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Abstract

Symbolic regression has excelled in uncover-
ing equations from physics, chemistry, biol-
ogy, and related disciplines. However, its ef-
fectiveness becomes less certain when applied
to experimental data lacking inherent closed-
form expressions. Empirically derived rela-
tionships, such as entire stress-strain curves,
may defy concise closed-form representation,
compelling us to explore more adaptive mod-
eling approaches that balance flexibility with
interpretability. In our pursuit, we turn
to Generalized Additive Models (GAMs), a
widely used class of models known for their
versatility across various domains. Although
GAMs can capture non-linear relationships
between variables and targets, they cannot
capture intricate feature interactions. In
this work, we investigate both of these chal-
lenges and propose a novel class of models,
Shape Arithmetic Expressions (SHAREs),
that fuses GAM’s flexible shape functions
with the complex feature interactions found
in mathematical expressions. SHAREs also
provide a unifying framework for both of
these approaches. We also design a set of
rules for constructing SHAREs that guaran-
tee transparency of the found expressions be-
yond the standard constraints based on the
model’s size.

1 INTRODUCTION

Throughout the centuries, scientists have used math-
ematical equations to describe the world around us.
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From the groundbreaking work of Johannes Kepler
on the laws of planetary motion in the 17th century
to Albert Einstein’s theory of relativity, mathemati-
cal equations have been instrumental in shaping the
scientific landscape. They provide a concise represen-
tation of reality that is open to rigorous mathematical
analysis. Recently, machine learning has been used to
accelerate the process of discovering equations directly
from data (Schmidt and Lipson, 2009).

Symbolic Regression Symbolic regression (SR) is
an area of machine learning that aims to construct a
model in the form of a closed-form expression. Such
an expression is a combination of variables, arith-
metic operations (+,−,×,÷), some well-known func-
tions (trigonometric functions, exponential, etc), and

numeric constants. For instance, 3 sin(x1 +x2)× e2x
2
3 .

Such equations, if concise, are interpretable and well-
suited to mathematical analysis. These properties
have led to applications of SR in many areas such as
physics (Schmidt and Lipson, 2009), medicine (Alaa
and van der Schaar, 2019), material science (Wang
et al., 2019), and biology (Chen et al., 2019). Tradi-
tionally Genetic Programming (Koza, 1994) has been
used for this task (Bongard and Lipson, 2007; Schmidt
and Lipson, 2009; Cranmer, 2020; Stephens, 2022).
Recently, this area attracted a lot of interest from
the deep learning community. Neural networks have
been used to prune the search space of possible ex-
pressions (Udrescu and Tegmark, 2020; Udrescu et al.,
2021) or to represent the equations directly by modify-
ing their architecture and activation functions (Mar-
tius and Lampert, 2017; Sahoo et al., 2018). A dif-
ferent approach is proposed by Biggio et al. (2021),
where a neural network is pre-trained using a curated
dataset. A similar approach is employed by D’Ascoli
et al. (2022); Kamienny et al. (2022). Methods us-
ing deep reinforcement learning (Petersen et al., 2021)
have also been proposed, as well as a hybrid of the two
approaches (Holt et al., 2023). Symbolic regression is
usually validated on synthetic datasets with closed-
form ground truth equations (Udrescu and Tegmark,
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2020; Petersen et al., 2021; Biggio et al., 2021). How-
ever, as we investigate in Section 2.1, closed-form func-
tions are often inefficient in describing some relatively
simple relationships. They either fit the data poorly
or produce overly long expressions. They are also not
compatible with categorical variables.

Generalized Additive Models Generalized Ad-
ditive Models (GAMs) (Hastie and Tibshirani, 1986;
Lou et al., 2012) are widely used transparent methods.
They model the relationship between the features xi

and the label y as

g(y) = f1(x1) + . . .+ fn(xn) (1)

where g is called the link functions and the fk’s are
called shape functions. These models allow arbitrary
complex shape functions but exclude more compli-
cated interactions between the variables. They are
deemed transparent as each function fk can be plot-
ted; thus, the contribution of xk can be understood.
Initially, splines and other simple parametric functions
were used as shape functions. In recent years, many
different classes of functions were proposed, including
tree-based (Lou et al., 2012), deep neural networks
(Agarwal et al., 2021; Radenovic et al., 2022) or neu-
ral oblivious decision trees (Chang et al., 2022). GAMs
have also been extended to include pairwise interac-
tions (known as GA2M) that can be visualized using
heat maps (Lou et al., 2013). The main disadvantage
of GAMs is their inability to model more complicated
interactions, for instance, x1x2

x3
(see Section 2.2).

Transparency of Closed-Form Expressions A
model is considered transparent if by itself it is
understandable—a human understands its function
(Barredo Arrieta et al., 2020). The transparency of
symbolic regression can be compromised if the found
expressions become too complex to comprehend. In
many scenarios, an arbitrary closed-form expression
is unlikely to be considered transparent. Most of the
current works limit the complexity of the expression
by introducing a constraint based on, e.g., the number
of terms (Stephens, 2022), the depth of the expres-
sion tree (Cranmer, 2020), or the description length
(Udrescu et al., 2021). Although these metrics often
correlate with the difficulty of understanding a partic-
ular equation, size does not always reflect the equa-
tion’s complexity as it does not focus on its semantics.
Some recent works introduce a recursive definition of
complexity that takes into account the type and the or-
der of operations performed (Vladislavleva et al., 2009;
Kommenda et al., 2015). Although they are a step in
the right direction, they are not grounded in how the
model will be analyzed, and thus, it is not clear if they
capture how comprehensible the model is (further dis-
cussion in Appendix D).

Contributions and Outline In Section 2, we in-
vestigate the limitations of SR and GAMs. In Sec-
tion 3, we introduce a novel class of models called
SHape ARithmetic Expressions (SHAREs) that com-
bine GAM’s flexible shape functions with the com-
plex feature interactions found in closed-form expres-
sions thus providing a unifying framework for both
approaches. In Section 4, we introduce a new kind of
rule-based transparency that goes beyond the standard
constraints based on the model’s size and is grounded
in the way the model is analyzed. We also investigate
the theoretical properties of transparent SHAREs. Fi-
nally, we demonstrate their effectiveness through ex-
periments in Section 5.

2 LIMITATIONS OF CURRENT
APPROACHES

2.1 Symbolic Regression Struggles With
Expressions That Are Not Closed-Form.

Symbolic regression excels in settings where the
ground truth is a closed-form expression (Udrescu and
Tegmark, 2020). However, its effectiveness becomes
less certain when applied to scenarios with no underly-
ing closed-form expressions. Some phenomena do not
have a closed-form expression (e.g., non-linear pendu-
lum), and many functions in physics are determined
experimentally rather than derived from a theory and
are not inherently closed-form (e.g., current-voltage
curves, drag coefficient as a function of Reynolds num-
ber, phase transition curves). This is even more rel-
evant in life sciences, where the complexity of the
studied phenomena makes it more difficult to con-
struct theoretical models. We claim symbolic regres-
sion struggles to find compact expressions for certain
relatively simple univariate functions.

Example: Stress-Strain Curves To illustrate our
point, we try to fit a symbolic regression model to
an experimentally obtained stress-strain curve. We
use data of stress-strain curves in steady-state ten-
sion of aluminum 6061-T651 at different temperatures
obtained by Aakash et al. (2019). Figure 1 shows a
sample of these curves. These functions are relatively
simple as they can be divided into a few interpretable
segments representing different behaviors of the mate-
rial. The first part is linear and corresponds to elastic
deformation. It ends at a point called yield strength.
The rest corresponds to plastic deformation. For alu-
minum at 20◦C, we can distinguish the part of the
curve when the stress increases called strain hardening.
It achieves a maximum called the ultimate strength,
and then it starts decreasing in a process called neck-
ing until fracture.
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Figure 1: Stress-strain curves of aluminum at different
temperatures

We use a symbolic regression library PySR (Cranmer,
2020) to fit the stress-strain curve of aluminum at
300◦C. We fit the model and present several of the
found expressions in Table 1. The size of a closed-form
expression is defined as the number of terms in its rep-
resentation. For instance, sin(x+ 1) has complexity 4
as it contains four terms: sin, +, x, and 1. We can see
that small programs do not fit the data well. A good
fit is achieved only by bigger expressions. However,
such expressions are much less comprehensible when
analyzed based on their symbolic representation, and
thus, their utility is diminished.

Table 1: A few of the equations discovered by Symbolic
Regression when fitted to the stress-strain curve of alu-
minum at 300◦C. Equations in the last three rows are too
long to fit in the table. We reproduce them below the table

Equation Size R2 score

y = 63.3e−x 4 0.163
y = 78.8− 285x 5 0.529
y = 74.9 cos (7.78x) 6 0.733

y = 71.2 cos
(

x
x−0.277

)
8 0.750

y = 147 cos (8.58x− 0.429)− 71.5 10 0.770
Equation 2 11 0.836
Equation 3 15 0.933
Equation 4 18 0.970

y = −428x+ 428 cos (0.0711 log (x))− 324 (2)

y = 428 cos (3.31x− 0.0751 log (1.16x))− 320 (3)

y = 168 cos(
((
7.23− cos

(
e−421x

))
(x− 2.03)

)
− 88.1

(4)

2.2 GAMs Cannot Model Complex
Interactions

The main disadvantage of GAMs is that they are poor
at modeling more complicated, non-additive interac-
tions (involving 3 or more variables). Such interac-
tions occur frequently in real life. For instance, many
equations from physics involve multiplying a few vari-
ables together. To illustrate this point, we choose a
few simple equations from the Feynman Symbolic Re-

gression Database (Udrescu and Tegmark, 2020) and
compare the performance of GAMs and GA2Ms with
a black-box machine learning model. We implement
GAMs and GA2Ms using Explainable Boosted Ma-
chines (EBMs) (Lou et al., 2012, 2013) and choose
XGBoost (Chen and Guestrin, 2016) for a black-box
model.

Choice of Equations We choose equations so that
they represent a variety of non-additive interactions
between variables (see Table 2). Equations I.8.14 and
I.29.16 describe the Euclidean distance in two dimen-
sions and the Law of Cosines. Both of them involve
a square root of a sum of terms. Equations I.12.2,
I.18.12, I.32.5, II.2.42 can be used to describe an elec-
tric force between charged bodies, a torque, a rate
of radiation of energy, and a heat flow. All of them
are either products or fractions of products. Equa-
tions I.6.20b and I.40.1 describe a Gaussian distribu-
tion and a particle density. They both contain expo-
nential functions. Lastly, equation I.12.11 describes
a Lorentz force via a sum of products, one of which
contains a trigonometric function.

Results We report the results in Table 2. The per-
formance of GAMs is much lower than the perfor-
mance of a full-capacity model (whose R2 score is close
to 1.0 as no noise was added to the dataset). The
gap between GAM and XGBoost is partially closed by
adding pairwise interactions in GA2Ms. This dramat-
ically improves the score in some cases (e.g., equation
I.8.14) but still underperforms in others (e.g., equation
I.32.5). It is important to note that pairwise interac-
tions decrease the comprehensibility of the model. In
particular, 2D heatmaps are more challenging to un-
derstand than plots of univariate functions, and the
individual shape functions cannot be analyzed inde-
pendently. As the shape functions have overlapping
sets of arguments, we may have to analyze many shape
functions at the same time to understand the model.

3 SHAPE ARITHMETIC
EXPRESSIONS

In this section, we introduce a new type of machine
learning model that connects symbolic regression’s
ability to model interactions with GAM’s power of ef-
ficiently describing univariate functions by plots. This
new family of models addresses the issues of both
GAMs and symbolic regression that we discussed in
the previous section.

Inspired by the GAM literature, we define a set of
shape functions S, where each s ∈ S is a univariate
function s : R → R. This might be, for instance, a
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Table 2: Performance of additive models (GAM and GA2M) compared to a full capacity model (XGBoost) on datasets
from the Feynman Symbolic Regression Database containing complex variable interactions. We show the mean R2 score
and a standard deviation in the brackets over 10 cross-validation splits.

Eq. Number Equation GAM GA2M XGBoost

I.6.20b f = e−
(θ−θ1)2

2σ2 /
√
2πσ2 0.731 (.010) 0.896 (.004) 0.997 (.000)

I.8.14 d =
√
(x2 − x1)2 + (y2 − y1)2 0.229 (.011) 0.966 (.000) 0.989 (.000)

I.12.2 F = q1q2
4πϵr2 0.676 (.011) 0.950 (.003) 0.993 (.001)

I.12.11 F = q(Ef +Bv sin(θ)) 0.675 (.004) 0.955 (.001) 0.996 (.000)
I.18.12 τ = rF sin(θ) 0.760 (.002) 0.981 (.000) 0.999 (.000)

I.29.16 x =
√
x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) 0.298 (.007) 0.902 (.002) 0.983 (.001)

I.32.5 P = q2a2

6πϵc3 0.444 (.015) 0.835 (.009) 0.988 (.001)

I.40.1 n = n0e
−magx

kbT 0.736 (.003) 0.899 (.003) 0.981 (.001)

II.2.42 P = κ(T2−T1)A
d 0.615 (.006) 0.937 (.002) 0.990 (.000)

set of cubic splines or univariate neural networks. Let
B = {+,−,÷,×} be a set of binary operations. Let us
denote real variables as xi. We introduce Shape Arith-
metic Expression (SHARE) as a mathematical expres-
sion that consists of a finite number of shape functions,
binary operations, variables, and numeric constants.
For instance, see Equation 5, where s1, s2, s3 ∈ S are
the shape functions and need to be plotted next to the
equation to understand the whole model.

s1(x4s2(x2)) +
x1

s3(x3)− 2.3
(5)

Remark 1. Any GAM is an example of a SHARE. If we
choose S to be a set of some well-known functions (e.g.,
S = {sin, cos, exp, log}) then closed-form expression
can also be considered SHAREs. In general, however,
S is supposed to be a flexible family of functions that
are fitted to the data and are meant to be understood
visually.

Formally, we represent SHAREs as expression trees
(types of graphs) where each node is either a binary
operation b ∈ B (with two children), a univariate func-
tion s ∈ S (with one child), a variable or a numeric
constant (as leaves). Equation 5 represented as a tree
can be seen in Figure 2. We borrow the terminology
from SR literature and define the size of a SHARE as
the number of nodes in its expression tree. The depth
of a SHARE is defined as the depth of its expression
tree.

Why Univariate Functions? We decided to use
only univariate functions for two reasons: they are easy
to understand, and they are sufficient. Firstly, they are
easy to comprehend because they can always be plot-
ted. While analyzing them, we have to keep track of
only one variable, and we can characterize them using
monotonicity (i.e., where the function is increasing or

+

𝑠1

×

÷

−

𝑠2 𝑠3

𝑥1

𝑥2

2.3𝑥4

𝑥3

Figure 2: Shape Arithmetic Expression represented as a
tree.

decreasing). Univariate functions are also much easier
to edit in case we want to fix the model. Secondly,
the Kolmogorov–Arnold representation theorem (Kol-
mogorov, 1957) states that for any continuous function
f : [0, 1]n → R, there exist univariate continuous func-
tions gq, ϕp,q such that

f(x1, . . . , xn) =

2n∑
q=0

gq

(
n∑

p=1

ϕp,q(xp)

)
(6)

That means in principle, for expressive enough shape
functions, SHAREs should be able to approximate any
continuous function. However, SHAREs of that form
would not necessarily be very transparent. We discuss
the transparency of SHAREs in the next section.

4 TRANSPARENCY

As explained in Section 1, the transparency of sym-
bolic regression can be compromised if the found ex-
pressions become too complex to comprehend. In
many scenarios, an arbitrary closed-form expression
is unlikely to be considered transparent. Note that
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any fully connected deep neural network with sigmoid
activation functions is technically a closed-form ex-
pression. As SHAREs extend SR, they inherit the
same problem. Current works introduce constraints
that are not grounded in how the model will be ana-
lyzed. Although they are correlated with the difficulty
of understanding the model, they are not based on
any assumptions of how the model is actually under-
stood. Therefore, it is unclear whether they capture
how comprehensible the model is. That includes con-
straints based on model size (Stephens, 2022; Cranmer,
2020; Udrescu et al., 2021) and even recent seman-
tic constraints (Vladislavleva et al., 2009; Kommenda
et al., 2015) (further discussion on SR constraints in
Appendix D).

Understanding by Decomposing: Rule-based
Transparency We approach the problem more sys-
tematically. Motivated by research on human under-
standing and problem solving (Newell et al., 1958;
Simon, 1962; Navon, 1977; Simon, 1996), we assume
that in certain scenarios understanding a complex ex-
pression involves decomposing it into smaller expres-
sions and understanding them and the interactions be-
tween them. Thus, the model can be decomposed into
simpler terms and understood from the ground up—
provided the expressions remain transparent through-
out. This is in agreement with recent research in
XAI that highlights decomposability as a crucial factor
for transparency, enabling more interpretable and ex-
plainable machine learning methods (Barredo Arrieta
et al., 2020). Thus, we define transparency implicitly
by proposing two general rules for building machine
learning models in a transparency-preserving way, and
we justify why they may be sufficient for achieving
transparency in certain scenarios. These rules, in turn,
allow us to define a subset of transparent SHAREs.
Note, we use ◦ to denote standard function composi-
tion, i.e., (f ◦ g)(x) = f(g(x)).

Rule 1 (Univariate composition). Let s be any uni-
variate function. s(xi) is transparent, where xi is any
variable. If f is transparent then s ◦ f is also trans-
parent.

Rule 2 (Disjoint binary operation). Let b ∈ B be
a binary operation. If f and g are transparent and
have disjoint sets of arguments, then b ◦ (f, g) is also
transparent.

Rationale for Rule 1 Let s be any univariate func-
tion. Then s(xi) is transparent because we can visual-
ize it and create a mental model of its behavior. Let us
now consider a transparent function f . As it is trans-
parent, we should have a fairly good understanding of
the properties of f . For instance, what range of values
it attains or whether it is monotonic for certain sub-

sets of the data. As we can visualize s, it is reasonable
to expect that we can infer these properties about s◦f
as well. We can analyze s and f separately and then
use that knowledge to analyze s ◦ f .

Rationale for Rule 2 Let b ∈ B be a binary opera-
tion and let f and g be transparent functions with non-
overlapping sets of arguments. As these functions are
transparent, we can understand their various proper-
ties. As they do not have any common variables, they
act independently. Thus, we can combine them using
the binary operation b and directly use the previous
analysis to understand the new model b ◦ (f, g). Thus,
it is considered transparent. An example of a property
that conforms to this rule is the image of the function.
If we know the images of two functions as two intervals
and their sets of arguments are disjoint, then we can
straightforwardly calculate the image of any combina-
tion of these functions (i.e., sum, difference, product,
or ratio) using interval arithmetic. This is not possible
if the variables overlap—interval arithmetic can only
guarantee us a superset of the function’s image. See
Appendix D for a detailed discussion.

Disjoint Binary Operations in Physics Al-
though Rule 2 may seem like a strong constraint, many
common closed-form equations used to describe natu-
ral phenomena can be constructed by following the
two rules. In particular, 86 out of 100 equations from
Feynman Symbolic Regression Database (Udrescu and
Tegmark, 2020) can be expressed in that form. Thus,
in many cases, the space of transparent models should
be rich enough to find a good fit.

Restricting the Search Space The current defini-
tion of SHAREs contains certain redundancies. For in-
stance, it allows for a direct composition of two shape
functions. This unnecessarily complicates the model
as the composition of two shape functions is approx-
imately just another shape function (given that the
class of shape functions is expressive enough). As any
binary operation applied to a function and a constant
can be interpreted as applying a linear function, we
can remove the constants without losing the expres-
sivity of SHAREs (given that the shape functions can
approximate linear functions).

We can now use these two rules and the above obser-
vations to define transparent SHAREs.

Definition 1. A transparent SHARE is a SHARE
that satisfies the following criteria:

• Any binary operator is applied to two functions with
disjoint sets of variables.

• The argument of a shape function cannot be an out-
put of another shape function, i.e., s1(s2(x)) is not
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allowed.
• It does not contain any numeric constants.

Remark 2. By this definition, any GAM is a trans-
parent SHARE. This is consistent with the fact that
GAMs are generally considered transparent models
(Hastie and Tibshirani, 1986; Caruana et al., 2015).

Transparent SHAREs have several useful properties.
The following proposition demonstrates that there is
no need to arbitrarily limit the size of the expression
tree (as might be the case for many SR algorithms) as
the depth and the number of nodes of a transparent
SHARE are naturally constrained.

Proposition 1. Let f : Rn → R be a transparent
SHARE. Then

• Each variable node appears at most once in the ex-
pression tree.

• The number of binary operators is d− 1, where d is
the number of variable nodes (leaves)

• The depth of the expression tree of f is at most 2n.
• The number of nodes in the expression tree of f is
at most 4n− 2.

Proof. Appendix A.

For comparison, the expression tree of a GAM has
3n − 1 nodes. That demonstrates that transparent
SHAREs are not only naturally constrained, but even
the largest possible expressions are not significantly
longer than the expression for a GAM, even though it
can capture much more complicated interactions. The
immediate corollary of this proposition is useful for the
implementation.

Corollary 1. SHARE f satisfies Rule 2 if and only
if each variable appears at most once in its expression
tree.

Closed-Form Equations Considered as Trans-
parent SHAREs. Consider equation I.34.14 from
the Feynman Symbolic Regression Database (Udrescu
and Tegmark, 2020),

ω =
1 + v/c√
1− v2/c2

ω0, (7)

where we consider ω, v, c, ω0 as variables. Note that
this representation violates Rule 2, and it may be dif-
ficult to understand this equation in this format. For
instance, comprehending how changing v impacts ω is
challenging as we have two terms (numerator and de-
nominator) that are not independent. Instead, we can
rewrite this equation as a transparent SHARE

ω = s1

(v
c

)
ω0, (8)

−1.0 −0.5 0.0 0.5 1.0
x

0
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y

y= 1+ x
√1− x2

Figure 3: Plot of a function s1(x) =
1+x√
1−x2

.

where s1(x) =
1+x√
1−x2

and can be visualized as in Fig-
ure 3.

We can now understand the properties of s1. For in-
stance, it is defined on (−1, 1); it is increasing, starts
concave, and has an inflection point at x = 0. After
that, it is convex until an asymptote at x = 1, where it
approaches +∞. By understanding the properties of
s1, we can easily understand the behavior of the whole
Equation 8.

5 SHARES IN ACTION

In this section, we perform a series of experiments to
show how SHAREs work in action.1 First, we justify
our claim that SHAREs extend GAMs (Section 5.1)
and SR (Section 5.2). Then, we show an example that
cannot be fitted by GAM or by SR. For every experi-
ment, we show the Pareto frontier of the found expres-
sions with respect to R2 score and the number of shape
functions, i.e., the best expression for a given number
of shape functions. For details about the experiments,
including additional experiments on real datasets, see
Appendix C.

Implementation For illustrative purposes, we pro-
pose a simple implementation of SHAREs utilizing
nested optimization. The outer loop employs a modi-
fied genetic programming algorithm (based on gplearn
(Stephens, 2022) used for symbolic regression), while
the inner loop optimizes shape functions as neural
networks via gradient descent. Although not a key
contribution due to its limited scalability, this imple-
mentation demonstrates SHAREs’ potential to out-
perform existing transparent methods and enhance
interpretability, given more efficient optimization al-
gorithms. We note that optimization of transparent
models is usually harder than that of black boxes
(Rudin et al., 2022). For further implementation de-
tails, see Appendix B.

1The code for all experiments can be found at https:
//github.com/krzysztof-kacprzyk/SHAREs

https://github.com/krzysztof-kacprzyk/SHAREs
https://github.com/krzysztof-kacprzyk/SHAREs
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5.1 SHAREs Extend GAMs

As we discussed earlier, GAMs (without interactions)
are examples of SHAREs. That means that, in par-
ticular, if we have a dataset that can be modeled well
by a GAM, SHAREs should also model it well. To
verify this, we generate a semi-synthetic dataset in-
spired by the application of GAMs to survival analysis
described by Hastie and Tibshirani (1995). In this
work, GAMs are used to model the risk scores of pa-
tients taking part in a clinical trial for the treatment
of node-positive breast cancer. We choose three of the
covariates considered and assume that the risk score
(log of hazard ratio) can be modeled as a GAM of age,
body mass index (BMI), and the number of nodes ex-
amined. We recreate the shape functions to resemble
the ones reproduced in the original paper. Then we
choose the covariates uniformly from the prescribed
ranges and calculate the risk scores.

We fit SHAREs to this dataset and show the results
in Figure 4. Each row shows the best equation with
the corresponding number of shape functions, and the
shape functions of the equation with three shape func-
tions are shown at the bottom of the figure.

#s Equation R2 score

0 y =
xnodes

xagexbmi
-0.267

1 y = xages3(xbmi) 0.630
2 y = s2(xage) + s3(xbmi) 0.847
3 y = s1(xnodes) + s2(xage) + s3(xbmi) 0.999
4 y = s0(s1(xnodes) + s2(xage) + s3(xbmi)) 0.989

0 50
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0.0

0.5

1.0

s 1

50 60 70
xage

−1.5

−1.0

−0.5

0.0

s 2

20 40
xbmi
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−1

0

s 3

Ground truth
SHARE

Figure 4: Results of fitting SHAREs to the risk score data.
Each row in the table shows the best found equation with
the corresponding number of shape functions (#s). At the
bottom, shape functions from the fourth row compared to
the ground truth.

We see that the equation in the fourth row achieves a
high R2 score. It is also in the desired form. When we
plot the shape functions in Figure 4 we see that they
match the ground truth well (the vertical translation
is caused by the fact that shape functions can always
be translated vertically).

5.2 SHAREs Extend SR

Torque Equation Consider equation I.18.12 (Table
2) used to calculate torque, given by τ = rF sin(θ).
We sample 100 rows from the Feynman dataset corre-
sponding to this expression and we run our algorithm.
Each row of the table in Figure 5 shows the best equa-
tion with the corresponding number of shape func-
tions. The bottom part of the figure shows the shape
functions of the equations in the second and fourth
rows.

# s Equation R2 score

0 τ = r -0.115
1 τ = rFs3(θ) 0.999
2 τ = s1(r)Fs3(θ) 0.999
3 τ = s1(r)s2(F )s3(θ) 0.999
4 τ = s0(s1(r)s1(F )s3(θ)) 0.999
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Figure 5: Equations found by fitting SHAREs to a torque
equation τ = rF sin(θ). Each row in the table shows
the best-found equation with the corresponding number of
shape functions (#s). Bottom left panel: shape function
from the second row compared to ground truth. Bottom
right panel: shape functions from the fourth row.

The equation that is symbolically equivalent to the
ground truth is in the second row, τ = rFs3(θ). It
achieves a nearly perfect R2 score. By plotting s3, we
can verify that it matches sin function well (Figure 5,
bottom left panel).

Shape Functions of the Longer Equations Con-
sider the expression in row 4 from the table in Fig-
ure 5, τ = s1(r)s2(F )s3(θ). It might look complicated
because it contains three shape functions. But, if we
inspect s1 and s2 (Figure 5, bottom right panel), we
see that they are linear functions. We can fit straight
lines to extract their slopes and intercepts and put
them into the found SHARE to get a simple expres-
sion −(0.98r + 0.07)(F + 0.02)s3(θ).

5.3 SHAREs Go Beyond SR and GAMs

We consider the following problem. Given m grams
of water (in a liquid or solid form) of temperature t0
(in ◦C), what would be the temperature of this water
(in a solid, liquid, or gaseous form) after heating it
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with energy E (in calories). We restrict the initial
temperature to be from -100 ◦C to 0 ◦C. This is a
relatively simple problem with only 3 variables but we
will show that both GAMs and SR are not sufficient
to properly (and compactly) model this relationship.

GAMs First, we fit GAMs without interactions us-
ing EBM (Lou et al., 2012; Nori et al., 2019). The
shape functions of EBM are presented in Figure 6. The
R2 score on the validation set is 0.758. We can also
see that the two of the shape functions are very jagged.
This makes it difficult to gain insight into the studied
phenomenon.

0 2000
E (cal)

−100

0

100

s 1

2 4
m (g)

−20

0

20

40

s 2

−100 0
t0 (∘C)

−10

0

10

20

s 3

EBM (no interactions)

Figure 6: Shape functions from the GAM fitted to the
temperature dataset

GA2Ms Now, we fit GAMs with pairwise interac-
tions (Lou et al., 2013), once again using the EBM
algorithm. The shape functions of EBM are presented
in Figure 9 in Appendix C.3. Although the R2 score
has been improved to 0.875, EBM’s transparency is
reduced even further by adding pairwise interactions.

Symbolic Regression We fit symbolic regression
using the PySR library (Cranmer, 2020). We limit the
size of the program to 40, and we present the results
in Table 3.

Table 3: Equations found by SR when fitted to the tem-
perature data. The last four equations do not fit in the
table; they are reproduced in Appendix C.3.

Equation Size R2 score

y = 13.5 log (E) 4 0.384
y = 0.193E

m 5 0.485
y = 39.4 log

(
E
m

)
− 141 8 0.733

Appendix C.3 Equation 9 17 0.768
Appendix C.3 Equation 10 23 0.817
Appendix C.3 Equation 11 33 0.841
Appendix C.3 Equation 12 40 0.867

We can see that shorter equations achieve a relatively
low performance, no more than 0.768. This is compa-
rable to a GAM without interaction terms. The first
equation to include the term t0 appears only when the

size is 17. It’s already too long to include in the table.
It looks like this:

y = 74.0 cos

(
log

(
0.739E

m
+ 19.1

))
+ 39.1 +

t0
E

Only the most complex equations give us a perfor-
mance comparable to a GAM with interactions: 0.867.
The last equation from the table is shown below. We
argue that its complexity hinders its transparency.

y =
t0

log (E)
− 1.72ee

cos ( 0.0103E
m )

+ 80.1 + 56.3

× cos

(
log

(
0.58E

m
+ 31.7 cos

(
0.021E

m
+ 0.93

)))

SHAREs We finally fit SHAREs to the temperature
data. The found expressions are shown in Figure 7.
We immediately see a very good performance from all
models apart from the one not using any shape func-
tions at all. The scores are also much better than the
scores achieved by GAMs (with or without interac-
tions) and SR. Let us investigate the equation in the
third row; the shape functions are presented in Fig-
ure 7 (right panel).

We note that the expression s1
(
(Em + s2(t0)

)
has a

better performance than GAMs and SR, a more com-
pact symbolic representation than SR, and simpler
shape functions than GAM. This exemplifies how, by
combining the advantages of GAMs and SR, we can
address their underlying limitations. Let us see how
this particular SHARE can aid in understanding the
phenomenon it fits.

Analysis We recognize that s1 is contingent on the
energy-to-mass ratio, which is offset by a function of
the initial temperature, t0. As shown in Figure 7’s
right panel, s2 appears linear. Replacing s2 with an
equivalent linear function and adjusting the equation
gives us: t = s1

(
E
m + 0.49t0 + 7.39

)
. Analyzing s1,

we find that without energy input, E
m + 0.49t0 + 7.39

ranges from −41.61 (t0 = −100) to 7.39 (t0 = 0),
aligning with the first linear part of the s1 curve. In-
creasing energy per mass initially raises the tempera-
ture linearly to 0 ◦C, then plateaus, characteristic of
an ice-water mixture. When all ice melts, the tempera-
ture rises linearly again to 100 ◦C, remaining constant
until all water evaporates, after which steam temper-
ature again increases linearly.

Quantitative Insights The shape functions also
provide quantitative insights. The slopes of s1’s lin-
ear parts approximate the specific heat capacities of
ice, water, and steam. The constant parts’ widths esti-
mate the heat of fusion and vaporization. We compare
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#s Equation R2 score

0 t = m -3.513

1 t = s1
(
E
m + t0

)
0.970

2 t = s1
(
(Em + s2(t0)

)
0.999

3 t = s1

(
E+s2(t0)
s0(m)

)
0.988

4 t = s1

(
E

s0(s3(m)s2(t0))

)
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Figure 7: SHAREs found for the temperature dataset. Each row in the table shows the best expression with the
corresponding number of shape functions (#s). Right panel: shape functions of the SHARE s1

(
( E
m

+ s2(t0)
)
(third row).

these estimates from s1 with the physical ground truth
in Table 4. We highlight that it is impossible to draw
these insights from the fitted GAM (see Figure 6) and
from the found closed-form expressions (see Table 3).

Table 4: Properties of water extracted from shape function
s1 compared to the ground truth.

Property From s1 Ground truth

Spec. heat cap. of ice ( cal
g◦C ) 0.53 0.50

Spec. heat cap. of water ( cal
g◦C ) 1.01 1.00

Spec. heat cap. of steam ( cal
g◦C ) 0.50 0.48

Heat of fusion ( calg ) 78.85 79.72

Heat of vaporization ( calg ) 540.91 540.00

6 DISCUSSION

Categorical Variables The default way current SR
algorithms take care of categorical variables is through
one-hot encoding. However, that significantly in-
creases the number of variables and makes the result-
ing expressions less legible. SHAREs offer a natural
way of extending SR to settings with categorical vari-
ables by always passing such variables through a shape
function first. It assigns a number to each class and
can be visualized using, for instance, a bar plot. This
can prove useful when we investigate phenomena com-
prising different objects with some possibly unknown
latent properties. In that setting, SHAREs may natu-
rally learn a shape function that differentiates between
those objects and their properties. An example of such
a property may be a friction coefficient, the moment
of inertia, or something that does not relate naturally
to commonly used concepts.

Applications SHAREs can be beneficial in settings
where transparent models are needed or preferred,
such as risk prediction in healthcare and finance. How-
ever, we mainly envision its usage in AI applications

for scientific discovery: AI4Science. We believe that
we need to add more flexibility to our models for
AI4Science to advance beyond the synthetic experi-
ments based on simple physical equations (as is of-
ten the case for symbolic regression). Transparent
SHAREs add this flexibility without compromising the
comprehensibility. AI4Science is also likely to contain
multiple scenarios where adequate resources (time and
attention) can be spent on analyzing and understand-
ing the models thoroughly from the ground up in a
way that is facilitated by the rules we propose. We
also hope this new kind of rule-based transparency can
inspire novel, more systematic, notions of transparency
grounded in the way the model is understood.

Limitations of Rule-based Transparency The
two rules for building machine learning models in a
transparency-preserving way are a step towards more
systematic notions of transparency. We show how they
are realized in many physics equations and GAMs.
They also offer a natural way to constrain the space
of models without using crude proxies, such as the
number of terms or the depth of the expression tree.
However, some shape functions may be difficult to in-
terpret, and the number of compositions may signifi-
cantly increase the cognitive load required to analyze
the expression. Although transparent SHAREs guar-
antee a certain level of transparency, some additional
constraints may need to be enforced in practice. We
elaborate on our attempt to encourage “nicer” shape
functions in Appendix D.

Limiations of the Implementation The current
implementation of SHAREs is mainly for illustrative
purposes, and thus, it is time-intensive. While this
may not be a concern for certain (not time-sensitive)
applications, such as scientific discovery, we are confi-
dent that further optimizations will enable wider adop-
tion of this novel approach by enhancing the ability to
fit SHAREs to even larger and more complex datasets.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. Fast and Accurate Deep Network Learn-
ing by Exponential Linear Units (ELUs), February
2016.

Miles Cranmer. PySR: Fast & parallelized symbolic re-
gression in Python/Julia. Zenodo, September 2020.
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Appendix B.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, in Appendix D.

(c) (Optional) Anonymized source code, with
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external libraries.
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(a) The code, data, and instructions needed
to reproduce the main experimental re-
sults (either in the supplemental material
or as a URL). All experimental and im-
plementation details are described in Ap-
pendix B and Appendix C. Code for all ex-
periments can be found at https://github.
com/krzysztof-kacprzyk/SHAREs.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes,
in Appendix B and Appendix C.

(c) A clear definition of the specific measure or
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cloud provider). Yes, in Appendix C.

4. If you are using existing assets (e.g., code, data,
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(a) Citations of the creator If your work uses ex-
isting assets. Yes.

(b) The license information of the assets, if ap-
plicable. Yes, in Appendix C.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not applica-
ble.

(d) Information about consent from data
providers/curators. Not applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable.

https://github.com/krzysztof-kacprzyk/SHAREs
https://github.com/krzysztof-kacprzyk/SHAREs
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A THEORETICAL RESULTS

This section provides proof of the properties listed in Proposition 1.

First, let us define active variables and a subtree of a node.

Definition 2 (Active variables). Consider a SHARE f : Rn → R and its expression tree. The set of active
variables of the tree (or of f) is the set of variables present in the tree.

For instance, a function f(x1, x2, x3) = x1 + x2, represented as a tree with 3 nodes: +, x1, x2, has the set of
active variables {x1, x2} and a set of not active variables {x3}.
Definition 3 (Subtree of a node). Consider an expression tree T . For each node A in T , we define the subtree
of A as a subtree of T containing A and all its descendants. We call fA the function represented by the subtree
of A.

For the rest of the section, we assume that f : Rn → R is a transparent SHARE (according to Definition 1) and
its expression tree is called T

A.1 Variable Nodes

Claim: Each variable node appears at most once in the expression tree. The maximum number of leaves is n.

Proof. Assume for contradiction there are two nodes, A and B, describing the same variable x. Consider the
lowest common ancestor of A and B called C. If C was a shape function, then the child of C would be a lower
common ancestor of A and B. Thus, C is a binary function with children C1 and C2. Without loss of generality,
assume that A is in the subtree of C1. Then B has to be in the subtree of C2 (otherwise B would have to be in
a subtree of C1 and C1 would be a lower common ancestor of A and B). Thus, the functions fC1

, fC2
have a

non-empty set of active variables (contains at least x). Thus C is a binary operator applied to two functions with
an overlapping set of active variables. Thus, f does not satisfy Rule 2, which contradicts f being transparent.

Thus, each variable node appears only once in the expression tree. As there are n variables, there are at most n
variable nodes. This is the same as the number of leaves, as variable nodes are the only kinds of leaves.

A.2 Useful Lemma

In the next proofs, the following lemma will be helpful.

Lemma 1. Consider a node A that corresponds to a binary operator. Let us call the children of A, A1, and A2.
If fA1

has a active variables fA2
has b active variables then fA has a+ b active variables. Also, a, b < a+ b.

Proof. The set of active variables of fA is the union of active variables of fA1
and fA2

. As these functions have
disjoint sets of active variables (because f is transparent), the number of active variables of fA is just a sum of
the numbers of active variables of fA1

and fA2
.

A.3 Number of Binary Operators

Claim: The number of binary operators is d− 1 where d is the number of active variables of f .
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Proof. Let us prove the following more general statement: Consider the node B. If the number of active variables
of fB is k then the number of binary operators in the subtree of B is k − 1.

We prove it by strong induction on k.

When k = 1 (we cannot have k = 0 as we do not have any constants), the subtree of B is either a variable node
or a shape function with a node variable as a child. In both cases, the number of binary operators is 0.

Let us assume the statement is true for allm < k+1. Assume that the subtree of B has k+1 active variables. B is
either a shape function or a binary operator. If B is a binary operator, then it has two children. Let us call them
B1 and B2. Let us denote the number of active variables of fB1 as a and of fB2 as b. From Lemma 1, k+1 = a+b
and a < k+ 1, and b < k+ 1. From the induction hypothesis, the subtree of B1 has a− 1 binary operators, and
the subtree of B2 has b − 1 binary operators. Thus the subtree of B has (a − 1) + (b − 1) + 1 = a + b − 1 = k
binary operators. If B is a shape function, then its child is a binary operator, and the same argument follows.

By induction, if the number of active variables of fB is k then the number of binary operators in the subtree of
B is k − 1.

Now f has d active variables, so it has d− 1 binary operators.

A.4 Depth of the Expression Tree

Let d be the number of active variables of f . By the previous result, it has d− 1 binary operators. That means
that on the path from the root to the variable node, there are at most d − 1 binary operators. On this path,
every pair of consecutive binary operators can be separated by at most one shape function (the same is true for
a binary operator and a variable node). Thus the maximum number of nodes on the path from the root to the
variable node is a sum of d − 1 (number of binary operators), d − 2 (number of shape functions between the
operators), 1 (shape function between the operator and the variable node), 1 (shape function as a root), 1 (the
variable node itself). This gives a total of (d− 1) + (d− 2) + 1 + 1 + 1 = 2d. Thus, the maximum depth of the
tree is 2d. As d ≤ n, we get that the maximum depth of the tree is 2n.

A.5 Size of the Expression Tree

Claim: The number of nodes in a tree is at most 4n− 2.

Proof. Let us prove the following more general statement: Consider a node A. If the number of active variables
of fA is k then the maximum number of nodes in the subtree of A is 4k − 2 if A is a shape function and 4k − 3
otherwise.

Let us prove it by strong induction on k.

Consider k = 1. The subtree of A is either a variable node or a shape function with a variable node as a child.
The number of nodes is either 1 if it is a variable node or 2 if it is a shape function. As 4 × 1 − 2 = 2 and
4× 1− 3 = 1, the base case is satisfied.

Let us assume the statement is true for all m < k + 1.

Consider a node A whose subtree has k + 1 active variables. If A is a binary operator, then it has two children,
A1 and A2. Their subtrees have respectively a and b active variables. From Lemma 1, a + b = k + 1. By the
induction hypothesis, the maximum number of nodes in the subtree of A1 is 4a− 2 and 4b− 2 in the subtree of
A2. Thus, the maximum number of nodes in the subtree of A is (4a−2)+(4b−2)+1 = 4(a+b)−3 = 4(k+1)−3.
This proves one part of the claim. If A is a shape function, then its child is a binary operator with k + 1 active
variables. But we have just proved that the subtree of this operator has at most 4(k+1)− 3 nodes. That means
that the maximum number of nodes in the subtree of A is 4(k + 1)− 3 + 1 = 4(k + 1)− 2 as required.

The claim is true by induction. Now, we want to show that such a tree always exists. Consider a binary operator
node A1 whose subtree has k active variables {x1, . . . , xk}. Let its children be two shape functions B1 and C1.
Let the child of C1 be a variable node corresponding to x1. Let the child of B1 be a binary operator A2. We
repeat the process. In general, binary operator node Ai has two children, Bi and Ci. The child of Ci is a variable
node corresponding to xi and the child of Bi is the binary operator Ai+1. We can repeat the process until
i = k − 1. At this point, the child of Bk−1 needs to be a variable node corresponding to xk. Overall, we have
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k − 1 binary operators A1, . . . , Ak−1. k − 1 shape functions B1, . . . , Bk−1, k − 1 shape functions C1, . . . , Ck−1,
and k variable nodes. Thus the total number of nodes is 3(k − 1) + k = 4k − 3. If the first node is a shape
function, then its child is the binary operator node A1 and the total number of nodes is 4k − 2.

As the number of active variables in the whole tree is less than n, then the maximum number of nodes is
4n− 2.

B IMPLEMENTATION

We implement SHAREs using nested optimization. The outer loop is a modified genetic programming algorithm
(based on gplearn (Stephens, 2022) that is used for symbolic regression) that finds a symbolic expression with
placeholders for the shape functions and the inner loop optimizes the shape functions. We implement the shape
functions as neural networks and optimize the model using a gradient descent algorithm.

B.1 Modifications to the Genetic Algorithm

Gplearn is a symbolic regression algorithm that represents equations as expression trees and uses genetic pro-
gramming to alter the equations (programs) from one generation to the next based on their fitness score. We
modify this algorithm so that the found expressions contain placeholders for the shape function. To compute
the fitness of an expression, the whole equation is fitted to the data, and the shape functions are optimized using
gradient descent. To guarantee that all equations are transparent (i.e., they satisfy Definition 1), we change the
way the initial population is created and modify some of the rules by which the equations evolve. We describe
the details of the modifications below.

Initial Population We disable the use of constants and allow only binary operations in B and shape functions.
We grow the expression trees at random, starting from the root. The next node is chosen randomly and
constrained such that: a) if the parent node is a shape function, then the child cannot be a shape function, and
b) no variable can appear twice in the tree. By the Corollary 1, the second condition is equivalent to satisfying
Rule 2.

Crossover We call the variables present in a tree active variables. During crossover, we select a random subtree
from the program to be replaced. We take the union between the active variables in the subtree and the variables
that are not active in the whole program. A donor has a subtree selected at random such that its set of active
variables is contained in the previous set. This subtree is inserted into the original parent to form an offspring.
This guarantees that no variable appears twice in the offspring.

Subtree Mutation We perform the same procedure as in crossover but instead of taking a subtree from a
donor, we create a new program with variables from the allowed set.

Point Mutation This procedure selects a node and replaces it for a different one. A binary operation is
replaced by a different binary operation. Shape functions are not replaced. All variables that are supposed to
be replaced are collected in a set. This set is enlarged by the variables that are not active. For each mutated
node the variable is drawn from this set without replacement.

Reproduction and hoist mutation has not been altered. For more details about the genetic programming part of
the algorithm, please see the official documentation of gplearn.

Binary Operations B We choose the set of binary operations to be B = {+,×,÷} (we remove “−” to remove
redundancy and reduce the search space).

B.2 Optimization of the Shape Functions

Shape Functions S We choose the set of shape functions S to be a family of Neural Networks with 5 hidden
layers, each with a width of 10. Each layer, excluding the last one, is followed by an ELU (Clevert et al., 2016)
activation function. We apply batch normalization (Ioffe and Szegedy, 2015) before the input layer.
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Dataset vs. Batch Normalization We do not perform any normalization on the whole dataset before
training. This is driven by the fact that we want to use the form of the equation for analysis, debugging or
gaining insights. Dataset normalization makes the feature less interpretable by, de facto, changing the units in
which they are measured. Moreover, such normalization might make certain invariances more difficult to detect.
Translational or scale invariances are present in many physical systems and, in fact, have been used to discover
closed-form expressions from data (Udrescu and Tegmark, 2020). Consider equation (x2−x1)

2. The value of the
expression does not depend directly on the values of x1 and x2 but rather on their difference x2 − x1. Detecting
this relationship is important for both creating equations with interpretable terms and for pruning the search
space. As we tend to use a consistent and familiar set of units, we want to capitalize on that as much as we can.
However, features on different scales make neural networks (and other machine learning algorithms) notoriously
difficult to train. That is why we perform batch normalization before passing the data to a shape function. That
allows to perform a series of binary operations in the original units before a shape function is applied. This is
what happens in the example in Section 5, where given the energy and the mass of the substance, their ratio
(energy per 1 gram) is discovered to be a more meaningful feature.

B.3 Pseudocode and a Diagram

Block Diagram The training procedure for SHAREs implemented with symbolic regression and neural net-
works is depicted in Figure 8.

Data
Genetic 

Programming
Equation

𝑠1(𝑥1 + 𝑠2 𝑥2 𝑠3(𝑥3))

Neural Network
Suggest Encode

𝑥2 𝑥3

𝑥1 ×

+

𝑦

𝑠2 𝑠3

𝑠1

Loss

Fit

𝑿, 𝒚

Figure 8: This figure shows a block diagram depicting our implementation of SHAREs

Pseudocode The pseudocode for SHAREs implemented with symbolic regression and neural networks is de-
scribed in Algorithm 1.
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Algorithm 1 SHARE implemented using symbolic regression and neural networks

Input: Data X, y
Input: Symbolic regression optimization algorithm Osymbolic

Input: Gradient-based optimization algorithm Ogradient

Output: SHARE
procedure Loss(fe)

Encode expression fe as a neural network f
f ← Ogradient

(
||y − f(X)||22

)
return ||y − f(X)||22

end procedure
fe = Osymbolic(Loss)
return fe

C EXPERIMENTS

C.1 Hyperparameters

gplearn Gplearn hyperparameters used for experiments are presented in Table 5.

Table 5: Gplearn hyperparameters used in the experiments.

Hyperparameter Value

Population size 500 (Section 5) or 100 (Appendix C.4)
Generations 10
Tournament size 10
Function set +,×,÷, shape
Constant range None
p crossover 0.4
p subtree mutation 0.2
p point mutation 0.2
p hoist mutation 0.05
p point replace 0.2
Parsimony coefficient 0.0

Optimization of Shape Functions Hyperparameters used for optimizing the shape function are presented
in Table 6.

Table 6: Hyperparameters used in shape function optimization.

Hyperparameter Value

Algorithm Adam (Kingma and Ba, 2017)
Maximum num. of epochs 1000 (Section 5) or 200 (Appendix C.4)
Learning rate Tuned automatically for each equation
Weight decay 0.0001

PySR PySR hyperparameters used in the experiments are presented in Table 7.

EBM EBM hyperparameters used in the experiments in Section 2.2 are presented in Table 8. Hyperparameter
ranges used for tuning in experiments in Appendix C.4 are shown in Table 9.

XGBoost XGBoost hyperparameter used in the experiments in Section 2.2 are presented in Table 10. Hyper-
parameter ranges used in Appendix C.4 are presented in Table 11.
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Table 7: PySR hyperparameters.

Hyperparameter Value

Binary operations +,−,×,÷
Unary operators log, exp, cos
maxsize 25 (Table 1) or 40 (Table 3)
populations 15 (Table 1) or 30 (Table 3)
niterations 400
population size 33 (Table 1) or 50 (Table 3)

Table 8: EBM hyperparameters (Section 2.2 and Section 5).

Hyperparameter Value

max bins 256
max interaction bins 32
binning quantile
interactions 0 or 3
outer bags 8
inner bags 0
learning rate 0.01
validation size 0.15
early stopping rounds 50
early stopping tolerance 0.0001
max rounds 5000
min samples leaf 2
max leaves 3

Table 9: EBM hyperparameter ranges for tuning (Appendix C.4).

Hyperparameter Value

max bins Integer from [3, 256]
outer bags Integer from [4, 16]
inner bags Integer from [0, 8]
learning rate Float (log) from [1e− 3, 1e− 1]
validation size Float from [0.1, 0.3]
min samples leaf Integer from [1, 10]
max leaves Integer from [2, 10]

PyGAM PyGAM hyperparameter ranges used in experiments in Appendix C.4 are shown in Table 12.

C.2 Data Generation

Risk Scores Dataset Hastie and Tibshirani (1995) describes a process of applying GAMs to a dataset of
patients taking part in a clinical trial for the treatment of node-positive breast cancer. In the paper, three
shape functions that resulted from this fitting are presented (Figure 1). To generate the risk scores data we use
for experiments in Section 5, we use these plots to create similar-looking functions using BSplines. We sample
uniformly each of the covariates from their corresponding ranges, i.e., xnodes ∈ (0, 50), xage ∈ (45, 70), and
xbmi ∈ (17, 45). We then apply the created shape functions to these covariates and add their values together.
We create 200 samples. Half of them is used for training and the other half for validation. The code for creating
this dataset is included in the paper repository.
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Table 10: XGBoost hyperparameters (Section 2.2)

Hyperparameter Value

subsample 1
colsample bytree 1
colsample bylevel 1
gamma 0
booster gbtree
learning rate 0.3
max depth 6
n estimators 100
reg alpha 0
reg lambda 1
scale pos weights 1

Table 11: XGBoost hyperparameter ranges for tuning (Appendix C.4).

Hyperparameter Value

subsample Float from [0.2, 1.0]
colsample bytree Float from [0.2, 1.0]
gamma Float (log) from [1e− 3, 1e1]
learning rate Float (log) from [1e− 3, 1.0]
max depth Integer from [1, 10]
n estimators Integer (log) from [10, 1000]
reg alpha Float (log) from [1e− 3, 1e1]
reg lambda Float (log) from [1e− 3, 1e1]

Table 12: PyGAM hyperparameter ranges for tuning (Appendix C.4).

Hyperparameter Value

lam Float (log) from [1e− 3, 1e1]
max iter Integer (log) from [10, 100]
n splines Integer from [1, 30]

Temperature Dataset Data used in temperature experiments in Section 5 was generated by simulating the
temperature of water based on the laws of physics and constants shown in Table 4. m was uniformly sampled
from (1, 4) and t0 was sampled uniformly from (−100, 0). The energy E was calculated by first sampling energy
per mass uniformly from (1, 800) and then multiplying it by the mass m. The temperature (label) range (-100 to
250) was chosen to capture significant non-linear phenomena. Uniform energy sampling was avoided due to its
tendency to either under-represent temperatures over 100 or, if the energy range is increased, result in excessively
high temperatures (more than few thousands) dominating the training process. This is due to the high heat of
vaporization. We draw 2000 samples. Half of them is used for training and the other half for validation. The
code for creating this dataset is included in the paper repository.

C.3 Additional Results

GA2M Fitted to the Temperature Dataset We present the shape functions of GA2M fitted to the tem-
perature dataset in Section 5.

Equations From PySR Fitted to the Temperature Dataset. We present the equations found by PySR
when fitted to the temperature dataset in Section 5. These equations did not fit into the table with the results.
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Figure 9: Shape functions from the GA2M fitted to the temperature dataset
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C.4 Additional Experiments

We performed additional experiments on a few small classification datasets from the PMLB database (Olson
et al., 2017). The results are shown in Table 13

Table 13: AUC scores on small PMLB classification datasets. The higher the score, the better. Linear denotes standard
logistic regression. GAM-S is a type of GAM that uses smooth splines as shape functions (as implemented in pygam (Servén
and Brummitt, 2018)). EBM-1 and EBM-2 are Explainable Boosting Machines (without and with pairwise interactions)
as implemented in InterpretML package (Nori et al., 2019).

banana cancer breast diabetes

Linear 0.555 (0.000) 0.595 (0.000) 0.997 (0.000) 0.850 (0.000)
GAM-S 0.804 (0.000) 0.650 (0.000) 0.992 (0.000) 0.862 (0.000)
EBM-1 0.800 (0.001) 0.645 (0.014) 0.995 (0.001) 0.857 (0.004)
EBM-2 0.957 (0.001) 0.651 (0.007) 0.997 (0.001) 0.847 (0.003)
XGBoost 0.800 (0.002) 0.652 (0.028) 0.995 (0.002) 0.847 (0.002)
SHARE 0.915 (0.000) 0.668 (0.032) 0.998 (0.001) 0.846 (0.010)

We performed additional experiments on the temperature dataset, assessing performance under varying noise
levels. As illustrated in Figure 10, SHAREs demonstrate comparable robustness to noise as XGBoost (note,
label range is (-100, 250)). Furthermore, minimal variance in results across different initialization (indicated by
error bars) underscores SHAREs’ consistency.
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Figure 10: Performance vs. noise on the temperature dataset

C.5 Computation Time

The experiments were performed on 12th Gen Intel(R) Core(TM) i7-12700H with 64 GB of RAM. The average
times for experiments in Appendix C.4 are shown in Table 14. The total time for all experiments is around 15
hours.

Table 14: Average computation times (in seconds) for each of the methods and datasets in Appendix C.4.

banana cancer breast diabetes

Linear 0.01 0.00 0.00 0.01
GAM-S 0.09 0.47 0.17 0.09
EBM-1 0.57 0.04 0.08 0.08
EBM-2 6.66 0.20 0.53 1.17
XGBoost 0.09 0.01 0.02 0.05
SHARE 874.04 2321.60 7535.68 6133.11

C.6 Software Used

We use PySR (Cranmer, 2020) to run symbolic regression experiments.

We use the implementation of EBM (Lou et al., 2012, 2013) available in the InterpretML package (Nori et al.,
2019).

We use PMLB (Olson et al., 2017) package to access the Feynman Symbolic Regression Dataset.

C.7 Licenses

The licenses of the software used in this work are presented in Table 15
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Table 15: Software used and their licenses

Software License

gplearn BSD 3-Clause “New” or “Revised” License
scikit-learn BSD 3-Clause “New” or “Revised” License
numpy liberal BSD license
pandas BSD 3-Clause “New” or “Revised” License
scipy liberal BSD license
python Zero-Clause BSD license
PySR Apache License 2.0
interpret MIT License
pmlb MIT License
pytorch BSD-3
pytorch lightning Apache License 2.0
tensorboard Apache License 2.0
py-xgboost Apache License 2.0
pyGAM Apache License 2.0

D DISCUSSION

D.1 Equivalent Solutions

As SHAREs are defined by their symbolic representation, it is possible that there are two different symbolic
expressions that describe the same equation (especially as shape functions are flexible). We address this problem
in three ways that tackle three types of equivalence relations:

1. In our implementation, we restrict the set of binary operations to {+,×,÷} (Table 5). As subtraction (“−”)
is not included, we do not get the equivalence s1(x1) + s2(x2) = s1(x1)− s′2(x2) by s′2 = −s2.

2. A common way two mathematical expressions can be equivalent is through the distributive property, i.e.,
x1 × (x2 + x3) = x1 × x2 + x1 × x3. However, thanks to our definition of transparency, the second expression
will never appear in our search space (because the binary operators need to be disjoint).

3. We do not allow constants in transparent SHAREs to prevent equivalence of the type: s(x) = s′(x × a) for
any a ∈ R \ {0} and s′(x) = s(xa )

Another type of equivalence relation can arise from the use of exponential and logarithmic functions. For instance,
s0(s1(x1) + s2(x2)) can be represented as s′0(s

′
1(x1) × s′2(x2)) by taking s′1 = es1 , s′2 = es2 , s′0(x) = s0(log(x)).

However this other form of the expression require more shape functions. Thus, as they have the same predictive
power, the user can choose the one with a smaller number of shape functions for better understanding.

D.2 Limitations of the Current Implementation

The current implementation of SHAREs is time-intensive and thus does not scale to bigger datasets—thus, it is
not a main contribution of our paper. We hope that future work will address the limitations of our implementation
and will enhance the ability to fit SHAREs to even larger and more complex datasets.

The main bottleneck comes from nested optimization and the necessity of fitting a separate neural network
for every equation. Nevertheless, we want to highlight a few things we have done to make this problem more
tractable:

1. The constants are not optimized by random mutations but implicitly by fitting the shape functions using
gradient descent.

2. By considering only transparent SHAREs, we efficiently reduce the search space of expressions. By Proposi-
tion 1, the size of a SHARE is bounded by 4n− 2, linear in the number of variables.

3. During training, we cache the scores for found expressions so that they can be retrieved if they appear once
again during the evolution.
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D.3 Raw Variable Combinations and Unit Transformations

Variables in the dataset are often expressed in certain units. These units often provide a lot of information and
are frequently used in SR algorithms. Either explicitly (Udrescu and Tegmark, 2020) or implicitly by assuming
that certain arithmetic operations make sense. For instance, adding two variables makes little sense if they are
not measured in the same units. Of course, units may easily be changed by an affine transformation, but such
transformations increase the length of the equation. As many SR algorithms penalize based on the length of
the expression, the change of units changes the score of the expression. On the other hand, the datasets often
combine observations of very different phenomena that might be measured in wildly different units.

So, we want to use the information about units when possible, but we do not want to depend on it. This was one
of the motivations behind SHAREs. They allow the use of binary operations on the raw variables, capitalizing
on the units in which they were described, but also allow the first pass of a variable through a shape function
that can transform the variable. In certain cases (such as an affine transformation), this corresponds to a change
of units.

SHAREs, unlike GAMs, can accommodate combinations of raw variables (e.g., E
m , x1− x2), leading to potential

meaningful constructs like energy per unit mass or distance between points. Contrasting with symbolic regression,
SHAREs are less unit-sensitive, as variations in units (e.g., ◦C, ◦F, K) get absorbed within the shape functions
and do not lead to longer expressions.

In the current implementation, these relationships are learned directly from data. Future research direction may
include ways of explicitly providing information about units.

D.4 Related works

Complexity Metrics Used in Symbolic Regression Most of the metrics used in symbolic regression are
based on the “size” of the equation. That includes the number of terms (Stephens, 2022), the depth of a tree
(Cranmer, 2020; Petersen et al., 2021), and the description length (Udrescu et al., 2021). Pretrained methods
often control the complexity of the generated equations by constraining the training set using the above methods
(Biggio et al., 2021). Methods that directly represent the equation as a neural network (with modified activation
functions) employ sparsity in the network weights (Sahoo et al., 2018). Although these metrics are often correlated
with the difficulty of understanding a particular equation, size does not always reflect the equation’s complexity
as it disregards its semantics. Some approaches try to address this issue. Vladislavleva et al. (2009) introduces
a metric based on “order of nonlinearity” with the assumption that nonlinearity measures the complexity of the
function. Although simpler models tend to be more linear, and nonlinearity may be important for generalization
properties, it is not clear how it aids in model understanding. Similarly, Vanneschi et al. (2010) uses curvature as
an inspiration for their metric. Although curvature may be well-suited for characterizing bloat and overfitting,
it does not directly relate to how the model is understood. Kommenda et al. (2015) introduces a metric that is
supposed to reflect the difficulty in understanding an equation. However, the exact rules chosen to calculate the
complexity seem arbitrary. For instance, it is not clear why applying some well-known functions (such as sin,
log) increases the complexity in a widely different manner than squaring or taking a square root. We also dispute
the motivating example that demonstrates that esin

√
x is nearly 4000 times more complex than 7x2 + 3x+ 5. It

is not clear under what assumptions such a result would be intuitive.

NeuroSymbolic AI As our implementation of SHAREs contains both symbolic and neural components, it
can be classified as an example of Neurosymbolic AI (Hitzler and Sarker, 2021; d’Avila Garcez and Lamb,
2023) that tries to combine symbolic/reasoning elements with neural networks. Neurosymbolic AI encompasses
Neurosymbolic Learning Algorithms and Neurosymbolic Representations (Chaudhuri et al., 2021). Examples
of the former may include recently proposed algorithms for symbolic regression that utilize large pre-trained
transformers (Biggio et al., 2021; D’Ascoli et al., 2022; Kamienny et al., 2022) or where a symbolic loss is used to
regularize a deep learning model as in Physic Informed Neural Networks (PINNs) (Raissi et al., 2019). We note,
however, that PINNs are inherently a black box model where a physical constraint is used as an inductive bias
during training. This significantly differs from our approach, where a human can trace the exact computation
steps for the prediction. Thus SHAREs are an example of a neurosymbolic representation, where the model itself
is a fusion of symbolic language and neural networks. Examples of such models have also been used in other
areas (Valkov et al., 2018; Cheng et al., 2019).
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D.5 Meaning of the Word Transparent

In our paper, we have used a widely accepted term: transparent (Barredo Arrieta et al., 2020). However,
other terms could also be used. That includes: inherently interpretable (Rudin, 2019), intrinsically interpretable
(Vollert et al., 2021), intelligible (Lou et al., 2012, 2013), or white boxes (Nori et al., 2019). For this paper, we
assume all of these terms refer to the same class of models.

D.6 Complexity of Univariate Functions.

Rule 1 in Section 4 is based on the assumption that any univariate function can be understood by plotting
it. This assumption is tacitly made in many works on GAMs that introduce algorithms producing sometimes
very complicated shape functions (Lou et al., 2012; Caruana et al., 2015; Agarwal et al., 2021). However, in
certain scenarios this assumption is too strong and some recent works introduce GAMs that take into account the
complexity of shape functions (Abdul et al., 2020). Rule 1 can be modified to include these stronger assumptions.
In our implementation, we use neural networks, which are known for their expressiveness, and we took a few
design choices that made them simple in practice. We believe their simplicity is a result of

• weight decay to promote smaller weights,
• choosing a smooth ELU activation function instead of ReLU or ExU, (Agarwal et al., 2021) that encourage
more jagged functions,

• employing early stopping when training the neural networks to prevent over-fitting,
• optimizing using backprop - models learned that way were shown to be biased toward smooth solutions
(Caruana et al., 2000).

Our formulation of SHAREs allows for different kinds of shape functions, and thus, there is a way to enforce
simplicity by using splines instead of neural networks. This assumes that our definition of simplicity concerns
the smoothness and the number of inflection points. By choosing the number of knots, we can choose the level
of simplicity we desire.

D.7 Rules: Practical Example.

We propose a practical example when Rule 1 and Rule 2 are satisfied. Let us assume that our definition of
transparency concerns (maybe, among other things) understanding the set of possible values the expression
outputs given a particular set of inputs. We characterize the set of inputs by specifying an interval for every
feature. That is, we are interested in the range of values of f(x1, . . . , xn) where x1 ∈ [a1, b1], . . . xn ∈ [an, bn]. Let
us fix the input intervals. Let us assume that an expression f(x1, . . . , xn) is transparent if we can easily find an
interval [c, d] that is an image of this function for the specified inputs. Clearly, xi is transparent. But so is f(xi)
for any univariate f as long as we are able to characterize the extrema of f at interval [ai, bi]. Let us assume
that a given f is transparent, i.e., we know its image is an interval [c, d]. Then, we can compute the image of
s ◦ f (as long as we are able to characterize the extrema of s at interval [c, d]). Thus, we can see how Rule 1
conforms to our notion of transparency. As Rule 2 requires the functions to be transparent and have disjoint
sets of arguments, we can easily calculate the range of the whole model by applying the interval arithmetic. The
example above demonstrates that our rules have practical application for a broad set of shape functions—the
only requirements are being continuous and having easily identifiable extrema at given intervals (which can be
found by plotting the function).

D.8 Computational Complexity of the Implementation

Symbolic regression algorithms are known to be computationally intensive, and the problem itself is known to
be NP-hard (Virgolin and Pissis, 2022). As our model class also requires discrete and continuous optimization
(for the structure and the shape functions, respectively), the task is challenging. We performed several actions
(described in Appendix D.2) to speed up the optimization. The algorithm consists of two loops. The outer loop
searches through the space of expression trees (where the shape functions are represented as placeholders), and
the inner loop optimizes the shape function using gradient descent. This procedure can be phrased as a neural
architecture search with the use of genetic programming (Liu et al., 2023). In fact, certain implementations of
symbolic regression also perform bi-level optimization. For instance, in the algorithm developed by Cranmer
(2020) (PySR), the search is performed over the expression trees, and then the constants are optimized for each
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expression. The main overhead in our implementation comes from having more parameters to optimize in the
inner loop as we use univariate neural networks. However, that problem can be tackled by choosing flexible
shape functions with smaller numbers of parameters.

D.9 Expressivity of Transparent SHAREs

Transparent SHAREs are (by definition) more expressive than GAMs as their search space is bigger. As noted,
the Kolmogorov-Arnold theorem (Kolmogorov, 1957) also shows that univariate functions (in theory) should be
sufficient to represent any continuous function. In addition, we argue that the assumptions on the structural
form of the equation (Rule 2) do not significantly reduce SHARE’s ability to model practical complex functions.
To demonstrate it, we turn to the current state-of-the-art models we use to model the world - mathematical
equations. 86 out of 100 equations from the Feynman Symbolic Regression database (Udrescu and Tegmark,
2020) satisfy Rule 2. We believe that if Transparent SHAREs are expressive enough to fit the majority of
equations used in physics, then they are likely to be sufficient to model other real-world phenomena. We also
demonstrate it in the additional experiment we performed on real-world datasets (see Appendix C).

D.10 Using Transparency Rules in the Standard Symbolic Regression

By definition (see Remark 1), closed-form expressions can be considered SHAREs if we choose the set to be a finite
set of some well-known function. The second rule, thus, can be applied to standard SR. Although the current
symbolic regression algorithms are often penalized on the length of the program (Stephens, 2022) or similar
length-based criteria (Udrescu et al., 2021), we are not convinced this is the best way to elicit transparency
(see Appendix D.4). As we mentioned in Section 4, 86% of equations from the Feynman Symbolic Regression
Database (Udrescu et al., 2021) satisfies Rule 2, so the trade-off between performance and interpretability may
be worth it.

We note, however, that applying other properties from Definition 1 to SR (shape functions cannot be recursively
composed, no numeric constants) is not a good idea because the set of shape functions is not expressive enough
(it is fixed and not learned from the data) - it does not satisfy the first criterion.

D.11 Model Selection

When it comes to model selection among interpretable models, the issue is how to balance the trade-off between
interpretability and accuracy. Thanks to our definition of transparency, all found models have some guaranteed
interpretability (this is not true about the equations found by symbolic regression). However, we recognize that
even among transparent SHAREs, some of the models might take less time to understand than others - based
on how many shape functions are involved. We do not want to impose a specific strategy on how a user should
decide which equation to choose. Instead, as has been done in SR literature (Udrescu et al., 2021), we provide
a Pareto-frontier of the found equations. Each of the expressions in the table is Pareto-optimal, i.e., there is no
other function that is both simpler (in terms of the number of shape functions) and more accurate.

In certain settings where a more automatic model selection is required, techniques from symbolic regression
literature can be used to deterministically choose the “best” equation given the Pareto-frontier. This might
involve a simple strategy based on a linear penalty due to the number of shape functions (Stephens, 2022) or
more complicated methods based on the accuracy of the most accurate model and the rate of change of the loss
as we move along the Pareto-frontier (Cranmer, 2020).

D.12 Scalability of Rule-Based Transparency

Maintaining interpretability as the number of variables increases is one of the main challenges of all intrinsically
interpretable methods. As the human brain has a limited capacity for reasoning about more than a few concepts
simultaneously, we decided to define transparency so that we can reason about different parts of the model
independently. With enough time, we can build intuition and understanding from the ground up, each time
combining the knowledge about two smaller models into a bigger one. That is why we believe that our notion of
transparency scales well as the number of variables increases. That means SHAREs remain interpretable even in
higher-dimensional settings. The traditional size-based notion of transparency employed in symbolic regression
does not have this property. As the number of variables increases, the size of the expression has to increase to
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accommodate them. Without any constraints similar to Rule 2, we either have to accept that SR cannot be used
if the number of dimensions exceeds a certain (quite low) threshold, or we have to accept that equations remain
interpretable even as they become very large.
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