop a conditional flow matching variant, we have to choose four different quantities: the
conditioning z, the Gaussian mean νt, the Gaussian standard deviation σt and the latent distribution q.

Flow Matching. We first consider the condition z to be a single training sample z = x1, the Gaussian mean is
νt(x1) = tx1 and its standard deviation σt = (tσ − t + 1)2 where σ > 0. Regarding q, we set it to q(z) = q(x1)
as the uniform distribution over the training dataset. Now we define the conditional probability path and the
conditional vector field as:

pt(x|z) = N (tx1, (tσ − t+ 1)2), (7)

µt(x|z) =
x1 − (1− σ)x

1− (1− σ)t
, (8)

which is a probability path from the standard normal distribution (p0(x|z) = N (x; 0, 1)) to a Gaussian distribu-
tion centered at x1 with standard deviation σ (p1(x|z) = N (x;x1, σ

2)) in order to ensure that p1 ≈ q.

Independent-Conditional Flow Matching. Another recent Flow Matching variant is Independent-
Conditional Flow Matching. In this variant, the condition z is a tuple of a source and a target sample z = (x0, x1),
the mean of Gaussian conditional probability path is set to νt(x0, x1) = tx1 + (1− t)x0, the standard deviation
σt to a constant independent of t and the latent distribution to the independent coupling q(x0, x1) = q(x0)q(x1).

pt(x|x0, x1) = N (x | tx1 + (1− t)x0, σ
2), (9)

pt(x) =

∫
N (x | tx1 + (1− t)x0, σ

2)π(x0, x1)dx0dx1, (10)

µt(x|x0, x1) = x1 − x0. (11)

We note that we also recover p1(x|z) = N (x;x1, σ
2) as the above Flow Matching variant. The I-CFM loss is

equal to LForest-Flow = ∥vθ(t, x) − µt(x|z)∥ = ∥vθ(t, x) − (x1 − x0)∥. The advantage of this variant is that it is
simple to implement and available in open-source in the TorchCFM package3 Tong et al. (2023b). Note that in
our experiments, we have set σ to 0.

A.4 Why Flow methods cannot be used for imputation or inpainting

We considered doing imputation for flow models through regular inpainting or REPAINT. However, we found
that it could not work due to the deterministic nature of the method, as explained below.

A flow is such that a single Gaussian sample x(1) = z (of dimension d) follows a deterministic trajectory leading
to a single data sample x(0). For imputation, we need the final x(0) to have the same non-missing values as the
true sample containing missing data. However, since the trajectory from x(1) to x(0) is deterministic, we have
no control over which data sample we will end up with at t = 0. Trying to force x(t) into the direction that
we want (toward the true non-missing values) does not work because we diverge from the actual deterministic
trajectory. Therefore, for imputation, we had to rely exclusively on diffusion methods.

3https://github.com/atong01/conditional-flow-matching

https://github.com/atong01/conditional-flow-matching
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B DATASETS, METRICS AND METHODS

B.1 Datasets

We list all the datasets in Table 7. We mostly use the same datasets as Muzellec et al. (2020) (with the exception
of bean), and the datasets come either from the UCI Machine Learning Repository (Dua and Graff, 2017) or
scikit-learn (Pedregosa et al., 2011). All UCI datasets are licensed under the Creative Commons Attribution 4.0
International license (CC BY 4.0). For scikit-learn, the Iris dataset is licensed with the BSD 3-Clause License,
and the California housing is freely provided by the authors with no license. Irrespective of the source, all
datasets are openly shared with no restriction on usage.

Table 7: Datasets

Dataset Citation n d Outcome

airfoil self noise (Brooks et al., 2014) 1503 5 continuous
bean (Koklu and Ozkan, 2020) 13611 16 categorical

blood transfusion (Yeh, 2008) 748 4 binary
breast cancer diagnostic (Wolberg et al., 1995) 569 30 binary

california housing (Pace and Barry, 1997) 20640 8 continuous
climate model crashes (Lucas et al., 2013) 540 18 binary
concrete compression (Yeh, 2007) 1030 7 continuous

concrete slump (Yeh, 2009) 103 7 continuous
connectionist bench sonar (Sejnowski and Gorman) 208 60 binary
connectionist bench vowel (Deterding et al.) 990 10 binary

ecoli (Nakai, 1996a) 336 7 categorical
glass (German, 1987) 214 9 categorical

ionosphere (Sigillito et al., 1989) 351 34 binary
iris (Fisher, 1988) 150 4 categorical

libras (Dias et al., 2009) 360 90 categorical
parkinsons (Little, 2008) 195 23 binary

planning relax (Bhatt, 2012) 182 12 binary
qsar biodegradation (Mansouri et al., 2013) 1055 41 binary

seeds (Charytanowicz et al., 2012) 210 7 categorical
wine (Aeberhard and Forina, 1991) 178 13 categorical

wine quality red (Cortez et al., 2009) 1599 10 integer
wine quality white (Cortez et al., 2009) 4898 11 integer

yacht hydrodynamics (Gerritsma et al., 2013) 308 6 continuous
yeast (Nakai, 1996b) 1484 8 categorical

tic-tac-toe (Aha, 1991) 958 9 binary
congressional voting (mis, 1987) 435 16 binary

car evaluation (Bohanec, 1997) 1728 6 categorical

B.2 Metrics

We describe below the choices of metrics used in this paper.

B.2.1 Gower distance

Since we have mixed-type data (continuous and categorical variables) at varying scales (one variable can be
thousands and one in decimals), the Euclidean distance is not an adequate distance measure. We take inspiration
from the k-Nearest Neighbors (KNN) literature by instead relying on the Gower distance (Gower, 1971), a popular
metric to uniformize distances between continuous and categorical variables. The Gower distance is the sum
of the per-variable costs, and these costs are defined to always be between 0 and 1 for both continuous and
categorical variables. We use this distance for every evaluation metric that relies on a distance metric (i.e.,
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Wasserstein distance, coverage, and MAE). The Gower distance can be implemented by taking the L1 distance
over min-max normalized continuous variables or one-hot categorical variables divided by two.

B.2.2 Imputation

Wasserstein Distance For imputation, to assess how close the real and imputed data distributions are, we
use the Wasserstein distance. We report the Wasserstein distance to either the training data or testing data.
Since calculating the Wasserstein distance scales quadratically with sample size, to the reduce time taken, we
only calculate the distance for datasets with less than 5000 training samples. This approach is also chosen by
Muzellec et al. (2020).

Mean Absolute Deviation around the median/mode (MAD) To assess the diversity of the imputations,
we look at the Mean Absolute Deviation (MAD) around the median (for continuous variables) or mode (for
categorical variables) of imputed values across k = 5 imputations. MAD measures the variability using the L1
distance to the median/mode, which is more sensible than using the variance given our reliance on the Gower
Distance, which is L1-based. This measure says nothing about quality, but given equal levels of quality, one
should prefer a method that is more diverse in its imputations to avoid creating false precision and ensure valid
uncertainty on parameter estimates (Li et al., 2015).

Minimum and Average MAE A common approach to assess the distance between the imputed values and
the ground-truth values is the root mean squared error (RMSE) or mean absolute error (MAE) (Stekhoven and
Bühlmann, 2012). However, the usefulness of these metrics has been severely debated (Van Buuren, 2018; Wang
et al., 2022). An imputation method that accounts for uncertainty by producing multiple different imputations
will inherently have a higher RMSE/MAE than one centered across the mean or median of possible imputations.
We see this in Tashiro et al. (2021), where instead of directly taking the multiple imputations they generate, the
authors only report the median imputation of their 100 different imputations to be as close as possible to the
ground truth and thus obtain a great RMSE/MAE; however, in doing so, they destroy all the sampling diversity
produced by their method. Furthermore, this approach is only usable when the number of variables is 1, given
that no exact concept of multivariate median exists.

Since taking the median approach of Tashiro et al. (2021) cannot work in the multivariate setting, we adjust
the metric through the standard approach used in the video prediction literature (Denton and Fergus, 2018;
Castrejon et al., 2019; Franceschi et al., 2020; Voleti et al., 2022), which is to produce different samples (k = 5
different imputations for a given missing observation in our case) and take the distance between the ground truth
and the sample closest to this ground truth. The idea is that different imputations may still be plausible and
valid even though they differ from the ground truth. Hence, this approach only tries to ensure that the ground
truth is at least close to one of the possible imputations (rather than to all the possible imputations).

While the average MAE is unfair against stochastic methods, taking the minimum may be considered unjust
against deterministic methods (because it gives more chance for the stochastic method to be closer by increasing
the number of imputations k). Thus, we report both the minimum and the average MAE. We use the MAE
instead of the RMSE because it matches the Gower Distance, which relies on the L1 distance.

Efficiency To assess the practical use for machine learning purposes, we use the efficiency/utility (Xu et al.,
2019); this measure is defined as the average F1-score for classification problems and R2 for regression problems
for models trained on imputed data and evaluated on the test set.

We average the efficiency over four useful non-deep models: linear/logistic regression, AdaBoost, Random Forests,
and XGBoost. The choice of models used is a matter of taste. Kotelnikov et al. (2023) include CatBoost instead
of XGBoost. Xu et al. (2019) do not include any Gradient-Boosted Trees (GBTs), but they include both Decision
Trees (DTs) and Multilayer perceptrons (MLPs). We prefer not to use DTs because a single tree has limited
capacity, and almost no one uses them in practice (over GBTs or Random Forests). We also prefer not to use
MLPs since data scientists and statisticians rarely use them for tabular data given their massive complexity,
computational expense (GPUs), and generally inferior performance (Shwartz-Ziv and Armon, 2022).

Statistical measures To assess the ability to obtain statistically valid inferences from incomplete data, we
rely on classic statistical measures which train a linear regression model and compare the parameter estimates
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obtained by the imputed data to the ones obtained through the ground-truth data with no missing values
(Van Buuren, 2018). The metrics we use are: the percent bias (|E

[
β̂−β
β

]
|), and the coverage rate (i.e., the

proportion of confidence intervals containing the true value).

We report the average of those measures across all regression parameters. These metrics focus on ensuring that
the imputed data do not lead to wrong incorrect assessments about the importance of each variable during
inference. For example, if one seeks to know if a certain gene influence a certain outcome, one needs to make
sure the imputed data does not incorrectly give a significant effect for this gene when there isn’t one (or the
converse).

B.2.3 Generation

Wasserstein Distance For generation, to assess how close the real and fake data distributions are, we use
the Wasserstein distance. We report the Wasserstein distance to either the training data or testing data. Since
calculating the Wasserstein distance scales quadratically with sample size, to the reduce time taken, we only
calculate the distance for datasets with less than 5000 training samples. This approach is also taken by Muzellec
et al. (2020).

Coverage To assess the diversity of generated samples, we use the coverage (Naeem et al., 2020), a measure of
the ratio of real observations that have at least one fake observation within a sphere of radius r, where r is the
distance between the sample and its k-th nearest neighbor. The number of nearest neighbors k is the smallest
value such that we obtain at least 95% coverage on the true data. We report the coverage for both training and
testing data separately.

Efficiency We again use the average efficiency when training on synthetic data to assess the practical use for
machine learning purposes.

Discriminator We follow the same design as the Efficiency F1 score metric but use a classifier to predict if a
sample is real or fake. We test the classifier on fake data and report the F1 score. A high F1 score means the
classifier recognizes the fake data as fake; thus, lower values correspond to better generation quality. Note that
we train with the training dataset and fake data of the same size but test on another random sample of fake
data to counter overfitting.

Statistical measures We use the same statistical measures while using datasets filled with fake samples
instead of imputed datasets.

B.3 Details of each methods

B.3.1 Computational resources used

We trained the tree-based models on a cluster of 10-20 CPUs with 64-256Gb of RAM.

We trained the other models on a cluster with 8 CPUs, 1 GPU, and 48-128Gb of RAM.

B.3.2 Generation

Oracle This is the actual training data.

ForestFlow and ForestVP We use nt = 50, nnoise = 100, label conditioning, and dummy encoding of the
categorical variables.

GaussianCopula GaussianCopula transforms the data into a copula, a distribution on the unit cube (Sklar,
1959). Then, it can generate new data by sampling from the unit cube and reversing the copula. We use the
Gaussian Copula implementation from the Synthetic data vault (Patki et al., 2016) with the default hyperpa-
rameters.
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TVAE and CTGAN Tabular VAE (TVAE) is a Variational AutoEncoder (VAE) (Kingma and Welling,
2013) for mixed-type tabular data generation. Conditional Tabular GAN (CTGAN) is a Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) for mixed-type tabular data generation. Both TVAE and CTGAN
were introduced by Xu et al. (2019). We use the implementation from the Synthetic data vault (Patki et al.,
2016) with the default hyperparameters.

CTAB-GAN+ CTAB-GAN (Zhao et al., 2021) is a Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) for mixed-type tabular data generation. CTAB-GAN+ is an improvement of the method (Zhao
et al., 2022). We use the official implementation with the default hyperparameters.

STaSy Score-based Tabular data Synthesis (STaSy) (Kim et al., 2022) is a method using score-based generative
models (Song et al., 2021) for mixed-type tabular data generation. We use the official implementation. We
initially obtained nonsensical outputs (lots of variables at the min or max value and/or generating only one
class) on small data generation (such as with the Iris dataset) with STaSy default hyperparameters . Through
correspondence with the authors, we got STaSy to work better through small changes in the hyperparameters
(using Naive STaSy, 10000 epochs, and reducing the hidden dimensions to (64, 128, 256, 128, 64)). We use the
default hyperparameters with those changes.

Tab-DDPM Tab-DDPM (Kotelnikov et al., 2023) is a method using denoising diffusion probabilistic models
(Ho et al., 2020) for mixed-type tabular data generation. We use the official implementation with the default
hyperparameters from the California dataset.

B.3.3 Imputation

Oracle This is the actual training data before adding missing values.

Forest-Flow and Forest-VP We use nt = 50, nnoise = 100 (except for the bean, where we use nnoise = 50
to reduce memory requirements), and dummy encoding of the categorical variables.

KNN We use the k-nearest neighbors (KNN) (Cover and Hart, 1967) based imputation method by Troyan-
skaya et al. (2001). We use the scikit-learn (Pedregosa et al., 2011) implementation with k = 1 and default
hyperparameters. There is no L1-based KNN imputer to our knowledge, so we cannot work with the Gower
Distance. Thus, we stick to the regular KNN imputer, which depends on a special Euclidean distance made for
incomplete data that penalizes distance based on the number of missing values. Since the distance is L2-based,
we standardize (z-score) all the variables prior to being imputed and unstandardize them after imputation.

ICE Imputation by Chained Equations (ICE) does iterative imputations through conditional expectation. We
use the IterativeImputer function from scikit-learn (Pedregosa et al., 2011), which is based on Van Buuren and
Groothuis-Oudshoorn (2011). We use 10 iterations and the default hyperparameters. We clip the imputations
to be between the minimum and maximum of observed values.

MICE-Forest MICE-Forest (also called miceRanger) (Wilson et al., 2023) is an imputation method using
Multiple Imputations by Chained Equations (MICE) (Van Buuren and Groothuis-Oudshoorn, 2011) with pre-
dictive mean matching (Little, 1988) and LightGBM (Ke et al., 2017), a popular type of Gradient-Boosted Tree
(GBT) method. We use the official Python library with the default hyperparameters.

MissForest MissForest (Stekhoven and Bühlmann, 2012) is an iterative algorithm using Random Forests
(Breiman, 2001) to impute missing data. We use the implementation from the missingpy Python library (Ashim,
2013) with the default hyperparameters.

Softimpute Softimpute (Hastie et al., 2015) is an iterative soft-threshold Singular Value Decomposition (SVD)
method to impute missing data. We use the implementation from Muzellec et al. (2020) with the default
hyperparameters. We clip the imputations to be between the minimum and maximum of observed values.

Sinkhorn Minibatch Sinkhorn divergence (Muzellec et al., 2020) is an Optimal Transport (OT) (Villani et al.,
2009) method based on the minibatch Sinkhorn divergence (Cuturi, 2013; Genevay et al., 2018) to impute missing
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data. The intuition is that two minibatches from the same distribution should have relatively similar statistics.
Therefore, they leverage the minibatch optimal transport Fatras et al. (2020, 2021) loss to imput missing data.
We use the official implementation with the default hyperparameters. We clip the imputations to be between
the minimum and maximum of observed values.

GAIN Generative Adversarial Imputation Nets (GAIN) (Yoon et al., 2018) is a GAN (Goodfellow et al., 2014)
based method to impute missing data. We use the official implementation with the default hyperparameters.
The code does rounding in a problematic way; it assumes that variables with less than 20 unique values are
categorical, and those variables are rounded to the nearest integer. We found this to cause problems, so we
instead provide the names of the categorical variables to the function so that only those variables are rounded.

C AVERAGED RESULSTS AND BAR PLOTS

In this section, we provide the averaged raw score for each method on all datasets as well as the different bar
plot for each metric and each method on each dataset.

C.1 Tables - raw score

In this section, we provide the averaged raw score for each method on all datasets for the generation of tabular
data 8, the tabular data imputation 9 and the tabular data generation with missing values 10.

Table 8: Tabular data generation with complete data (27 datasets, 3 experiments per dataset); raw score - mean
(standard-error)

Wtrain ↓ Wtest ↓ covtrain ↑ covtest ↑ R2
fake ↑ F1fake ↑ F1disc ↓ Pbias ↓ covrate ↑

GaussianCopula 2.74 (0.56) 2.99 (0.61) 0.18 (0.04) 0.37 (0.06) 0.20 (0.14) 0.46 (0.06) 0.62 (0.05) 2.27 (0.77) 0.23 (0.12)
TVAE 2.12 (0.58) 2.35 (0.63) 0.33 (0.04) 0.63 (0.04) -0.47 (0.61) 0.52 (0.08) 0.44 (0.01) 4.15 (1.97) 0.26 (0.09)

CTGAN 3.58 (0.99) 3.74 (1.01) 0.12 (0.03) 0.28 (0.04) -0.43 (0.08) 0.35 (0.04) 0.48 (0.01) 2.48 (1.30) 0.20 (0.08)
CTAB-GAN+ 2.71 (0.81) 2.89 (0.83) 0.22 (0.04) 0.44 (0.05) 0.05 (0.12) 0.44 (0.05) 0.52 (0.02) 2.95 (1.04) 0.26 (0.07)

STaSy 3.41 (1.39) 3.66 (1.42) 0.38 (0.05) 0.63 (0.05) -4.21 (4.44) 0.61 (0.06) 0.46 (0.02) 1.23 (0.44) 0.45 (0.12)
TabDDPM 4.27 (1.89) 4.79 (1.89) 0.76 (0.06) 0.80 (0.06) 0.60 (0.11) 0.66 (0.06) 0.39 (0.03) 0.76 (0.28) 0.72 (0.11)
Forest-VP 1.46 (0.40) 1.94 (0.50) 0.67 (0.05) 0.84 (0.03) 0.55 (0.10) 0.73 (0.04) 0.39 (0.01) 0.94 (0.30) 0.52 (0.15)

Forest-Flow 1.36 (0.39) 1.90 (0.5) 0.83 (0.03) 0.90 (0.03) 0.57 (0.11) 0.73 (0.04) 0.38 (0.01) 0.83 (0.23) 0.63 (0.11)
Oracle 0.00 (0.00) 1.81 (0.47) 0.99 (0.01) 0.91 (0.04) 0.64 (0.09) 0.77 (0.04) NA 0.00 (0.00) 1.00 (0.00)

Table 9: Tabular data imputation (27 datasets, 3 experiments per dataset, 10 imputations per experiment) with
20% missing values; raw score - mean (standard-error)

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↑ R2
imp ↑ F1imp ↑ Pbias ↓ Covrate ↑

KNN 0.16 (0.03) 0.16 (0.03) 0.42 (0.08) 1.89 (0.49) 0.00 (0.00) 0.59 (0.09) 0.75 (0.04) 1.27 (0.25) 0.40 (0.11)
ICE 0.10 (0.01) 0.21 (0.03) 0.52 (0.09) 1.99 (0.49) 0.69 (0.10) 0.59 (0.09) 0.74 (0.04) 1.05 (0.29) 0.39 (0.09)

MICE-Forest 0.08 (0.02) 0.13 (0.03) 0.34 (0.07) 1.86 (0.48) 0.29 (0.08) 0.61 (0.10) 0.76 (0.04) 0.61 (0.20) 0.75 (0.11)
MissForest 0.10 (0.03) 0.12 (0.03) 0.32 (0.07) 1.85 (0.48) 0.10 (0.03) 0.61 (0.10) 0.76 (0.04) 0.62 (0.22) 0.79 (0.08)
Softimpute 0.22 (0.03) 0.22 (0.03) 0.53 (0.07) 1.99 (0.48) 0.00 (0.00) 0.58 (0.09) 0.74 (0.04) 1.18 (0.34) 0.31 (0.09)

OT 0.14 (0.02) 0.19 (0.03) 0.56 (0.10) 1.98 (0.49) 0.28 (0.05) 0.59 (0.10) 0.75 (0.04) 1.09 (0.27) 0.39 (0.12)
GAIN 0.16 (0.03) 0.17 (0.03) 0.49 (0.11) 1.95 (0.51) 0.01 (0.00) 0.60 (0.10) 0.75 (0.04) 1.04 (0.25) 0.54 (0.12)

Forest-VP 0.14 (0.04) 0.17 (0.03) 0.55 (0.13) 1.96 (0.50) 0.25 (0.03) 0.61 (0.10) 0.74 (0.04) 0.81 (0.25) 0.57 (0.14)
Oracle 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.87 (0.49) 0.00 (0.00) 0.64 (0.09) 0.78 (0.04) 0.00 (0.00) 1.00 (0.00)

Table 10: Tabular data generation with incomplete data (27 datasets, 3 experiments per dataset, 20% missing values),
MissForest is used to impute missing data except in Forest-VP and Forest-Flow; raw score - mean (standard-error)

Wtrain ↓ Wtest ↓ covtrain ↑ covtest ↑ R2
fake ↑ F1fake ↑ F1disc ↑ Pbias ↓ covrate ↑

GaussianCopula 2.60 (0.58) 2.86 (0.63) 0.20 (0.04) 0.43 (0.05) 0.20 (0.18) 0.48 (0.06) 0.60 (0.04) 2.31 (1.00) 0.21 (0.08)
TVAE 2.17 (0.60) 2.40 (0.65) 0.32 (0.04) 0.63 (0.04) -0.66 (0.95) 0.55 (0.08) 0.45 (0.01) 4.04 (2.30) 0.29 (0.09)

CTGAN 3.64 (1.02) 3.79 (1.04) 0.12 (0.03) 0.28 (0.05) -0.34 (0.14) 0.36 (0.04) 0.48 (0.01) 2.47 (1.24) 0.20 (0.06)
CTABGAN 2.76 (0.83) 2.95 (0.86) 0.23 (0.04) 0.45 (0.05) 0.08 (0.12) 0.45 (0.05) 0.50 (0.02) 2.10 (0.58) 0.25 (0.06)

Stasy 3.40 (1.37) 3.67 (1.4) 0.38 (0.05) 0.63 (0.06) 0.27 (0.28) 0.64 (0.06) 0.46 (0.02) 1.09 (0.22) 0.36 (0.10)
TabDDPM 4.36 (1.89) 4.80 (1.90) 0.72 (0.06) 0.78 (0.06) 0.58 (0.11) 0.67 (0.06) 0.42 (0.03) 1.16 (0.35) 0.56 (0.10)
Forest-VP 1.84 (0.51) 2.14 (0.56) 0.53 (0.04) 0.78 (0.03) 0.53 (0.10) 0.71 (0.04) 0.42 (0.01) 1.16 (0.30) 0.43 (0.12)

Forest-Flow 1.82 (0.51) 2.12 (0.56) 0.67 (0.03) 0.84 (0.03) 0.55 (0.11) 0.69 (0.04) 0.43 (0.01) 1.16 (0.32) 0.50 (0.10)
Oracle 0.00 (0.00) 1.87 (0.49) 0.99 (0.01) 0.91 (0.04) 0.64 (0.09) 0.78 (0.04) NA 0.00 (0.00) 1.00 (0.00)

C.2 Bar plots

In this section, we provide the bar plots for each method for all datasets and all metrics for the generation of
tabular data C.2.1, the tabular data imputation C.2.2 and the tabular data generation with missing values C.2.3.
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Please ignore the F1disc results for Oracle; there is not proper way to train and test on different training data,
so the values are incorrect.

C.2.1 Bar plots for generation with complete data
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C.2.2 Bar plots for imputation
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C.2.3 Bar plots for generation with incomplete data
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C.3 UMAP

In this section, we show a Uniform Manifold Approximation (UMAP) (McInnes et al., 2018) visualization of the
red wine quality dataset comparing oracle, ForestFlow (ours), and TabDDPM.
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